WO1991019139A1 - Verfahren zur nutzung von energiepotentialen, insbesondere mit kleinen temperaturdifferenzen - Google Patents
Verfahren zur nutzung von energiepotentialen, insbesondere mit kleinen temperaturdifferenzen Download PDFInfo
- Publication number
- WO1991019139A1 WO1991019139A1 PCT/EP1991/000995 EP9100995W WO9119139A1 WO 1991019139 A1 WO1991019139 A1 WO 1991019139A1 EP 9100995 W EP9100995 W EP 9100995W WO 9119139 A1 WO9119139 A1 WO 9119139A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- energy
- water
- electrical
- processes
- potentials
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 63
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 43
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 17
- 239000001257 hydrogen Substances 0.000 claims abstract description 15
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 15
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 14
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 14
- 239000000446 fuel Substances 0.000 claims abstract description 13
- 229910052751 metal Inorganic materials 0.000 claims abstract description 13
- 239000002184 metal Substances 0.000 claims abstract description 13
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 12
- 230000007613 environmental effect Effects 0.000 claims abstract description 9
- 238000004519 manufacturing process Methods 0.000 claims abstract description 9
- 238000006243 chemical reaction Methods 0.000 claims abstract description 8
- 150000002739 metals Chemical class 0.000 claims abstract description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 6
- 239000001301 oxygen Substances 0.000 claims abstract description 6
- 238000002485 combustion reaction Methods 0.000 claims abstract description 4
- 150000004678 hydrides Chemical class 0.000 claims abstract description 4
- 239000007788 liquid Substances 0.000 claims abstract description 3
- 238000009833 condensation Methods 0.000 claims description 12
- 230000005494 condensation Effects 0.000 claims description 12
- 229910052987 metal hydride Inorganic materials 0.000 claims description 9
- 150000004681 metal hydrides Chemical class 0.000 claims description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 8
- 239000004020 conductor Substances 0.000 claims description 7
- 239000012080 ambient air Substances 0.000 claims description 5
- 238000012546 transfer Methods 0.000 claims description 5
- 239000003570 air Substances 0.000 claims description 4
- 239000007864 aqueous solution Substances 0.000 claims description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 4
- 239000001569 carbon dioxide Substances 0.000 claims description 4
- 239000011777 magnesium Substances 0.000 claims description 4
- 239000011575 calcium Substances 0.000 claims description 3
- 239000000428 dust Substances 0.000 claims description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052791 calcium Inorganic materials 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 239000008187 granular material Substances 0.000 claims description 2
- 229910001338 liquidmetal Inorganic materials 0.000 claims description 2
- 229910052749 magnesium Inorganic materials 0.000 claims description 2
- 239000000463 material Substances 0.000 claims description 2
- 229910001092 metal group alloy Inorganic materials 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 239000011591 potassium Substances 0.000 claims description 2
- 229910052700 potassium Inorganic materials 0.000 claims description 2
- 239000012266 salt solution Substances 0.000 claims description 2
- 239000011734 sodium Substances 0.000 claims description 2
- 229910052708 sodium Inorganic materials 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims description 2
- 239000000725 suspension Substances 0.000 claims description 2
- 238000005243 fluidization Methods 0.000 claims 1
- 238000000926 separation method Methods 0.000 claims 1
- 238000009834 vaporization Methods 0.000 claims 1
- 230000008016 vaporization Effects 0.000 claims 1
- 239000000969 carrier Substances 0.000 abstract description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 239000013535 sea water Substances 0.000 description 12
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 10
- 239000013505 freshwater Substances 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 7
- 238000001816 cooling Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 238000001704 evaporation Methods 0.000 description 6
- 230000008020 evaporation Effects 0.000 description 6
- 229910021529 ammonia Inorganic materials 0.000 description 5
- 238000009835 boiling Methods 0.000 description 5
- 239000002803 fossil fuel Substances 0.000 description 5
- 239000003758 nuclear fuel Substances 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 3
- 238000005984 hydrogenation reaction Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 239000002352 surface water Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 235000002918 Fraxinus excelsior Nutrition 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 239000002956 ash Substances 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000003077 lignite Substances 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 238000009372 pisciculture Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000036561 sun exposure Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 239000008207 working material Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G7/00—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
- F03G7/04—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using pressure differences or thermal differences occurring in nature
- F03G7/05—Ocean thermal energy conversion, i.e. OTEC
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24V—COLLECTION, PRODUCTION OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
- F24V50/00—Use of heat from natural sources, e.g. from the sea
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D20/00—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
- F28D20/003—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using thermochemical reactions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D20/00—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
- F28D2020/006—Heat storage systems not otherwise provided for
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/30—Energy from the sea, e.g. using wave energy or salinity gradient
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E70/00—Other energy conversion or management systems reducing GHG emissions
- Y02E70/30—Systems combining energy storage with energy generation of non-fossil origin
Definitions
- the invention relates to a method for using energy potentials with small temperature differences or mechanical energy potentials, in particular environmental energy sources, such as opposing ocean currents with different temperature levels or ocean currents and atmosphere that are natural, or secondary and environmental energy sources that result from industrial processes in energy conversion and application arise.
