WO1990016076A1 - Iron base, soft magnetic steel material - Google Patents

Iron base, soft magnetic steel material Download PDF

Info

Publication number
WO1990016076A1
WO1990016076A1 PCT/JP1989/001232 JP8901232W WO9016076A1 WO 1990016076 A1 WO1990016076 A1 WO 1990016076A1 JP 8901232 W JP8901232 W JP 8901232W WO 9016076 A1 WO9016076 A1 WO 9016076A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
flux density
present
magnetic flux
magnetic
Prior art date
Application number
PCT/JP1989/001232
Other languages
English (en)
French (fr)
Inventor
Toshimichi Omori
Haruo Suzuki
Tetsuya Sanpei
Yasunobu Kunisada
Toshio Takano
Original Assignee
Nkk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nkk Corporation filed Critical Nkk Corporation
Priority to KR1019910700178A priority Critical patent/KR970004566B1/ko
Priority to DE68913544T priority patent/DE68913544T2/de
Publication of WO1990016076A1 publication Critical patent/WO1990016076A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition

Definitions

  • the present invention relates to an iron-based soft magnetic steel material that requires high DC magnetization characteristics, such as an electromagnet core material and a magnetic shielding material.
  • Magnetic shielding material for DC electromagnet iron core material or medical equipment
  • various physical equipment, electronic parts and equipment which have been particularly advanced and spread in recent years, soft iron and pure iron and very Expensive permalloy or supermalloy is used.
  • the magnetic flux density at 1 Oe of soft iron and dull iron (below) is about 3000 to 11 000 G.
  • MRI magnetic imaging diagnostic equipment using nuclear magnetic resonance
  • It is used as a magnetic shielding material up to several gauss, such as the magnetic shielding described above, or as a material for an electromagnet iron core.
  • the problems of the conventional technology are shown using magnetic shielding as an example.
  • the MR Although pure iron, which is relatively inexpensive and has a high saturation magnetization, is used for magnetic shielding, it is the class 0 that requires the strictest characteristics among the JIS standards that specify soft iron and electromagnetic soft iron for pure iron. (specifically JIS C2504 SUYP0) is et B 1 value you Ri and the lower limit value is specified to 8000 G, and Ri magnetic shielding difficult der about geomagnetism in this property, the following magnetic shielding around duck number G This has led to a heavy shielding system to be used.
  • Fe- ⁇ i alloys such as permalloy or supermalloy may be used as a shielding material for better shielding, but these materials can shield less than the level of terrestrial magnetism.
  • it is very expensive, and its saturation magnetization is 1/3 to 2/3 lower than that of pure iron.Thus, in order to shield a high magnetic field, the thickness must be extremely increased. There are drawbacks such as the necessity, and in any case, it is economically difficult to use in large quantities.
  • the purpose of the present invention is to disclose the invention c in providing such a material.
  • the present inventors first studied industrial pure iron, which is the basis of soft magnetic materials for DC magnetic fields, to clarify the drawbacks, and to further improve the characteristics. The study was carried out to obtain the following findings.
  • the transformation temperature is remarkably increased. It is possible to raise the temperature to a single phase or to a single phase, so that annealing at temperatures above 900 ° C without introducing strains due to transformation is also possible. Although it is possible, this annealing can effectively remove lattice strain and coarsen the ferrite crystal grains, and can be considered to have the effect of improving the magnetic permeability of solid solution A 1 itself. These synergistic effects lead to extremely good magnetic permeability. By adding an appropriate amount of Ti in response to these, these solid-solvents can be preferentially fixed to contribute to the improvement of the properties, and it is possible to eliminate the need to particularly reduce the content.
  • the addition of A 1 exceeding 52.5% should be avoided, and if the 6C content is large, the transformation temperature must be lowered or reduced.
  • the properties may be degraded due to an increase in lattice distortion due to an increase in solid solution (:, N ′ or the formation of carbides and nitrides.
  • A1 0.5 to 2.5%, Si: 1.0% or less, C + !: 0.007% or less, Mn: 0.5% or less, oxygen: 0.005% or less, balance Fe and inevitable It is composed of impurities, has a fine crystal grain size of 0.5 ran or more, and has a magnetic flux density value of 11000 G or more at 0.50 e and a magnetic flux at 250 e in a state where lattice strain is sufficiently removed. It is an object of the present invention to provide an iron-based soft magnetic steel material having a density of 15500 G or more and a coercive force of 0.40 e or less.
  • Fig. 1 shows the relationship between C + N content and DC magnetization characteristics (B., s value).
  • Fig. 2 shows the amount of Sol.Al added and DC magnetization characteristics (B., s value, B. 2 is a diagram showing the relationship between ( S value) and. Detailed description of the invention
