WO1990005199A1 - Sinterwerkstoff auf kupferbasis, dessen verwendung sowie verfahren zur herstellung von formteilen aus dem sinterwerkstoff - Google Patents

Sinterwerkstoff auf kupferbasis, dessen verwendung sowie verfahren zur herstellung von formteilen aus dem sinterwerkstoff Download PDF

Info

Publication number
WO1990005199A1
WO1990005199A1 PCT/EP1989/001343 EP8901343W WO9005199A1 WO 1990005199 A1 WO1990005199 A1 WO 1990005199A1 EP 8901343 W EP8901343 W EP 8901343W WO 9005199 A1 WO9005199 A1 WO 9005199A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered material
material according
valve
metal powder
sintered
Prior art date
Application number
PCT/EP1989/001343
Other languages
English (en)
French (fr)
Inventor
Bernd Krentscher
Original Assignee
Sintermetallwerk Krebsöge Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintermetallwerk Krebsöge Gmbh filed Critical Sintermetallwerk Krebsöge Gmbh
Priority to BR898907168A priority Critical patent/BR8907168A/pt
Priority to KR1019900701486A priority patent/KR900702065A/ko
Publication of WO1990005199A1 publication Critical patent/WO1990005199A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • F02F7/0085Materials for constructing engines or their parts
    • F02F7/0087Ceramic materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/22Valve-seats not provided for in preceding subgroups of this group; Fixing of valve-seats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Definitions

