EP3325194B1 - Tribologisches system umfassend einen ventilsitzring und ein ventil - Google Patents

Tribologisches system umfassend einen ventilsitzring und ein ventil Download PDF

Info

Publication number
EP3325194B1
EP3325194B1 EP16735845.6A EP16735845A EP3325194B1 EP 3325194 B1 EP3325194 B1 EP 3325194B1 EP 16735845 A EP16735845 A EP 16735845A EP 3325194 B1 EP3325194 B1 EP 3325194B1
Authority
EP
European Patent Office
Prior art keywords
powder
valve
composition
tribological system
tribological
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16735845.6A
Other languages
English (en)
French (fr)
Other versions
EP3325194A1 (de
Inventor
Heiko Heckendorn
Peter Jäggi
Roland Ruch
Roland Scholl
Klaus Wintrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle International GmbH
Original Assignee
Mahle International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle International GmbH filed Critical Mahle International GmbH
Publication of EP3325194A1 publication Critical patent/EP3325194A1/de
Application granted granted Critical
Publication of EP3325194B1 publication Critical patent/EP3325194B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/02Selecting particular materials for valve-members or valve-seats; Valve-members or valve-seats composed of two or more materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/008Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of engine cylinder parts or of piston parts other than piston rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F5/106Tube or ring forms
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C22/00Alloys based on manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0292Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with more than 5% preformed carbides, nitrides or borides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/241Chemical after-treatment on the surface
    • B22F2003/242Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment

Definitions

  • the invention relates to a tribological system comprising a valve seat ring made of sintered material and an untreated valve or a valve hardened and / or armored at least in the seat area.
  • valve and the associated valve seat ring which together form a tribological system. They seal the combustion chamber and control the gas exchange in the engine.
  • the surfaces interacting and interacting in this system are subject to extremely complex loads due to the load spectrum acting in an internal combustion engine, which is composed of mechanical, thermal, tribological and chemical loads.
  • valve seat ring must have a high strength, in particular a high resistance to deformation at medium temperatures (creep resistance), as well as a high degree of warm hardness, especially since the exhaust valves hit the valve seat more than 70 times per second.
  • valve seat rings must also have good thermal conductivity. Last but not least, high lubricity and wear resistance are imperative for valve seat rings.
  • Valve seat rings with the above-mentioned properties are usually obtainable by sintering a sintered material.
  • the powder composition (Table 2) usually consists of a combination of a high-speed steel powder (e.g. the commercially widespread powders K3 or K1) and one or more hard phases based on Fe, possibly also based on Co, as well as other components , such as solid lubricants such as sulfides, e.g. B. MoS 2 and / or graphite and / or copper and / or CaF 2 .
  • these valve seat rings are also infiltrated with copper in order to achieve higher thermal conductivity and better machinability.
  • a disadvantage of these valve seat ring materials is that they are often relatively aggressive towards their counterparts and therefore also cause higher valve wear.
  • valves and in particular the valve plates, must have high heat resistance and high wear resistance due to temperatures of up to 1,000 ° C.
  • tribological systems in which the valve plates are not treated superficially.
  • the US6318327B1 describes a tribological system consisting of a valve seat ring and valve.
  • the valve seat ring consists of an iron-based sintered material and fine deposits of 10 to 50% by weight of a CoMoCr-based intermetallic hard phase, for example T 800 and T 400.
  • Solid lubricants sulfides, nitrides, fluorides, graphite
  • infiltration and impregnation with Cu are also described. Sintering takes place in a vacuum. This is very disadvantageous for a continuous sintering process of large quantities.
  • An austenitic steel is used as valve (SUH35 (JIS G 4311: 21% Cr-4% Ni-9% Mn-O.4% NO.5% C-Fe (rest)), which nitrides or with to improve wear resistance Stellite F, 6 or 12 or armored with K8, K10 to improve the tribological properties of the system.
  • the WO 2009 024 809 A1 discloses a material for a valve seat ring, in which an iron-based alloy with reduced contents of carbides of the elements Mo, W, V and Nb is used. This powder makes up the main part of the powder mixture to be processed. It also contains the usual additives for improving machining, sintering and solid lubricants, as well as hard phases and copper.
  • valve and valve seat ring In addition to the individual properties of the valve and valve seat ring, it is important for a tribological system to keep the mechanical, physical and / or chemical interactions of the partners as low as possible. This is usually ensured by external lubrication using fuels, combustion products or engine oil. If this external lubrication is significantly reduced or if it is completely eliminated, the tribological system, which was previously exposed to liquid or mixed friction, is increasingly exposed to solid friction, which leads to higher overall wear.
  • the WO 2009 040 369 A1 a pre-alloyed powder made of water-atomized iron-based powder, which is suitable for the production of pressed and sintered components with high wear resistance.
  • the iron-based powder comprises 10 to 18% by weight of Cr, each 0.5 to 5% by weight of at least one of Mo, W, V and Nb and 0.5 to 2%, preferably 0.7 to 2% and most preferably 1 to 2% by weight of C.
  • the object of the invention is to provide a tribological system comprising a valve seat ring and an untreated or a hardened and / or armored valve which avoids the disadvantages of the prior art and in particular has a higher wear resistance with reduced overall wear.
  • the tribological system according to the invention comprises a first tribological partner, namely a valve seat ring made of a sintered material, which is characterized in that the sintered material is obtainable by pressing and sintering a mixture of individual powder components, the 5 to 45% by weight of one or more hard phases based on Fe and 0 to 2% by weight of graphite particles and / or 0 to 2% by weight of MnS and / or 0 to 2% by weight of MoS 2 - and / or up to 2% by weight FeP and / or 0 to 7% by weight Cu and / or 0 to 4% by weight co-powder
  • Fe contains the remainder Fe as well as production-related impurities, in particular by Ni, Cu, Co, Ca and / or Mn with proportions ⁇ 1.5% by weight, one or more hard phases based on Fe having a composition of ⁇ 0.2 % By weight C, 26 to 32% by weight Mo, 8 to 12% by weight Cr, 2.2 to 3% by weight Si. And a second tribological partner, namely a superficially untreated valve.
  • the second tribological partner is a valve hardened and / or armored and / or nitrided at least in the seating area.
  • the armor or the nitriding also serves to achieve a better sealing effect of the valve during operation.
  • the valves are therefore preferably nitrided and / or armored in the seat area with a material based on iron or Co.
  • the tribological system according to the invention comprises a first tribological partner, namely a valve seat ring made of a sintered material, which is characterized in that the sintered material is obtainable by consolidating and sintering a mixture of individual powder components, which contains 5 to 45% by weight or several hard phases based on Fe with a composition of ⁇ 0.3% by weight C, 26 to 32% by weight Mo, 14 to 20% by weight Cr, 2.9 to 4.2% by weight Si and 0 to 2% by weight of graphite particles and / or 0 to 2% by weight of MnS and / or 0 to 2% by weight of FeP and / or 0 to 2% by weight of MoS 2 powder and / or 0 up to 7% by weight Cu and / or 0 to 4% by weight co-powder and 0.1 to 1.0% by weight of a pressing aid and the remainder,
  • a high-speed steel powder with a composition of 14 to 18 wt .-% Cr, 1.2 to 1.9 wt .-% C, 0.1 to 0.9 wt .-% Si, 0.5 to 2.5 wt. -% V, 0.5 to 2.5 wt% W, 0.5 to 2.5 wt% Mo and as Remainder Fe as well as production-related impurities, in particular by Ni, Cu, Co, Ca and / or Mn with proportions ⁇ 1.5% by weight.
  • a second tribological partner namely a superficially untreated valve.
  • the second tribological partner is a valve hardened and / or armored and / or nitrided at least in the seating area.
  • the armor or the nitriding also serves to achieve a better sealing effect of the valve during operation.
  • the valves are therefore preferably nitrided and / or armored in the seat area with a material based on iron or Co.
  • the invention is based on the surprising finding that tribological partners are achieved through the material composition described in the valve seat ring, through the mixture of the selected starting powders, and through the clever choice of the valve , in which the solid friction in the valve seat ring - valve system is reduced and the total wear can be considerably reduced.
  • a tribological system in addition to the valve seat ring and valve with plate and stem, a tribological system also includes the valve guide.
  • the valve guide In particular, if the valve seat and valve stem are untreated, ie neither hardened, coated nor armored, the Adjustment of the valve guide should not be neglected. A corresponding material combination of valve stem and valve guide is also required here.
  • the wear resistance of the tribological system according to the invention includes depends on the hardness and the thickness of a nitride diffusion layer formed at least in the seat area of the valve. The best results can be achieved with a hardness> 510 HV and a thickness> 19 ⁇ m. It has also been found that the wear resistance of the tribological system according to the invention includes depends on the type of layer and layer thickness of an armor formed at least in the seat area of the valve. The best results can be achieved with a layer thickness of the armor of> 400 ⁇ m and a Co content and / or Fe content of> 40%.
  • a hard phase based on Fe as well as a hard phase based on Co to the sintered material.
  • a hard phase on a Co basis is therefore additionally mixed with the sintered material in a proportion of 0.5 to 9.9% by weight.
  • Preferred hard phases (Table 2) based on Fe are K11, K6, K7 and K4. K6 and K7 are particularly preferred. Preferred Co-based hard phases to be considered in the described tribosystem, K8, K9 and K10, with K8 and K9 being particularly preferred.
  • the composition of the hard phases is explained below.
  • Table 1 shows the compositions of a powder mixture "Reference” and a comparison mixture “Comparison 3”. Manufacturing technology and application technology additives (eg sulfides) are contained in “Other”. Some examples of mixture components used or can be used in the sense of the reference are summarized in Table 2 (starting powder).
  • Table 1 Table 1: ⁇ /b> Powder mixtures without solid lubricant, process-related additives and Cu-I nfiltrants K1 K2 graphite K12 Cu K6 Other Comparison 3 % By weight 84 0.3 0.3 5 10th 0.4 reference % By weight 84 0.3 0.3 5 10th 0.4 designation C.
  • the powders listed in Table 1 and specified in Table 2 are mixed in a tumble mixer for 30 min. Then these mixtures are pressed at a pressure of 700 MPa to valve seat rings ( ⁇ a: 30 mm, ⁇ i: 23 mm; height: 6 mm). A part of the rings is sintered at a temperature of 1110 to 1125 ° C (approx. 30 min) under N 2 -H 2 (17 to 25% by volume H 2 ) in a continuous furnace. Another portion is subjected to sintering at 1132 to 1145 ° C (approx. 30 min) under N 2 -H 2 (17 to 25% by volume H 2 ).
  • the maximum temperature during sintering was 1,132 to 1,145 ° C.
  • the hold time was 20 to 33 minutes at the above temperature.
  • a mixture of N 2 -H 2 with an H 2 content of 17 to 25% was used as the atmosphere.
  • the sintered material was gem.
  • Table 4 heat treatment
  • both simple tempering at temperatures between 550 and 620 ° C and tempering of the material, i.e. Hardening at 850 to 950 ° C - oil quenching - tempering at 510 to 610 ° C used. Since the differences in properties, especially wear behavior, machinability and creep behavior, are small, the tempered material is used.
  • Table 6 shows both the hardness and the 0.2% compressive yield strength at room temperature and at 300 ° C. Surprisingly, despite the coarser carbides, the strength values of the referenced sintered material are comparable to those of conventional comparison material (e.g. comparison 3) ⁇ b> Table 6 ⁇ /b>: Strength values and hardening after sintering / heat treatment of the powder mixture "reference” and the mixture to be compared "comparison 3" T [° C] Rd0.2 [MPa] Hardness [HV10] reference Comparison 3 reference Comparison 3 25th 1,400 1,813 415 391 300 1,328 1,195 372 349
  • valve seat ring consists of in% by weight: C: 1.5; S: 0.6 Cr: 3; Mon: 5 to 15; Cu: 10 to 20; V: 2; Fe: rest; others: 4.
  • Comparison 2 is a Co-containing material that contains high proportions of the refractory metals Mo and W in addition to this expensive raw material.
  • the functional area consists of the elements in% by weight: C: 0.5 to 2; Mn: 1; Cr: 3 to 6; Mon: 8 to 15; Co: 16 to 22; W: 2 to 5; V: 1 to 3; Cu: 12 to 22; Fe: rest; others: 3.
  • the valve seat ring has the following composition in% by weight: 0.5 to 1.5; Si: 0.2 to 1.0; Cr: 2.5-5; Mon: 5 to 8; W: 3 to 6; V: 1 to 4; Cu: 10 to 20; Fe: rest; others: 3 and in "Reference" the VSR has the composition: C: 1 to 1.8; Si: 0.2 to 1.8; Mn: 0.6; Cr: 10 to 15; Mo: 2.5 to 4.5; V: 0.4 to 1.0; Cu: 0.8 to 1.5; Fe: rest; others: 3.
  • valve seat ring "Reference” contains significantly smaller proportions of expensive elements and achieves significantly less overall wear.
  • Example 1 Comparing the materials described in Example 1 (FIG. 1, not shown geaphically) (comparison 1, comparison 3 and reference) in a test in which armored (Stellite F) and nitrided X50 valves are used as tribo partners, is shown after a 100 h motor test, that the total wear (Fig. 2) with nitrided exhaust valve increases only slightly compared to that of an armored valve with referenced material. This tribo pairing is clearly superior to the standard comparison materials comparison 1 and comparison 3.
  • valve seat materials described in Example 1 show in a motor test (500 h, cold-hot endurance test) with uncoated or untreated Nimonic 80 exhaust valves with very little overall wear.
  • the wear on the valve seat ring and on the valve plate is so low that it cannot be measured.
  • Original machining traces can still be seen in the material (reference). Since the referenced material is particularly cost-effective due to the use of small amounts of special carbides, a comparable technical (not measurable total wear) level results in a significant economic advantage over the comparative material "Comparison 3".