  • Ti which is a strong nitride-forming element, is added as necessary, as described later. Ti is added for the purpose of reducing the above-mentioned adverse effects of X without intentionally setting a strict upper limit on the amount of N, which leads to a cost increase.Therefore, in this case, Ti is added. Sets the upper limit of C + N to 0 0 14% c Although Si contributes to the improvement of magnetic permeability, in the present invention, the addition of A1 makes it possible to obtain coarse ferrite crystal grains of 0.5 mm or more after appropriate annealing. The upper limit was set to 1.0% because of concerns about lowering of saturation magnetization and cost due to addition of a large amount.
  • Mn is an element that deteriorates the DC magnetization characteristics, it is desirable to reduce it. However, an extreme reduction leads to an increase in cost and N content. Also, since fixing S has an effect of preventing hot brittleness, the upper limit of Mn / S may be up to .50% as long as Mn / S does not fall below 10. .
  • A1 is an additional element which is a key element of the present invention, and fixes solid solution X, agglomerates AU particles, increases the transformation temperature, and expands the ferrite area. As a result, the coarsening of the crystal grains and the reduction of the lattice strain by annealing were achieved, and the effect of improving the DC magnetization characteristics of the solid solution A1 itself was also considered. In the present invention, it is an element that must be added in order to obtain excellent DC magnetization characteristics. As shown in Fig. 2, the effect of A1 is 0.5% or more in the state of Sol.Al.
  • Ti is a strong nitride-forming element, and when added in the range of 0.005 to 1.0%, the content is not sufficiently reduced. In other words, even with inexpensive materials, it is possible to prevent the DC magnetization characteristics from being significantly impaired due to the solid solution X fixing effect. In addition, when the content is relatively low, the amount of nitride particles generated is small, and a slight improvement in DC magnetization characteristics can be expected. Deterioration of magnetization characteristics.
  • a material having a high s value and a high B 2 S value that is, a material having excellent soft magnetic properties in a DC magnetic field can be obtained.
  • the steel material of the present invention as described above can be obtained by a method of hot working a piece, a method of warm or cold working a piece as it is, a method of performing a cold or hot working after ripe working, a direct pressure heat It can be manufactured by various methods such as annealing (usually 450 ° C or more) between these processes, but in any case, final annealing is performed. . This final annealing is usually above 900 ° C, preferably between 1 000 and 1300. Actual temperature at C Is done.
  • annealing usually 450 ° C or more
  • the first column shows the chemical components of the promotion used in the water invention and the comparative example.
  • FIG. 1 is a sum of these results and the result of ⁇ 4. According to this, B was added when the amount of C + N exceeded 0.007% in the absence of Ti. Degradation of s value is observed.
  • ⁇ 14 to 16 are obtained by examining the effect of the ⁇ amount. There is a tendency for the DC magnetization characteristics to deteriorate with an increase in
  • ⁇ 17 ⁇ 20 are obtained by examining the influence of the amount of Si.
  • the decrease of the magnetic flux density (B. s value, value, B zs value) due to the decrease of the saturation magnetization with the increase of the amount of Si decreases. Although acceptable, good characteristics are still secured.
  • the addition of Si increases the specific resistance of a steel material, as in the case of adding Si. Therefore, when the steel sheet is thinned by cold rolling or the like and applied to a soft magnetic material used in an AC magnetic field. However, the effect of reducing iron loss can be expected.
  • 22 to 24 and ⁇ 26.Na27 were obtained by examining the effect of the addition of Ti, and were fixed by the addition of Ti, and good characteristics were observed.
  • 23 is an example of the present invention in which Ti was added to ⁇ 11 (comparative example) ⁇
  • Na26 was an example of the present invention in which Ti was added to ⁇ equivalent to ⁇ 2 ⁇ (comparative example).
  • C + X> 0.007% in both cases Ti was adequately fixed at N, and a significant improvement in characteristics was observed as compared to the comparative examples of ⁇ 11 and 25.
  • Table 3 shows that some steels in Table 1 were hot-rolled and then cold-rolled into thin sheets. This shows the results of examining the magnetization characteristics. It should be noted that these examples of the present invention and comparative examples do not. The cold rolling reduction of the indicated cold rolled material is 50-80%.
  • 1 and ⁇ 2 are comparative examples using AcetU.
  • ⁇ 3 to 6 are examples of the present invention. These examples of the present invention show better DC magnetization characteristics than the comparative examples of ⁇ 1 and 3 ⁇ 42.
  • the examples of the present invention having good DC magnetization characteristics all have ferrite crystal grain diameters of 0.5 watts or more.
  • the soft magnetic material according to the present invention has excellent DC magnetization characteristics, and therefore can be easily magnetized even in an extremely weak magnetic field. Or, it is extremely useful as a high-performance magnetic shielding material.
  • the present invention can be applied to iron-based soft magnetic steel materials requiring high DC magnetization characteristics, such as electromagnet core materials and magnetic shielding materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