  • the invention relates to a sintered material which is resistant to heat and mechanical stress, in particular shock and friction, and which is produced from a base metal powder for the production of molded parts.
  • the invention relates to the use of the above-mentioned sintered material and to a method for producing molded parts from the sintered material.
  • Such a sintered material is used, for example, to produce molded parts for machines which are exposed to hot gases or gas mixtures such as combustion gases. This applies to parts of piston machines, for example valve seat rings.
  • a sintered material which consists of an iron-based material, the carbon substance and lead as well as other alloy components are added.
  • This sintered material is said to have an increased thermal conductivity compared to the known ones.
  • the heat and erosion resistance of the valve seat rings made from the sintered material should also be increased.
  • the increase in thermal conductivity and erosion resistance are, however, set relatively low limits in that the base material is an iron base material.
  • a valve seat ring for a reciprocating piston internal combustion engine is known from DE-OS 35 28 526.
  • the valve seat is formed from two rings, of which the inner valve ring arranged on the seat surface of the valve consists of a heat-resistant, high-hardness, not powder-metallurgically manufactured material, while the outer seat ring arranged in the seat consists of a highly heat-conductive, material is also not produced by powder metallurgy.
  • the greatest heat occurs in the area of the seat of the valve and thus in the inner valve ring. From there it should first be discharged through the inner valve ring and then through the outer seat ring.
  • the heat-resistant material of high hardness provided for the inner valve ring is only suitable for this to a limited extent, since it only has a normal thermal conductivity.
  • the invention has for its object to provide a sintered material whose resistance to heat and mechanical stress, such as shock and friction, is significantly greater than that of known sintered materials.
  • the invention is based on the particular object of creating a sintered material which is suitable for the production of valve seat rings.
  • a method for the production of heat-resistant and wear-resistant molded parts, in particular valve seat - wrestle can be created using the sintered material.
  • the base metal powder consists of a copper content of approximately 70 to 100 weight percent copper and an alloy content of 0 to approximately 30 weight percent cobalt and / or chromium and / or iron and / or manganese and / or nickel and / or tungsten and / or carbon.
  • this sintered material additionally has the impurities caused by the production.
  • the sintered material according to the invention has a much higher thermal conductivity. This has. the consequence that mechanical stress, such as shock and / or friction, can be dissipated much better under increased heat. With appropriate temperatures and gases or gas mixtures, such as combustion gases, oxides are formed that develop a lubricating effect. This results in the resistance of the sintered material to mechanical stress, for example in the event of direct contact between metal and metal without the addition of lubricant. One or more oxides form a lubricating layer, which reliably prevents the sintered material from welding for a short time and locally in direct contact with another metallic material.
  • the sintered material according to the invention thus has the property of self-lubrication that spontaneously renews itself at any time.
  • the copper-based material which has a very high thermal conductivity compared to other metallic materials and also forms oxides with sufficient separating and lubricating effects.
  • alloy components which also form oxides when heated.
  • the heat conditions can correspond to those prevailing in the combustion chambers of internal combustion engines, in particular internal combustion engines.
  • the sintered material according to the invention then has a particularly low coefficient of friction. Although it is a relatively soft sintered material, the sintered material has considerable wear resistance due to its other properties. As a result, it can withstand higher mechanical stresses with higher heat more sustainably than known sintered materials based on iron, which have a greater hardness.
  • a preferred embodiment of the invention is characterized in that the copper content is 95 to 100 weight percent and the alloy content is 5 to 0 weight percent.
  • the proportion of metallic alloy elements according to the invention preferably consists of 1 to 3 percent by weight of cobalt. According to the invention, the proportion of production-related impurities can be at most 0.5 percent by weight, the maximum particle size is approximately 150 ⁇ m and the average particle size is approximately 45 to € 0 ⁇ m.
  • the invention can be embodied in that a high-alloy additional metal powder is admixed to the base metal powder as the hard phase, the proportion of the hard phase being at most 30 percent by weight.
  • the proportion of the .hard phase can also be reduced so that it is at most 10 percent by weight.
  • the proportion of the hard phase of at most 30 or 10 percent by weight relates to the sum of base metal powder and additional metal powder. It follows that the proportion of copper and alloy in the base metal powder is correspondingly smaller make up the sum of base metal powder and additional metal powder. If powder metallurgical methods are used according to the invention, structures can thereby be produced in which wear-reducing structural components are embedded in a highly thermally conductive base compound.
  • the composition of the hard phase in percentages by weight is: 24 to 28 chromium, 21 to 25 nickel, 10 to 14 tungsten, 1.5 to 2.0 carbon, the rest cobalt.
  • the hard phase can also have the following composition : 28 to 32 chromium, 5th to 10 tungsten, 0.3 to 2.5 carbon, balance cobalt.
  • the base metal powder can be a pure, unalloyed copper powder. The base is then alloyed during the sintering by diffusion with cobalt.
  • the hard phase again in percentages by weight, has the composition: 23 to 27 chromium, 8 to 12 nickel, 8 to 12 manganese, 0.4 to 0.6 carbon, the rest iron.
  • the sintered material as such and its various configurations can, according to the invention, be used to produce heat and / or wear-resistant molded parts which are exposed to hot gases or gas mixtures, for example combustion gases.
  • these can be sealing, guiding, bearing or valve elements. These are used as parts of machines such as piston machines and their additional units. Use in turbochargers or exhaust gas and exhaust gas recirculation systems is also possible.
  • valve seat rings for internal combustion engines are used.
  • Valve seat rings made from the sintered material or its different designs are able to dissipate the heat developed by the combustion well. This offers the possibility that the combustion can take place at higher temperatures than before. This increases the efficiency of an internal combustion engine.
  • the heat is dissipated from the extremely hot seat of the valve via the valve seat ring. This makes it possible to manufacture the valve from a less heat-resistant and therefore cheaper material than known valves. Alternatively, the possibility is given to realize higher combustion temperatures when using known materials for the valve, without the valve being damaged.
  • the oxides according to the sintered material of the invention produce the separating and lubricating effect described at the beginning. This keeps the wear low.
  • known valve seat rings for reducing wear are made from a material of high hardness. So that the known valve is in turn not subject to excessive wear in the contact surface, the known hard valve seat ring is paired with a valve which is costly armored in the region of the known valve seat with a highly hard protective layer.
  • Known heat-resistant materials of high hardness have a low thermal conductivity and represent a barrier to the heat flow from the valve to the valve seat ring.
  • valve seat ring according to the invention.
  • the sintered material according to the invention is relatively soft, the Wear resistance of the valve ring produced therefrom is higher. The reason for this is also that the layer formed by the oxides on the valve seat ring develops a separating and lubricating property.
  • the sintered material is used for the production of valve seats for internal combustion engines with a seat ring to be arranged in the seat and a valve ring to be arranged on the seat surface of the valve
  • the valve ring to be arranged on the seat surface of the valve must in any case from the Sinter material according to the invention.
  • This preferred solution is based on the knowledge that the particular heat of the valve can best be dissipated when at least the valve ring arranged on the seat surface of the valve has a high thermal conductivity. In contrast, heat dissipation from the valve would only be possible to a lesser extent if the seat ring to be arranged in the seat had a higher thermal conductivity than the valve ring to be arranged on the seat surface of the valve.
  • any of the configurations of the sintered material described above can be used for the production of valve seat rings.
  • a preferred embodiment consists in the fact that the proportion of metallic alloy elements in the copper base material consists of 1 to 3 percent by weight of cobalt.
  • the invention also relates to a method for producing heat and wear-resistant molded parts, in particular valve seat rings, using a sintered material according to the invention.
  • the metal powder is mixed with a lubricant, the mixture is pressed into a shaped body and sintered at about 1000 ° C in a protective gas atmosphere.
  • the method consists in that the high-alloy, metallic additional powder is added as a hard phase to the metal powder as the base powder in addition to the lubricant, the mixture is pressed into a shaped body and sintered at about 1000 ° C. in a protective gas atmosphere.
  • the lubricant is a known pressing aid. This is added to the metal powders or metal powder mixtures to improve the compressibility in contents of 0.5 to 1 percent by weight. Before the actual sintering process, the lubricant is decomposed and expelled without residue at temperatures of about 400 ° C. After sintering, the lubricant is no longer detectable in the sintered material. Therefore, the type and amount of the lubricant added has no influence on the property of the sintered material. For example, zinc stearate is used as a lubricant.
  • structures can be produced in which wear-reducing structural components are embedded in a highly thermally conductive base material made of the alloy.
  • the use of powder metallurgical processes for the production of molded parts, in particular valve seat rings, not only opens up the possibility of increasing the wear resistance of the parts. It also offers the advantage of particularly cost-effective production, since in this way it is possible to largely pre-shape the ring blank as inexpensively as possible, which then requires little or no post-processing.
  • the pressing can be carried out using a coaxial pressing technique and, if necessary, the molded parts can be calibrated after sintering.
  • valve seat rings according to the invention leads to the described higher heat dissipation from the valve. As a result, the valve is less gets hot. As a result, there are no deposits in the fillet of the inlet valve which must be determined when using known valve seat rings. Deposits there are the result of a premature, uncontrolled combustion of the gasoline-air mixture in the region of the fillet of the valve disk, which is very hot due to heat accumulation.
  • the use of a valve seat ring according to the invention avoids such coking with undesired deposits. The temperature of the valve is then below the minimum temperature required for the coking to occur.
  • FIG. 2 shows a real microstructure of a sintered material according to FIG. 1 as a micrograph at a magnification of 125 times
  • Fig. 3 shows a valve seat with a valve seat ring as a partial section through a cylinder head
  • Fig. 4 shows a valve seat according to the invention with a seat ring and a valve ring as a partial section through a cylinder head.
  • wear-reducing structural components namely a hard phase 11
  • wear-reducing structural components are more or less finely divided into a base material, namely a copper-based material 12, embedded.
  • the kart phase 11 preferably has one of the compositions described above.
  • the proportion of hard phase 11 is at most 30 percent by weight, while that of copper-based material 12 is at least 70 percent by face.
  • FIG 3 shows a cylinder head 22 of an internal combustion engine, in which a channel 14 is located.
  • the channel 14 has a seat 15 in its lower region. Only a single valve seat ring 21, which consists of the sintered material according to the invention, is arranged in the seat 15.
  • a valve 18 is in the open position shown with its seat 20 formed on a valve plate 19 at a distance from the valve seat ring 21.
  • Fig. 4 shows a partial section through the cylinder head 22 of an internal combustion engine.
  • a seat ring 16 is arranged in the seat 15 and is connected to a valve ring 17.
  • Both the seat ring 16 and the valve ring 17 consist of the sintered material according to the invention.
  • the properties of the sintered material according to the invention and its use, preferably for valve seat rings, enable use under high loads. This can occur, for example, on intake valves of diesel engines with turbocharging or also on exhaust valves of gasoline engines when unleaded fuel is used.
  • the required service life of the valves can be achieved without it being necessary to particularly armor the valve plate in the seat. The wear on the valve seat ring and on the associated valve plate is even reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Pulvermetallurgisch hergestellte Werkstoffe sind bisher gegen Wärme und mechanische Beanspruchung, insbesondere Stoss und Reibung, nicht besonders beständig. Es soll ein Sinterwerkstoff geschaffen werden, dessen Beständigkeit wesentlich grösser ist als diejenige bekannter Sinterwerkstoffe. Dabei liegt der Erfindung die besondere Aufgabe zugrunde, einen Sinterwerkstoff zu schaffen, der sich zur Fertigung von Ventilsitzringen (16) eignet. Auch soll ein Verfahren zur Herstellung von wärme- und verschleissbeständigen Formteilen, insbesondere Ventilsitzringen, unter Verwendung des Sinterwerkstoffes geschaffen werden. Die Aufgabe bezüglich des Sinterwerkstoffes wird dadurch gelöst, dass der Werkstoff als Kupferbasiswerkstoff im wesentlichen aus einem Grundmetallpulver mit einem Kupferanteil von mindestens etwa 70 bis 100 Gewichtsprozenten Kupfer und einem Legierungsanteil von 0 bis etwa 30 Gewichtsprozenten Kobalt und/oder Chrom und/oder Eisen und/oder Mangan und/oder Nickel und/oder Wolfram und/oder Kohlenstoff besteht. Der Sinterwerkstoff kann zur Herstellung von Ventilsitzringen für Brennkraftmaschinen, insbesondere Ventilsitzringen für Verbrennungsmotoren, verwandt werden.

