WO1991018422A1 - Method of manufacturing thermoelectric device - Google Patents

Method of manufacturing thermoelectric device Download PDF

Info

Publication number
WO1991018422A1
WO1991018422A1 PCT/JP1991/000633 JP9100633W WO9118422A1 WO 1991018422 A1 WO1991018422 A1 WO 1991018422A1 JP 9100633 W JP9100633 W JP 9100633W WO 9118422 A1 WO9118422 A1 WO 9118422A1
Authority
WO
WIPO (PCT)
Prior art keywords
solder
type semiconductor
soldering
layer
thermoelectric
Prior art date
Application number
PCT/JP1991/000633
Other languages
English (en)
French (fr)
Inventor
Masao Yamashita
Hisaakira Imaizumi
Yukoh Mori
Original Assignee
Kabushiki Kaisha Komatsu Seisakusho
Komatsu Electronics Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14859573&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1991018422(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kabushiki Kaisha Komatsu Seisakusho, Komatsu Electronics Inc. filed Critical Kabushiki Kaisha Komatsu Seisakusho
Publication of WO1991018422A1 publication Critical patent/WO1991018422A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment

Definitions

  • the present invention relates to a method for manufacturing a thermoelectric device, and more particularly to the formation of electrodes of a thermoelectric element pair.
  • thermoelectric elements using the so-called Peltier effect are expected to be widely used in various devices such as portable coolers because of their small size and simple structure.
  • a thermo module formed by collecting a large number of such thermoelectric elements has first and second heat conductivity and good thermal conductivity. It is good for this between the exchange boards 11 and 12.A large number of PN elements can be interposed between the PN element and the element for 13 times so as to have thermal contact.
  • the second electrodes 14 and 15 connected in series;
  • the first and second electrodes 14 and 15 are usually made of a copper plate so as to withstand a large current, and solder is formed on the conductor layer pattern formed on the surfaces of the heat exchange substrates 11 and 12. And the like.
  • thermoelectric elements 13a or N-type thermoelectric elements 13b are alternately fixed on the first and second electrodes via a solder layer. And each element pair is connected in series.
  • the heat exchange substrate in order to increase the heat exchange efficiency, the heat exchange substrate must be made of an insulative material having good thermal conductivity, and in order to prevent inferiority due to thermal strain, the thermal expansion coefficient Must be small.
  • thermoelectric device it is possible to obtain a highly reliable thermoelectric device that is not damaged by a temperature change, has high heat exchange efficiency.
  • the electrodes are formed of a thick film conductor layer pattern formed on the surface of the heat exchange substrate.
  • thermoelectric device having such a structure, the step of positioning the electrode plate on the conductor pattern on the heat exchange substrate and the step of fixing the electrode are necessary, so that the process can be greatly simplified, and Positional deviation from electrode: ⁇ No reliability occurs and reliability can be improved. .
  • thermoelectric element when the thermoelectric element is mounted on the heat exchange board, the force that is fixed through the solder is used. Preliminary solder is also formed for this element, while the solder is also placed on the electrode pattern of the heat exchange board. The method of sticking is adopted.
  • a material 13 is sliced (FIG. 7 (a)), and a nickel plating layer 2 for preventing element diffusion is formed on this sliced surface (see FIG. 7 (a)).
  • Fig. 7 (b) rub it on wet solder or lay it on a soldering iron to form a solder layer 3S on the nickel plating layer 2 (Fig. 7 (c)).
  • Fig. 7 (d) ).
  • solder compositions are limited in commercially available products, and an arbitrary composition cannot be selected. If such a thermoelectric element is to be fixed on the electrode patterns 14. 15 of the heat exchange boards 11 and 12 (Fig. 7 (e)), if the solder coating is too thick, solder Is excessively attached and shorts electrically and thermally. On the other hand, if the solder Hi? Is too small, the electrical and thermal contact resistance increases between the element and the electrode. Furthermore, if moisture condensed penetrates into the gap created between the element and the electrode and freezes during energization, the joint will be damaged.
  • the method of manually assembling with a soldering iron has the problems that it requires skill, requires many man-hours, is not suitable for mass production, and it is difficult to apply uniformly. In particular, when a high melting point solder was used, the workability s ' was poor.
  • the solder composition is limited, and it is not possible to select an arbitrary composition including a high melting point.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a thermoelectric device that easily forms a thermoelectric element having a uniform solder layer and has high mass productivity and high reliability.
  • thermoelectric element of a thermoelectric device is formed by forming a soldered layer on each surface of a P-type semiconductor and an N-type semiconductor having a Peltier effect, and then cutting and dividing each semiconductor into a desired shape. It is characterized by doing so.
  • this soldering process involves tinning each surface of the P-type semiconductor and N-type semiconductor.
  • soldering layer having a solder composition containing tin (Sn): 10-99.8% and lead (Pb): 0.2 to 90% as main components on each surface of the ⁇ -type semiconductor and the ⁇ -type semiconductor. Is formed.
  • soldering layer with a solder composition mainly composed of ⁇ (Sn): 60 to 99.9% and copper (Cu): 0.01 to 40% is formed. It is characterized by the following.
  • soldering layer having a solder composition mainly composed of tin (Sn): 95 to 99.9% and germanium (Ge): 0.1 to 5% Is formed.
  • thermoelectric element is formed by forming a soldered layer on each surface of a P-type semiconductor and an N-type semiconductor having a Peltier effect, and then cutting and dividing each semiconductor into a desired shape. Therefore, it is possible to very easily obtain a solder layer having a uniform thickness.
  • the composition of the soldered layer is mainly composed of ⁇ (Sn): 70-99. 95% and antimony (Sb): 0.05-30%, so that the bonding strength s is high, A thermoelectric device having stable characteristics can be obtained. If the «: ratio of antimony is 0.05% or less, the solder strength decreases. If the ratio is 3096 or more, the wettability decreases, and the solidification temperature range is too wide to cause segregation. Becomes unstable. -Alternatively, the composition of this soldered layer is mainly composed of tin (Sn): 10-'99., 8%, lead (Pb): 0.2-90%, so that the bonding strength is improved. And a thermoelectric device with stable characteristics can be obtained. Here, when the ratio of lead (M) is 0.26 or less, the solder strength is reduced, and when the ratio is 90% or more, the wettability s is reduced.
  • the composition of the soldering layer is mainly composed of tin (Sn): 60 to 99.9% and copper (Cu): 0.01 to 40%, resulting in high bonding strength and stable characteristics.
  • the obtained thermoelectric device can be obtained. If the composition ratio of copper is 0.01% or less, the solder strength s decreases, and if it is 40% or more, the wettability decreases and the solidification temperature range is too wide to cause segregation, and the quality power 5 ⁇ Become stable.
  • the composition of the soldering layer is mainly composed of tin (Sn): 95-99.9%.
  • the fiber of this soldering layer is composed mainly of lead (Pb): 50-95%. Indium (In): 5-50%, so that the bonding strength s is high and the characteristics are high. A stable thermoelectric device can be obtained.
  • the composition ratio of the alloy is 5% or less, the wettability decreases, and when the composition ratio is 50% or more, the solder strength decreases.
  • FIG. 1 is a diagram showing a thermoelectric device according to an embodiment of the present invention
  • FIG. 2 is a diagram showing an enlarged cross section of a main part of the device
  • FIGS. 3 (a) to 3 (h) are manufacturing steps of the thermoelectric device.
  • FIGS. 4 (a) to 4 (j) are diagrams showing a process of manufacturing a heat exchange substrate of the thermoelectric device of the second embodiment of the present invention
  • FIG. 6 (b) is a diagram showing a part of a modification of the manufacturing process of the thermoelectric device
  • FIG. 6 is a diagram showing a conventional thermoelectric device
  • FIGS. 7 (a) to (f) are thermoelectric devices of the conventional example. It is a figure showing a manufacturing process of an element.
  • FIG. 1 is a diagram showing an appearance of a thermoelectric device according to an embodiment of the present invention
  • FIGS. 2 (a) and 2 (b) are diagrams showing an enlarged cross section of a main part of the thermoelectric device.
  • thermoelectric device uses a conventional alumina ceramic substrate as the first and second heat exchange substrates 4a and 4b.
  • thermoelectric element is provided with a nickel plating layer 2 and 60 Sn—40 Pb solder on both end surfaces of the P-type and N-type Bi—Te semiconductor substrates la and 1 b.
  • the coating layer 3 is formed.
  • the second heat exchange substrate 4b has a thick copper plating layer 5 of MiJ 200 ⁇ m, a nickel plating layer 2 of ⁇ 5 m, and a