明 細 書 鉄 基 軟 磁 性 鐲 材 技 術 分 野
本発明は、 電磁石磁芯材料、 磁気遮蔽材料な ど高い直 流磁化特性を要求される鉄基軟磁性鋼材に関するもので ある。 背 景 技 術
直流電磁石鉄芯材料、 或いは近年特に進歩 · 普及のめ ざま しい医療機器や各種物理機器、 電子部品および機器 等の磁気遮蔽材料と して、 比較的安価に得られ る軟鉄や 純鉄および非常に高価なパーマ ロ イ或いはスーパーマ ロ ィ が使用さ れている。 と こ ろで、 軟鉄や鈍鉄の 1 O e に おける磁束密度 (以下 値) は概ね 3000〜1 1 000 G 程 度あ り 、 これ らは M R I (核磁気共鳴によ る断層像撮影 診断装置) の磁気遮蔽等、 数ガウス程度までの磁気遮蔽 材料と して、 或いは電磁石鉄芯用材料と して使用 さ れて いる。
直流磁化特性が重要と なる用途の う ち、 磁気遮蔽を例 と して従来技術の問題点を示す。 すなわち、現在、 M R ェ の磁気遮蔽には比較的安価で且つ飽和磁化の高い純鉄が 使^されている が、 軟鉄、 純鉄を対象とする電磁軟鉄を 規定する J I S 規格の う ち最も厳しい特性を要求する 0種 (具体的に JIS C2504 SUYP0) です ら B1値の下限 値を 8000 G と規定してお り 、 この特性では地磁気程度 の磁気遮蔽は困難であ り 、 し かも数 G 程度以下の磁気 遮蔽を行う ための遮蔽システムの重厚化をもた ら して い る。 よ り 良い遮蔽を行う ための遮蔽材料と して、 パーマ ロ イ或いはスーパ一マ ロ イ等の Fe— \i 合金を使用する 場合もあるが、 これ らの材料は地磁気程度以下の遮蔽が 可能である反面、 非常に高価であ り 、 また、 飽和磁化が 純鉄と比べて 1/3〜 2/3と低く 、 したがっ て高磁界を遮 蔽する にあたっ ては肉厚を極端に増やさ なければな らな い等の欠点もあ り 、 いずれに しても大量に使周する こ と は経済的に困難である。
これ らの こ と を踏まえて、 鈍鉄系材料の持つ高飽和磁 化を損なう こ とな く 、 透磁率を高める検討が既にい く つ かなされている。 例えば、 特公昭 63 — 45443 号、 特 開昭 62 — 77420 号、 或いは日本金属学会第 23 卷第 5 号(1984年発行) 極厚電磁鐲板の開発 に示されて いる方法はいずれも フェ ラ イ ト結晶粒の粗大化に伴う透 磁率向上を狙っ たものであるが、 これ らの技術は、 対象 が比較的板厚の薄い熱延板に限定される技術であっ た リ 或いは本発明のよ う に、 さ ら に厳 し い直流磁化特性を評 価する 0 . 50 e における磁束密度 (以下 B Q.5値) で 1 1 00 0 G 以上を達成する こ と ができない技術であ り 、 いずれ にせよ優れた直流磁化特性を得るための技術と して十分 なものではない。
この よ う に現状では、 飽和磁化が高 く 、 且つ地磁気程 度に相当する低い磁場で高い磁束密度を示す、 つま り透 磁率が高い材料は提供さ れていない。 本発明の 目 的は、 このよ う な材料を提供する こ と にある c 発 明 の 開 示
上述した問題点を解決するため、 本発明者 らはまず、 直流磁場用軟磁性材料の基本である工業用純鉄の検討を 行っ てその欠点を明 ら かに し、 さ ら に特性改善を図るベ く 検討を行い、 以下の知見を得た。
すなわち、 高透磁率を得る と い う観点か ら、 A 1 を添 加する こ と によ り 、 ①効果的な脱酸が可能と なっ て酸棄 量および酸化物系介在物の低減に伴う透磁率向上につな がるばかりでな く 、 透磁率に悪影響を及ぼす固溶 N を A 1 N 粒子の形成によ り低減でき る こ と、 ②また、 ある必 要量添加する こ と によ り 、 微細分散してい る A 1 N粒子の 凝集化を図る こ と が可能とな り 、 A 1 N 粒子そのものの悪 影響を極力低く 抑え得る と同時に、 格子歪を取 り除 く 手 段である焼鈍によ リ フエ ライ ト結晶粒の粗粒化を著し く 促進する効果も得られ、 いずれも透磁率向上に有効であ る こ と、 ③特に、 0 . 5 % を超えて添加する こ と によ り 、 変態温度を著し く 高め、 若し く はフヱ ライ ト単相とする こ と が可能と な り 、 し たがって変態によ る歪が導入され る こ とな く 900 °Cを超える温度で焼鈍を行う こ とも可能 となる こ と、 そ して、 この焼鈍は効果的な格子歪の除去 と フェ ライ 卜結晶粒の粗大化をもた ら し、 固溶 A 1 その ものの透磁率向上効果も考え られる が、 これ らの相乗効 果によ り極めて優れた透磁率を得る こ と につながる こ と €'また、 必要に応じて Ti を適量添加する こ と によ り 、 これ らが固溶 ' を優先的に固定して特性向上に寄与し、 特に敢えて ' 含有量を減ずる努力を要しな く て済むこ と、 また材料の飽和磁化を高く 保つ と いう観点から、 ⑤ 2 · 5 % を超える A 1 の添加は避けるべきであ り 、 さ らに ⑥ C 含有量が多い と変態温度の低下も し く は必要な A 1 添加量の增大に加えて、 固溶 (:、 N' の増加による格 子歪の増大または炭化物、 窒化物の生成等によ り特性を 劣化させる こ と があるので、 これ ら を避けるための、 (:、 X 量の上限が存在する こ と、 を見い出 し、 本発明を完成 させたものである。