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Powder Metallurgy (AREA)
  • Lift Valve (AREA)

Description

  • Die Erfindung betrifft ein tribologisches System, umfassend einen aus Sinterwerkstoff hergestellten Ventilsitzring und ein unbehandeltes oder ein zumindest im Sitzbereich gehärtetes und/oder gepanzertes Ventil.
  • Bei der Neuentwicklung aber auch beim Downsizing von Motoren stehen neben der Erhöhung der Leistungskonzentration, der Verfügbarkeit und der Verlängerung der Lebensdauer insbesondere die stetige Erhöhung der Effektivität der Motoren bei gleichzeitiger Reduzierung der Emissionen im Mittelpunkt. Zum Erreichen dieser Aspekte werden häufig höhere Ansprüche an die einzelnen Motorenkomponenten hinsichtlich Haltbarkeit und Verschleißbeständigkeit gestellt als bisher.
  • Ein Beispiel hierfür sind die Ein- und Auslassventilelemente im Bereich des Brennraums des Motors, d.h. das Ventil und der zugeordnete Ventilsitzring, die zusammen ein tribologisches System bilden. Sie dichten den Verbrennungsraum ab und steuern den Gaswechsel im Motor. Die in diesem System miteinander wechselwirkenden und aufeinander einwirkenden Oberflächen unterliegen, bedingt durch das in einem Verbrennungsmotor wirkende Lastkollektiv, das sich aus mechanischer, thermischer, tribologischer und chemischer Belastung zusammensetzt, äußerst komplexen Beanspruchungen.
  • Jeder Partner in dem oben genannten tribologischen System muss dabei zum Teil unterschiedliche Voraussetzungen erfüllen.
  • So muss der Ventilsitzring eine hohe Festigkeit, insbesondere einen hohen Widerstand gegen Verformung bei mittleren Temperaturen (Kriechwiderstand), sowie eine hohe Warmhärte aufweisen, insbesondere da die Auslassventile mehr als 70 Mal in der Sekunde auf den Ventilsitz aufschlagen. Um einen schnellen Wärmetransport im Zylinderkopf und ein Absenkung der Ventiltemperatur zu gewährleisten, müssen Ventilsitzringe zudem eine gute Wärmeleitfähigkeit aufweisen. Und nicht zuletzt sind eine hohe Schmierfähigkeit und Verschleißfestigkeit zwingende Voraussetzungen für Ventilsitzringe.
  • Ventilsitzringe mit oben genannten Eigenschaften sind üblicherweise durch Sintern eines Sinterwerkstoffs erhältlich. Die Pulverzusammensetzung (Tabelle 2) besteht in der Regel aus einer Kombination eines Schnellarbeitsstahl-Pulvers (z.B. die kommerziell weit verbreiteten Pulver K3 bzw. K1) und einer oder mehrerer Hartphasen auf Fe-Basis, gegebenenfalls auch auf Co-Basis, sowie aus weiteren Bestandteilen, wie Festschmierstoffe, wie Sulfide, z. B. MoS2 und/oder Graphit und/oder Kupfer und/oder CaF2. Häufig werden diese Ventilsitzringe auch mit Kupfer infiltriert, um eine höhere Wärmeleitfähigkeit und eine bessere Bearbeitbarkeit zu erreichen. Ein Nachteil dieser Ventilsitzring-Materialien ist, dass sie häufig relativ aggressiv gegenüber dem Gegenläufer sind und damit auch einen höheren Verschleiß am Ventil verursachen.
  • Die Ventile, und insbesondere die Ventilteller, müssen aufgrund von Temperaturen bis zu 1.000°C eine hohe Warmfestigkeit, wie auch eine hohe Verschleißbeständigkeit aufweisen. Hierfür ist es üblich, die Ventile, insbesondere die Ventilteller zu panzern, zu härten und/oder zu nitrieren, um die tribologischen Eigenschaften des Systems zu verbessern. Es gibt auch tribologische Systeme, bei denen die Ventilteller nicht oberflächlich behandelt werden.
  • Die US6318327B1 beschreibt ein Tribosystem, bestehend aus Ventilsitzring und Ventil. Der Ventilsitzring besteht aus einem Sinterwerkstoff auf Eisenbasis und feinen Einlagerungen von 10 bis 50 Gew.-% einer CoMoCr-basierten intermetallischen Hartphase, zum Beispiel T 800 und T 400. Festschmierstoffe (Sulfide, Nitride, Fluoride, Grafit) sind zugesetzt; auch wird die Infiltration und das Imprägnieren mit Cu beschrieben. Die Sinterung erfolgt im Vakuum. Dies ist für einen kontinuierlichen Sinterprozess von großen Stückzahlen sehr nachteilig.
  • Als Ventil wird ein austenitischer Stahl verwendet (SUH35 (JIS G 4311: 21% Cr-4% Ni-9% Mn-O.4% N-O.5% C-Fe (Rest)), der zur Verbesserung der Verschleißbeständigkeit nitriert oder mit Stellit F, 6 oder 12 oder mit K8, K10 gepanzert wird, um dadurch die tribologischen Eigenschaften des Systems zu verbessern.
  • Nachteilig ist, dass für konkrete Tribosysteme optimale Eigenschaften nicht erreicht werden, insbesondere da andere Ventilwerkstoffe nicht in Betracht gezogen werden. Dies ist auch deshalb relevant, weil nicht nur die Wechselwirkung zwischen Ventilteller und Ventilsitzring die Zuverlässigkeit des Systems bestimmt, sondern in diese Betrachtung auch die Ventilführung mit einbezogen werden muss. Insofern führt die Beschränkung auf nur eine Gruppe von Ventilwerkstoffen zu einer Einschränkung bei der Optimierung der Werkstoffpaarung.
  • Die WO 2009 024 809 A1 offenbart einen Werkstoff für einen Ventilsitzring, bei dem eine Eisenbasis-Legierung mit reduzierten Gehalten an Karbiden der Elemente Mo, W, V und Nb zum Einsatz kommt. Dieses Pulver macht den Hauptanteil an der zu verarbeitenden Pulvermischung aus. Sie enthält darüber hinaus noch die üblichen Zusätze zur Verbesserung der Bearbeitung, des Sinterns und Festschmierstoffe sowie Hartphasen und Kupfer.
  • Neben den jeweils individuellen Eigenschaften von Ventil und Ventilsitzring ist es für ein tribologisches System wichtig, die mechanischen, physikalischen und/oder chemischen Wechselwirkungen der Partner möglichst gering zu halten. Hierfür sorgt in der Regel eine externe Schmierung über Kraftstoffe, Verbrennungsprodukte oder das Motorenöl. Ist diese externe Schmierung deutlich reduziert oder aber fällt sie vollkommen weg, ist das tribologische System, das zuvor einer Flüssigkeits- oder Mischreibung ausgesetzt war, vermehrt einer Festkörperreibung ausgesetzt, die zu einem höheren Gesamtverschleiß führt.