  • the P-type thermoelectric element 10a and the N-type thermoelectric element 10b are fixed on an electrode pattern having a three-layer structure with the Sn-Pb soldered layer 6 of m.
  • An electrode pattern E having a three-layer structure with the layer 6 is formed.
  • the first heat exchange 1 whose force is not shown in the enlarged view of the main part also has the same structure as the second heat exchange board 2.
  • a first electrode lead 7 and a second electrode lead 8 are provided.
  • thermoelectric device Next, a method for manufacturing the thermoelectric device will be described.
  • thermoelectric element First, a method for manufacturing a thermoelectric element will be described.
  • a Bi—Te semiconductor substrate 10a containing a P-type impurity is sliced into 30 ⁇ 30 ⁇ 0.96t.
  • a nickel (Ni) plating layer 2 of BU-5 in is formed on both sides by an electroless plating method.
  • a Sn—: Pb eutectic soldering layer 3 having a thickness of 20 ⁇ m is formed using a sulfonic acid-based bath.
  • the composition of the Sn-Pb eutectic solder was Sn60% -Pb40%.
  • thermoelectric element 1 a Q..64 ⁇ 0.64 ⁇ 0.96 t.
  • an N-type thermoelectric element 1b of 0.64 ⁇ 0.64 ⁇ 0.96 t is obtained using the Bi—Te semiconductor substrate 1 containing an N-type impurity as a starting material.
  • Electroless nickel plating 2 is performed to prevent element diffusion and improve solder paste, and then heated to 230 ° C and Sn-Pb eutectic solder (Sn 60% -Pb 40%) 6 Rub it on a hot plate that has been soaked, check that the solder has adhered to the entire surface of the nickel plating, and wipe it off with fluororubber to remove most of the solder from the surface.
  • the 0.3 electrode leads 7 and 8 are attached using a small soldering iron.
  • thermoelectric device formed in this way the solder can be specified with high accuracy, the flatness is formed well, the adhesion between heat exchange and the electrode pattern is good, and the pattern accuracy is high. Good and reliable thermoelectric devices can be formed
  • thermoelectric devices were manufactured, and the lowest temperature was measured under a vacuum of 10-5 Torr. Table 1 shows the results.
  • thermoelectric device was joined to a 27 ° C constant temperature plate using 47 ° C solder, and the measurement was performed.
  • the lowest attained temperature is a force s ' fluctuating from -36 ° C to 140 ° C, and both are within the range of the average value of soil 2 ° C.
  • thermoelectric devices were alternately energized in the atmosphere with their polarities changed, and a cooling-heating cycle was repeated.
  • thermoelectric device After repeating this for 15 cycles, the moisture in the thermoelectric device was removed, and the lowest temperature was again measured under a vacuum of 10-5 Torr. Table 2 shows the results.
  • solder M used was a 98 Sn-2Sb solder having a melting point of 232 ° C.
  • the other configuration was exactly the same as that of the first embodiment.
  • the 98 Sn-2 Sb solder layer was formed using a sulfuric acid bath when forming the thermoelectric element.
  • Example 1 the measurement was performed by bonding to a 27 ° C constant temperature plate using 47 ° C solder.
  • the minimum temperature reached was a force fluctuating from 37 ° C to -40 ° C. Both of these values were average values.
  • thermoelectric devices were alternately energized in the atmosphere with their polarities changed in the air, and the cooling cycle was repeated!].
  • Table 4 shows the results.
  • the soldering used was the same as in Example 1, except that the melting point was 230 ° C, 70Pb-30In solder was used, and the solder coating on the heat exchange sickle was performed by plating. .
  • thermoelectric element When forming the 70Pb-30In solder layer on the thermoelectric element, a hydrofluoric acid-based bath was used.
  • the electrode pattern was formed on the alumina substrate as follows.
  • the front and back surfaces of the heat exchange substrates 4a and 4b made of alumina ceramics are roughened.
  • an electroless copper plating film 25a having a swelling of 1 to 5 mm is formed on the front and rear surfaces by an electroless copper plating method.
  • a dry film is stuck on the front and back surfaces and patterned by photolithography to form a resist pattern R1.
  • the electroless copper plating film 25a was used as an electrode, and the electroless copper plating film 5a on the front and back surfaces of the substrate was formed by an electrolytic plating method or the like.
  • Selectively number 1 0 ⁇ ! A copper plating film 25 b of ⁇ 1 OO um is formed.
  • a nickel plating layer 25c of about 5 m is formed by an electrolytic plating method or the like.
  • a gold plating layer 25 d having a thickness of 0.5 ⁇ is formed by electrolytic plating.
  • a dry film is stuck on the back surface and patterned by photolithography to form a resist pattern R2.
  • a 70 Pb—30 In soldering layer 25 e of J 5 m is formed by electrolytic plating or the like.
  • the resist patterns R1 and R2 are peeled off to form electrode patterns on the front and back surfaces of the substrate.
  • the electroless copper-plated layer 25a exposed from the solder-plated layer and left thin on the surface is removed by light etching.
  • the heating time in florinate vapor during assembly was 30 minutes.
  • thermoelectric devices were manufactured, and the lowest temperature was measured under a vacuum of 10-5 Torr. Table 5 shows the results.
  • Example 1 bonding was performed using a 47 ° C solder on a 27 ° C constant temperature plate, and measurement was performed.
  • the lowest attained temperature fluctuates from -36 ° C to -39 ° C, all of which fall within the range of the average ⁇ 1.5 ° C.
  • thermoelectric devices were alternately energized in the atmosphere with their polarities changed, and the cooling cycle was repeated.
  • thermoelectric device characteristics due to freezing of the condensed water that entered the gap was observed.
  • thermoelectric device formed in this way the i? Of the solder can be specified with high accuracy, the flatness is formed well, the adhesion between the heat exchange substrate and the electrode pattern is good, and High accuracy and high reliability of thermoelectric devices ⁇
  • the heat exchange substrate since the heat exchange substrate has a gold-plated surface on the back side, it can be soldered without flux when mounting thermoelectric devices in various clean packages.
  • a berylla ceramic using an alumina ceramic substrate as the insulating substrate or a nitride aluminum ceramic may be used, and a carbonized ceramics substrate may be used.
  • elementary ceramics have a heat conductivity of 9 times or more in heat exchange and a small coefficient of thermal expansion, so the heat exchange efficiency is greatly improved, no thermal distortion occurs and reliability is improved. high.
  • the electrode pattern is not limited to the embodiment, but is suitable for Hff and the like. It can be changed as needed.
  • the following steps are added to cover the electrode pattern on the surface with the tin-plated layer 25f. You may do so.
  • a dry film is attached to the back surface as shown in FIG. 5 (a), and is patterned by photolithography to form a resist pattern R3.
  • electroless tin plating is performed as shown in FIG. 5 (b), the copper plating layer exposed on the side of the electrode pattern on the surface is covered with a tin layer 25f, and the resist pattern R3 is removed. To do it.
  • the tin layer is also formed on the solder layer on the surface of the electrode pattern, but is formed only on the solder layer with a small thickness.
  • the copper layer, the nickel layer, and the gold layer were formed, and then the soldering layer was formed.
  • the nickel layer and the gold layer may be appropriately changed or omitted. .
  • thermoelectric device For comparison, 98 Sn-2 Sb solder was manually applied to the sliced element, and a thermoelectric device was produced in exactly the same manner as in Example 2 except for measuring the lowest temperature. Table 7 shows the results. Table 7
  • thermoelectric devices were alternately energized in the atmosphere with their polarities changed, and a cooling-heating cycle was repeated.
  • thermoelectric device having a significantly higher production yield.
  • the first and second heat exchange substrates were formed of the alumina ceramic substrate on the rain side, and a five-layer electrode thin film pattern having a soldered layer on the surface was used. Only one of them may be constituted by this method, and the other may be constituted by another material and another electrode forming method, or may be omitted and constituted by only one heat exchange substrate.
  • the method of the present invention may use not only the alumina ceramic substrate but also other insulating sickles such as Berilla ceramics, aluminum nitride ceramics, and silicon carbide ceramics substrates.
  • a soldering layer is formed on each surface of a P-type semiconductor and an N-type semiconductor having a Peltier effect when manufacturing a thermoelectric element of a thermoelectric device. Because it has so that you'll connexion formed to cut and divided semiconductor into a desired shape, very easily possible force obtain a solder layer having a uniform thickness s can and Do Ri, definable solder of fermentation accuracy next, a high thermoelectric device reliability formed child and power s possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

