WO1991020051A1 - Microcomputer provided with built-in converter - Google Patents

Microcomputer provided with built-in converter Download PDF

Info

Publication number
WO1991020051A1
WO1991020051A1 PCT/JP1991/000774 JP9100774W WO9120051A1 WO 1991020051 A1 WO1991020051 A1 WO 1991020051A1 JP 9100774 W JP9100774 W JP 9100774W WO 9120051 A1 WO9120051 A1 WO 9120051A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
cpu
conversion
period
signal
Prior art date
Application number
PCT/JP1991/000774
Other languages
English (en)
French (fr)
Inventor
Jiro Kobayashi
Satoru Suwabe
Syunji Abe
Original Assignee
Oki Electric Industry Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co., Ltd. filed Critical Oki Electric Industry Co., Ltd.
Priority to KR1019920700223A priority Critical patent/KR100187805B1/ko
Priority to US07/834,579 priority patent/US5307066A/en
Priority to EP91910650A priority patent/EP0487743B1/en
Priority to DE69130152T priority patent/DE69130152T2/de
Publication of WO1991020051A1 publication Critical patent/WO1991020051A1/ja

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/76Architectures of general purpose stored program computers
    • G06F15/78Architectures of general purpose stored program computers comprising a single central processing unit
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/05Digital input using the sampling of an analogue quantity at regular intervals of time, input from a/d converter or output to d/a converter
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/76Architectures of general purpose stored program computers
    • G06F15/78Architectures of general purpose stored program computers comprising a single central processing unit
    • G06F15/7839Architectures of general purpose stored program computers comprising a single central processing unit with memory
    • G06F15/7842Architectures of general purpose stored program computers comprising a single central processing unit with memory on one IC chip (single chip microcontrollers)