すなわち本願第 1 の発明は、 重量%で、 A1 : 0.5〜 2.5 %、 Si : 1.0 %以下、 C + ! : 0.007 %以下、 Mn : 0.5 %以 下、 酸素 : 0.005 %以下、 残部 Fe および 不可避不純物 の組成からな り 、 且つ、 フ ヱ ライ ト結晶粒径が 0.5 ran以 上であ り 、 格子歪を十分取 り 除いた状態で 0.5 0e にお ける磁束密度値 11000G 以上、 25 0e における磁束密度 値 15500 G 以上、 保磁力 0.4 0e 以下を示すこ と を特 徵とする鉄基軟磁性鋼材を提供するものである。
また、 本願第 2 の発明は、 Al : 0.5〜 2.5%、 Si : 1.0 %以下、 C + N : 0.014 %以下、 Mn : 0.5 % '、下、 酸素 : 0. 005 %以下、 Ti : 0.005〜 1.0%、 残部 Fe および不可避 不純物の組成からな り 、 且つ、 フ 1 ライ ト結晶粒径が 0. 5腿以上であ り 、 格子歪を十分取 り 除いた状態で 0.5 0e における磁束密度値 11000 G 以上、 25 0e における磁 束密度値 15500 G 以上、 保磁力 0.4 0e 以下を示すこ と も特徵とする鉄基軟磁性鐲材を提供するものである 。 図面の簡単な説明
第 1 図は C + N 含有量と直流磁化特性 ( B。,s値) と の 関係を示 した図、 第 2 図は Sol.Al 添加量と直流磁化特 性 (B。.s値、 B2 S値) と の関係を示した図である 。 発明の詳細な説明
以下本発明における組成の限定理由について説明する。
C および X は優れた直流磁化特性を確保するために も可能な限り低減する こ と が望ま しいが、 工業的に製造 する う えで極限的な低減は困難であ り 、 結果的に極端な コ ス ト高を招く 。 また、 A 1 添加によ り変態温度を高め るためにも、 C、 添加量を低く抑えないと A 1 の必要 添加量が多 く なつて し ま う おそれがあ り 、 これは結果的 に飽和磁化を低下する こ と につながり 、 本発明の意図に 反する。 第 1 図は 1 000〜 1 1 00 °Cの通常の条件で焼鈍す る こ と によ り格子歪を除去 した後、 直流磁化特性の変化 を B。.s値の変化と して捉え、 C + X 量の影響を検討した ものである。 これによれば、 良好な特性を得るためには C + N量を 0 . 007 %以下とする必要がある こ と が判る。 こ のため本発明では C + N : 0 . 007 %以下とする。
本発明では、 後述するよ う に強力な窒化物生成元素で ある Ti を必要に応じて添加する。 Tiは敢えてコ ス ト高 につながる N 量の厳しい上 限規定を行う こ とな く 、 上 述した X の弊害を 減ずる こ と を 目的と して添加するも のであ り 、 したがっ て この場合には C + N 量の上限を 0 0 14 % とする c Si は透磁率向上に寄与する が、 本発明では A1 添加 によ り適当な焼鈍の後 0.5咖以上の粗大な フ ェ ラ イ ト結 晶粒を得る こ と ができ るので、 む し ろ敢えて多量に添加 する こ と に よ る飽和磁化の低下、 コス ト髙を懸念 してそ の上限を 1.0 % と した。
Mn は直流磁化特性を劣化させる元素であるため低減 す こ と が望ま し いが、 極端な低減はコ ス ト高および N 含有量の增加を招 く 。 また、 Sを固定する こ と によ り熱 間脆性を防止する効果もある こ と か ら 、 Mn/S が 10 を 下回 らない範囲で、 り .50 % を上限に含有 しても良い。