Description

Bezeichnung: Sinterwerkstoff auf Kupferbasis, dessen
Verwendung sowie Verfahren zur Herstellung von Formteilen aus dem Sinterwerkstoff
Beschreibung;
Die Erfindung bezieht sich auf einen gegen Wärme und mechanische Beanspruchung, insbesondere Stoß und Reibung, beständigen, aus einem Grundmetallpulver hergestellten Sinterwerkstoff zur Herstellung von Formteilen. Außerdem betrifft die Erfindung die Verwendung des eingangs genann¬ ten Sinterwerkstoffes sowie ein Verfahren zur Herstellung von Formteilen aus dem Sinterwerkstoff.
Aus einem derartigen Sinterwerkstoff werden beispielswei- se Formteile für Maschinen hergestellt, die heißen Gasen oder Gasgemischen, wie Verbrennungsgasen, ausgesetzt sind. Dies trifft für Teile von Kolbenmaschinen zu, bei¬ spielsweise Ventilsitzringe.
Aus der DE-PS 21 14 160 ist ein Sinterwerkstoff bekannt, der aus einem Eisenbasiswerkstoff besteht, dem Kohlen- stoff und Blei sowie andere Legierungsbestandteile zu¬ gesetzt sind. Dieser Sinterwerkstoff soll gegenüber vor¬ bekannten eine erhöhte Wärmeleitfähigkeit besitzen. Warm¬ und Erosionsfestigkeit der aus dem Sinterwerkstoff her¬ gestellten Ventilsitzringe sollen ebenfalls erhöht sein. Der Erhöhung der Wärmeleitfähigkeit sowie der Erosions¬ festigkeit sind aber dadurch verhältnismäßig niedrige Grenzen gesetzt, daß der Basiswerkstoff ein Eisenbasis¬ werkstoff ist.
Ein Ventilsitzring für eine Hubkolben-Brennkraftmaschine ist aus der DE-OS 35 28 526 bekannt. Dort ist der Ventil¬ sitz aus zwei Ringen gebildet, von denen der an der Sitz- fläche des Ventils angeordnete innere Ventilring aus einem warmfesten, nicht pulvermetallurgisch hergestellten Werkstoff hoher Härte besteht, während der im Sitz ange¬ ordnete äußere Sitzring aus einem gut wärmeleitfähigen, ebenfalls nicht pulvermetallurgisch hergestellten Werk¬ stoff gefertigt ist. Es ist aber zu beachten, daß die größte Wärme im Bereich der Sitzfläche des Ventils und damit des inneren Ventilringes auftritt. Von dort soll sie zunächst durch den inneren Ventilring und dann durch den äußeren Sitzring abgeleitet werden. Hierfür eignet sich der für den inneren Ventilring vorgesehene warmfeste Werkstoff hoher Härte nur begrenzt, da er lediglich eine übliche Wärmeleitfähigkeit bestitzt.
Der Erfindung liegt die Aufgabe zugrunde, einen Sinter¬ werkstoff zu schaffen, dessen Beständigkeit gegen Wärme und mechanische Beanspruchung, wie Stoß und Reibung, wesentlich größer ist als diejenige bekannter Sinterwerk¬ stoffe. Dabei liegt der Erfindung die besondere Aufgabe zugrunde, einen Sinterwerkstof zu schaffen, der sich zur Fertigung von Ventilsitzringen eignet. Auch soll ein Verfahren zur Herstellung von wärmebeständigen und verschleißfesten Formteilen, insbesondere Ventilsitz- - ringen, unter Verwendung des Sinterwerkstoffes geschaffen werden.
Die Aufgabe bezüglich des Sinterwerkstoffes wird gemäß der Erfindung dadurch gelöst, daß das Grundmetallpulver aus einem Kupferanteil von etwa 70 bis 100 Gewichtsprozenten Kupfer und einem Legierungsanteil von 0 bis etwa 30 Ge¬ wichtsprozenten Kobalt und/oder Chrom und/oder Eisen und/oder Mangan und/oder Nickel und/oder Wolfram und/oder Kohlenstoff besteht. Dieser Sinterwerkstoff weist - wie auch bekannte Sinterwerkstoffe - zusätzlich die herstel¬ lungsbedingten Verunreinigungen auf.
Gegenüber Sinterwerkstoffen auf Eisenbasis besitzt der Sinterwerkstoff gemäß der Erfindung eine um ein Vielfaches höhere Wärmeleitfähigkeit. Dies hat. zur Folge, daß bei mechanischer Beanspruchung, wie Stoß und/oder Reibung, unter erhöhter Wärme diese wesentlich besser abgeleitet werden kann. Bei entsprechenden Temperaturen und Gasen oder Gasgemischen, wie Verbrennungsgasen, entstehen Oxide, die eine Schmierwirkung entwickeln. Hieraus folgt die Beständigkeit des Sinterwerkstoffes gegen mechanische Beanspruchung, beispielsweise bei unmittelbarem Kontakt von Metall auf Metall ohne Zugabe von Schmierstoff. Ein oder mehrere Oxide bilden eine Schmierschicht, die sicher verhindert, daß der Sinterwerkstoff bei unmittelbarem Kontakt mit einem anderen metallischen Werkstoff kurz¬ zeitig und örtlich begrenzt verschweißt. Der Sinterwerk¬ stoff gemäß der Erfindung besitzt also die Eigenschaft einer sich jederzeit spontan erneuernden Selbstschmierung.
Diese Wirkung wird zum einen durch den Kupferbasiswerkstoff erreicht, der gegenüber anderen metallischen Werkstoffen sowohl eine sehr hohe Wärmeleitfähigkeit besitzt als auch Oxide mit ausreichender Trenn- und Schmierwirkung bildet. Hinzu kommen ein oder mehrere Legierungsanteile, die ebenfalls bei Wärme Oxide bilden. Die Wärmeverhält¬ nisse können gemäß einem besonderen Merkmal der Erfindung denjenigen entsprechen, wie sie in den Brennräumen von Brennkraftmaschinen, insbesondere Verbrennungsmotoren, vorherrschen. Der Sinterwerkstoff gemäß der Erfindung besitzt dann einen besonders niedrigen Reibungskoeffi¬ zienten. Obwohl es sich um einen verhältnismäßig weichen Sinterwerkstoff handelt, besitzt der Sinterwerkstoff aufgrund seiner übrigen Eigenschaften eine erhebliche Verschleißfestigkeit. Er kann dadurch höheren mechanischen Beanspruchungen bei höherer Wärme nachhaltiger widerstehen als bekannte Sinterwerkstoffe auf Eisenbasis, die eine größere Härte besitzen.
Eine bevorzugte Ausgestaltung der Erfindung ist dadurch gekennzeichnet, daß der Kupferanteil 95 bis 100 Gewichts¬ prozente und der Legierungsanteil 5 bis 0 Gewichtsprozen¬ te beträgt. Vorzugsweise besteht der erfindungsgemäße Anteil an metallischen Legierungselementen aus 1 bis 3 Gewichtsprozenten Kobalt. Der Anteil an herstellungsbe- dingten Verunreinigungen kann gemäß der Erfindung höchstens 0,5 Gewichtsprozente betragen, die maximale Partikelgrδße etwa 150 μm und die mittlere Partikelgröße etwa 45 bis €0 um.