Definitions

  • the present invention relates to an analog converter, a digital converter (hereinafter, referred to as an AD converter), a digital converter *, an analog converter (hereinafter, referred to as a DA converter), or a micro-computer incorporating both of them.
  • the present invention relates to a built-in micro-computer for preventing a decrease in conversion accuracy due to noise.
  • FIG. 2 is a block diagram showing a configuration example of a conventional micro computer with a built-in converter.
  • This micro-computer with a built-in converter has a central processing unit (hereinafter referred to as CPU) 1 that performs digital signal arithmetic processing according to program instructions.
  • the CPU 1 has a data bus DB and an address bus AB.
  • AD converter 2 is connected via.
  • the AD converter 2 converts the analog signal input from the analog input terminal 3 into a digital signal based on the 'AD conversion start signal ST output from the CPU 1, and converts the digital signal via the data bus DB. It has the function of sending an AD selection signal S 2 as well as sending it to CPU 1.
  • the edge detection circuit 4 is a circuit that detects the conversion operation state of the AD converter 2 based on the AD selection signal S2, and supplies a CPU stop signal SP or a stop release signal CLR to the CPU 1. Has functions.
  • an address previously assigned to the AD converter 2 by the CPU 1 program is output to the AD converter 2 via the address bus AB. Then, the AD converter 2 is selected, and the AD selection signal S2 output from the AD converter 2 becomes active, and changes from the "L" level to the “H” level.
  • the edge detection circuit 4 detects the rising of the AD selection signal S 2 from the “L” level to the “H” level, outputs a CPU stop signal SP to the CPU 1, and operates on the CPU 1. Request a stop.
  • the CPU 1 receives the CPU stop signal SP, enters the stop mode, and outputs the AD conversion start signal ST to the AD converter 2 to start the AD conversion operation.
  • the AD converter 2 converts the analog signal from the analog input terminal 3 into a digital signal, and after a predetermined period of time, when the AD conversion is completed, the AD converter 2 outputs the signal.
  • AD selection signal S2 fall from "H" level to "L” level.
  • the edge detection circuit 4 detects this, outputs a stop release signal CLR to CPU1, and restarts the operation of CPU1.
  • the micro computer has a halt (ha1t, stop instruction) mode for stopping the execution of the instruction of the CPU itself, the above-described method can be performed without adding the ETS detection circuit 4 to the microcomputer.
  • the same processing as described above can be performed by a program.
  • An object of the present invention is to improve the accuracy of AD conversion or DA conversion without increasing the circuit scale and without significantly lowering the efficiency of use of the CPU, as the problems of the prior art. It provides a computer with a built-in converter with a built-in converter that solves the difficulties of the above.
  • the present invention provides a CPU for processing a digital signal according to a program instruction, and an analog signal and a digital signal for input / output of the CPU And a converter (AD converter or DA converter) that performs the conversion of the converter.
  • the micro converter with a built-in converter controls the conversion operation of the converter based on the control output of the CPU.
  • a conversion control circuit is provided which outputs an operation stop signal to the CPU during a specific period of the converter (for example, a period during which the conversion accuracy is affected during the conversion operation of the converter).
  • the microcomputer with a built-in converter is configured as described above.
  • the conversion control area becomes Control the conversion operation.
  • the converter converts the input analog signal into a digital signal and supplies it to the CPU, or performs a conversion operation of converting the digital signal from the CPU into an analog signal and outputting the analog signal.
  • the conversion control circuit outputs an operation stop signal to the CPU only during a specific period that is most susceptible to noise during the conversion operation. Then, the CPU stops main operation only for the specified period. By stopping this operation,
  • the effect of noise from the CPU on the converter can be prevented, thereby improving the conversion accuracy of the converter and enabling the CPU to execute processing even during the conversion operation.
  • the use efficiency of the CPU is improved. 'Therefore, the problem can be solved.
  • FIG. 1 is a block diagram of an AD converter section showing an embodiment of the present invention.
  • 2 is a block diagram of the configuration of a conventional micro-computer with a built-in converter
  • FIG. 3 is a configuration of a main part of a micro-converter with a built-in converter showing an embodiment of the present invention.
  • the block diagram and Fig. 4 are the timing charts of Figs. 1 and 3.
  • FIG. 3 is a block diagram of a main part of a computer with a built-in converter having a built-in converter showing an embodiment of the present invention, and FIG. 1 is provided on the micro computer.
  • FIG. 2 is a circuit diagram of a main part of an AD converter section used.
  • the micro-computer with a built-in converter shown in FIG. 3 has a CPU 10 for executing a program stored in a memory (not shown).
  • the CPU 10 is provided with an arithmetic unit for performing a mining operation and a logical operation, a control unit for controlling the entire CPU, and a register unit having a function as an internal memory in the CPU. .
  • the CPU 10 supplies the AD conversion start data to the AD converter section 20 via the data bus DBn, and sends the write signal W, the read signal R, and the clock pulse CLK to the AD converter section. It has a function to supply to the unit 20 and to stop main operations other than the clock pulse output operation based on the CPU stop signal SP.
  • the AD converter section 20 connected to the CPU 10 receives the AD conversion start data and the write signal W from the CPU 10 via the data bus DBn, the AD converter section 20 receives the data from the analog input terminal 21.
  • Analog signal A in digital signal And a function of outputting the conversion stop signal ADHLT only during a specific period that affects the conversion accuracy during the conversion operation.
  • This ADHLT is connected to the input terminal D of a delay type flip-flop (D-FF) 50 for synchronization.
  • D-FF delay type flip-flop
  • the clock pulse CLK from the CPU 10 is input to the clock input terminal of D-FF 50, and the CPU stop signal SP output from the output terminal Q is supplied to the CPU 10 It is configured to be.
  • the D-FF 50 is a circuit that operates at the falling edge of the clock pulse CLK and supplies the CPU stop signal SP from the output terminal Q to the CPU 10.
  • the AD converter section 20 includes, for example, a Chiba-type AD converter 30 and a conversion control circuit 40 that controls the conversion timing of the AD converter 30. Etc. are provided.
  • the AD converter 30 includes an inverter 31 for inverting a control signal EA for controlling an analog input and an inverter for inverting a control signal ER for controlling an input of a reference voltage VR.
  • the analog switch 33 controls the input of the analog signal Ain by the inverter 32, the control signal EA and the output of the inverter 31, and the reference is made by the control signal ER and the output of the inverter 32.
  • An analog switch 34 for controlling the input of the voltage VR is provided.
  • a capacitor 35 and a comparator 36 are connected to the analog switches 33 and 34, and the output of the comparator 36 is latched. Connected to input terminal D of switch circuit 37.
  • the latch circuit 37 latches the output of the comparator 36 based on the latch signal W 0 ut input to the latch input terminal L, and outputs the latched data as a digital signal. It is output from the output terminal Q in the form of D 0 ut, sequentially stored in the register (not shown) for the AD converter bits, and supplied to the CPU 10 via the data bus DB n in FIG. You.
  • the conversion control circuit 40 has a two-input AND gate (hereinafter referred to as an AND gate) 41 for inputting the write signal W from the CPU 10 and the clock pulse CLK.