  • Schließlich offenbart die WO 2009 040 369 A1 ein vorlegiertes Pulver aus auf Wasser zerstäubtem Pulver auf Eisenbasis, das zur Herstellung von gepressten und gesinterten Komponenten mit hoher Verschleißfestigkeit geeignet ist. Das Pulver auf Eisenbasis umfasst 10 bis 18 Gew.-% Cr, jeweils 0,5 bis 5 Gew.-% von mindestens einem von Mo, W, V und Nb und 0,5 bis 2%, vorzugsweise 0,7 bis 2% und am meisten bevorzugt 1 bis 2 Gew.-% C.
  • Aufgabe der Erfindung ist es, ein tribologisches System, umfassend einen Ventilsitzring und ein unbehandeltes oder ein gehärtetes und/oder gepanzertes Ventil bereitzustellen, das die Nachteile des Standes der Technik vermeidet, und insbesondere eine höhere Verschleißbeständigkeit bei reduziertem Gesamtverschleiß aufweist. Gelöst wir die Aufgabe durch die in den Patentansprüchen beschriebenen tribologischen Systeme.
  • Die Erfindung wird in den Ansprüchen definiert. Das erfindungsgemäße tribologische System umfasst gemäß Patentanspruch 1 einen ersten tribologischen Partner, nämlich einen aus einem Sinterwerkstoff hergestellten Ventilsitzring, der dadurch gekennzeichnet ist, dass der Sinterwerkstoff erhältlich ist, durch Pressen und Sintern einer Mischung aus einzelnen Pulverkomponenten, die 5 bis 45 Gew.-% einer oder mehrerer Hartphasen auf Fe-Basis und 0 bis 2 Gew.-% Graphitpartikel und/oder 0 bis 2 Gew.-% MnS- und/oder 0 bis 2 Gew.-% MoS2- und/ oder bis 2 Gew.-% FeP- und/oder 0 bis 7 Gew.-% Cu- und/oder 0 bis 4 Gew.-% Co-Pulver
  • sowie 0 bis 1,0 Gew.-% eines Presshilfsmittels und als Rest Schnellarbeitsstahlpulver mit einer Zusammensetzung von 14 bis 18 Gew.-% Cr, 1,2 bis 1,9 Gew.-% C, 0,1 bis 0,9 Gew.-% Si, 0,5 bis 2,5 Gew.-% V, 0,5 bis 2,5 Gew.-% W, 0,5 bis 2,5 Gew.-% Mo, und
  • als Rest Fe sowie herstellungsbedingte Verunreinigungen, insbesondere durch Ni, Cu, Co, Ca und/oder Mn mit Anteilen < 1,5 Gew.-%, enthält, wobei eine oder mehrere Hartphasen auf Fe-Basis mit einer Zusammensetzung von < 0,2 Gew.-% C, 26 bis 32 Gew.-% Mo, 8 bis 12 Gew.-% Cr, 2,2 bis 3 Gew.-% Si ist. Und einen zweiten tribologischen Partner, nämlich ein oberflächlich unbehandeltes Ventil.
  • Alternativ ist der zweite tribologische Partner ein zumindest im Sitzbereich gehärtetes und/oder gepanzertes und/oder nitriertes Ventil. Neben einem reduzierten Verschleiß in dem tribologischen System dient die Sitzpanzerung bzw. das Nitrieren zugleich dem Erzielen einer besseren Dichtwirkung des Ventils während des Betriebes. Vorzugsweise sind die Ventile daher nitriert und/oder im Sitzbereich mit einem Material auf Eisen- oder Co-Basis gepanzert.
    Das erfindungsgemäße tribologische System umfasst gemäß Patentanspruch 2 einen ersten tribologischen Partner, nämlich einen aus einem Sinterwerkstoff hergestellten Ventilsitzring, der dadurch gekennzeichnet ist, dass der Sinterwerkstoff erhältlich ist durch Konsolidieren und Sintern einer Mischung aus einzelnen Pulverkomponenten, die 5 bis 45 Gew.-% einer oder mehrerer Hartphasen auf Fe-Basis mit einer Zusammensetzung von < 0,3 Gew.-% C, 26 bis 32 Gew-% Mo, 14 bis 20 Gew.-% Cr, 2,9 bis 4,2 Gew.-% Si und 0 bis 2 Gew.-% Graphitpartikel und/oder 0 bis 2 Gew.-% MnS- und/oder 0 bis 2 Gew.-% FeP- und/oder 0 bis 2 Gew.-% MoS2-Pulver und/oder 0 bis 7 Gew.-% Cu- und/oder 0 bis 4 Gew.-% Co-Pulver sowie
    0,1 bis 1,0 Gew.-% eines Presshilfsmittels und als Rest ein,
  • einem Schnellarbeitsstahlpulver mit einer Zusammensetzung von 14 bis 18 Gew.-% Cr, 1,2 bis 1,9 Gew.-% C, 0,1 bis 0,9 Gew.-% Si, 0,5 bis 2,5 Gew.-% V, 0,5 bis 2,5 Gew.-% W, 0,5 bis 2,5 Gew.-% Mo und als
    Rest Fe sowie herstellungsbedingte Verunreinigungen, insbesondere durch Ni, Cu, Co, Ca und/oder Mn mit Anteilen < 1,5 Gew.-%, enthält.
    Und einen zweiten tribologischen Partner, nämlich ein oberflächlich unbehandeltes Ventil.
    Alternativ ist der zweite tribologische Partner ein zumindest im Sitzbereich gehärtetes und/oder gepanzertes und/oder nitriertes Ventil. Neben einem reduzierten Verschleiß in dem tribologischen System dient die Sitzpanzerung bzw. das Nitrieren zugleich dem Erzielen einer besseren Dichtwirkung des Ventils während des Betriebes. Vorzugsweise sind die Ventile daher nitriert und/oder im Sitzbereich mit einem Material auf Eisen- oder Co-Basis gepanzert.
    Gegenüber den bekannten Lösungsversuchen, nämlich der Optimierung der Eigenschaften der einzelnen Partner eines tribologischen Systems, basiert die Erfindung auf der überraschenden Erkenntnis, dass durch die beschriebene Werkstoffzusammensetzung im Ventilsitzring über die Mischung der gewählten Ausgangspulver und durch die geschickte Wahl des Ventils, tribologische Partner erreicht werden, bei denen die Festkörperreibung im System Ventilsitzring - Ventil herabgesetzt und damit der Gesamtverschleiß erheblich reduziert werden kann.
  • Im Allgemeinen umfasst ein tribologisches System neben Ventilsitzring und Ventil mit Teller und Schaft auch noch die Ventilführung. Insbesondere dann, wenn Ventilsitz und Ventilschaft unbehandelt, d.h. weder gehärtet, beschichtet noch gepanzert sind, kann die Anpassung der Ventilführung nicht außer Acht gelassen werden. Hier ist ebenfalls eine entsprechende Werkstoffpaarung von Ventilschaft und Ventilführung erforderlich.
  • Es wurde nämlich gefunden, dass selbst im Vergleich zu Sinterwerkstoffen, die mit einem hohen Anteil an Co legiert wurden (siehe nachfolgend Vergleichsbeispiel 2), ein verringerter Verschleiß innerhalb des erfindungsgemäßen tribologischen Systems beobachtet werden kann. Auch gegenüber handelsüblichen Sinterwerkstoffen (siehe nachfolgend Vergleichsbeispiel 1, siehe nachfolgend Vergleichsbeispiel 3) ist bezüglich des Verschleißes eine deutliche Verringerung zu beobachten. Aber erst die geschickte Kombination des Sinterwerkstoffs mit unbehandelten Ventilen, oder aber mit Ventilen, die nitriert und/oder im Sitzbereich mit einem Material auf Eisen- oder Co-Basis gepanzert sind, führt zu dem erfindungsgemäßen tribologische System, das sich durch einen deutlich reduzierten Verschleiß der einzelnen tribologischen Partner auszeichnet.