A1 は上述 したよ う に本発明の要と なる添加元素であ り 、 固溶 X の固定および AU 粒子の凝集化、 変態温度 の上昇をもた ら し、 フェ ラ イ ト域を拡大させる こ と によ つ て、 焼鈍によ る フヱ ラ イ ト結晶粒の粗大化および格子 歪の低滅を達成し、 さ ら には固溶 A1 自身の直流磁化特 性向上効果も考え られ、 本発明においては優れた直流磁 化特性を得る ために添加しな く てはな らない元素である, 第 2 図に示すよ う に、 こ の A1 の効果は Sol.Al の状態 で 0.5%以上添加す こ と に よ り得られる が、 一方、 2.5 % を超えて添加する と飽和磁化の低下によ り もた ら され る B25値の低下を招き好ま し く ないので、 の添加量 範囲は Sol.Al の状態で 0.5〜 2.5% と した。 T i は上述したよ う に強力な窒化物生成元素であ り 、 0 . 005〜 1 . 0 %の範囲で添加する こ と に よ り 、 -. 含有量が十 分に低減されていない、つま り安価な素材においても、 固 溶 X の固定効果によ り直流磁化特性を著し く 損な う こ と を回避する こ と ができ る。 また、 含有量が比較的低 い場合は、 窒化物粒子の生成量も少な く 直流磁化特性の 若干の向上をも期待する こ と ができ る - 一方、 上記上限 値を超えて添加する と直流磁化特性の劣化をもた らす。
以上のよ う に本発明によ り化学成分を限定す こ と によ り 、 B。.s値および B2 S値の高い、 すなわち直流磁界での 軟磁気特性に優れた錁材を得る こ と ができ る - 以上のよ う な本発明の対象とする錁材は、 熱間加工銷 材、 冷間または温間加工錁材を含み、 また鐲材の種類と して、 厚板、 薄板、 条ぉ (形錁等) 、 鍛造材等を含むも のである。
以上のよ う な本発明の鋼材は、 錶片を熱間加工する方 法、 鍀片をそのまま温間または冷間加工する方法、 熟間 加工後冷間または温間加工する方法、 直圧熱延する方法 これ らの方法の加工間で焼鈍 (通常 450 °C以上) を行う 方法等、 種々 の方法によ り製造する こ と ができ るが、 い ずれの場合でも最終焼鈍が施される。 この最終焼鈍は通 常 900 °C以上、 好ま し く は 1 000〜 1 300。Cの温度で実旄 さ れる。 実 施 例
第 1 ¾は水発明および比較例に用いた銷の化学成分を 示 したものである。
鋼 B 〜 G、 J 、 L 、 N〜 T、 V〜 X、 Z が本発明の組 成に適合するも のであ り 、 銪 A、 H、 I 、 K、 M、 U、 Y 、 a は比較鋼種である。 第 2表は第 1 表に示した鋼を 溶製後、 厚さ 110画の鋼塊と な し、 これを 1200 °C加熱に よ る熱間圧延によ り板厚 15π«ηに成形し、 焼鈍後、 直流 磁化特性およびフェ ラ イ ト結晶粒径を測定 した結果を ま と めたものである。 なお、 焼鈍は加熱保持時間が 1〜 3 時間、 冷却速度が約 100°C /hr〜 500°C/hr と い う通常の 条件で行っ た。
第 2表において、 Να :! 〜 9 、 Να 2 1 は Sol. A1 量の 影響を調べたものである。 なお Ncx 2 1 は純鉄の比較例で ある。 第 2 図はこれ らの結果を ま と めたものである 。
No. 1 0 〜 1 3 、 Να 2 5 は C十 Ν 量の影響を調べたもの であ り 、 第 1図はこれ らの結果に Να 4 の結果を加えて整 理 したものである。 これによれば、 Ti 無添加では C + N 量が 0.007 % を超える と B。.s値の劣化が認め られる 。
Να 1 4 〜 1 6 は Μη 量の影響を調べたもので、 Μη 量 の増加に伴い直流磁化特性の劣化傾向が認め られる が、
0.5% を超えない範匪であれば、 良好な特性を確保 し得 るもの と推定される。
Να 1 7〜 2 0 は Si 量め影響を調べたものであ り 、 Si 量の増加に伴い飽和磁化の低下によ る磁束密度 ( B。.s値、 値、 Bz s値) の低下が認め られる が、 依然良好な特性 は確保されている。 また、 Si の添加は い— と 同様に鋼 材の固有抵抗を増加させる こ と が周知であるので、 冷間 圧延等によ り薄板と し 、 交流磁場で用いる軟磁性鐲材に 適用させる場合、 鉄損を減少させる効果を期待でき る。
2 2 〜 2 4 、 α 2 6 . Na 2 7 は Ti 添加の影響を調 ベたものであ り 、 Ti 添加によ り の固定が図 られ、 良 好な特性が認め られる。 特に、 2 3 は Να 1 1 (比較例) に相当鐲に Ti を添加した本発明例、 また Na 2 6 は Να 2 δ (比較例) に相当する鎇に Ti を添加 した本発明例で あ り 、 いずれも C+X> 0.007 %である にも かかお らず、 Ti によ り十分な N の固定がなされ、 Να 1 1 、 2 5 の 比較例と比べて大幅な特性改善が認め られる。