  • the output of 1 is connected to the clock input terminal of D-FF42.
  • D—FF42 receives the contents of the data bus DBn from the input terminal D at the falling edge of the write signal W sent from the CPU 10, and receives the conversion start signal S4'2 from the output terminal Q. It is a circuit to output.
  • the D-FF 42 controls the start of operation of the conversion control circuit 40 and initializes the conversion control circuit 40 by a conversion end signal C 0 VEND input to the reset terminal R. It has a function.
  • the output terminal Q of the D-FF 42 is connected to each reset terminal R of the D-FF 44 and a counter (for example, a Johnson power counter) 45 through the inverter 43.
  • D — FF 44 is a circuit that divides the clock pulse CLK input to the clock input terminal by 2 and outputs it from the output terminal Q, and outputs the clock pulse as a clock pulse.
  • the counter 45 has four D-FFs, for example. 45 a to 45 d are connected in cascade, and the output terminal 100 of the last stage D-FF 45 d is connected to the input terminal D of the first stage D-FF 45 a.
  • a logic circuit 46 is connected to the output side of the counter 45.
  • the logic circuit 46 is a circuit that takes the logic of the output of the counter 45 and outputs the control signals EA and ER, the latch signal Wout, and the conversion stop signal ADHLT. It consists of 6a to 46e and a 2-input orgate (hereinafter referred to as 0R gate) 46 4.
  • FIG. 4 is a timing chart showing the operation of FIGS. 1 and 3, and the operation of the micro-computer of this embodiment will be described with reference to FIG.
  • the CPU 10 shown in FIG. 3 outputs the address previously assigned to the AD converter section 20 or the AD conversion start data by the data bus DB n and the write signal W, and outputs the AD converter 2 0 starts AD conversion.
  • the D-FF 42 in the conversion control circuit 40 receives the content of the data bus DB n by the fall of the write signal W from the CPU 10. That is, the "H" level is taken in, and the conversion start signal S42 output from the output terminal Q is set to the "H” level.
  • This conversion start signal S42 is inverted by the inverter 43, and the D-FF45 in the counter 45 and the D-FF45a to
  • D—FF 44 is the clock sent from CPU 10
  • the pulse CLK is divided by 2 and the divided clock pulse 1 Z2 CLK is output from the output terminal Q, and each clock of D—FF 45 a to 45 d in the counter 45 is output. Supplied to the input terminal.
  • D—F F 45 a to 45 d perform the counting operation using clocks and clocks 1/2 CLK, and output the counting result from each output terminal Q.
  • the results of these counts are calculated by the AND gates 46a to 46e and the 0R gate 46f in the logic circuit 46, and the control signal corresponding to the logical result is obtained.
  • EA, ER, latch signal Wout and conversion stop signal ADHLT are output.
  • the control signal EA output from the AND gate 46a is at the D-FF45a output terminal Q level, and the inverted output terminal of the D-FF45d is at the H level.
  • the control signal ER output from the AND gate 46b is D-FF45a when the inverted output terminal 100 of D-FF45a is at the "H” level and D-FF45d When the output terminal Q is at the "H” level, it goes to the "H” level.
  • the latch signal Wout output from the AND gate 46e is the inverted output terminal of D-FF45c.
  • the conversion start signal S 42 output from the D-FF 42 becomes “H” level
  • the control signal EA becomes “H” level two CLKs later
  • the inverter in the AD converter 30 The analog switch 33 is turned on via the switch 31.
  • the analog switch 34 in the AD converter 30 is in the off state.
  • the analog switch 33 is turned on, the analog signal A in input from the analog input terminal 21 is sent to the capacitor 35 through the analog switch 33, and the capacitor 35 is charged. Is done.
  • the analog switch 33 Since the control signal EA is kept at “H” level for 6 CLK periods and then becomes “L” level, the analog switch 33 is turned off. Two CLK later, the control signal ER goes to "H” level, and the analog switch 34 is turned on.
  • the analog switch 34 When the analog switch 34 is turned on, the reference voltage VR generated by an analog circuit (not shown) in the conversion control circuit 40 is transmitted to the capacitor 35 through the analog switch 34.
  • the comparator 36 compares the magnitude of the analog signal A in charged in the capacitor 35 with the reference voltage VR, and supplies the comparison result to the input terminal D of the latch circuit 37.
  • the latch circuit 37 is controlled by the latch signal W 0 ut which becomes the “H” level after 6 CLK after the control signal ER becomes the “H” level and the capacitor 34. Latch the size comparison result.
  • the control signal ER keeps the "H” level for 6 CLK periods, and then goes to the “L” level.
  • the control signal ER goes to the “L” level, and 2 CLK after that, the control signal EA goes to the “H” level again.
  • the AD converter 30 repeats the above operation for the number of resolution bits, and ends the AD conversion.
  • the AD converter 30 has a resolution of 10 bits, as shown in Fig. 4, the AD conversion time per bit requires 16 CLK times, and 10 bits AD converter 3
  • a conversion end signal C0VEND is generated by a circuit (not shown), and D-FF42 is reset by the conversion end signal COVEND. It is.
  • This "L” level conversion start signal S42 is inverted by the inverter 43 to become “H” level, and D-FF44, 45a to 45d according to the "H” level. Is reset, and each output terminal Q becomes “L” level, and its inverted output terminal 100 becomes “H” level. Therefore, the conversion control circuit 40 is initialized, the AD conversion operation is stopped, and the AD conversion operation ends.
  • the digital signal D ut output from the output terminal Q of the latch circuit 37 is sequentially stored in a register (not shown) for the AD converter bits, and based on the read signal R from the CPU 10, Data bus
  • the conversion stop signal ADHL output from the 0 R gate 46 in FIG. 1 is generated during the conversion operation of the AD converter 30, particularly during the specific period that affects the accuracy, It goes to the "H” level and is given to the input terminal D of D-FF50 in FIG. Then, D-FF50 is the CPU 10 power, the clock. Changes due to the rise of Captures the conversion stop signal AD ⁇ L ⁇ , and sets the CPU stop signal SP output from the output terminal Q to CPU 10 to the "H" level. As a result, the CPU 10 stops main operations other than the operation of generating the clock pulse CLK.
  • the main operation of the CPU 10 is controlled by the CPU stop signal SP only during a specific period that affects the accuracy of the conversion operation. Stop it. For this reason, it is possible to accurately prevent a decrease in the accuracy of the AD conversion operation due to the noise of CPU 10.
  • the CPU 10 can perform other processing than the AD conversion processing. Therefore, an accurate AD conversion operation can be performed without lowering the processing efficiency of the CPU 10.
  • the AD converter 30 in FIG. 1 may be constituted by an AD converter having another configuration such as a successive approximation type. Furthermore, the conversion control circuit 40 can be modified to a circuit configuration other than that shown by using another flip-flop, a gate circuit, or the like. '
  • the D-FF50 in FIG. 3 may be provided in the AD converter section 20 or in the CPU 10.
  • the present invention can be applied to a case where a DA converter section is connected instead of the first section 20.
  • the main operation of the CPU is stopped by the operation stop signal during the conversion operation of the converter only during a specific period that affects its accuracy. I tried to make it. Therefore, it is possible to accurately prevent the conversion operation of the converter from deteriorating due to the noise of the CPU. Moreover, since the CPU stops only during a specific period, the stop period is short, and other processes by the CPU can be executed in addition to the converter conversion process. Therefore, the conversion operation by the converter can be performed with high accuracy without lowering the processing efficiency of the entire CPU.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Microcomputers (AREA)
  • Analogue/Digital Conversion (AREA)