  • Ferner wurde gefunden, dass die Verschleißbeständigkeit des erfindungsgemäßen tribologischen Systems u.a. von der Härte und der Dicke einer zumindest im Sitzbereich des Ventils ausgebildete Nitrierdiffusionsschicht abhängt. Die besten Ergebnisse sind mit einer Härte > 510 HV und einer Dicke > 19 µm erzielbar. Auch wurde gefunden, dass die Verschleißbeständigkeit des erfindungsgemäßen tribologischen Systems u.a. von der Schichtart und Schichtstärke einer zumindest im Sitzbereich des Ventils ausgebildeten Panzerung abhängt. Die besten Ergebnisse sind mit einer Schichtstärke der Panzerung von > 400 µm und einem Co-Gehalt und/oder Fe-Gehalt von > 40% erzielbar.
  • Weiterhin haben Untersuchungen gezeigt, dass erfindungsgemäße Werkstoffe für den Ventilsitzring in Kombination mit der Standardmischung Nireva 3015 (mit der Zusammensetzung in Gew.-%: bis 0,08 C, bis 0,5 Si, bis 0,5 Mn, bis 0,015 P, bis 0,01 S, 13,5 bis 15,5 Cr, 30,0 bis 33,5 Ni, 0,4 bis 1,0 Mo, 1,6 bis 2,2 AI, 2,3 bis 2,9 Ti, 0,4 bis 0,9 Nb und als Rest Fe) oder mit der Standardmischung Nimonic 80 (mit der Zusammensetzung in Gew.-%: 0,04 bis 0,1 C, bis 1,0 Si, bis 1,0 Mn, bis 0,02 P, bis 0,015 S, 18,0 bis 21,0 Cr, > 65,0 Ni, bis 3,0 Fe, bis 2,0 Co, 1,0 bis 1,8 AI und 1,8 bis 2,7 Ti) nach optimaler Wärmebehandlung auch ohne oberflächliche Behandlung, wie z.B. Nitrieren oder Panzern, einen reduzierten Gesamtverschleiß aufweisen Hartphasen auf Fe-Basis sind gegenüber Ni- und Co-Basislegierungen kostengünstiger und können durch Wärmebehandlung gezielt auf konkrete Anwendungen eingestellt werden. Kohlenstoff härtet dabei die Matrix und bildet zudem auch harte Karbide, die die Verschleißbeständigkeit erhöhen.
  • Entsprechend den motorspezifisch unterschiedlichen Anforderungen an die Verschleißbeständigkeit bei verschiedenen Anwendungen in der Praxis kann es auch vorteilhaft sein, dem Sinterwerkstoff neben einer Hartphasen auf Fe-Basis zusätzlich noch eine Hartphase auf Co-Basis beizumischen. In einer dritten Ausführungsform des erfindungsgemäßen tribologischen Systems ist daher dem Sinterwerkstoff zusätzlich eine Hartphase auf Co-Basis in einem Anteil von 0,5 bis 9,9 Gew.-% beigemischt.
  • Bevorzugte Hartphasen (Tabelle 2) auf Fe-Basis sind K11, K6, K7 und K4. Besonders bevorzugt sind K6 und K7. Bevorzugte Hartphasen auf Co-Basis, die in dem beschriebenen Tribosystem zu betrachten sind, K8, K9 und K10, wobei K8 und K9 besonders bevorzugt sind. Die Zusammensetzung der Hartphasen wird nachfolgend erläutert.
    Durch die Wahl geeigneter Sinterparameter, wie beispielsweise Temperatur, Atmosphäre oder Taupunkt kann ein Gefüge im Ventilsitzring eingestellt werden, bei dem die Sonderkarbide in dem Sinterwerkstoff deutlich gröber ausgebildet sind als beispielsweise im konventionellen Schnellarbeitsstählen. Trotz der gröberen Karbide sind die Festigkeitswerte, gemessen im Stauchversuch zwischen 25 und 300°C und beschrieben durch die Stauchgrenze Rd 0,2 des Sinterwerkstoffs, vergleichbar. Die Warmhärte dagegen ist höher als die der Vergleichswerkstoffe.
  • Die Offenbarung wird nachfolgend anhand von Beispielen und einer Referenz näher erläutert.
  • Beispiel 1
  • In Tabelle 1 ist die Zusammensetzungen einer Pulvermischung "Referenz" und einer Vergleichsmischung "Vergleich 3" dargestellt. Fertigungstechnische und anwendungstechnische Zusätze (z.B. Sulfide) sind in "Sonstige" enthalten. Einige Beispiele für eingesetzte oder im Sinne der Referenz einsetzbare Mischungskomponenten sind als Tabelle 2 (Ausgangspulver) zusammengestellt. Tabelle 1: Pulvermischungen ohne Festschmierstoff, prozessbedingte Zusätze und Cu-I nfiltranten
    K1 K2 Graphit K12 Cu K6 Sonstige
    Vergleich 3 Gew.-% 84 0,3 0,3 5 10 0,4
    Referenz Gew.-% 84 0,3 0,3 5 10 0,4
    Tabelle 2: Für referenzierte Mischungen verwendbare Ausgangspulver (Angaben in Gew.-%). Die angegebenen Zusammensetzungen sind als Mittelwerte aus verschiedenen Lieferungen zu verstehen, die um ca. 10% bis 30 %, bezogen auf den Endwert und den Absolutgehalt, abweichen können.
    Bezeichnung C P Mn Si Cr Ni Mo Cu V W Co Fe Rest
    K1 1,0 0,4 0,4 4,0 5,0 3,0 6,0 1,0 78,9
    K2 1,5 0,5 16,0 1,5 1,0 1,5 60,3
    K3 0,8 0,04 0,3 0,45 4,0 0,4 5,0 0,4 2,0 6,2 1,0 76,41 3
    K4 70 30
    K5 4 0,5 1,5 Rest
    K6 0,1 2,6 8,5 28,5 50,8
    K7 0,3 3,4 17,5 28,0 60,3
    K8 0,1 2,6 8,5 28,5 60,3
    K9 0,2 1,3 17,0 22,0 59,5
    K10 3,4 17,5 28,0 51,1
    K11 0,1 0,1 2,4 9,2 8,8 20,1 59
    K12 15 85
    K14 100
  • In einem ersten Schritt werden die in Tabelle 1 aufgelisteten und in Tabelle 2 näher spezifizierten Pulver in einem Taumelmischer für 30 min gemischt. Danach werden diese Mischungen bei einem Pressdruck von 700 MPa zu Ventilsitzringen (φa: 30 mm, φi: 23 mm; Höhe: 6 mm) verpresst. Eine Teilmenge der Ringe wird bei einer Temperatur von 1.110 bis 1.125 °C (ca. 30 min) unter N2-H2 (17 bis 25 Vol.-% H2) in einem Durchlaufofen gesintert. Eine andere Teilmenge wird einer Sinterung bei 1.132 bis 1.145 °C (ca. 30 min) unter N2-H2 (17 bis 25 Vol.-% H2) unterzogen.
  • Die verwendeten Sinterbedingungen und erreichten Sinterdichten sind in Tabelle 3 (Sinterdichten) zusammengefasst. Tabelle 3: Sinterbedingungen für die Pulvermischung "Referenz" und die zu vergleichende Mischung "Vergleich 3
    Sinterbedingungen und Sinterdichte
    Tmax1 Dauer Tmax2 Dauer
    °C min °C min
    Vergleich 3 1110-1125 20-33 1132-1145 20-33
    Referenz 1110-1125 20-33 1132-1145 20-33
    Atmosphäre: N2-H2 (17-25 Vol-% H2)
    Tabelle 4: Wärmebehandlung für die Pulvermischung "Referenz" und die zu vergleichende Mischung "Vergleich 3"
    Mischung zum Vergleich Varianten der Wärmebehandlung nach dem Sintem
    Anlassen Vergüten
    T Dauer Abkühlung T Dauer Abkühlung Anlassen Dauer Abkühlung
    °C h K/min °C h °C min K/min
    Vergleich 3 620 2 5 - 10 880 2 Öl 580 40 5 - 10
    Referenz 620 2 5 - 10 880 2 Öl 580 40 5 - 10