Die Erfindung kann dadurch ausgestaltet werden, daß dem Grundmetallpulver ein hochlegiertes Zusatzmetallpulver als Hartphase beigemischt ist, wobei der Anteil der Hart¬ phase höchstens 30 Gewichtsprozente beträgt. Aus Gründen der Wirtschaftlichkeit kann der Anteil der .Hartphase aber auch so reduziert werden, daß er höchstens 10 Ge¬ wichtsprozente beträgt. Der Anteil der Hartphase von höchstens 30 bzw. 10 Gewichtsprozenten bezieht sich auf die Summe von Grundmetallpulver und Zusatzmetallpulver. Daraus folgt, daß der Kupferanteil und der Legierungsanteil im Grundmetallpulver entsprechend kleinere Anteile an der Summe aus Grundmetallpulver und Zusatzmetallpulver ausmachen. Wenn gemäß der Erfindung pulvermetallurgische Verfahren angewandt v/erden, können dadurch Gefüge erzeugt werden, bei denen in eine hochwärmeleitfähige Grundmasse mehr oder weniger fein verteilt verschleißmindernde Gefüge¬ bestandteile eingebettet sind.
In Ausgestaltung der Erfindung beträgt die Zusammensetzung der Hartphase in Gewichtsprozenten: 24 bis 28 Chrom, 21 bis 25 Nickel, 10 bis 14 Wolfram, 1,5 bis 2,0 Kohlenstoff, Rest Kobalt.. Die Hartphase kann gemäß der Erfindung auch folgende Zusammensetzung haben: 28 bis 32 Chrom, 5.bis 10 Wolfram, 0,3 bis 2,5 Kohlenstoff, Rest Kobalt. Bei beiden vorstehenden Zusammensetzungen der Hartphase kann das Grundmetallpulver ein reines, unlegiertes Kupferpulver sein. Dann wird die Grundmasse während des Sinterns durch Diffusion mit Kobalt auflegiert.
Nach einer anderen Ausgestaltung der Erfindung hat die Hartphase, wiederum in Gewichtsprozenten, die Zusammen¬ setzung: 23 bis 27 Chrom, 8 bis 12 Nickel, 8 bis 12 Mangan, 0,4 bis 0,6 Kohlenstoff, Rest Eisen.
Der Sinterwerkstoff als solcher und seine verschiedenen Ausgestaltungen können gemäß der Erfindung zur Herstellung von wärme- und/oder verschleißbeständigen Formteilen verwandt werden, die heißen Gasen oder Gasgemischen ausge¬ setzt sind, beispielsweise Verbrennungsgasen. In Ausgestal¬ tung der Erfindung kann es sich dabei um Dichtungs-, Führungs-, Lager- oder Ventilelemente handeln. Diese werden als Teile von Maschinen, wie Kolbenmaschinen und deren Zusatzaggregaten, eingesetzt. Ebenso ist eine Ver¬ wendung bei Turboladern oder Abgas- und Abgasrückführungs¬ systemen möglich.
Gemäß einer bevorzugten Ausgestaltung der Erfindung kann der Sinterwerkstoff zur Herstellung von Ventilsitzen für Brennkraftmaschinen, insbesondere Ventilsitzringen für Verbrennungsmotoren, verwandt werden. Aus dem Sinter¬ werkstoff oder seinen unterschiedlichen Ausgestaltungen hergestellte Ventilεitzringe sind in der Lage, die durch die Verbrennung entwickelte Wärme gut abzuleiten. Dies bietet die Möglichkeit, daß die Verbrennung bei höheren Temperaturen als bisher erfolgen kann. Dadurch wird der Wirkungsgrad eines Verbrennungsmotors erhöht.
Die Wärme wird von der äußerst heißen Sitzfläche des Ventils über den Ventilsitzring abgeführt. Dadurch ist es möglich, das Ventil aus einem weniger warmfesten und damit preiswerteren Werkstoff herzustellen als bekannte Ventile. Alternativ wird die Möglichkeit gegeben, beim Einsatz bekannter Werkstoffe für das Ventil höhere Ver- brennungstemperaturen zu realisieren, ohne daß das Ven¬ til Schaden leidet.
Die Oxide gemäß dem Sinterwerkstoff der Erfindung erzeu¬ gen die eingangs beschriebene Trenn- und Schmierwirkung. Hierdurch wird der Verschleiß niedrig gehalten. Demgegen¬ über v/erden bekannte Ventilsitzringe zur Verminderung des Verschleißes aus einem Werkstoff hoher Härte herge- stellt. Damit das bekannte Ventil nun seinerseits nicht in der Berührungsfläche übermäßigem Verschleiß unterliegt, wird der bekannte harte Ventilsitzring mit einem Ventil gepaart, das im Bereich des bekannten Ventilsitzes aufwen¬ dig mit einer hochharten Schutzschicht gepanzert ist. Bekannte warmfeste Werkstoffe hoher Härte weisen eine geringe Wärmeleitfähigkeit auf und stellen eine Barriere für den Wärmefluß vom Ventil zum Ventilsitzring dar.
Dieser Nachteil wird durch einen Ventilsitzring gemäß der Erfindung beseitigt. Obwohl der Sinterwerkstoff ge¬ mäß der Erfindung verhältnismäßig weich ist, ist die Verschleißfestigkeit des daraus hergestellten Ventil¬ ringes höher. Der Grund hierfür liegt auch darin, daß die durch die Oxide auf dem Ventilsitzring gebildete Schicht eine Trenn- und Schmiereigenschaft entwickelt.
Wenn in weiterer Ausgestaltung der Erfindung der Sinter¬ werkstoff zur Herstellung von Ventilsitzen für Brennkraft- maschinen mit einem im Sitz anzuordnenden Sitzring und einem an der Sitzfläche des Ventils anzuordnenden Ventil¬ ring verwandt wird, muß jedenfalls der an der Sitzfläche des Ventils anzuordnende Ventilring aus dem Sinterwerk¬ stoff gemäß der Erfindung bestehen. Dieser bevorzugten Lösung liegt die Erkenntnis zugrunde, daß die besondere Wärme des Ventils am besten dann abgeführt werden kann, wenn zumindest der an der Sitzfläche des Ventils angeord¬ nete Ventilring eine hohe Wärmeleitfähigkeit besitzt. Dagegen würde die Wärmeableitung vom Ventil nur in ge¬ ringerem Maße möglich sein, wenn der im Sitz anzuordnende Sitzring eine höhere Wärmeleitfähigkeit aufwiese als der an der Sitzfläche des Ventils anzuordnende Ventilring.
Für die Herstellung von Ventilsitzringen kann gemäß der Erfindung jede der vorstehend beschriebenen Ausgestaltungen des Sinterwerkstoffes verwandt werden. Eine bevorzugte Ausgestaltung besteht darin, daß bei dem Kupferbasiswerk¬ stoff der Anteil an metallischen Legierungselementen aus 1 bis 3 Gewichtsprozenten Kobalt besteht.