Description

明 細 書
コ ンバ一タ内蔵マ イ ク ロ コ ン ピュ一タ
技術分野
本発明は、 アナログ、 ディ ジタルコ ンバータ (以下、 A D コ ンバータ という ) 、 あるいはディ ジタノレ * アナ口 グコ ンバータ (以下、 D Aコ ンバータという) 、 あるい はそれらの両方を内蔵したマイ ク ロコ ンピュータ、 特に ノ ィ ズによる変換精度の低下防止を図ったコ ンバ一タ内 蔵のマイ ク ロコ ンピュータに関する ものである。
背景技術
従来、 このような分野の技術としては特開昭 6 4 — 5 8 0 4 3号公報に記載されるものがあった。 以下、 その 構成を図を用いて説明する。
第 2図は、 従来のコ ンバータ内蔵マイ ク ロ コ ンピュー タのー構成例を示すブ口 ック図である。
このコ ンバータ内蔵マイ ク ロコ ンピュータは、 プログ ラム命令に従ってディ ジタル信号を演算処理する中央処 理装置 (以下、 C P Uという ) 1 を有し、 その C P U 1 には、 データバス D B及びァ ド レスバス A Bを介して A Dコ ンバータ 2が接続されている。 A D コ ンバータ 2 は、 C P U 1 から出力される' A D変換開始信号 S Tに基づき、 アナログ入力端子 3から入力されたアナログ信号をディ ジタル信号に変換し、 そのディ ジタル信号をデータバス D Bを介して C P U 1 へ送ると共に、 A D選択信号 S 2 を出力する機能を有している。
この C P U 1及び A Dコ ンバータ 2 には、 ェ ッヂ検出 画路 4が接続されている。 エツヂ検出回路 4 は、 A D選 択信号 S 2に基づき、 A Dコ ンバータ 2の変換動作状態 を検出する回路であり、 C P Uス ト ップ信号 S Pまたは ス ト ッブ解除信号 C L Rを C P U 1へ与える機能を有し ている。
この種のマイ ク ロ コ ンピュータでは、 C P U 1力 、 プ ログラムにより予め A Dコ ンバ一タ 2に割当てられたァ ド レスをァ ド レスバス A Bを介して A Dコ ンバータ 2に 出力する。 すると、 A Dコ ンバータ 2が選択され、 その A Dコ ンバータ 2から出力される A D選択信号 S 2がァ クティ ブとなり、 " L " レベルから " H " レベルへ変化 する。 エツヂ検出回路 4では、 A D選択信号 S 2 の " L " レベルから " H " レベルへの立上りを検出し、 C P Uス ト ップ信号 S Pを C P U 1へ出力し、 その C P U 1 に対 して動作停止を要求する。
C P U 1 は、 C P Uス ト ツブ信号 S Pを受け、 ス ト ツ プモー ドに入ると共に、 A D変換開始信号 S Tを A Dコ ンバ一タ 2へ出力して A D変換の動作を開始させる。 こ れにより、 A Dコ ンバータ 2 は、 アナログ入力端子 3か らのアナログ信号をディ ジタル信号に変換し、 所定の時 間経過後、 A D変換が^了すると、 その A Dコ ンバータ 2から出力される A D選択信号 S 2力 " H " レベルから " L " レベルへ立下る。 これをエ ツヂ検出回路 4が検出 し、 ス ト ツプ解除信号 C L Rを C P U 1 へ出力し、 C P U 1 の動作を再び開始させる。
このよう に、 従来のマイ ク ロコ ンピュータでは、 A D コ ンバータ 2が変換動作中にあることを判別するエ ツヂ 検出回路 4を設け、 A D コ ンバータ 2 の動作中には、 該 エ ツヂ検出回路 4から出力される C P Uス ト ップ信号 S Pによって C P U 1 の主要動作を停止させる。 これによ り、 A D変換中における C P U 1 から生じるノ イ ズを軽 減させ、 それによつて A D コ ンバータ 2の精度を向上さ せることができる。 しかしながら、 上記構成のマイ ク ロ コ ン ピュータでは、 A D コ ンバータ 2 (あるいは D Aコ ンバ一タ) が変換動作をしている間、 C P U 1 が動作停 止状態となるため、 A D変換動作あるいは D A変換動作 以外の処理ができず、 C P U 1 の使用効率が低いという 問題があった。 また、 C P U自体の命令実行を停止する ホール ト ( h a 1 t , 停止命令) モー ド付きのマイ ク ロ コ ン ピュータであれば、 わざわざエ ツヂ検出回路 4を付 加しな く とも、 前記と同様の処理がプログラムによって 可能である。
本発明は前記従来技術が持っていた課題として、 回路 規模の増大を招く ことな く、 且つ C P Uの使用効率の大 幅な低下を招く ことな く , A D変換あるいは D A変換の 精度を向上させることが困難である点について解決した コ ンバータ内蔵マイ ク 口'コ ン ピュータを提供するもので ある。
発明の開示
本発明は前記課題を解決するために、 プログラム命令 に従ってディ ジタル信号を演算処理する C P Uと、 前記 C P Uの入出力に対するアナログ信号とデ ィ ジタ ル信号 の変換を行うコ ンバータ ( A D コ ンバータあるいは D A コ ンバータ) とを、 備えたコ ンバータ内蔵マイ ク ロ コ ン ビュータにおいて、 前記 C P Uの制御出力に基づき前記 コ ンバータの変換動作を制御すると共に前記コ ンバータ の特定期間 (例えば、 該コ ンバータの変換動作中にその 変換精度に影響を及ぼす期間) に動作停止信号を前記 C P Uへ出力する変換制御回路を、 設けたものである。 本 発明によれば、 以上のようにコ ンバ一タ内蔵マイ ク ロコ ンピュータを構成したので、 プログラム命令に従って C P Uが変換制御回路に対して変換開始命令を出力すると、 変換制御面路は、 コ ンバータの変換動作を制御する。 コ ンバ一タは、 入力されるアナ口グ信号をディ ジタル信号 に変換して C P Uに与えるか、 あるいはその C P Uから のディ ジタル信号をアナログ信号に変換して出力する変 換動作を実行する。
この変換動作中において、 変換制御回路は、 変換動作 中にノ イ ズの影響を最も受けやすい特定期間のみ、 動作 停止信号を C P Uへ出力する。 すると、 C P Uはその特 定期間のみ主要動作を停止する。 この動作停止により、
C P Uがコ ンバ一タに及ぼすノ ィ ズの影響を防止でき、 それによつてコ ンバ一タ'の変換精度の向上が図れると共 に、 変換動作中においても C P Uの処理の実行が可能と なり、 該 c P Uの使用効率が向上する。'従って、 前記課 題を解決できるのである。
図面の簡単な説明
第 1図は本発明の実施例を示す A Dコ ンバ一タ部の要 部の回路図、 第 2図は従来のコ ンバータ内蔵マイ ク ロコ ンピュータの構成ブロ ック図、 第 3図は本発明の実施例 を示すコ ンバータ内蔵マイ ク ロ コ ンビュータの要部の構 成ブロ ック図、 第 4図は第 1図及び第 3図のタイ ミ ング チヤ一 ト である。
発明を実施するための最良の形態 第 3図は本発明の実施例を示すコ ンバータ内蔵マイ ク 口コ ンピュータの要部の構成ブロ ック図、 第 1図はその マイ ク ロ コ ンピュータに設けられる A Dコ ンバ一タ部の 要部の回路図である。
第 3図に示すコ ンバ一タ内蔵マイ ク ロコ ンピュータは、 図示しないメ モ リ に格納されたプログラムを実行する C P U 1 0を有している。 C P U 1 0 は、 箕術演算及び論 理演算を行う演算部と、 C P U全体の制御を行う制御部 と、 C P U内の内部メ モ リ と しての機能を有する レジス タ部とを備えている。 この C P U 1 0 は、 A D変換開始 データをデータバス D B nを介して A Dコ ンバ一タ部 2 0へ与えると共に、 書込み信号 W、 読出し信号 R、 及び ク ロ ックパルス C L Kを該 A Dコ ンバ一タ部 2 0へ拱給 し、 さ らに C P Uス ト ップ信号 S Pに基づき、 ク ロ ック パルス出力動作以外の主'要な動作を停止する機能を有し ている。