また、 第 3表は第 1 表中のい く つかの鐲について、 熱 間圧延後、 冷間圧延によ り薄板とな し、 通常の焼鈍の後、 第 2表の実施例と同様に直流磁化特性を調べた結果を示 すものである。 なお、 これ らの本発明例および比較例に 示 した冷間圧延材の冷間圧下量は 50〜80 %である。 第 3表中、 1 、 Να 2 は鉞 Uによ る比較例であ る 。 一 方、 Να 3〜 6 は本発明の実施例である 。 これ ら の本発明 例は Να 1、 ¾ 2 の比較例と比べて良好な直流磁化特性を 示 している。
なお、 第 2表、 第 3表のいずれにおいても、 良好な直 流磁化特性を有する本発明例は、 総て フェ ラ イ 卜結晶粒 径が 0 . 5醒以上と なっ ている。
Figure imgf000014_0001
2 焼鈍温度 H c B 0.5 B x B z s
锞種 μ max 区 分
( ) (.Oe) (G) (G) (G)
1 A 1000 22000 0.39 10400 13600 16500 0.3 比 較 例
2 B 1000 64000 0.16 13800 14400 16600 3.0 本発明例
3 C 1100 64800 0.19 14500 15100 17000 2.5
4 D 1000 67700 0.15 14000 14600 16600 3.5
5 E 1100 71400 0.16 13500 14100 16300 4.0
6 F 1100 49000 0.19 13100 13400 16000 3.0
7 G 1100 48200 0.20 13000 13400 16000 3.0 1/
8 H 1100 37500 0.18 12200 13200 15400 3.0 比 較 例
9 I 1100 22500 0.22 11200 13000 15200 2.0
10 J 1100 53000 0.27 13500 14300 16600 2.5 本発明例
11 K 1100 23000 0.50 11400 13900 16500 0.4 比 較 例
12 L 1100 53000 0.24 13700 14400 16500 1.5 本発明例
13 M 1100 19700 0.46 9700 13900 16600 0.4 比 較 例
14 N 1100 69000 0.14 13700 14300 16500 3.5 本発明例
15 0 1100 70000 0.14 13300 13800 16100 4.0
16 P 1000 47000 0.22 12200 13100 15900 3.0 7/
17 Q 1100 45000 0.25 13300 14000 16000 2.0 "
18 R 1100 48000 0.21 13000 13500 16000 2.0
19 S 1100 48000 0 · 23 12600 12900 15500 1.5
20 T 1100 47500 0.25 12500 13000 15600 1.5
21 u 1000 11000 0.74 3600 9400 16500 0.1 比 較 例
22 V 1050 58200 0.20 13500 14300 16400 2.5 本発明例
23 w 1100 46000 0. z 1 b00 14500 16500 1.0 ,/
24 X llOO 48200 0.18 12800 13900 15800 1.5
25 y llOO 21000 0.47 10700 13800 16500 1.0 比 較 例
26 z 1100 62000 0.22 13100 14100 16400 Z.G 本発明例
27 a llOO 1500 2.5 200 600 12100 0.3 比 較 例
1,
// S't OOSSl 002Π sro OOOt'S 00Π Ο'ΐ a 9 u 0*1 00931 ΟΟΠΙ 6 0 OOOSE 0011 S"0 a 9 u ST OOSSl οοοει ΟΟΑΠ 9ΐ ·0 ooo乙 ε 00Π 0*1 a
求 5Ί OOZ.SI OO I OOOSI HO οοοβε 0001 0*1 9 ε u Z ·0 0099 Ϊ 002 Π 0099 LZ'O oo 00Π 9Ό a l ^ 2*0 00991 οοεπ OOSS 乙 " 0 0011 0·ΐ n \
( m ) O) (D) O) (30)
3 ΧΒΙΠ ri (つ。) (m)
SSIき 3 ^ i sz a τ a s'。 a SSI
3 H
Figure imgf000016_0001
以上のよ う に、 本発明によ る軟磁性鐲材は優れた直流 磁化特性を有 してお り 、 こ のため極めて弱い磁界でも容 易に磁化させる こ と ができ、 高機能鉄芯材料或いは高機 能磁気遮蔽材料等と して極めて有用なものであ る。 産業上の利用分野
本発明は、 電磁石磁芯材料、 磁気遮蔽材料な ど高い直 流磁化特性を要求される鉄基軟磁性鋼材に適用でき る。