  • Bedingt durch die unterschiedlichen Sinterbedingungen und das Anlassen ergeben sich die in Tabelle 1 dargestellten mittleren Durchmesser für die gebildeten Sondercarbide (MoC, VC, Cr2C3) (siehe Tabelle 4).
  • Die Maximaltemperatur bei der Sinterung betrug 1.132 bis 1.145°C. Die Haltezeit betrug bei der vorstehend genannten Temperatur 20 bis 33 Minuten. Als Atmosphäre wurde ein Gemisch aus N2-H2 mit einen H2-Anteil von 17 bis 25% verwendet.
  • Nach der Sinterung wurde das Sintermaterial gem. Tabelle 4 (Wärmebehandlung) wärmebehandelt. Hierfür wurde sowohl ein einfaches Anlassen, bei Temperaturen zwischen 550 und 620°C als auch ein Vergüten des Materials, d.h. Härten bei 850 bis 950°C - Ölabschreckung - Anlassen bei 510 bis 610°C verwendet. Da die Unterschiede in den Eigenschaften, insbesondere im Verschleißverhalten, Bearbeitbarkeit und Kriechverhalten gering sind, wird das angelassene Material verwendet.
  • Eine Ausmessung der Sonderkarbide zeigte bei herkömmlichem Vergleichsmaterial einen mittleren Durchmesser von 2,1 µm und bei dem referenzierten Sintermaterial von 4,0 µm. Neben den Mittelwerten sind die Minimal- und Maximalwerte in der Tabelle 1 angegeben. Tabelle 5: Mittlerer Durchmesser der Sonderkarbide in der gesinterten Pulvermischung "Referenz" und in der zu vergleichende Mischung "Vergleich 3"
    mittlerer Durchmesser [µm]
    Min. MW Max.
    Vergleich 3 0,5 2,1 5,1
    Referenz 1,1 4,0 12,1
  • In Tabelle 6 sind sowohl die Härte als auch die 0,2% - Stauch-Dehngrenze bei Raumtemperatur und bei 300°C dargestellt. Überraschenderweise sind trotz der gröberen Karbide die Festigkeitswerte des referenzierten Sintermaterials vergleichbar mit denen von herkömmlichem Vergleichsmaterial (z. B. Vergleich 3) Tabelle 6: Festigkeitskennwerte und Härten nach dem Sintern/ Wärmebehandeln der Pulvermischung "Referenz" und der zu vergleichende Mischung "Vergleich 3"
    T [°C] Rd0.2 [MPa] Härte [HV10]
    Referenz Vergleich 3 Referenz Vergleich 3
    25 1.400 1.813 415 391
    300 1.328 1.195 372 349
  • Die Leistungsfähigkeit wird in einem tribologischen System über den Gesamtverschleiß am Ventilsitzring und Ventilsitz eines mit Stellit F gepanzerten Ventils bewertet. Die nicht grafisch dargestellte Fig. 1 gibt die entsprechenden Ergebnisse für die gesinterten/wärmebehandelten Ventilsitzring-Ventil-Kombinationen der Pulvermischung "Referenz" und der zu vergleichende Mischung "Vergleich 3" wieder, sowie für zwei weiteren Mischungen die dem Stand der Technik entsprechen.
  • Fig. 1:
    (nicht grafisch dargestellt) Gesamtverschleiß - nach motorischer Erprobung im Tribosystem "Ventilsitzring - Ventilsitz", wobei neben dem hergestellten Ventilsitzring ("Referenz") Ventilsitzringe aus den Vergleichswerkstoffen "Vergleich 1", "Vergleich 2" und "Vergleich 3" betrachtet wurden
  • Die nicht grafisch dargestellte Fig. 1 verdeutlicht die verbesserte Leistungsfähigkeit des tribologischen Systems "Referenz". Durch geschickte Kombination der Herstellung und der Zusammensetzung des referenzierten Sinterwerkstoffs und Kombination mit einem zumindest im Sitzbereich mit Stellite F gepanzerten Ventil wird die Festkörperreibung der tribologischen Partner herabgesetzt und damit der Verschleiß erheblich reduziert. Der gemessene Gesamtverschleiß ist in diesem Fall reduziert.
  • Im Tribosystem "Vergleich 1" besteht der Ventilsitzring aus in Gew.-%: C: 1,5; S: 0,6 Cr: 3; Mo: 5 bis 15; Cu: 10 bis 20; V: 2; Fe: Rest; andere: 4.
  • "Vergleich 2" ist ein Co-haltiger Werkstoff, der neben diesem teuren Rohstoff hohe Anteile an den Refraktärmetallen Mo und W enthält. Im Detail besteht der Funktionsbereich aus den Elementen in Gew.-%: C: 0,5 bis 2; Mn: 1; Cr: 3 bis 6; Mo: 8 bis 15; Co: 16 bis 22; W: 2 bis 5; V: 1 bis 3; Cu: 12 bis 22; Fe: Rest; andere: 3.
  • Bei den Tribosystemen "Vergleich 3" hat der Ventilsitzring folgende Zusammensetzung in Gew.-%: 0,5 bis1,5; Si: 0,2 bis 1,0; Cr: 2,5-5; Mo:5 bis 8; W: 3 bis 6; V:1 bis 4; Cu: 10 bis 20; Fe: Rest; andere: 3 und bei "Referenz" hat der VSR die Zusammensetzung: C: 1 bis 1,8; Si: 0,2 bis 1,8; Mn: 0,6; Cr: 10 bis 15; Mo:2,5 bis 4,5; V:0,4 bis 1,0; Cu: 0,8 bis 1,5; Fe: Rest; andere: 3.
  • Die Tribosysteme "Vergleich 1" bis "Vergleich 3" basieren auf herkömmlichen Ventilsitzringmaterialen, wobei "Vergleich 1" im Gesamtverschleiß willkürlich auf 100 % festgelegt wurde.
  • Im Unterschied zu "Vergleich 1" bis "Vergleich 3" enthält der Ventilsitzring "Referenz" deutlich geringe Anteile teurer Elemente und erreicht einen signifikant geringeren Gesamtverschleiß.
  • Beispiel 2
  • Vergleicht man die in Beispiel 1 (Fig. 1, nicht geaphisch dargestellt) beschriebenen Werkstoffe (Vergleich 1, Vergleich 3 und Referenz) in einem Test, bei dem gepanzerte (Stellit F) und nitrierte X50-Ventile als Tribopartner verwendet werden, zeigt sich nach 100 h motorischem Test, dass sich der Gesamtverschleiß (Fig. 2) bei nitriertem Auslassventil, nur geringfügig gegenüber dem eines gepanzerten Ventils mit referenziertenm Werkstoff erhöht. Den marktüblichen Vergleichswerkstoffen Vergleich 1 und Vergleich 3 ist diese Tribopaarung deutlich überlegen.
    Figure imgb0001
  • Beispiel 3
  • Die in Beispiel 1 beschriebenen Ventilsitz-Werkstoffe (Vergleich 3 und Referenz) zeigen in einem motorischen Test (500 h, Kalt-Warm-Dauerlauf) mit unbeschichteten bzw. unbehandelten Nimonic 80 - Auslassventilen mit einem sehr geringen Gesamtverschleiß. Der Verschleiß am Ventilsitzring und am Ventilteller ist so gering, dass er nicht messbar ist. Beim Werkstoff (Referenz) sind noch ursprüngliche Bearbeitungsspuren zu erkennen. Da der referenzierte Werkstoff durch die Verwendung geringer Mengen an Sonderkarbiden besonders kostengünstig ist, ergibt sich bei vergleichbarem technischem (nicht messbarem Gesamtverschleiß) Niveau ein signifikanter wirtschaftlicher Vorteil gegenüber dem Vergleichswerkstoff "Vergleich 3".