明 細 書
熱電装置の製造方法
発明の技術分野
本発明は、 熱電装置の製造方法に係り、 特にその熱電素子対の電極の形成に関 するものである。
背景技術
P型半導体と N型半導体とを、 金属を介して接合して P N素子対を形成し、 こ の接合部を流れる電流の方向によつて一方の端部が発熱すると共に他方の端部が 冷却するいわゆるペルチヱ効果を利用した熱電素子は、 小型で構造が簡単なこと から、 携帯用クーラ等いろいろなデバイスに幅広い利用力期待されている。 このような熱電素子を多数個集めて形成したサ一モモジュールは、 例えば、 第 6図に示すように、 セラミ ックス基板等の熱伝導性の良好な絶緣性 からなる 第 1および第 2の熱交換基板 1 1 , 1 2間にこれに対して良好な.熱接触性をもつ ように多数個の P N素子対 1 3力 s挟持せしめられると共に、 各素子対 1 3間を夫 々第 1およぴ第 2の電極 1 4 , 1 5によって直列接続せしめられて構成されてい o
そして、 この第 1および第 2の電極 1 4 , 1 5は大電流にも耐え得るように通 常銅板からなり、 熱交換基板 1 1 , 1 2表面に形成された導電体層パターン上に 半田等の溶着層を介して固着されている。
更にこの第 1および第 2の電極上には、 半田層を介して P型熱電素子 1 3 a又 は N型熱電素子 1 3 bが交互に夫々 1対ずつ固着せしめられ、 P N素子対 1 3を 構成すると共に各素子対間は直列接続されている。
ところで、 熱交換効率の増大をはかるには、 熱交換基板を良好な熱伝導性を有 する絶緣性の材料で構成する必要があり、 また熱歪による劣ィ匕を防止するため、 熱膨張率が小さいものでなければならない。
そこで、 最近では、 熱交換基板材料としては、 従来から用いられているアルミ ナセラミックス基板やベリリアセラミックス基板に加えて、 窒化アルミニウムセ ラミックスや炭化ケィ素系セラミックス基板も提案されている。 このうち炭化ケ ィ素系セラミックスは熱伝導率が 2 . 7 W · cm-1 K- 1とアルミナの約 9倍以上で あり、 熱膨張率も 3 . 7 X 1 0 - 7 K- 1とアルミナセラミックスのそれに比べて約 半分と小さく、 熱交換 として用いる場合の熱歪が小さいため、 これを熱交換 基板材料として用いた熱電装置によれば温度変化に対しても損傷を受けることが なく、 熱交換効率が高く、 信頼性の高い熱電装置を得ることが可能となる。
ところで、 このような熱電装置構造において、 電極の熱交換基板への位置決め および固着に際し、 組み立て作業性の向上をはかるため、 電極を、 熱交換基板表 面に形成した厚膜導体層パターンで構成したもの力提案されている。
かかる構造の熱電装置によれば、 熱交換基板上の導体パターンに電極板を位置 決めする工程と固着工程とカ 要となり、 工程の大幅な簡略ィ匕をはかること力で きると共に、 導体パターンと電極との位置ずれ:^生じることもなく、 信頼性を高 めることができる。 . .
ところで、 熱交換基板への熱電素子の実装に際しては、 半田^介して固着され る力、 この素子に対しても予備半田を形成する一方、 熱交換基板の電極パターン 上にも半田を載置し、 固着するという方法がとられる。
このような熱電素子への半田層の形成は、 従来、 素材 1 3をスライスし (第 7 図(a) ) 、 このスライス面に元素拡散防止のためのニッケルめっき層 2を形成し (第 7図 (b) ) 、 半田に濡れた »上にこすりつける、 あるいは半田ごてで手盛 りしてニッケルめっき層 2の上に半田層 3 Sを形成し (第 7図 (c) ) 、 分割する (第 7図 (d) ) という方法がとられている。
しかし、 図示のように半田塗布量を均一にすること力 s極めて困難である。
また、 ペースト状のクリ一ム半田をディスペンサゃ印刷法等を利用して塗布す るという方法も提案されている力 半田組成が市販品では限定され、 任意組成の ものを選択できない。 熱交換基板 1 1 , 1 2の電極パターン 1 4 . 1 5上にてこ のような熱電素子を固着しょうとした場合 (第 7図 (e) ) 、 半田コ一ティンクグ が厚すぎる場合には半田が余分に付着して電気的, 熱的に短絡状態になる。 また、 半田 Hi?が小さすぎる場合は素子 ·電極間に電気的 ·熱的接触推抗の増大を生じ る。 さらに素子 ·電極間に生じた間隙に結露した水分が侵入して通電時に凍結す れば、 接合部損傷になる。 また、 素子の5 m度力悪く、 また高さにばらつきがあ るという問題は、 自動実装を採用する場合に顕著な障害となる。 このように、 スライス面を熱板にこすりつける方法は均一に塗布するのが困難 であり、 組み立て時の歩留まり低下の原因となりやすい。
また、 半田ごてで手盛りする方法は、 熟練を要するうえ、 工数が多く量産には 不向きであるうえ、 均一塗布は困難であるという問題があった。 特に、 高融点半 田を用いる場合には、 作業性力 s '悪かった。
さらにクリーム半田を用いる方法では半田組成が限定され、 高融点のものをは じめ、 任意の組成のものを選択することができない。 近年、 ユーザニーズによつ ては装置の耐熱限界温度を高めること力要求されており、 高融点の半田を求める 傾向にある。
発明の概要
本発明は前記実情に鑑みてなされたもので、 容易に均一な半田層を有する熱電 素子を形成し、 量産性力高く、 信頼性の高い熱電装置を提供することを目的とす る ο
そこで、 本発明では熱電装置の熱電素子を、 ペルチヱ効果を有する P型半導体 および N型半導体の各表面に半田めつき層を形成したのち、 各半導体を所望の形 状に切断分割することによって形成するようにしたことを特徴としている。
また、 この半田めつき工程は、 P型半導体および N型半導体の各表面に、 錫
(Sn) : 70〜99. 95 %, アンチモン (Sb) : 0. 05〜30ο/0を主成 分とする半田組成を有する半田めつき層を形成することを特徴とする。
あるいは、 Ρ型半導体および Ν型半導体の各表面に、 錫 (Sn) : 10-99. 8%, 鉛 (Pb) : 0. 2〜90%を主成分とする半田組成を有する半田めつき 層を形成することを特徴とする。
P型半導体および N型半導体の各表面に、 鈸 (Sn) : 60〜99. 9%, 銅 (Cu) : 0. 01〜40%を主成分とする半田組成を有する半田めつき層を形 成することを特徴とする。