C P U 1 0 に接続された A Dコ ンバータ部 2 0 は、 デ —タバス D B nを介して A D変換開始データや書込み信 号 W等を C P U 1 0から入力する と、 アナログ入力端子 2 1 から入力されるアナログ ί言号 A i nをデ ィ ジタル信 号に変換する機能を有すると共に、 その変換動作中に該 変換精度に影響を及ぼす特定の期間のみ変換停止信号 A D H L Tを出力する機能を有している。 この A D H L T は、 同期用の遅延型フリ ップフ口 ップ (以下、 D— F F という ) 5 0の入力端子 Dに接続されている。
D - F F 5 0 のクロ ック入力端子には C P U 1 0から のク ロ ッ クパルス C L Kが入力され、 その出力端子 Qか ら出力される C P Uス ト ップ信号 S Pが該 C P U 1 0へ 供給される構成になっている。 この D— F F 5 0 は、 ク ロ ックパルス C L Kの立下りにより動作し、 C P Uス ト ップ信号 S Pを出力端子 Qから C P U 1 0へ供給する回 路である。
第 1図に示すように、 A Dコ ンバータ部 2 0内には、 例えばチヨ ツバ型の A Dコ ンバータ 3 0、 及びその A D コ ンバータ 3 0の変換タィ ミ ングを制御する変換制御回 路 4 0等が設けられている。
A Dコ ンバ一タ 3 0 は、 アナ口グ入力を制御するため の制御信号 E Aを反転するィ ンバータ 3 1 と、 基準電圧 V Rの入力を制御するための制御信号 E Rを反転するた めのィ ンバータ 3 2 と、 制御信号 E A及びィ ンバータ 3 1 の出力によってアナ ώグ信号 A i nの入力を制御する アナログスィ ツチ 3 3 と、 制御信号 E R及びィ ンバ一タ 3 2 の出力によつて基準電圧 V Rの入力を制御するアナ ログスィ ッチ 3 4 とを、 備えている。 このアナログスィ ツチ 3 3 , 3 4には、 コ ンデンサ 3 5及びコ ンパレータ 3 6が接続され、 そのコ ンパレータ 3 6の出力が、 ラ ッ チ回路 3 7 の入力端子 Dに接続されている。 ラ ッチ回路 3 7 は、 ラ ッチ入力端子 Lに入力されるラ ッチ信号 W 0 u t に基づき、 コ ンパレータ 3 6 の出力をラ ッチし、 そ のラ ツチしたデータをディ ジタル信号 D 0 u t の形で出 力端子 Qから出力し、 図示しないレジスタに、 A Dコ ン バ一タのビッ ト分順次蓄えられ、 第 3図のデータバス D B nを介して C P U 1 0へ供給される。
変換制御回路 4 0 は、 C P U 1 0からの書込み信号 W 及びク 口 ックパルス C L Kを入力する 2入力のア ン ドゲ ー ト (以下、 A N Dゲー ト という ) 4 1 を有し、 その A N Dゲー ト 4 1 の出力側が D— F F 4 2 のク ロ ック入力 端子に接続されている。 D— F F 4 2 は、 C P U 1 0 よ り送られて く る書込み信号 Wの立下りにより、 データバ ス D B nの内容を入力端子 Dより取り込み、 出力端子 Q より変換開始信号 S 4 '2を出カする回路でぁる。 この D 一 F F 4 2 は、 変換制御回路 4 0 の動作開始を制御する とともに、 リ セ ッ ト端子 Rに入力される変換終了信号 C 0 V E N Dによつて該変換制御回路 4 0を初期化する機 能を有している。
D - F F 4 2 の出力端子 Qは、 ィ ンバータ 4 3 を介し て、 D— F F 4 4及びカ ウ ンタ (例えば、 ジョ ンソ ン力 ゥ ンタ) 4 5 の各リ セ ッ ト端子 Rに接続されている。 D — F F 4 4 は、 ク ロ ック入力端子に入力されるク ロ ック パルス C L Kを 2分周して出力端子 Qより出力する回路 であり、 その出力がク ロ ックパルスとしてカウ ンタ 4 5 に供給される。 カウ ンタ 4 5 は、 例えば 4個の D— F F 4 5 a〜 4 5 dを縦続接続し、 終段の D— F F 4 5 dの 出力端子百と初段の D - F F 4 5 aの入力端子 Dとを接 続した構成となっている。
カウ ンタ 4 5 の出力側には、 論理回路 4 6が接続され ている。 論理回路 4 6 は、 カウ ンタ 4 5の出力の論理を とって制御信号 E A, E R、 ラ ッチ信号 W o u t、 及び 変換停止信号 A D H L Tを出力する回路であり、 2入力 の AN Dゲー ト 4 6 a〜 4 6 e、 及び 2入力のオアゲ一 ト (以下、 0 Rゲー ト という) 4 6 ί より構成されてい る。
第 4図は、 第 1図及び第 3図の動作を示すタイ ミ ング チャー トであり、 この図を参照しつつ、 本実施例のマイ ク ロコ ンビュ一タの動作を説明する。
第 3図の C P U 1 0 は、 予め A Dコ ンバータ部 2 0に 割り 当てられたア ド レスや、 A D変換開始データをデ一 タバス D B n及び書込み信号 Wにより出力すると、 A D コ ンバ一タ 2 0が A D変換を開始する。
即ち、 第 1図に示す A Dコ ンバータ部 2 0 において、 変換制御回路 4 0内の D— F F 4 2 は、 C P U 1 0から の書込み信号 Wの立下りにより、 データバス D B nの内 容、 つまり " H " レベルを取り込み、 該出力端子 Qから 出力する変換開始信号 S 4 2を " H " レベルにする。 こ の変換開始信号 S 4 2 は、 イ ンバータ 4 3で反転され、 D - F F 4 4及びカ ウ ンタ 4 5内の D— F F 4 5 a〜 4
5 dのリ セ ッ ト端子 Rが、 " L " レベルとなる。 すると、 D— F F 4 4 は、 C P U 1 0から送られて く るク ロ ック パルス C L Kを 2分周し、 その 2分周したク 口 ックパル ス 1 Z 2 C L Kを出力端子 Qより出力し、 カウ ンタ 4 5 内の D— F F 4 5 a〜 4 5 dの各ク ロ ック入力端子に供 給する。
D— F F 4 5 a〜 4 5 d は、 ク ロ ックノ、'ルス 1 / 2 C L Kにより カウ ン ト動作を行い、 そのカウ ン ト結果を各 出力端子 Qよりそれぞれ出力する。 これらのカ ウ ン ト結 果は、 論理回路 4 6内の A N Dゲー ト 4 6 a ~ 4 6 e及 び 0 Rゲー ト 4 6 f で論理が取られ、 その論理結果に応 じた制御信号 E A, E R、 ラ ッチ信号 W 0 u t及び変換 停止信号 A D H L Tが出力される。
A N Dゲ一 ト 4 6 aから出力される制御信号 E Aは、 D— F F 4 5 a の出力端子 Q力 ' ' Η " レベルで、 D— F F 4 5 dの反転出力端子百が " H " レベルの時、 " H " レベルになる。 A N Dゲ一 ト 4 6 bから出力される制御 信号 E Rは、 D— F F 4 5 a の反転出力端子百が " H " レベルで、 D— F F 4 5 d の出力端子 Q力く " H " レベル の時、 " H " レベルとなる。 A N Dゲー ト 4 6 eから出 力されるラ ッチ信号 W o u t は、 D— F F 4 5 c の反転 出力端子百が " H " レベルで、 D— F F 4 5 dの出力端 子 Q力く " H " レベルで、 '且つ D— F F 4 4 の出力端子 Q 力く " H " レベルの時、 " H " レベルとなる。 また、 O R ゲー ト 4 6 ί から出力される変換停止信号 A D H L Tは、 D— F F 4 5 c の出力端子 Q力く " H " レベルで、 D— F F 4 5 d の反転出力端子百が " H " レベルの時、 または D - F F 4 5 c の反転出力端子"^が " H " レベルで、 D 一 F F 4 5 dの出力端子 Q力く " H " レベルの時、 、それぞ れ " H " レベルとなる。