Die Erfindung betrifft auch ein Verfahren zur Herstellung von wärme- und verschleißfesten Formteilen, insbesondere Ventilsitzringen, unter Verwendung eines Sinterwerkstoffes gemäß der Erfindung. Dabei wird das Metallpulver mit einem Gleitmittel gemischt, die Mischung zu einem Formkörper verpreßt und bei etwa 1000° C in Schutzgasatmosphäre gesintert. Wenn in Ausgestaltung der Erfindung eine Hart¬ phase verarbeitet wird, besteht das Verfahren darin, daß dem Metallpulver als Grundpulver neben dem Gleitmittel das hochlegierte, metallische Zusatzpulver als Hartphase beigemischt wird, die Mischung zu einem Formkörper ver¬ preßt und bei etwa 1000° C in Schutzgasatmosphäre gesin- tert wird.
Bei dem Gleitmittel handelt es sich um ein bekanntes Preßhilfsmittel. Dieses wird den Metallpulvern oder Metall¬ pulvermischungen zur Verbesserung der Verpreßbarkeit in Gehalten von 0,5 bis 1 Gewichtsprozenten zugemischt. Vor dem eigentlichen Sinterprozeß wird das Gleitmittel bei Temperaturen von etwa 400° C rückεtandsfrei zersetzt und ausgetrieben. Nach dem Sintern ist das Gleitmittel im Sinterwerkstoff nicht mehr nachweisbar. Daher hat die Art und Menge des zugemischten Gleitmittels keinen Einfluß auf die Eigenschaft des Sinterwerkstoffes. Als Gleitmittel wird beispielsweise Zinkstearat verwandt.
Mit dem Verfahren gemäß der Erfindung können Gefüge erzeugt werden, bei denen in eine hochwärmeleitfähige Grundmasse aus der Legierung mehr oder weniger fein verteilt ver¬ schleißmindernde Gefügebestandteile eingebettet sind. Die Anwendung pulvermetallurgischer Verfahren zur Her¬ stellung von Formteilen, insbesondere Ventilsitzringen, eröffnet nicht nur die Möglichkeit, die Verschleißfestig¬ keit der Teile zu erhöhen. Sie bietet auch den Vorteil einer besonders kostengünstigen Herstellung, da es auf diesem Wege möglich ist, den Ringrohling preiswert wei- testgehend vorzuformen, der dann keiner oder nur noch geringer Nachbearbeitung bedarf. Das Verpressen kann in koaxialer Preßtechnik erfolgen, und bei Bedarf können die Formteile nach dem Sintern kalibriert werden.
Der Einsatz von Ventilsitzringen gemäß der Erfindung führt zu der beschriebenen höheren Wärmeableitung von dem Ventil. Dies hat zur Folge, daß das Ventil weniger heiß wird. Dadurch entstehen in der Hohlkehle des Einlaß- ventiles keine Ablagerungen, die bei der Verwendung be¬ kannter Ventilsitzringe festgestellt werden müssen. Dort sind Ablagerungen die Folge einer vorzeitigen, unkontrol- lierten Verbrennung des Benzin-Luftgemisches im Bereich der durch Hitzestau sehr heißen Hohlkehle des Ventil¬ tellers. Der Einsatz eines Ventilεitzringes gemäß der Erfindung vermeidet eine derartige Verkokung mit uner¬ wünschten Ablagerungen. Die Temperatur des Ventils liegt dann nämlich unterhalb der für das Auftreten der Verko¬ kung erforderlichen Mindesttemperatur.
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der folgenden Beschreibung von die Erfindung nicht beschränkenden Ausführungsbeispielen, wobei auf die Zeich¬ nung Bezug genommen wird. Es zeigen
Fig. 1 schematisch ein Gefügebild eines pulvermetallur¬ gisch hergestellten grob-zweiphasigen Sinterwerk- Stoffes gemäß der Erfindung,
Fig. 2 ein reales Gefügebild eines Sinterwerkstoffes gemäß Fig. 1 als Schliffbild bei 125facher Ver¬ größerung
Fig. 3 einen Ventilsitz mit einem Ventilsitzring als Teilschnitt durch einen Zylinderkopf und
Fig. 4 einen Ventilsitz gemäß der Erfindung mit einem Sitzring und einem Ventilring als Teilschnitt durch einen Zylinderkopf.
Bei dem grob-zweiphasigen Sinterwerkstoff gemäß Fig. 1 sind verschleißmindernde Gefügebestandteile, nämlich eine Hartphase 11, mehr oder weniger fein verteilt in eine Grundmasse, nämlich einen Kupferbasiswerkstoff 12, eingebettet. Dabei hat die Kartphase 11 vorzugsweise eine der vorstehend beschriebenen Zusammensetzungen. Dabei beträgt der Anteil der Hartphase 11 höchstens 30 Gewichtsprozente, während derjenige des Kupferbasiswerk- Stoffes 12 mindestens 70 Gesichtsprozente beträgt.
Fig. 3 zeigt einen Zylinderkopf 22 eines Verbrennungs¬ motors, in dem sich ein Kanal 14 befindet. Der Kanal 14 weist in seinem unteren Bereich einen Sitz 15 auf. In dem Sitz 15 ist lediglich ein einziger Ventilsitzring 21 angeordnet, der aus dem Sinterwerkstoff gemäß der Erfin¬ dung besteht. Ein Ventil 18 befindet sich in der darge¬ stellten Offenstellung mit seiner an einem Ventilteller 19 ausgebildeten Sitzfläche 20 im Abstand von dem Ventil- sitzring 21.
Fig. 4 zeigt einen Teilschnitt durch den Zylinderkopf 22 eines Verbrennungsmotors. Im Gegensatz zum Ausführungs¬ beispiel gemäß Fig. 3 ist in dem Sitz 15 ein Sitzring 16 angeordnet, der mit einem Ventilring 17 verbunden ist.
Sowohl der Sitzring 16 als auch der Ventilring 17 bestehen aus dem Sinterwerkstoff gemäß der Erfindung.
Die Eigenschaften des Sinterwerkstoffes gemäß der Erfindung u d seine Verwendung vorzugsweise für Ventilsitzringe ermöglichen einen Einsatz bei hoher Belastung. Diese kann beispielsweise an Einlaßventilen von Dieselmotoren mit Turboaufladung oder auch an Auslaßventilen von Otto¬ motoren bei Verwendung bleifreien Kraftstoffes auftreten. Je nach Ausgestaltung der Erfindung kann die erforderliche Lebensdauer der Ventile erreicht werden, ohne daß es notwendig ist, die Ventilteller in der Sitzfläche besonders zu panzern. Der Verschleiß am Ventilsitzring und an dem zugeordneten Ventilteller wird sogar vermindert.