P型半導体および N型半導体の各表面に、 錫 (S n) : 95〜99. 9%, ゲ ルマニウム (Ge) : 0. 1〜5%を主成分とする半田組成を有する半田めつき 層を形成することを特徴とする。
P型半導体および N型半導体の各表面に、 鉛 (P b) : 50〜95%, ィンジ ゥム (I n) : 5〜 50%を主成分とする半田 JM;を有する半田めつき層を形成 することを とする。
上記方法によれば、 熱電素子を、 ペルチェ効果を有する P型半導体および N型 半導体の各表面に半田めつき層を形成したのち、 各半導体を所望の形状に切断分 割することによって形成するようにしているため、 極めて容易に均一な厚さの半 田層を得ることが可能となる。
また、 この半田めつき層の組成を、 鍚 (S n) : 70-99. 95%, アンチ モン (Sb) : 0. 05〜30%を主成分とすることにより、 接合強度力 s高く、 特性の安定した熱電装置を得ることができる。 ここでアンチモンの «:比が 0. 05%以下であると、 半田強度が低下し、 3096以上であると、 濡れ性力低下す る上、 凝固温度範囲が広すぎて偏析を生じ、 品質が不安定となる。 . - あるいは、 この半田めつき層の組成を、 錫 (S n) : 10〜'99.、 8%, 鉛 (P b) : 0. 2〜90%を主成分とすることにより、 接合強度が高く、 特性の 安定した熱電装置を得ることができる。 ここで鉛の M;比が 0. 2 6以下である と、 半田強度が低下し、 90%以上であると、 濡れ性力 s低下する。
また、 この半田めつき層の組成を、 錫 (Sn) : 60〜99. 9%. 銅 (Cu) : 0. 01〜40%を主成分とすることにより、 接合強度が高く、 特性の安定し た熱電装置を得ることができる。 ここで銅の組成比が 0. 01%以下であると、 半田強度力 s低下し、 40%以上であると、 濡れ性が低下する上、 凝固温度範囲が 広すぎて偏析を生じ、 品質力5^安定となる。
あるいは、 この半田めつき層の組成を、 錫 (S n) : 95-99. 9%. ゲル マニウム (Ge) : 0. 1〜5%を主成分とすることにより、 接合強度が高く、 特性の安定した熱電装置を得ること力 ?できる。 ここでゲルマニウムの組成比が 0. 1 6以下であると、 半田強度が低下し、 5%以上であると、 濡れ性が低下する上、 凝固温度範囲力 s '広すぎて偏析を生じ、 品質ヵ环安定となる。
さらにまた、 この半田めつき層の繊を、 鉛 (P b) : 50-95%. インジ ゥム (In) : 5〜 50%を主成分とすることにより、 接合強度力 s高く、 特性の 安定した熱電装置を得ることができる。 ここでィンジゥムの組成比が 5 %以下で あると、 濡れ性が低下し、 50%以上であると、 半田強度が低下する。 図面の簡単な説明
第 1図は本発明実施例の熱電装置を示す図、 第 2図は同装置の要部拡大断面を 示す図、 第 3図 (a) 乃至第 3図 (h)は同熱電装置の製造工程を示す図、 第 4図 (a) 乃至第 4図 (j )は本発明の第 2の実施例の同熱電装置の熱交換基板の製造工程を 示す図、 第 5図 (a) および第 5図 (b) は同熱電装置の製造工程の変形例の一部を 示す図、 第 6図は従来例の熱電装置を示す図、 第 7図 (a) 乃至 (f) は従来例の熱 電素子の製造工程を示す図である。
発明を実施するための最良の形態
以下、 本発明の実施例について図面を参照しつつ詳細に説明する。
実施例 1
第 1図は、 本発明実施例の熱電装置の外観を示す図、 第 2図 (a) および第 2図 (b) は同熱電装置の要部拡大断面を示す図である。
この熱電装置は、 第 1および第 2の熱交換基板 4 a , 4 bとして従来のアルミ ナセラミックス基板を用いたものである。
そして、 熱電素子は、 第 2図に示すように P型および N型 B i— T e半導体基 板 l a , 1 bの両端面にニッケルめっき層 2および, 6 0 S n— 4 0 P b半田め つき層 3を形成してなるものである。
また、 第 2の熱交換基板 4 bは、 第 2図に示すように、 MiJ 2 0 0〃m の厚づ け銅めつき層 5と、 Ιϋϊ 5 m のニッケルめっき層 2と、 醇 5〃m の S n— P b半田めつき層 6との 3層構造の電極パターンの上に P型熱電素子 1 0 aおよび N型熱電素子 1 0 bが固着される。 一方、 他方の面側にも 2 0 O ^ m の厚づ け銅めつき層 5と、 ^i 5 y" m のニッケルめっき層 2と、 ^ 5〃m の S n— P b半田めつき層 6との 3層構造の電極パターン Eが形成されている。
なお、 要部拡大図は示さない力第 1の熱交換 1も、 第 2の熱交換基板 2と 同様の構造をなしている。
このようにして第 1の熱交換基板上の電極ノ ターンおよび第 2の熱交換基板 4 a , 4 b上の電極パターンによって隣接する P型熱電素子 1 aおよび N型熱電素 子 1 b力5'半田溶融法によつて接続され P N素子対 1が構成されると共にこれらの P N素子対 1力 ί互いに直列に接続され、 回路の雨端に位置する電極パターンに夫 々第 1の電極リード 7および第 2の電極リード 8が配設される。 この第 1および 第 2の電極リードに通電力 s行なわれることにより、 例えば第 1の熱交換基板の側 が低温部となり、 第 2の熱交換基板の側が高温部となる。
次に、 この熱電装置の製造方法について説明する。
まず、 熱電素子の製造方法について説明する。
まず、 第 3図 (a) に示すように、 P型不純物を含有する B i— Te半導体基板 10aを、 30X 30X0. 96tにスライスする。
この後第 3図 (b) に示すように、 無電解めつき法により両面に BU?5 inの二 ッケル (Ni) めっき層 2を形成する。
次いで、 第 3図(c) に示すように、 スルホン酸系の浴を用いて、 膜厚 20〃m の S n— : P b共晶半田めつき層 3を形成する。 ここで S n— P b共晶半田の組成 は、 Sn60%— Pb40%とした。
この後、 第 3図(d) に示すように、 これをダイシングし、 Q.. 64X0. 64 X 0. 96tの P型熱電素子 1 aを得る。
同様にして、 N型不純物を含有する B i— T e半導体基板 1を出発材料として、 0. 64X0. 64 X0. 96tの N型熱電素子 1 bを得る。
次に、 第 3図 (e) に示すように熱交換基板を形成する。