- environmental energy sources such as opposing ocean currents with different temperature levels or ocean currents and atmosphere that are natural, or secondary and environmental energy sources that result from industrial processes in energy conversion and application arise.
- One of the oldest forms of energy supply is the use of solar energy directly and indirectly through the use of hydropower to perform technical work.
- the power of solar radiation reaching the earth is determined by
- OEC optical-energy conversion technology
- this technology could be used to extract fresh water from sea water, operate cooling and air conditioning systems, and create additional fish farming waters.
- thermodynamic cyclic processes are used that work open or closed to the environment. Open means that warmed by the sun
- the closed systems use huge heat exchangers for the evaporation and condensation of the
- Circular cycle tools required up to 20% of the
- Open systems work with sea water and the steam obtained from it in a cyclic process. H. with natural products that cannot cause additional environmental pollution and with indirect cooling of the steam after the steam turbine, an open OTEC process can give off fresh water as a by-product. For this, open OTEC processes work with huge vapor-shaped volume flows. Currently there are no suitable engines for converting the thermal energy into technical work with great performance. Even with
- / 1 / refers to the production of methanol, hydrogen, ammonia or refined metals.
- the electrical energy obtained from sea heat is used for the electrolysis of water and
- the aim of the invention is to make OTEC processes largely independent of location issues in their application, i. that is, it should make it possible to use natural temperature differences, which are productive but are locally far from the location of the energy requirement. About that.
- the invention is intended to make a contribution to reducing the investment costs for OTEC processes, opening up ways of increasing the
- OTEC processes can only be used for energy supply if the electrical energy generated is converted into usable chemical enthalpy, as is practiced in the case of the generation of hydrogen, methanol or ammonia.
- the invention assumes that the use of natural by using OTEC processes
- Reduction with hydrogen can be obtained from their oxides can, so that their use as an energy source when using the enthalpy difference of their Red / Ox cycles does not achieve the required economy.
- the object is achieved in that the electrical energy obtained with the aid of the OTEC processes is used for the electrolysis of water and metal oxides, the products of these electrolysis processes, hydrogen and metals, are chemically bonded to metal hydrides which are used as energy carriers, ie. i.e., synthetic fuels are burned at the location of the energy requirement for electrical energy and / or thermal energy in fuel cells or for thermal energy by chemical reaction in special combustion chambers with technical oxygen or air.
- the water dam that is created in this way, if necessary, after or after using its working capacity at the location of the energy requirement to the environment
- Salt solutions, liquid metals or metal alloys, solid electrical conductors as dust or granules, e.g. B. use carbon or metal dust or suspensions thereof, by the working fluid of the mechanical cycle is fluidized and thus driven.
- the basic concept of the invention is to work only with natural, non-toxic substances. It is therefore furthermore according to the invention if carbon dioxide is used as the working medium in the cyclical process for the extraction of mechanical work. Ultimately, it is according to the invention to use water from warm rivers, ocean currents or thermal energy of the earth directly or indirectly for the evaporation of the working medium of the cycle process for mechanical work, while the condensation of this working medium by indirect
- FIG. 1 The description of this exemplary embodiment includes FIG. 1, in which the process stages of the method according to the invention are shown in their combination.
- the method according to the invention in this example is based on an open OTEC process of the prior art / 1 /.
- the main equipment for designing the method according to the invention is shown and labeled in FIG. 1.
- the warm surface water of the sea passes via the water turbine 22 into the vacuum chamber 1, in which it is sprayed, partially evaporates and cools down to the boiling temperature associated with the pressure in the vacuum chamber.