Claims

Patentansprüche:
1. Gegen Wärme und mechanische Beanspruchung, insbesondere Stoß und Reibung, beständiger, aus einem Grundmetallpulver hergestellter Sinterwerkstoff. zur Herstellung von Formteilen, dadurch g e k e n n z e i c h n e t , daß das Grundmetall¬ pulver aus einem Kupferanteil von etwa 70 bis 100 Gewichts¬ prozenten Kupfer und einem Legierungsanteil von 0 bis etwa 30 Gewichtsprozenten Kobalt und/oder Chrom und/oder Eisen und/oder Mangan und/oder Nickel und/oder Wolfram und/oder Kohlenstoff besteht.
2. Sinterwerkstoff nach Anspruch 1, dadurch gekennzeichnet, daß der Kupferanteil 95 bis 100 Gewichtsprozente und der Legierungsanteil 5 bis 0 Gewichtsprozente beträgt.
3. Sinterwerkstoff nach Anspruch 2, dadurch gekennzeichnet, daß der Anteil an metallischen Legierungselementen aus
1 bis 3 Gewichtsprozenten Kobalt besteht.
4. Sinterwerkstoff nach einem der Ansprüche 1 bis 3 , dadurch gekennzeichnet, daß die maximale Partikelgröße etwa 150 μm und die mittlere Partikelgröße etwa 45 bis 60 μm beträgt.
5. Sinterwerkstoff nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß dem Grundmetallpulver ein hochlegiertes Zusatzmetallpulver als Hartphase beige¬ mischt ist, wobei der Anteil der Hartphase höchstens 30 Gewichtsprozente beträgt.
6. Sinterwerkstoff nach Anspruch 5, gekennzeichnet durch folgende Zusammensetzung der Hartphase in Gewichtsprozenten:
24 bis 28 Chrom,
21 bis 25 Nickel, 1 10 bis 14 Wolfram,
1,5 bis 2,0 Kohlenstoff, Rest Kobalt.
5 7. Sinterwerkstoff nach Anspruch 5, gekennzeichnet durch folgende Zusammensetzung der Hartphase in Gewichtsprozenten:
28 bis 32 Chrom,
5 bis 10 Wolfram, ° 0,3 bis 2,5 Kohlenstoff,
Rest Kobalt.
8. Sinterwerkstoff nach Anspruch 6 oder 7, dadurch gekennzeic net, daß das Grundmetallpulver ein reines, unlegiertes Kupfer 5 pulver ist.
9. Sinterwerkstoff nach Anspruch 5, gekennzeichnet durch folgende Zusammensetzung der Hartphase in Gewichtsprozenten:
0 23 bis 27 Chrom,
8 bis 12 Nickel,
8 bis 12 Mangan,
0,4 bis 0,6 Kohlenstoff, Rest Eisen. 5
10. Verwendung eines Sinterwerkstoffes nach einem der Ansprüche 1 bis 9 zur Herstellung von wärme- und/oder verschleißbeständigen Formteilen, die heißen Gasen oder Gasgemischen ausgesetzt sind, beispielsweise Verbrennungs¬ 0 gasen.
11. Verwendung eines Sinterwerkstoffes nach Anspruch 10 zur Herstellung von Dichtungs-, Führungs-, Lager- und Ventilelementen. 5
12. Verwendung eines Sinterwerkstoffes nach Anspruch 11 zur Herstellung von Ventilsitzen für Brennkraftmaschinen, insbesondere Ventilsitzringen für- Verbrennungsmotoren.
13. Verwendung eines Sinterwerkstoffes nach Anspruch 12 zur Herstellung von Ventilsitzen für Brennkraftmaschinen mit einem im Sitz anzuordnenden Sitzring und einem an der Sitzfläche des Ventils anzuordnenden Ventilring, und zwar zumindest für den Ventilring.
14. Verfahren zur Herstellung von wärmebeständigen und verschleißfesten Formteilen, insbesondere Ventilsitzringen, unter Verwendung eines Sinterwerkstoffes nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Grundme¬ tallpulver mit dem Gleithilfsmittel gemischt, die Mischung zu einem Formkörper verpreßt und bei etwa 1000° C in Schutzgasatmosphäre gesintert wird.
15. Verfahren zur Herstellung von wärmebeständigen und verschleißfesten Formteilen, insbesondere Ventilsitzringen, unter Verwendung eines Sinterwerkstoffes nach einem der
Ansprüche 5 bis 9, dadurch gekennzeichnet, daß dem Grundmetall pulver neben dem Gleitmittel das hochlegierte Zusatzmetall- pulver als Hartphase beigemischt wird, die Mischung zu einem Formkörper verpreßt und bei etwa 1000° C in Schutzgas- atmosphäre gesintert wird.
16. Verfahren nach Anspruch 14 oder 15, dadurch gekennzeich¬ net, daß das Verpressen in koaxialer Preßtechnik erfolgt.
17. Verfahren nach einem der Ansprüche 14 bis 16, dadurch gekennzeichnet, daß die Formteile nach dem Sintern kalibriert werden.
PCT/EP1989/001343 1988-11-12 1989-11-10 Sinterwerkstoff auf kupferbasis, dessen verwendung sowie verfahren zur herstellung von formteilen aus dem sinterwerkstoff WO1990005199A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BR898907168A BR8907168A (pt) 1988-11-12 1989-11-10 Material sinterizado a base de cobre,seu emprego bem como processo para a fabricacao de pecas moldadas do material sinterizado
KR1019900701486A KR900702065A (ko) 1988-11-12 1989-11-10 구리계 소결재료, 그의 이용 및 그 소결재료로 형상부품을 제조한는 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP3838461.2 1988-11-12
DE3838461A DE3838461A1 (de) 1988-11-12 1988-11-12 Pulvermetallurgischer werkstoff auf kupferbasis und dessen verwendung