まず、 8. 7 X 8. 7X0. 635t のアルミナ (A 12 03 ) 基板 4の 表面に 200 "inの厚づけ銅めつき層 5を施した後、 エッチングによりパタ ーン形成を行う。 その上に元素拡散防止と半田ののりをよくするために無電解二 ッケルめっき 2を行った後、 230°Cに加熱して S n— P b共晶半田 (Sn 60 %-P b 40%) 6をなじませた熱板にこすりつけ、 ニッケルめっき全面に半田 が付着したことを確認し、 フッ素ゴム製ラバーで拭い、 表面に半田の大部分を除 去する。
このようにして形成された第 1および第 2の熱交換基板のうち一方、 例えば第 2の熱交換基板 2の半田パターン 6上に、 治具 (図示せず) を用いて位置決めを 行いつつ、 電極表面に半田層の形成された P型および N型熱電素子 1 a, 1 bを 62本自動的に装着し、 裏面側から加熱しつつ固着する。 (第 3図ば) )
次に、 第 2の熱交換^:を載置し、 最上部に 40 gの重りをのせて沸点 253 °Cのフロリナ一ト蒸気中で 20分加熱し、 第 2の熱交換基板の低温側電極パター ンと前記 P型および N型熱電素子とを固着せしめる (第 3図 (g) )
そして、 最後に、 0. 3 電極リード 7, 8を微小半田ごてを用いてとりつけ る。
このようにして形成された熱電装置では、 半田の が高精度に規定可能であ る上、 平坦性もよく形成され、 また熱交換 と電極パターンとの密着性が良好 でかつバタ一ン精度が良好であり、 信頼性の高い熱電装置を形成することが可能 める
このようにして熱電装置を 8個製作し、 10— 5Torrの真空下で最低到達温度 を実測した。 その結果を第 1表に示す。
第 1表
No 最低到達温度
1 -38
2 - 36
3 - 38
4 -38
5 - 37
6 -39
8 -37 平均一 37. 9
ここでは、 熱電装置の底部は 27°Cの恒温プレートに 47°C半田を用いて接合 し、 測定を行った。
ここで最低到達温度は一 36°Cから一 40°Cまで変動する力 s'、 いずれも平均値 土 2 °Cの範囲に入っていることがわかる。
さらにまた、 この 8個の熱電装置に、 大気中で極性を変えて交互に通電し、 冷 却一加熱サイクルを繰り返させた。
すなわち、 まず、 1. 5 AX 1 Omin の通電冷却により、 約一 30tに冷却し、 - δ - 低温側基板表面には一面に氷霜が付着した。
次に、 極性を変えた 1. 5ΑΧ0. 8minの通電により、 低温側基板は 10〜 17°Cに昇温し、 氷霜は融解して水となった。
再度、 極性を変えた 1. 5 AX 1 Ominの通電冷却を行い、 低温側基 & の水 分を再度凍結させた。
これを 15サイクル繰り返した後、 熱電装置の水分を除去して再度 10— 5To rrの真空下で最低到達 を実測した。 その結果を第 2表に示す。
第 2表
No 最低到達温度
1 -37
2 -36
3 -38
4 -38
5 -37
6 -39
7 -39
8 -38 平均一 37. 8
第 2表の結果からもあきらかなように、 間隙に侵入した結露水の凍結による熱電 装置の特性の劣化はまったく認められなかつた。
実施例 2
次に、 本発明の第 2の実施例について説明する。
この例では、 用いる半田M;を、 融点 232°C、 98 S n-2 S b半田とし、 他の構成については実施例 1とまったく同様にした。
98 Sn-2 S b半田層を熱電素子の形成するに際しては硫酸系浴を用いて形 成した。
また、 アルミナ基¾±_への 98 S n— 2 S b半田層の形成については、 265 °Cに加熱し 98 S n-2 S b半田を広げた熱板に銅めつき層パターンおよびニッ ケルめっき層の形成されたアルミナ皿をこすりつけることによって形成した。 他については、 測定についても実施例 1とまったく同様に行った。
このようにして熱電装置を 8個謝乍し、 1 0— 5ΤΟΓΓの真空下で最低到達温度を 実測した。 その結果を第 3表に示す。
第 3表
No 最低到達温度
2 1 -38
22 -39
23 - 38
24 -37
25 -38
26 -38
27 - 37
28 -40 平均一 38. 1
ここでも、 実施例 1と同様、 27°Cの恒温プレートに 4 7°C半田を用いて接合 し、 測定を行った。
ここで最低到達温度は一 37°Cからー40°Cまで変動する力 いずれも平均値. 土 2 °Cの範囲に入っていることがわかる。
さらにまた、 この 8個の熱電装置に、 実施例 1と同様、 大気中で極性を変えて 交互に通電し、 冷却一力!]熱サイクルを繰り返させた。
その結果を第 4表に示す。 第 4表
J 0 取 達/皿度
1 ― o o
Ω 丄
ク Q
― ό y
9 Q O O
ム Ο ― o o
24 -37
25 -38
26 -37
27 -37
28 -39 平均一 37. 9
第 4表の結果からもあきらかなように、 間隙に侵入した結露水の凍結による熱電 装置の特性の劣ィ匕はまったく認められなかった。
実施例 3
次に、 本発明の第 3の実施例について説明する。
この例では、 用いる半田滅を、 融点 230°C、 70P b-30 I n半田とし、 熱交換鎌への半田コーティングをめつきによつて行つた他は、 実施例 1とまつ たく同様にした。
70Pb— 30 I n半田層を熱電素子に形成するに際しては、 ほうフッ化水素 酸系浴を用いた。
また、 アルミナ基¾±への電極パターンの形成については、 次のようにして行 た o
まず、 第 4図 (a) に示すごとく、 アルミナセラミックスからなる熱交換基板 4 a, 4 b (ここでは第 2の熱交換基板についてのみ示す) の表面および裏面に粗 面加工を施す。
この後、 第 4図 (b) に示すごとく、 この表面および裏面に、 無電解銅めつき法 により、 膨 1〜: I. 5^mの無電解銅めつき膜 25 aを形成する。 続いて、 第 4図(c) に示すごとく、 表面および裏面にドライフィルムを貼着し、 フォトリソグラフィ法によりパターニングしてレジストパターン R 1を形成する。 そして、 第 4図 (d) に示すごとく、 前記無電解銅めつき膜 2 5 aを電極とし、 電解めつき法等により、 基板の表面および裏面の前記無電解銅めつき膜 5 a上に 選択的に 数 1 0〃π! 〜 1 O O u m の銅めつき膜 2 5 bを形成する。
次いで、 第 4図 (e) に示すごとく、 電解めつき法等により、 ¾¥ 5 m のニッ ケルめっき層 2 5 cを形成する。