そのため、 D— F F 4 2から出力される変換開始信号 S 4 2が " H " レベルになると、 その 2 C L K後に、 制 御信号 E Aが " H " レベルとなり、 A Dコ ンバータ 3 0 内のィ ン 一タ 3 1 を介してアナログスィ ツチ 3 3がォ ン状態となる。 この時、 制御信号 E Rは " L " レベルで あるため、 A Dコ ンバータ 3 0内のアナログス ィ ッ チ 3 4 はオフ状態になっている。 アナログスィ ツチ 3 3がォ ン状態になると、 アナログ入力端子 2 1から入力された アナログ信号 A i n力 該アナログスィ ツチ 3 3を通し てコ ンデンサ 3 5へ送られ、 該コ ンデンサ 3 5が充電さ れる。
制御信号 E Aは、 6 C L K期間、 " H " レベルを保持 した後、 " L " レベルとなるため、 アナログスィ ッチ 3 3がオフ状態となる。 その 2 C L K後に制御信号 E Rが " H " レベルとなり、 アナログスィ ッチ 3 4がオン状態 となる。 アナログス ィ ツチ 3 4がオ ン状態になると、 変 換制御回路 4 0内の図示しないアナログ回路で生成され た基準電圧 V Rが、 該アナログスィ ツチ 3 4を通してコ ンデンサ 3 5 に伝達される。 コ ンパ レータ 3 6 は、 コ ン デンサ 3 5 に充電されたアナログ信号 A i n と基'準電圧 V Rとの大小比較を行い、 その比較結果をラ ッチ回路 3 7 の入力端子 Dに与える。 ラ ッ チ回路 3 7 は、 制御信号 E R力く " H " レベルになって力、ら 6 C L K後に " H " レ ベルになる ラ ッ チ信号 W 0 u t によ り 、 コ ンデンサ 3 4 の大小比較結果をラ ツチする。
制御信号 E Rは 6 C L K期間、 " H " レベルを保持し てその後 " L " レベルとなる。 制御信号 E Rが " L " レ ベルとなり、 その 2 C L K後に再び制御信号 E Aが " H " レベルとなる。 A Dコ ンバータ 3 0 は、 前記の動作を分 解能のビッ ト分繰返し、 A D変換を終了する。
例えば、 A Dコ ンバータ 3 0が 1 0 ビッ トの分解能を 有する場合、 第 4図に示すように、 1 ビッ ト当たりの A D変換時間に 1 6 C L Kの時間が必要であり、 1 0 ビッ トであれば 1 6 0 C L Kの時間後に、 A Dコ ンバータ 3
0 はその変換動作を終了する こ とになる。 この動作が終 了すると、 変換制御回路 4 0内では、 図示しない回路に より、 変換終了信号 C 0 V E N Dが発生し、 その変換終 了信号 C O V E N Dにより、 D— F F 4 2がリ セ ッ トさ れる。
この " L " レベルの変換開始信号 S 4 2 は、 イ ンバ一 タ 4 3で反転されて " H " レベルとなり、 その " H " レ ベルによって D— F F 4 4 , 4 5 a 〜 4 5 dがリ セ ッ ト され、 その各出力端子 Qが " L " レベル、 さ らにその反 転出力端子百が " H " レベルとなる。 そのため、 変換制 御回路 4 0が初期化され、 A D変換動作が停止状態にな つて A D変換動作を終了する。 ラ ッチ回路 3 7 の出力端 子 Qから出力されるディ ジタル信号 D 0 u t は、 図示し ないレジスタに A Dコ ンバータのビッ ト分順次蓄えられ、 C P U 1 0からの読み出し信号 Rに基づき、 データバス
D B nを介して該 C P U 1 0へ送られる。 T 1 774
1 2 こ こで、 A Dコ ンバータ 3 0 の動作中、 C P U 1 0を 常に動作させていると、 その C P U 1 0から発生するノ ィズにより、 A D変換の精度が十分に実現できない。 そ のため、 A D変換の精度を向上させるために、 A D変換 中、 C P U 1 0の動作を停止させることが考えられる。 しかし、 C P U 1 0 の動作を A D変換中停止させると、 該 C P U 1 0 の使用効率が低下する。 A Dコ ンバータ 3 0 の変換動作中、 ノ イ ズの影響を受けて精度低下につな がる期間は、 限られている。
即ち、 第 1図のコ ンデンサ 3 5へのアナログ入力の充 電が終了する直前、 ノ イ ズが発生すると、 正常な電圧値 によるコ ンデンサ 3 5への充電ができなく なる。 さらに、 充電されたコ ンデンサ 3 5 のアナログ入力と基準電圧入 力との大小比較が終了する直前 (ラ ツチ信号 W 0 u t に よりその大小比較結果をラ ッチ回路 3 7 にラ ッチする直 前) 、 ノ ィ ズが発生すると、 正常な電圧による大小比較 ができな く なる。 これに対して、 第 4図に示す制御信号 E Aの立上り時点や、 前半の期間等でノ ィ ズが発生して も、 前記の残りの期間にノ イ ズがなければ、 A D変換の 精度が安定して得られる。
そこで本実施例では、'第 1図の 0 Rゲー ト 4 6 ίから 出力される変換停止信号 A D H L Τが、 A Dコ ンバータ 3 0 の変換動作中、 特に精度に影響を及ぼす前記の特定 期間、 " H " レベルとなり、 第 3図の D— F F 5 0 の入 力端子 Dに与えられる。 すると、 D— F F 5 0 は、 C P U 1 0力、らのク ロ ックノ、。ルス C L Kの立上りにより、 変 換停止信号 A D Η L Τを取り込み、 該出力端子 Qから C P U 1 0へ出力する C P Uス ト ップ信号 S Pを " H " レ ベルにする。 これにより、 C P U 1 0 は、 ク ロ ッ クパル ス C L Kの発生動作以外の主要動作を停止する。
以上のように、 本実施例では、 A Dコ ンバータ 3 0 の 変換動作中にその変換動作の精度に影響を及ぼす特定期 間のみ C P Uス ト ップ信号 S Pにより、 C P U 1 0 の主 要動作を停止させるようにした。 そのため、 C P U 1 0 のノ イズによる A D変換動作の精度低下を的確に防止で きる。 しかも、 C P U 1 0 の停止期間が短いため、 該 C P U 1 0 によって A D変換処理以舛の他の処理が行える。 そのため、 C P U 1 0の処理効率を低下させることな く 、 精度の良い A D変換動作が可能となる。
なお、 本発明は、 図示の実施例に限定されず、 種々の 変形が可能である。 その変形例としては、 例えば次のよ う なものがある。
( a ) 第 1図の A Dコ ンバータ 3 0 は、 逐次比較型等の 他の構成の A Dコ ンバータで構成してもよい。 さ らに、 変換制御回路 4 0 は、 他のフ リ ップフコ ップやゲー ト回 路等を用いるこ とにより、 図示以外の回路構成に変形す ることも可能である。 '
( ) 第 3図の D— F F 5 0 は、 A Dコ ンバータ部 2 0 内あるいは C P U 1 0内に設けるようにしてもよい。
( c ) 上記実施例では、 C P U 1 0 に A Dコ ンバータ部 2 0 を接続した例を説明したが、 該 C P U 1 0 に D Aコ ンバータ部を追加接続したり、 あるいは A Dコ ンバ一タ 0774
1 部 2 0 に代えて D Aコ ンバータ部を接続しても、 本発明 を適用できる。
産 業 上 の 利 用 可 能 性
以上詳細に説明したように、 本発明によれば、 変換制 御面路により、 コ ンバータの変換動作中に、 その精度に 影響を及ぼす特定の期間のみ、 動作停止信号により C P Uの主要動作を停止させるようにした。 そのため、 C P Uのノ ィ ズによるコ ンバー夕の変換動作の精度劣化を的 確に防止できる。 しかも、 特定の期間のみ C P Uが停止 するため、 その停止期間が短く、 コ ンバータの変換処理 以外に C P Uによる他の処理が実行可能となる。 従って、 C P U全体の処理効率を低下させることなく、 精度のよ ぃコ ンバ一タによる変換動作が可能となる。