Publications (1)

Publication Number Publication Date
WO1990005199A1 true WO1990005199A1 (de) 1990-05-17

Family

ID=6367082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1989/001343 WO1990005199A1 (de) 1988-11-12 1989-11-10 Sinterwerkstoff auf kupferbasis, dessen verwendung sowie verfahren zur herstellung von formteilen aus dem sinterwerkstoff

Country Status (12)

Country Link
US (1) US5125962A (de)
EP (1) EP0372223B1 (de)
JP (1) JPH03502216A (de)
KR (1) KR900702065A (de)
CN (1) CN1042948A (de)
AT (1) ATE104365T1 (de)
BR (1) BR8907168A (de)
CA (1) CA2002769A1 (de)
DE (2) DE3838461A1 (de)
WO (1) WO1990005199A1 (de)
YU (1) YU47179B (de)
ZA (1) ZA898615B (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5216025A (en) * 1989-09-13 1993-06-01 Board Of Regents, The University Of Texas System Nitric oxide synthesis inhibitors for potentiating the action of pressor agents in certain hypotensive patients
US5281627A (en) * 1992-05-28 1994-01-25 Cornell Research Foundation, Inc. Substituted arginines and substituted homoarginines and use thereof
US5296466A (en) * 1992-02-19 1994-03-22 Board Of Regents, The University Of Texas System Inhibition of nitric oxide-mediated hypotension and septic shock with iron-containing hemoprotein
EP0735247A1 (de) * 1995-03-28 1996-10-02 Bleistahl-Produktions GmbH & Co KG Verfahren zur Montage und zur Fertigbearbeitung von pulvermetallurgisch vorgefertigten Ventilsitzringen
US5877176A (en) * 1991-12-26 1999-03-02 Cornell Research Foundation, Inc. Blocking induction of tetrahydrobiopterin to block induction of nitric oxide synthesis

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5443615A (en) * 1991-02-08 1995-08-22 Honda Giken Kogyo Kabushiki Kaisha Molded ceramic articles
JP3298634B2 (ja) * 1990-02-27 2002-07-02 大豊工業株式会社 摺動材料
US5735332A (en) * 1992-09-17 1998-04-07 Coors Ceramics Company Method for making a ceramic metal composite
US5470373A (en) * 1993-11-15 1995-11-28 The United States Of America As Represented By The Secretary Of The Navy Oxidation resistant copper
US5689796A (en) * 1995-07-18 1997-11-18 Citizen Watch Co., Ltd. Method of manufacturing molded copper-chromium family metal alloy article
JP3165779B2 (ja) * 1995-07-18 2001-05-14 株式会社トクヤマ サブマウント
DE19606270A1 (de) * 1996-02-21 1997-08-28 Bleistahl Prod Gmbh & Co Kg Werkstoff zur pulvermetallurgischen Herstellung von Formteilen, insbesondere von Ventilsitzringen mit hoher Wärmeleitfähigkeit und hoher Verschleiß- und Korrosionsfestigkeit
KR100261059B1 (ko) * 1997-12-12 2000-07-01 추호석 동계 소결합금부재의 제조방법
US5925837A (en) * 1998-09-16 1999-07-20 Chien-Ping Ju Manufacturing method and products of metallic friction material
US6132486A (en) * 1998-11-09 2000-10-17 Symmco, Inc. Powdered metal admixture and process
CN1094402C (zh) * 1999-02-01 2002-11-20 中南工业大学 钛铝基合金气门的制备方法
JP3346321B2 (ja) * 1999-02-04 2002-11-18 三菱マテリアル株式会社 高強度Fe基焼結バルブシート
US6385847B1 (en) 2000-09-13 2002-05-14 Eaton Corporation Seat faced engine valves and method of making seat faced engine valves
TW200626756A (en) * 2005-01-27 2006-08-01 Ching-Yung Lung Surface cladding manufacturing method of high-efficiency motion pairs system
JP4314226B2 (ja) * 2005-09-13 2009-08-12 本田技研工業株式会社 粒子分散銅合金及びその製造方法
US8662045B2 (en) * 2009-08-03 2014-03-04 GM Global Technology Operations LLC Cylinder head assembly for an internal combustion engine
DE102012013226A1 (de) * 2012-07-04 2014-01-09 Bleistahl-Produktions Gmbh & Co Kg Hochwärmeleitender Ventilsitzring
CN103357863B (zh) * 2013-06-21 2016-12-28 安徽吉思特智能装备有限公司 一种高耐磨粉末冶金气门座及其制备方法
WO2015198932A1 (ja) * 2014-06-27 2015-12-30 株式会社リケン 焼結バルブシート及びその製造方法
CN108026800B (zh) * 2015-10-02 2020-06-09 株式会社理研 烧结阀座
CN105537593B (zh) * 2016-01-14 2018-02-27 温岭市恒丰粉末冶金有限公司 一种气门座圈的生产工艺
DE102017202585A1 (de) * 2016-02-17 2017-08-17 Mahle International Gmbh Brennkraftmaschine mit zumindest einem Zylinder und mit zumindest zwei Hohlkopfventilen
DE102016109539A1 (de) * 2016-05-24 2017-12-14 Bleistahl-Produktions Gmbh & Co Kg. Ventilsitzring
CN110144488B (zh) * 2019-06-27 2024-06-04 浙江乐粉轨道交通科技有限公司 一种粉末冶金材料及其应用的摩擦体与摩擦盘
CN112247140B (zh) * 2020-09-25 2021-08-27 安庆帝伯粉末冶金有限公司 一种耐高温耐磨损粉末冶金气门座圈材料及其制造方法
DE102020213651A1 (de) * 2020-10-29 2022-05-05 Mahle International Gmbh Verschleißfeste, hochwärmeleitfähige Sinterlegierung, insbesondere für Lageranwendungen und Ventilsitzringe
CN112943404A (zh) * 2021-02-07 2021-06-11 浙江吉利控股集团有限公司 一种发动机气门座圈及甲醇发动机

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2024258A (en) * 1978-05-31 1980-01-09 Mitsubishi Electric Corp Contact for vacuum interrupter
GB2045806A (en) * 1979-03-14 1980-11-05 Taiho Kogyo Co Ltd Sintered bearing material