さらに、 この ± に、 第 4図ば) に示すごとく、 電解めつき法により、 膜厚 0. 5〃πι の金めつき層 2 5 dを形成する。
そして、 第 4図(g) に示すごとく、 裏面にドライフィルムを貼着し、 フォ トリ ソグラフィ法によりパターニングしてレジストパターン R 2を形成する。
この後、 第 4図 (h) に示すごとく、 電解めつき法等により、 J 5 m の 7 0 P b— 3 0 I n半田めつき層 2 5 eを形成する。
そして、 第 4図(i) に示すごとく、 レジストパターン R 1および R 2を剥離し、 基板表面および裏面に電極パターンを形成する。
さらに、 第 4図 (j ) に示すごとく、 この半田めつき層から露呈して表面に薄く 残っている無電解銅めつき層 2 5 aを軽いエッチングにより除去する。
なお、 組み立て時のフロリナート蒸気中の加熱時間は 3 0分とした。
他については、 測定についても実施例 1とまったく同様に行った。
このようにして熱電装置を 8個製作し、 1 0— 5 Torrの真空下で最低到達温度 を実測した。 その結果を第 5表に示す。
第 5表
IN 0 取低到; &1度
Q Q
丄 丄
1 O
L — 0 o
1 — D o O o
14 -38
1 5 -36
16 -37
17 -37
18 -36 平均一 37. 4
ここでも、 実施例 1と同様、 27°Cの恒温プレートに 47°C半田を用いて接合 し、 測定を行った。
ここで最低到達温度は一 36°Cから一 39°Cまで変動する力 いずれも平均値 ± 1. 5 °Cの範囲に入っていることがわかる。
さらにまた、 この 8個の熱電装置に、 実施例 1と同様、 大気中で極性を変えて 交互に通電し、 冷却一カ卩熱サイクルを繰り返させた。
その結果を第 6表に示す。
第 6表
N o 最低到達温度
1 1 - 3 9
1 2 - 3 7
1 3 - 3 8
1 4 - 3 9
1 5 - 3 6
1 6 - 3 7
1 7 - 3 7
1 8 - 3 6 平均一 3 7 . 4
第 6表の結果からもあきらかなように、 間隙に侵入した結露水の凍結による熱 電装置の特性の劣化はまったく認められなかつた。
このようにして形成された熱電装置では、 半田の i?が高精度に規定可能であ る上、 平坦性もよく形成され、 また熱交換基板と電極パターンとの密着性が良好 でかつバタ―ン精度が良好であり、 信頼性の高い熱電装置を形成することが可能 める ο
また熱交換基板の裏面側表面は金めつき層となっているため、 熱電装置を清浄 な各種パッケージ等に実装する際にはフラックスなしに半田付けすることができ
Ό 0
さらに、 前記実施例では、 絶縁性基板としてアルミナセラミ ックス基板を用い た力 ベリリャセラミックスや窒ィ匕アルミセラミックスを用いても良くさらに炭 化ケィ素系セラミックス基板を用いるようにすれば、 炭化ケィ素系セラミックス はアルミナセラミックス基板に比べて、 熱交換 の熱伝導率が 9倍以上であり、 かつ熱膨張率も小さいため、 熱交換効率が大幅に向上し、 熱歪の発生もなく信頼 性も高い。
なお、 電極パターンは、 実施例に限定されることなく、 Hff等については、 適 宜変更可能である。
また、 前記実施例では、 表面の電極パターンでは銅めつき層の側面が露呈して いるため、 以下に示すような工程を付加し、 表面の電極パターンを錫めつき層 2 5 f で被覆するようにしてもよい。
すなわち、 第 4図 (j ) の工程終了後、 第 5図 (a) に示すように裏面にドライフ イルムを貼着し、 フォ トリソグラフィ法によりパターニングしてレジストパター ン R 3を形成する。
そして、 第 5図 (b) に示すように無電解錫めつきを行い、 表面の電極パターン 側面に露呈する銅めつき層表面を錫層 2 5 f で被覆し、 レジストパターン R 3を. 除去するようにする。
このとき電極パターン表面の半田層上にも錫層は形成されるが、 半田層上には わずかな厚さでしか形成されない。 . - なお、 前記実施例では、 銅層、 ニッケル層、 金層を形成した後、 半田めつき層 を形成したが、 このうちニッケル層、 金層については適宜変更および省略するこ とも可能である。
比較のために、 9 8 S n— 2 S b半田をスライスした素子に手盛りで塗布し、 他は実施例 2とまったく同様に熱電装置を作製し、 最低到達温度を測定した。 そ の結果を第 7表に示す。 第 7表
N o 最低到達
3 1 - 3 6
3 2 - 2 6
3 3 一 1 0
3 4 - 4 0
3 5 - 3 8
3 6 - 3 5 平均一 3 0 . 8 この場合、 最低到達温度は一 1 0 °Cから一 4 0 °Cまで広範囲に変動し、 2個は 測定不能の不良品であつた。
さらにまた、 この 6個の熱電装置に、 実施例 1乃至 3同様、 大気中で極性を変 えて交互に通電し、 冷却一加熱サイクルを繰り返させた。
その結果を第 8表に示す。
第 8表
N o 最低到達温度
3 1 - 2 8
3 2 - 2 6
3 3 ― 1 0
3 4 一 1 4
3 5 - 3 8
3 6 - 3 6 平均一 2 5 . 5
この第 8表の結果からもあきらかなように、 最低到達温度は大幅に変動し、 あ らたに 2個力 侵入した結露水分の凍結により冷却不能となった。
このように、 実施例 1乃至 3の結果とこの第 7表および第 8表を比較しても、 本発明の方法によれば大幅に製造歩留まりの優れた熱電装置を作成可能であるこ とがわかる。
なお、 前記実施例では、 第 1およぴ第 2の熱交換基板の雨方をァルミナセラミ ックス基板で構成し、 表面に半田めつき層を有する 5層構造の電極薄膜パターン を用いたが、 いずれか一方のみをこの方法で構成し、 他方は他の材料および他の 電極形成方法で構成してもよく、 又、 省略し、 1枚の熱交換基板のみで構成する ようにしてもよレ^
さらにまた、 本発明の方法はアルミナセラミックス基板のみならず、 ベリリャ セラミッタス、 窒ィ匕アルミセラミックス、 炭化ケィ素系セラミックス基板等他の 絶緣性鎌を用いるようにしても良い。 産業上の利用可能性
以上説明してきたように、 本発明の方法によれば、 熱電装置の熱電素子の製造 に際し、 ペルチヱ効果を有する P型半導体および N型半導体の各表面に半田めつ き層を形成したのち、 各半導体を所望の形状に切断分割することによつて形成す るようにしているため、 極めて容易に均一な厚さの半田層を得ること力 s可能とな り、 半田の酵が 精度に規定可能となり、 信頼性の高い熱電装置を形成するこ と力 s可能である。