Claims

請 求 の 範 囲
1. プログラム命令に従ってディ ジタル信号を演箕処理 する中央処理装置と、 前記中央処理装置の入出力に対 するアナ口グ信号とディ ジタル信号の変換を行ぅ コ ン バータ とを、 備えたコ ンバータ内蔵マイ ク ロ コ ンピュ —タにおいて、
前記中央処理装置の制御出力に基づき前記コ ンバー タの変換動作を制御すると共に前記コ ンバータの特定 期間に動作停止信号を前記中央処理装置へ岀カする変 換制御回路を、
設けたことを特徴とするコ ンバータ内蔵マイ ク ロコ ンピュータ。
2. プログラム命令に従ってディ ジタル信号を演算処理 する中央処理装置と、
アナログ信号をディ ジタル信号に変換する A Dコ ン バ一夕とを有するコ ンバータ内蔵マイ ク ロ コ ンピュー タにおいて、
アナログ信号を受信する第 1端子と、
基準電圧を受信する第 2端子と、
第 1 の期間と前記第 1 の期間後の第 2 の期間を定義 するカウ ンタ手段と、 '
カウ ンタ手段を歩進させるク ロ ック手段と、 前記第 1端子と前記 A D コ ンバータとの間に接続し た第 1 スィ ツチ手段であって、 前記第 1 の期間受信し たアナログ信号を前記 A Dコ ンバ一タへ与える第 1 ス ィ ッチ手段と、 前記第 2端子と前記 A Dコ ンバータとの間に接続し た第 2 スィ ツチ手段であって、 前記第 2の期間受信し た基準電圧を前記 A Dコ ンバータへ与える第 2 スイ ツ チ手段と、
前記第 1 の期間の終了時を舍み、 前記第 1 の期間よ り十分短い第 3 の期間、 及び前記第 2 の終了時を舍み、 前記第 2の期間より十分に短い第 4の期間に前記中央 処理装置の動作を停止せしめる手段とを有することを 特徴とするコ ンバ一タ内蔵マイ ク ロコ ンビュ一タ。
PCT/JP1991/000774 1990-06-11 1991-06-10 Microcomputer provided with built-in converter WO1991020051A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1019920700223A KR100187805B1 (ko) 1990-06-11 1991-06-10 컨버터내장 마이크로 컴퓨터
US07/834,579 US5307066A (en) 1990-06-11 1991-06-10 Microprocessor controlled converter having reduced noise interference and method of operating same
EP91910650A EP0487743B1 (en) 1990-06-11 1991-06-10 Microcomputer provided with built-in converter
DE69130152T DE69130152T2 (de) 1990-06-11 1991-06-10 Mikrorechner mit eingebautem d/a-wandler

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2/151813 1990-06-11
JP15181390A JP3288694B2 (ja) 1990-06-11 1990-06-11 マイクロコンピュータ

Publications (1)

Publication Number Publication Date
WO1991020051A1 true WO1991020051A1 (en) 1991-12-26

Family

ID=15526872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1991/000774 WO1991020051A1 (en) 1990-06-11 1991-06-10 Microcomputer provided with built-in converter

Country Status (6)

Country Link
US (1) US5307066A (ja)
EP (1) EP0487743B1 (ja)
JP (1) JP3288694B2 (ja)
KR (1) KR100187805B1 (ja)
DE (1) DE69130152T2 (ja)
WO (1) WO1991020051A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5640161A (en) * 1991-05-29 1997-06-17 Pacific Microsonics, Inc. Silent data conversion system with sampling during electrical silence