- p 1 2.94 kPa
- t 1 26.359 ° C
- m 1 4.415 kg of water vapor, which have a volume of 205.5 m 3 .
- Auxiliary motor 73 is formed, cold deep water is conveyed from the sea, sprayed in the vacuum chamber 5 and then pumped out of it again.
- the motor 73 secures the
- the cold deep water Before the cold deep water is sprayed into the vacuum chamber 5, it is passed through the cooling surfaces 51, on which part of the steam condenses.
- the fresh water obtained in this way collects in the container 61, from which it is pumped via the fresh water production system 6 for the Usage is provided.
- Fresh water can be obtained.
- it is necessary to request the non-condensable constituents from the vacuum chamber 5 working as a mixing condenser. This is done with the help of the suction device 4.
- the in an OTEC device is necessary to request the non-condensable constituents from the vacuum chamber 5 working as a mixing condenser. This is done with the help of the suction device 4.
- the electrical energy obtained is generally alternating current, which must be converted into direct current in rectifier 33 before it is used for electrolysis.
- thermodynamic systems Ca - H 2 - O 2 appear for the practical application of the solution according to the invention; Mg - H 2 - O 2 and Mg - AI - H 2 - O2 accordingly
- synthetic fuels are metal hydrides which are burned with oxygen to form metal oxides and water.
- this can be done in fuel cells with the release of electrical energy or in thermal processes with the release of thermal energy. A combination of these processes as shown in FIG. 1 is also conceivable.
- thermodynamic system Mg-Al-H 2 -O 2 would need 138.7 t, i.e. around 140 t, synthetic fuel per hour and 230 t metal oxide and 115 t for its full-load operation Produce water per hour.
- a lignite-fired power plant with the same output consumes 1200 to 1300 t of raw lignite per hour and produces 1100 to 1200 t of carbon dioxide, 120 to 150 t of ashes and 600 to 700 t of water per hour.
- the sea water flows through a z. B. plate recuperator 2.1., Which is immersed in liquid CO 2 and brings it to a boil. If the sea water in the recuperator 2.1 is cooled from 5 to 2 ° C, 4000 m 3 of water can evaporate around 215 t of CO 2 . 215 t of CO 2 steam can generate electrical energy at an expansion from 3.49 MPa to 1.97 MPa in a saturated steam turbine plant 2.2 with a total efficiency of ⁇ Ts 0.825. With a cycle time in the closed cycle of 20 seconds, the CO 2 filling is one
- Circular process plant according to Figure 2 around 1200 t, if it is to achieve an output of 1000 MW.
- the relaxed CO 2 vapor condenses on the cooling surfaces, e.g. B. the plate recuperator 2.3., Which transfers the heat of condensation to cold air and z. B. warms up from -25 ° C to -21 ° C.
- the internal consumption of the OTEC power plant of embodiment 2 should be 40%. If this power plant is used for the operation of the method according to the invention, then the power plant must be used at the location of the environmental energy
- Power of around 3000 MW can be designed if 1000 MW of electrical energy is to be generated at the location of the energy requirement.
- An ionized aqueous solution e.g. B. a saline solution. This is brought to a boil in the boiling column 3.1 by indirect transfer of heat energy from the sea water. of the cycle.
- the resulting steam is in the vacuum chamber 3.2. condensed by indirect cooling with cold deep water, whereby the boiling pressure in the boiling column 3.1. is determined.