Claims

請求の範囲
(1) 熱交換基板上に電極を介して少なくとも 1つの熱電素子対を配設した熱電装 置の製造方法において、
熱電素子対を形成する熱電素子対形成工程と
絶縁性對反からなる熱交換基板表面に電極バタ一ンを形成する電極バタ一ン 形成工程と、
該電極バタ一ン上に熱電素子対を実装する実装工程とからなり、
前記熱電素子対形成工程が
ペルチェ効果を有する P型半導体および N型半導体の各表面に半田めつきを 形成する半田めつき工程と、
各半導体を所望の形状に切断分割し、 P型熱電素子および N型熱電素子を形 成する分割工程と、
を含むようにしたことを特徴とする熱電装置の製造方法。
(2) 前記半田めつき工程は、 P型半導体および N型半導体の各表面に、 錫 (Sn) : 70〜99. 95 %, アンチモン (S b) : 0. 05〜30%を主成分とする 半田組成を有する半田めつき層を形成する工程であることを特徴とする請求項 (1) 記載の熱電装置の製造方法。
(3) 前記半田めつき工程は、 P型半導体および N型半導体の各表面に、 錫 (Sn) : 10〜99. 8%, 鉛 (P b) : 0. 2〜90%を主成分とする半田賊を有 する半田めつき層を形成する工程であることを とする請求項 (1) 記載の熱電 装置の製造方法。
(4) 前記半田めつき工程は、 P型半導体および N型半導体の各表面に、 錫 (Sn) : 60〜99. 9%, 銅 (Cu) : 0. 01〜40%を主成分とする半田組成を 有する半田めつき層を形成する工程であることを特徴とする請求項(1) 記載の熱 電装置の製造方法。
(5) 前記半田めつき工程は、 P型半導体および N型半導体の各表面に、 鈸 (Sn) : 95〜99. 9%. ゲルマニウム (G e) : 0. 1〜 5 %を主成分とする半田 組成を有する半田めつき層を形成する工程であることを特徴とする請求項 (1) 記 載の熱電装置の製造方法。 (6) 前記半田めつき工程は、 P型半導体および N型半導体の各表面に、 鉛 (Pb) : 50〜95%, インジウム (I n) : 5〜50%を主成分とする半田誠を有 する半田めつき層を形成する工程であることを とする請求項 (1) 記載の熱電 装置の製造方法。
PCT/JP1991/000633 1990-05-14 1991-05-14 Method of manufacturing thermoelectric device WO1991018422A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2/123398 1990-05-14
JP2123398A JP2881332B2 (ja) 1990-05-14 1990-05-14 熱電装置の製造方法