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2849789A (en) * 1953-12-11 1958-09-02 Gen Motors Corp Sintered powdered copper base metal and bearing formed thereof
US2887765A (en) * 1954-07-19 1959-05-26 Gen Motors Corp Sintered powdered copper base bearing
JPS4947124B1 (de) * 1971-04-26 1974-12-13
JPS556695B2 (de) * 1974-12-28 1980-02-19
JPS5253720A (en) * 1975-10-29 1977-04-30 Hitachi Ltd Non-orientated cu-carbon fiber compoite and its manufacturing method
US4054389A (en) * 1976-09-23 1977-10-18 International Business Machines Corporation Spectrophotometer with photodiode array
JPS5435577A (en) * 1977-08-24 1979-03-15 Yoshinao Minoura Contact type onnoff signal transmitting method
US4299629A (en) * 1979-06-01 1981-11-10 Goetze Ag Metal powder mixtures, sintered article produced therefrom and process for producing same
JPS564618A (en) * 1979-06-23 1981-01-19 Japan Synthetic Rubber Co Ltd Preparation of thermoplastic resin
GB2067221B (en) * 1979-12-22 1984-01-11 Tokyo Oilless Metal Ind Sintered alloys
US4373782A (en) * 1980-06-03 1983-02-15 Optical Coating Laboratory, Inc. Non-polarizing thin film edge filter
JPS57179807A (en) * 1981-04-28 1982-11-05 Canon Inc Optical system of color television
JPS5881942A (ja) * 1981-11-05 1983-05-17 Toshiba Tungaloy Co Ltd 高摩擦係数乾式摩擦材料
JPS58151443A (ja) * 1982-03-04 1983-09-08 Toshiba Tungaloy Co Ltd 乾式焼結摩擦材料
JPS5972861A (ja) * 1982-10-19 1984-04-24 Canon Inc 画像読取り装置
DE3528526A1 (de) * 1985-08-08 1987-02-19 Kloeckner Humboldt Deutz Ag Hubkolbenbrennkraftmaschine
FR2615046B1 (fr) * 1987-05-04 1992-12-31 Merlin Gerin Materiau composite fritte pour contact electrique et pastille de contact utilisant ledit materiau
JP2512477B2 (ja) * 1987-06-17 1996-07-03 大豊工業株式会社 銅系摺動材料
JPH0765133B2 (ja) * 1988-10-17 1995-07-12 日立粉末冶金株式会社 耐摩耗性銅系焼結含油軸受材料

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2024258A (en) * 1978-05-31 1980-01-09 Mitsubishi Electric Corp Contact for vacuum interrupter
GB2045806A (en) * 1979-03-14 1980-11-05 Taiho Kogyo Co Ltd Sintered bearing material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5216025A (en) * 1989-09-13 1993-06-01 Board Of Regents, The University Of Texas System Nitric oxide synthesis inhibitors for potentiating the action of pressor agents in certain hypotensive patients
US5877176A (en) * 1991-12-26 1999-03-02 Cornell Research Foundation, Inc. Blocking induction of tetrahydrobiopterin to block induction of nitric oxide synthesis
US5296466A (en) * 1992-02-19 1994-03-22 Board Of Regents, The University Of Texas System Inhibition of nitric oxide-mediated hypotension and septic shock with iron-containing hemoprotein
US5281627A (en) * 1992-05-28 1994-01-25 Cornell Research Foundation, Inc. Substituted arginines and substituted homoarginines and use thereof
US5453441A (en) * 1992-05-28 1995-09-26 Cornell Research Foundation, Inc. Substituted arginines and substituted homoarginines and use thereof
EP0735247A1 (de) * 1995-03-28 1996-10-02 Bleistahl-Produktions GmbH & Co KG Verfahren zur Montage und zur Fertigbearbeitung von pulvermetallurgisch vorgefertigten Ventilsitzringen

Also Published As

Publication number Publication date
KR900702065A (ko) 1990-12-05
EP0372223B1 (de) 1994-04-13
BR8907168A (pt) 1991-02-26
EP0372223A1 (de) 1990-06-13
ZA898615B (en) 1990-08-29
DE58907459D1 (de) 1994-05-19
ATE104365T1 (de) 1994-04-15
JPH03502216A (ja) 1991-05-23
CA2002769A1 (en) 1990-05-12
YU215389A (en) 1992-05-28
YU47179B (sh) 1995-01-31
DE3838461A1 (de) 1990-05-23
CN1042948A (zh) 1990-06-13
US5125962A (en) 1992-06-30

Similar Documents

Publication Publication Date Title
EP0372223B1 (de) Sinterwerkstoff auf Kupferbasis, dessen Verwendung sowie Verfahren zur Herstellung von Formteilen aus dem Sinterwerkstoff
EP3325194B1 (de) Tribologisches system umfassend einen ventilsitzring und ein ventil
DE60208848T2 (de) Pulvermetallurgische Ventilführung
DE69906221T2 (de) Ventilsitz aus Metallpulver
DE60300224T2 (de) Sinterlegierung für Ventilsitze, Ventilsitz und Verfahren zu seiner Herstellung
DE3327282C2 (de) Sinterlegierung für Ventilsitze
DE19828687C2 (de) Ventilsitz für Verbrennungsmotor
EP3007842B1 (de) Verfahren zur herstellung von warmbeständigen und verschleissfesten formteilen, insbesondere motorkomponenten
DE60214976T2 (de) Verschleissfeste kupferbasislegierung
DE2753903A1 (de) Sinterlegierung auf eisenbasis fuer ventilsitze und verfahren zu deren herstellung
EP1444421B1 (de) Verfahren zur herstellung eines ventilsitzes
DE19908208B4 (de) Motorenbauteil mit Legierungsbeschichtung und seine Verwendung
DE4112892C2 (de) Kolbenring
DE10236015B4 (de) Gesinterte Legierung für einen Ventilsitz mit hervorragender Verschleißbeständigkeit und ein Verfahren zur Herstellung hierfür
EP0881958B1 (de) Werkstoff zur pulvermetallurgischen herstellung von formteilen, insbesondere von ventilsitzringen oder ventilführungen mit hoher verschleissfestigkeit
DE3017310A1 (de) Verschleissfeste ferrosinterlegierung
DE112015004758T5 (de) Kolbenring und verbrennungskraftmaschine
DE3730082C2 (de)
DE102018104103A1 (de) Verfahren zum Herstellen eines Bauteils, insbesondere Fahrzeugbauteils, und entsprechend hergestelltes Bauteil
DE2415688C2 (de) Titankarbidhaltiger Stahl-Sinterwerkstoff sowie Verwendung desselben und Verfahren zu dessen Herstellung
DE19723392C2 (de) Ventilsitz
DE19513911C2 (de) Lagerteile für die Anwendung bei hohen Temperaturen
DE19721406A1 (de) Ventilsitz
DE10334703A1 (de) Ventilsitzringe aus Co oder Co/Mo-Basislegierungen und deren Herstellung
DE19724899C2 (de) Hochwarmfester Magnesiumwerkstoff, insbesondere für den Kolbenbau

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR JP KR SU