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5842037A (en) * 1995-03-20 1998-11-24 Telefonaktiebolaget Lm Ericsson Interference reduction in TDM-communication/computing devices
US5706004A (en) * 1995-09-18 1998-01-06 Phylon Communications, Inc. System for reducing noise coupling between digital and analog circuitry
US6195690B1 (en) 1996-04-15 2001-02-27 Gw Instruments, Inc. Network based data acquisition system
JP3819986B2 (ja) * 1997-02-24 2006-09-13 株式会社ルネサステクノロジ アナログ/ディジタル変換器制御方法
US6057791A (en) * 1998-02-18 2000-05-02 Oasis Design, Inc. Apparatus and method for clocking digital and analog circuits on a common substrate to enhance digital operation and reduce analog sampling error
US6091349A (en) * 1998-09-30 2000-07-18 Cirrus Logic, Inc. Noise management scheme for high-speed mixed-signal integrated circuits
US6963626B1 (en) 1998-10-02 2005-11-08 The Board Of Trustees Of The Leland Stanford Junior University Noise-reducing arrangement and method for signal processing
US6369738B1 (en) * 1999-08-17 2002-04-09 Eric Swanson Time domain/frequency domain data converter with data ready feature
JP3889659B2 (ja) * 2002-04-25 2007-03-07 株式会社ルネサステクノロジ A/d変換器
US7324496B1 (en) 2002-05-01 2008-01-29 Nxp B.V. Highly integrated radio-frequency apparatus and associated methods
US8478921B2 (en) * 2004-03-31 2013-07-02 Silicon Laboratories, Inc. Communication apparatus implementing time domain isolation with restricted bus access
GB0407587D0 (en) * 2004-04-02 2004-05-05 Univ Nottingham Trent Cancer associated antigens
US8884791B2 (en) * 2004-06-29 2014-11-11 St-Ericsson Sa Keypad scanning with radio event isolation
US7248848B2 (en) * 2004-06-30 2007-07-24 Matthews Phillip M Communication apparatus including dual timer units
US7761056B2 (en) * 2004-07-23 2010-07-20 St-Ericsson Sa Method of controlling a processor for radio isolation using a timer
US7433393B2 (en) 2004-07-23 2008-10-07 Nxp B.V. Apparatus for controlling a digital signal processor for radio isolation and associated methods
US8472990B2 (en) * 2004-07-23 2013-06-25 St Ericsson Sa Apparatus using interrupts for controlling a processor for radio isolation and associated method
US20050008095A1 (en) * 2004-07-23 2005-01-13 Rush Frederick A. Apparatus using interrupts for controlling a processor for radio isolation and associated methods
US7567637B2 (en) 2004-09-30 2009-07-28 St-Ericsson Sa Wireless communication system and method with frequency burst acquisition feature using autocorrelation and narrowband interference detection
US7593482B2 (en) * 2004-09-30 2009-09-22 St-Ericsson Sa Wireless communication system with hardware-based frequency burst detection
US8019382B2 (en) * 2004-12-29 2011-09-13 St-Ericsson Sa Communication apparatus having a standard serial communication interface compatible with radio isolation
US7778674B2 (en) * 2004-12-29 2010-08-17 St-Ericsson Sa Communication apparatus having a SIM interface compatible with radio isolation
US7805170B2 (en) * 2005-03-30 2010-09-28 St-Ericsson Sa System and method for efficient power supply regulation compatible with radio frequency operation
US7209061B2 (en) * 2005-03-30 2007-04-24 Silicon Laboratories, Inc. Method and system for sampling a signal
US7283503B1 (en) * 2005-06-24 2007-10-16 Silicon Laboratories, Inc. Communication apparatus including a buffer circuit having first and second portions for alternately storing results
US7801207B2 (en) * 2005-06-24 2010-09-21 St-Ericsson Sa Signal processing task scheduling in a communication apparatus
US7414560B2 (en) * 2005-06-29 2008-08-19 Shaojie Chen Wireless communication system including an audio underflow protection mechanism operative with time domain isolation
FR2895200B1 (fr) * 2005-12-20 2008-02-22 Silicon Lab Inc Procede d'acquisition d'un burst de correction de frequence par un dispositif de radiocommunication, et dispositif de radiocommunication correspondant.
DE102011056266B4 (de) * 2011-12-12 2014-02-20 Sma Solar Technology Ag Verfahren und Schaltungsanordnung zur Erfassung von Messwerten mit einem digitalen Signalprozessor mit integriertem Analog/Digital-Wandler

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63310058A (ja) * 1987-06-11 1988-12-19 Mitsubishi Electric Corp マイクロコンピユ−タ
JPS6458043A (en) * 1987-08-28 1989-03-06 Nec Corp Microcomputer incorporating a/d and d/a converters
JPS6458044A (en) * 1987-08-28 1989-03-06 Nec Corp Microcomputer incorporating a/d and d/a converters

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0318055B1 (en) * 1987-11-27 1995-02-01 Nec Corporation Data processor including a/d converter for converting a plurality of analog input channels into digital data

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63310058A (ja) * 1987-06-11 1988-12-19 Mitsubishi Electric Corp マイクロコンピユ−タ
JPS6458043A (en) * 1987-08-28 1989-03-06 Nec Corp Microcomputer incorporating a/d and d/a converters
JPS6458044A (en) * 1987-08-28 1989-03-06 Nec Corp Microcomputer incorporating a/d and d/a converters

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5640161A (en) * 1991-05-29 1997-06-17 Pacific Microsonics, Inc. Silent data conversion system with sampling during electrical silence

Also Published As

Publication number Publication date
EP0487743A1 (en) 1992-06-03
KR100187805B1 (ko) 1999-06-01
DE69130152D1 (de) 1998-10-15
JP3288694B2 (ja) 2002-06-04
JPH0444180A (ja) 1992-02-13
KR920702518A (ko) 1992-09-04
DE69130152T2 (de) 1999-05-06
EP0487743B1 (en) 1998-09-09
US5307066A (en) 1994-04-26
EP0487743A4 (en) 1993-05-05

Similar Documents

Publication Publication Date Title
WO1991020051A1 (en) Microcomputer provided with built-in converter
JPS61110254A (ja) パルス入出力プロセッサ及びそれを用いたマイクロコンピュータ
JP2008518341A (ja) 少なくとも2つの処理ユニットを有する計算機システムにおいて切り替え、かつ信号を比較する方法および装置
US6256746B1 (en) System and method for multi-input wake up in a microcontroller using a single clock
JP2008518306A (ja) 少なくとも2つの処理ユニットを有する計算機システムにおける切り替えおよび信号比較の方法および装置
JP2661222B2 (ja) パルス出力装置
US4852130A (en) Successive approximation register
US4160154A (en) High speed multiple event timer
US4829302A (en) Analog/digital converter using the weighing method
EP0276794B1 (en) Data input circuit having latch circuit
US10020815B2 (en) Apparatus for data converter with internal trigger circuitry and associated methods
JP3018404B2 (ja) マイクロプロセッサ
US5724399A (en) Timer device
US6560715B1 (en) Sequencer of synchronous actions in a processor system, and integrated circuit including such sequencer
JP2847604B2 (ja) カウンタ回路内蔵のicおよびワンチップマイクロコンピュータ
JP2818986B2 (ja) モータコントロール回路内蔵マイクロコンピュータ
JP3338722B2 (ja) カウンタ回路
JPH1153339A (ja) パルス出力機能付マイクロコンピュータ
JP3225613B2 (ja) マイクロコンピュータ
JP3298908B2 (ja) アナログ・ディジタル変換器
JP2608738B2 (ja) 電子鍵盤楽器
JP3212332B2 (ja) 多軸位置検出装置
JPH06100974B2 (ja) シングルチップ・マイクロコンピュータ
Kugelstadt A methodology of interfacing serial A-to-D converters to DSPs
JPS599930B2 (ja) 状態設定キ−判定装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1991910650

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1991910650

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1991910650

Country of ref document: EP