Claims (9)

  1. Tribologisches System, umfassend einen aus Sinterwerkstoff hergestellten Ventilsitzring und ein unbehandeltes oder zumindest im Sitzbereich gehärtetes und/oder gepanzertes Ventil, dadurch gekennzeichnet, dass der Sinterwerkstoff durch Pressen und Sintern einer Pulvermischung mit einer Zusammensetzung von
    a) 5 bis 45 Gew.-% einer oder mehrerer Hartphasen auf Fe-Basis,
    b) 0 bis 2 Gew.-% Graphitpartikel, 0 bis 2 Gew.-% MnS-, 0 bis 2 Gew.-% MoS2-, 0 bis 2 Gew.-% FeP-Pulver,
    c) 0 bis 7 Gew.-% Cu- und 0 bis 4 Gew.-% Co-Pulver,
    d) 0,1 bis 1,0 Gew.-% eines Presshilfsmittels, und als Rest
    e) Schnellarbeitsstahl mit einer Zusammensetzung von 14 bis 18 Gew.-% Cr, 1,2 bis 1,9 Gew.-% C, 0,1 bis 0,9 Gew.-% Si, 0,5 bis 2,5 Gew.-% V, 0,5 bis 2,5 Gew.-% W, 0,5 bis 2,5 Gew.-% Mo, und als Rest Fe sowie herstellungsbedingte Verunreinigungen, insbesondere durch Ni, Cu, Co, Ca und/oder Mn mit Anteilen < 1,5 Gew.-%, erhältlich ist,
    gekennzeichnet durch eine oder mehrere Hartphasen auf Fe-Basis mit einer Zusammensetzung von < 0,2 Gew.-% C, 26 bis 32 Gew.-% Mo, 8 bis 12 Gew.-% Cr, 2,2 bis 3 Gew.-% Si.
  2. Tribologisches System, umfassend einen aus Sinterwerkstoff hergestellten Ventilsitzring und ein unbehandeltes oder zumindest im Sitzbereich gehärtetes und/oder gepanzertes Ventil, dadurch gekennzeichnet, dass der Sinterwerkstoff durch Pressen und Sintern einer Pulvermischung mit einer Zusammensetzung von
    a) 5 bis 45 Gew.-% einer oder mehrerer Hartphasen auf Fe-Basis,
    b) 0 bis 2 Gew.-% Graphitpartikel, 0 bis 2 Gew.-% MnS-, 0 bis 2 Gew.-% MoS2-, 0 bis 2 Gew.-% FeP-Pulver,
    c) 0 bis 7 Gew.-% Cu- und 0 bis 4 Gew.-% Co-Pulver,
    d) 0,1 bis 1,0 Gew.-% eines Presshilfsmittels, und als Rest
    e) Schnellarbeitsstahl mit einer Zusammensetzung von 14 bis 18 Gew.-% Cr, 1,2 bis 1,9 Gew.-% C, 0,1 bis 0,9 Gew.-% Si, 0,5 bis 2,5 Gew.-% V, 0,5 bis 2,5 Gew.-% W, 0,5 bis 2,5 Gew.-% Mo, und als Rest Fe sowie herstellungsbedingte Verunreinigungen, insbesondere durch Ni, Cu, Co, Ca und/oder Mn mit Anteilen < 1,5 Gew.-%,
    erhältlich ist,
    gekennzeichnet durch eine oder mehrere Hartphasen auf Fe-Basis mit einer Zusammensetzung von < 0,3 Gew.-% C, 26 bis 32 Gew.-% Mo, 14 bis 20 Gew.-% Cr, 2,9 bis 4,2 Gew.-% Si.
  3. Tribologisches System nach Anspruch 1 oder 2, gekennzeichnet durch 0 bis 40 Gew.-% eines reinen Fe-Basispulvers und 0 bis 40 Gew.-% eines Fe-Basispulvers.
  4. Tribologisches System, umfassend einen aus Sinterwerkstoff hergestellten Ventilsitzring und ein unbehandeltes oder zumindest im Sitzbereich gehärtetes und/oder gepanzertes Ventil, dadurch gekennzeichnet, dass der Sinterwerkstoff durch Pressen und Sintern einer Pulvermischung mit einer Zusammensetzung von
    a) 5 bis 45 Gew.-% einer oder mehrerer Hartphasen auf Fe-Basis,
    b) 0,5 bis 9,9 Gew.-% einer Hartphase auf Co-Basis,
    c) 0 bis 2 Gew.-% Graphitpartikel, 0 bis 2 Gew.-% MnS-, 0 bis 2 Gew.-% MoS2-, 0 bis 2 Gew.-% FeP-Pulver,
    d) 0 bis 7 Gew.-% Cu- und 0 bis 4 Gew.-% Co-Pulver,
    e) 0,1 bis 1,0 Gew.-% eines Presshilfsmittels, und als Rest
    f) Schnellarbeitsstahl mit einer Zusammensetzung von 14 bis 18 Gew.-% Cr, 1,2 bis 1,9 Gew.-% C, 0,1 bis 0,9 Gew.-% Si, 0,5 bis 2,5 Gew.-% V, 0,5 bis 2,5 Gew.-% W, 0,5 bis 2,5 Gew.-% Mo, und als Rest Fe sowie herstellungsbedingte Verunreinigungen, insbesondere durch Ni, Cu, Co, Ca und/oder Mn mit Anteilen < 1,5 Gew.-%.
  5. Tribologisches System nach einem der vorstehenden Patentansprüche, gekennzeichnet durch ein im Sitzbereich unbehandeltes Ventil, wobei das Ventil aus einer Mischung mit einer Zusammensetzung in Gew.-% 0,04 bis 0,1 C, bis 1,0 Si, bis 1,0 Mn, bis 0,02 P, bis 0,015 S, 18,0 bis 21,0 Cr, > 65,0 Ni, bis 3,0 Fe, bis 2,0 Co, 1,0 bis 1,8 AI und 1,8 bis 2,7 Ti, oder einer Mischung mit einer Zusammensetzung in Gew.-% bis 0,08 C, bis 0,5 Si, bis 0,5 Mn, bis 0,015 P, bis 0,01 S, 13,5 bis 15,5 Cr, 30,0 bis 33,5 Ni, 0,4 bis 1,0 Mo, 1,6 bis 2,2 AI, 2,3 bis 2,9 Ti, 0,4 bis 0,9 Nb und als Rest Fe, oder einer anderen Nickelbasislegierung besteht.
  6. Tribologisches System nach einem der Patentansprüche 1 bis 4, dadurch gekennzeichnet, dass das Ventil zumindest im Sitzbereich nitriert und/oder mit einem Material auf Fe- oder Co-Basis gepanzert ist.
  7. Tribologisches System nach einem der Patentansprüche 1 bis 4 und 6, gekennzeichnet durch eine zumindest im Sitzbereich des Ventils ausgebildete Nitrierschicht mit einer Dicke > 10 µm.
  8. Tribologisches System nach einem der Patentansprüche 1 bis 4, 6 und 7, gekennzeichnet durch eine zumindest im Sitzbereich des Ventils ausgebildete Panzerung mit einer Schichtstärke von > 200 µm und einem Co-Gehalt und/oder Fe-Gehalt von > 40%.
  9. Tribologisches System nach einem der vorstehenden Patentansprüche, dadurch gekennzeichnet, dass der Sinterwerkstoff während des Sintervorgangs mit einem Infiltranten auf Cu-Basis infiltriert worden ist.
EP16735845.6A 2015-07-21 2016-06-30 Tribologisches system umfassend einen ventilsitzring und ein ventil Active EP3325194B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015213706.6A DE102015213706A1 (de) 2015-07-21 2015-07-21 Tribologisches System, umfassend einen Ventilsitzring und ein Ventil
PCT/EP2016/065368 WO2017012841A1 (de) 2015-07-21 2016-06-30 Tribologisches system, umfassend einen ventilsitzring und ein ventil