- the ionized aqueous solution and the condensate of the steam flow through the MHD generator 3.3., Drive the circuit due to its higher density than the boiling solution, the ionized solution being induced in the magnetic field and correspondingly using the electrical poles of the MHD generator to generate electrical energy that from the Resulting difference in density. Relinquishes work capacity.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Sustainable Development (AREA)
- Oceanography (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002084202A CA2084202A1 (en) | 1990-06-01 | 1991-05-29 | Process for using energy potentials, in particular with small temperature differences |
NO92924538A NO924538L (no) | 1990-06-01 | 1992-11-25 | Fremgangsmaate til utnyttelse av energipotensialer, saerligmed smaa temperaturforskjeller |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DEP4017684.3 | 1990-06-01 | ||
DE4017684A DE4017684A1 (de) | 1990-06-01 | 1990-06-01 | Verfahren zur nutzung von energiepotentialen, insbesondere mit kleinen temperaturdifferenzen |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1991019139A1 true WO1991019139A1 (de) | 1991-12-12 |
Family
ID=6407625
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP1991/000995 WO1991019139A1 (de) | 1990-06-01 | 1991-05-29 | Verfahren zur nutzung von energiepotentialen, insbesondere mit kleinen temperaturdifferenzen |
Country Status (4)
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7224080B2 (en) | 2004-07-09 | 2007-05-29 | Schlumberger Technology Corporation | Subsea power supply |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4303914A1 (de) * | 1992-03-16 | 1993-12-02 | Bernd Heine | Anlage mit magnetohydrodynamischen Generator auf der Basis flüssiger Ladungsträgerströme zur umfangreichen technischen und wirtschaftlichen Anwendung |
DE4208313A1 (de) * | 1992-03-16 | 1993-09-23 | Bernd Heine | Energieumwandlungsanlage mit magnetohydrodynamischen generator zur umwandlung von waermeenergie in elektrische energie |
DE19714512C2 (de) * | 1997-04-08 | 1999-06-10 | Tassilo Dipl Ing Pflanz | Maritime Kraftwerksanlage mit Herstellungsprozeß zur Gewinnung, Speicherung und zum Verbrauch von regenerativer Energie |
JP2022542966A (ja) * | 2019-07-31 | 2022-10-07 | ジ アベル ファウンデーション, インコーポレイテッド | 海底設立海洋熱エネルギー転換プラント |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3312054A (en) * | 1966-09-27 | 1967-04-04 | James H Anderson | Sea water power plant |
FR2269039A1 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) * | 1974-04-26 | 1975-11-21 | Chevalley Jean | |
GB1491680A (en) * | 1975-01-21 | 1977-11-09 | Barnard R | Solar energy conversion using electrolysis |
JPS54152610A (en) * | 1978-05-24 | 1979-12-01 | Shin Etsu Chem Co Ltd | Manufacture of metallic magnesium |
US4187686A (en) * | 1978-01-16 | 1980-02-12 | Pommier Lorenzo A | Power generator utilizing elevation-temperature differential |
JPS5742501A (en) * | 1980-08-22 | 1982-03-10 | Ensei Ko | Method of storing renewable energy in the form of hydrogen compound |
WO1990011249A1 (en) * | 1989-03-29 | 1990-10-04 | Institut Strukturnoi Makrokinetiki Akademii Nauk Sssr | Method of obtaining complex oxides |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2641487B2 (de) * | 1976-09-15 | 1980-04-30 | Roger J. Dr. Stillwater Okla. Schoeppel | Verfahren und Vorrichtung zum Betreiben eines Hydrid/Dehydrid-Reaktors |
JPS60228201A (ja) * | 1984-04-17 | 1985-11-13 | 大和製罐株式会社 | 塊粒食品の高速自動缶詰装置 |
-
1990
- 1990-06-01 DE DE4017684A patent/DE4017684A1/de active Granted
-
1991
- 1991-05-29 CA CA002084202A patent/CA2084202A1/en not_active Abandoned
- 1991-05-29 AU AU79724/91A patent/AU7972491A/en not_active Abandoned
- 1991-05-29 WO PCT/EP1991/000995 patent/WO1991019139A1/de active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3312054A (en) * | 1966-09-27 | 1967-04-04 | James H Anderson | Sea water power plant |
FR2269039A1 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) * | 1974-04-26 | 1975-11-21 | Chevalley Jean | |
GB1491680A (en) * | 1975-01-21 | 1977-11-09 | Barnard R | Solar energy conversion using electrolysis |
US4187686A (en) * | 1978-01-16 | 1980-02-12 | Pommier Lorenzo A | Power generator utilizing elevation-temperature differential |