Publications (1)

Publication Number Publication Date
WO1991018422A1 true WO1991018422A1 (en) 1991-11-28

Family

ID=14859573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1991/000633 WO1991018422A1 (en) 1990-05-14 1991-05-14 Method of manufacturing thermoelectric device

Country Status (3)

Country Link
EP (1) EP0482215A1 (ja)
JP (1) JP2881332B2 (ja)
WO (1) WO1991018422A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113285009A (zh) * 2021-05-26 2021-08-20 杭州大和热磁电子有限公司 一种通过沉积金锡焊料组装的tec及制备方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6103967A (en) * 1998-06-29 2000-08-15 Tellurex Corporation Thermoelectric module and method of manufacturing the same
DE19845104A1 (de) * 1998-09-30 2000-04-06 Siemens Ag Verfahren zum Herstellen eines thermoelektrischen Wandlers
JP2002043637A (ja) * 2000-07-24 2002-02-08 Aisin Seiki Co Ltd 熱電デバイス
JP2002134796A (ja) * 2000-10-19 2002-05-10 Nhk Spring Co Ltd Bi−Te系半導体素子およびBi−Te系熱電モジュール
JP3623178B2 (ja) * 2001-07-02 2005-02-23 京セラ株式会社 熱電変換モジュール一体型パッケージ
JP4401754B2 (ja) * 2003-11-28 2010-01-20 清仁 石田 熱電変換モジュールの製造方法
JP2006278997A (ja) * 2005-03-30 2006-10-12 Toyota Central Res & Dev Lab Inc 複合熱電モジュール
WO2007002342A2 (en) 2005-06-22 2007-01-04 Nextreme Thermal Solutions Methods of forming thermoelectric devices including electrically insulating matrixes between conductive traces and related structures
JP4826310B2 (ja) * 2006-03-27 2011-11-30 ヤマハ株式会社 熱電モジュール
JP5092168B2 (ja) * 2009-04-13 2012-12-05 株式会社Kelk ペルチェ素子熱電変換モジュール、ペルチェ素子熱電変換モジュールの製造方法および光通信モジュール

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864075A (ja) * 1981-10-13 1983-04-16 Citizen Watch Co Ltd 熱電堆の製造方法
JPS6320465U (ja) * 1986-07-23 1988-02-10
JPS6329966U (ja) * 1986-08-08 1988-02-27
JPH02271683A (ja) * 1989-04-13 1990-11-06 Matsushita Electric Ind Co Ltd 熱電素子および熱電素子の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2206034A5 (ja) * 1972-11-09 1974-05-31 Cit Alcatel
JPS63253678A (ja) * 1987-04-10 1988-10-20 Nippon Inter Electronics Corp 熱電変換装置
US4855810A (en) * 1987-06-02 1989-08-08 Gelb Allan S Thermoelectric heat pump
JP2558505B2 (ja) * 1988-06-29 1996-11-27 株式会社小松製作所 多段電子クーラー
JP2729647B2 (ja) * 1989-02-02 1998-03-18 小松エレクトロニクス株式会社 熱電装置の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864075A (ja) * 1981-10-13 1983-04-16 Citizen Watch Co Ltd 熱電堆の製造方法
JPS6320465U (ja) * 1986-07-23 1988-02-10
JPS6329966U (ja) * 1986-08-08 1988-02-27
JPH02271683A (ja) * 1989-04-13 1990-11-06 Matsushita Electric Ind Co Ltd 熱電素子および熱電素子の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0482215A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113285009A (zh) * 2021-05-26 2021-08-20 杭州大和热磁电子有限公司 一种通过沉积金锡焊料组装的tec及制备方法

Also Published As

Publication number Publication date
JPH0423368A (ja) 1992-01-27
EP0482215A4 (ja) 1994-03-09
JP2881332B2 (ja) 1999-04-12
EP0482215A1 (en) 1992-04-29

Similar Documents

Publication Publication Date Title
US4489742A (en) Thermoelectric device and method of making and using same
US4855810A (en) Thermoelectric heat pump
US20100108117A1 (en) Thermoelectric module package and manufacturing method therefor
CA2272193C (en) Improved thermoelectric module and method of manufacturing the same
EP0870337B1 (en) Fabrication of thermoelectric modules and solder for such fabrication
US20130014796A1 (en) Thermoelectric element and thermoelectric module
US20100031986A1 (en) Thermoelectric Module
WO1991018422A1 (en) Method of manufacturing thermoelectric device
JPS6112397B2 (ja)
JP5092168B2 (ja) ペルチェ素子熱電変換モジュール、ペルチェ素子熱電変換モジュールの製造方法および光通信モジュール
JP2001267642A (ja) 熱電変換モジュールの製造方法
JP4349552B2 (ja) ペルチェ素子熱電変換モジュール、ペルチェ素子熱電変換モジュールの製造方法および光通信モジュール
JP3443793B2 (ja) 熱電装置の製造方法
JP4309623B2 (ja) 熱電素子用電極材およびそれを用いた熱電素子
JPH11261118A (ja) 熱電変換モジュール並びに半導体ユニットおよびその製造方法
JP6690017B2 (ja) 熱電モジュール
JP2003282972A (ja) 熱電素子
JP5865721B2 (ja) 熱電モジュール
JP2022502837A (ja) バルク型熱電素子製造方法
JP5247531B2 (ja) 熱電変換モジュール
JP2004140064A (ja) 熱電素子およびその製造方法
JP3588355B2 (ja) 熱電変換モジュール用基板及び熱電変換モジュール
JP2570626B2 (ja) 基板の接続構造及びその接続方法
JP2903331B2 (ja) 熱電装置の製造方法
CN216528873U (zh) 电路基板及绝缘栅双极型晶体管模块

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1991908865

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1991908865

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1991908865

Country of ref document: EP