Claims

PCT/JP89/01232
( 16) 求 の 範 囲
(1) 重量%で、 A1: 0.5〜 2.5%、 Si : 1.0%以下、 C
+ N: 0.007 %以言下、 Mn: 0.5% J¾下、 馥素 : 0.005% 以下、 残部 Fe および不可避不純物の組成からな り, 且つ、 フェ ライ ト結晶粒径が 0.5mm以上であ り、 格 子歪を十分取り除いた状態で 0.5 0e における磁束 密度値 11000 G 以上、 25 0e における磁束密度値 15 500 G 以上、 保磁力 0.4 0e 以下を示すこ と を特徴 とする鉄基軟磁性錁材。
(2) 重量%で、 A1 : 0.5〜2.5%、 Si : 1.0%以下、 C
+ M: 0.014%以下、 Mn: 0.5%以下、 酸素 : 0.005% 以下、 Ti : 0.005〜 1.0%、 残部 Fe および不可避不 純物の組成からな り、 且つ、 フ: n ライ ト結晶粒径が 0.5mm 以上であ り、 格子歪を十分取り除いた状態で 0.5 Oe における磁束密度値 11000 G 以上、 25 0e における磁束密度値 15500 G 以上、 保磁力 0.4 0e 以下を示すこ と を特徴とする鉄基軟磁性鐲材。
PCT/JP1989/001232 1989-06-17 1989-12-08 Iron base, soft magnetic steel material WO1990016076A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1019910700178A KR970004566B1 (ko) 1989-06-17 1989-12-08 철기연자성강재
DE68913544T DE68913544T2 (de) 1989-06-17 1989-12-08 Weiches magnetisches stahlmaterial mit eisenbasis.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1/155026 1989-06-17
JP1155026A JP2679258B2 (ja) 1989-06-17 1989-06-17 鉄基軟磁性鋼材

Publications (1)

Publication Number Publication Date
WO1990016076A1 true WO1990016076A1 (en) 1990-12-27

Family

ID=15597047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1989/001232 WO1990016076A1 (en) 1989-06-17 1989-12-08 Iron base, soft magnetic steel material

Country Status (7)