JPS54152610A (en) * | 1978-05-24 | 1979-12-01 | Shin Etsu Chem Co Ltd | Manufacture of metallic magnesium |
JPS5742501A (en) * | 1980-08-22 | 1982-03-10 | Ensei Ko | Method of storing renewable energy in the form of hydrogen compound |
WO1990011249A1 (en) * | 1989-03-29 | 1990-10-04 | Institut Strukturnoi Makrokinetiki Akademii Nauk Sssr | Method of obtaining complex oxides |
Non-Patent Citations (4)
Title |
---|
CHEMICAL ABSTRACTS, Band 92, Nr. 12, 1981, Seite 484, linke Spalte, Zusammenfassung Nr. 101486t, (Columbus, Ohio, US), & JP,A,79152610 (SHIN-ETSU CHEMICAL INDUSTRY CO., LTD) 1 Dezember 1979, siehe die Zusammenfassung * |
G. MILAZZO: "Electrochemistry", 1963, Elsevier Publishing Co., (New York, NY, US), siehe Seiten 601-608 * |
GENIE CHIMIQUE, Band 8, Nr. 2, 31. August 1964, (Rueil-Malmaison, FR), Th. TANGEN: "Production électrolytique du magnésium", Seiten 127-134, siehe Seite 127, linke Spalte, Zeilen 1-5 * |
PATENT ABSTRACTS OF JAPAN (C-110), 25. Juni 1982, & JP,A,57042501 (KO ENSEI) 10. März 1982, siehe die Zusammenfassung * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7224080B2 (en) | 2004-07-09 | 2007-05-29 | Schlumberger Technology Corporation | Subsea power supply |
GB2415975B (en) * | 2004-07-09 | 2007-10-10 | Schlumberger Holdings | Subsea power supply |
Also Published As
Publication number | Publication date |
---|---|
CA2084202A1 (en) | 1991-12-02 |
DE4017684A1 (de) | 1991-12-05 |
AU7972491A (en) | 1991-12-31 |
DE4017684C2 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | 1993-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2084372B1 (de) | Verfahren und vorrichtung zum effektiven und emissionsarmen betrieb von kraftwerken sowie zur energiespeicherung und energiewandlung | |
US10830107B2 (en) | Natural gas combined power generation process with zero carbon emission | |
DE10392525B4 (de) | Verfahren, Prozesse, Systeme und Vorrichtung mit Wasserverbrennungstechnologie zur Verbrennung von Wasserstoff und Sauerstoff | |
Karaca et al. | A new renewable energy system integrated with compressed air energy storage and multistage desalination | |
WO2008014774A2 (de) | Verfahren und vorrichtung zur nutzung von niedertemperaturwärme zur stromerzeugung | |
Waseem et al. | Geothermal and solar based mutligenerational system: a comparative analysis | |
DE10343544B4 (de) | Kraftwerksanlage zur Nutzung der Wärme eines geothermischen Reservoirs | |
Temiz et al. | An integrated bifacial photovoltaic and supercritical geothermal driven copper-chlorine thermochemical cycle for multigeneration | |
WO2011120706A1 (de) | Verfahren und vorrichtung zur speicherung von energie | |
US4262739A (en) | System for thermal energy storage, space heating and cooling and power conversion | |
EP4139562B1 (de) | System mit einer flüssigluft-energiespeicher- und kraftwerksvorrichtung | |
EP2917515B1 (de) | Verfahren zur umwandlung und speicherung von energie | |
DE4017684C2 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | ||
Alali et al. | Assessment of thermal performance improvement of GT-MHR by waste heat utilization in power generation and hydrogen production | |
WO2019002023A1 (de) | Verfahren und vorrichtung zur solaren erzeugung von trinkwasser aus einer wasser- feststoff-lösung | |
DE19527882A1 (de) | Verfahren zur Energiespeicherung mittels flüssiger Luft | |
JPH1172028A (ja) | 電力平準化発電方法 | |
DE102012021909A1 (de) | Verfahren zur Transformation und Speicherung von regenerativer Energie und Abwärme | |
DE102013006725A1 (de) | Verfahren zur Speicherung und Rückgewinnung von Elektroenergie, Wärme und Wasser | |
DE10039989B4 (de) | Energieverfahren und Energieanlage zur Umwandlung von Wärmeenergie in elektrische Energie | |
CN110761960A (zh) | 耦合地热的lng冷能再热发电系统及方法 | |
DE102019006184A1 (de) | Vorrichtung zum Umwandeln von Wärmeenergie in kinetische Energie, durch die Nutzung einer Wärmepumpe mit einem Wärmekraftwerk | |
Celik-Toker et al. | A Comprehensive Thermodynamic Analysis of a Solar-Assisted Multigeneration System with Partial Cooling-Reheating sCO 2 Brayton Cycle | |
JPS63148840A (ja) | 電気エネルギ−変換・貯蔵利用設備 | |
DE10151904A1 (de) | Verfahren zur Solarstromerzeugung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU BG BR CA FI HU JP KP KR NO PL RO SU US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2084202 Country of ref document: CA |