Country Link
EP (1) EP0429651B1 (ja)
JP (1) JP2679258B2 (ja)
KR (1) KR970004566B1 (ja)
CN (1) CN1026597C (ja)
CA (1) CA2020464A1 (ja)
DE (1) DE68913544T2 (ja)
WO (1) WO1990016076A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111492725A (zh) * 2017-12-22 2020-08-04 株式会社Posco 用于屏蔽磁场的钢板及其制造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04265580A (ja) * 1991-02-20 1992-09-21 Fujitsu Ltd 磁気ディスク装置
JP2503125B2 (ja) * 1991-05-09 1996-06-05 新日本製鐵株式会社 良電磁厚板の製造方法
JP2503124B2 (ja) * 1991-05-09 1996-06-05 新日本製鐵株式会社 良電磁厚板の製造法
JP2564994B2 (ja) * 1991-10-14 1996-12-18 日本鋼管株式会社 直流磁化特性と耐食性に優れた軟磁性鋼材およびその製造方法
JPH0770715A (ja) * 1993-09-01 1995-03-14 Nkk Corp 耐歪み性に優れた軟磁性鋼材およびその製造方法
JPH0790505A (ja) * 1993-09-27 1995-04-04 Nkk Corp 軟磁性鋼材およびその製造方法
CN100334246C (zh) * 2004-05-28 2007-08-29 宝山钢铁股份有限公司 防伪造币钢及其生产方法
CN103789609A (zh) * 2014-02-13 2014-05-14 山西太钢不锈钢股份有限公司 一种电磁纯铁制造方法
CN104294150B (zh) * 2014-10-30 2016-05-18 武汉钢铁(集团)公司 屏蔽线用钢及其生产方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60208418A (ja) * 1984-03-30 1985-10-21 Sumitomo Metal Ind Ltd 高透磁率構造部材用厚鋼板の製造方法
JPS60208417A (ja) * 1984-03-30 1985-10-21 Sumitomo Metal Ind Ltd 高透磁率熱間圧延鉄板の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60207418A (ja) * 1984-03-30 1985-10-19 株式会社東芝 主回路の保護装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60208418A (ja) * 1984-03-30 1985-10-21 Sumitomo Metal Ind Ltd 高透磁率構造部材用厚鋼板の製造方法
JPS60208417A (ja) * 1984-03-30 1985-10-21 Sumitomo Metal Ind Ltd 高透磁率熱間圧延鉄板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0429651A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111492725A (zh) * 2017-12-22 2020-08-04 株式会社Posco 用于屏蔽磁场的钢板及其制造方法
CN111492725B (zh) * 2017-12-22 2023-09-19 浦项股份有限公司 用于屏蔽磁场的钢板及其制造方法

Also Published As

Publication number Publication date
CA2020464A1 (en) 1990-12-18
KR970004566B1 (ko) 1997-03-29
CN1048237A (zh) 1991-01-02
EP0429651A4 (en) 1991-12-04
JPH0320447A (ja) 1991-01-29
KR920700458A (ko) 1992-02-19
EP0429651A1 (en) 1991-06-05
DE68913544D1 (de) 1994-04-07
DE68913544T2 (de) 1994-07-21
CN1026597C (zh) 1994-11-16
EP0429651B1 (en) 1994-03-02
JP2679258B2 (ja) 1997-11-19

Similar Documents

Publication Publication Date Title
JPH11264058A (ja) 鉄―コバルト合金
US20090039714A1 (en) Magnetostrictive FeGa Alloys
US4536229A (en) Fe-Ni-Mo magnet alloys and devices
EP3865600A1 (en) High-strength nonmagnetic austenitic stainless steel and manufacturing method therefor
WO1990016076A1 (en) Iron base, soft magnetic steel material
US4948434A (en) Method for manufacturing Ni-Fe alloy sheet having excellent DC magnetic property and excellent AC magnetic property
EP3731614B1 (en) Steel sheet for shielding magnetic field and method for manufacturing same
JP2682144B2 (ja) 軟磁性鋼材の製造方法
JP3162782B2 (ja) 磁気特性の優れた軟磁性鉄板及びその製造方法
JP4047502B2 (ja) 磁気シールド構造用鋼板およびその製造方法
JP2000064000A (ja) 軟磁性ステンレス鋼板およびその製造方法
JPH0517823A (ja) 磁気シールド特性に優れた厚板電磁軟鉄の製造方法
Kwon et al. A study of Pr Fe B Cu permanent magnetic alloys
JP2503122B2 (ja) 磁気特性の優れた無方向性電磁厚板の製造方法
JPH09157743A (ja) 磁気シールド用電磁鋼板とその製造方法
JPH0499819A (ja) 軟磁性鋼材の製造方法
JPH0699766B2 (ja) Ni―Fe系高透磁率磁性合金
JPH0699767B2 (ja) Ni―Fe系高透磁率磁性合金
JP2503113B2 (ja) 無方向性電磁厚板の製造法
JP2503123B2 (ja) 磁気特性の優れた無方向性電磁厚板の製造法
JP2503112B2 (ja) 良電磁厚板の製造方法
JP2619571B2 (ja) 透磁率、保磁力共に優れた一方向性電磁鋼板およびその製造方法
Mukai et al. Magnetic properties and microstructures of Fe‐Cr‐Co‐base cold‐rolled magnets
JP2001107201A (ja) 磁気シールド構造用鋼板およびその製造方法
JPH02170949A (ja) 厚板用電磁軟鉄

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

WWE Wipo information: entry into national phase

Ref document number: 1990900342

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1990900342

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1990900342

Country of ref document: EP