Publications (2)

Publication Number Publication Date
EP3325194A1 EP3325194A1 (de) 2018-05-30
EP3325194B1 true EP3325194B1 (de) 2020-05-20

Family

ID=56363826

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16735845.6A Active EP3325194B1 (de) 2015-07-21 2016-06-30 Tribologisches system umfassend einen ventilsitzring und ein ventil

Country Status (5)

Country Link
US (1) US10612432B2 (de)
EP (1) EP3325194B1 (de)
JP (1) JP6767398B2 (de)
DE (1) DE102015213706A1 (de)
WO (1) WO2017012841A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179590A1 (ja) * 2017-03-28 2018-10-04 株式会社リケン 焼結バルブシート
RU2645530C1 (ru) * 2017-06-19 2018-02-21 Юлия Алексеевна Щепочкина Спеченный антифрикционный материал на основе железа
DE102017218123A1 (de) 2017-10-11 2019-04-11 Mahle International Gmbh Verfahren zum Herstellen eines Ventilsitzrings auf pulvermetallurgischem Wege
CN108441744B (zh) * 2018-02-06 2020-04-21 湘潭大学 一种自润滑减摩耐磨合金材料及其制备方法
DE102018209682A1 (de) * 2018-06-15 2019-12-19 Mahle International Gmbh Verfahren zum Herstellen eines pulvermetallurgischen Erzeugnisses
DE102018219686A1 (de) * 2018-11-16 2020-05-20 Mahle International Gmbh Verfahren zum Herstellen eines mit Kupfer infiltrierten Ventilsitzrings
DE102020202737A1 (de) 2020-03-04 2021-09-09 Mahle International Gmbh Tribologisches System, Verfahren zum Herstellen eines tribologischen Systems und Brennkraftmaschine mit einem tribologischen System
CN113789482A (zh) * 2021-09-01 2021-12-14 安徽金亿新材料股份有限公司 一种高吸能嫦娥钢、气门座圈及其制备方法
FR3133331A1 (fr) * 2022-03-11 2023-09-15 Renault S.A.S Poudre en matériau composite métallique pour projection thermique et procédé de fabrication d’une première pièce sur une deuxième pièce à partir d’une telle poudre
US11959041B2 (en) * 2022-08-31 2024-04-16 Robert Bosch Gmbh Tribological system

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH252873A (fr) * 1946-03-14 1948-01-31 Villars Julio Dispositif de levage.
SE8106207L (sv) * 1980-11-10 1982-05-11 Teledyne Ind Snabbstal och andra verktygsstal
KR890004522B1 (ko) * 1982-09-06 1989-11-10 미쯔비시긴조구 가부시기가이샤 동용침 철계소결합금 부재의 제조방법과 그 방법에 의하여 제조된 2층 밸브 시이트
DE3935496C1 (en) * 1989-10-25 1990-07-26 Mercedes-Benz Aktiengesellschaft, 7000 Stuttgart, De (Exhaust) valve of internal combustion engine - made at least completion of intermetallic phases of nickel and aluminium
GB9021767D0 (en) * 1990-10-06 1990-11-21 Brico Eng Sintered materials
DK0521821T3 (da) 1991-07-04 1996-08-26 New Sulzer Diesel Ag Udstødningsventil til en dieselforbrændingsmotor og fremgangsmåde til fremstilling af ventilen
GB9624999D0 (en) * 1996-11-30 1997-01-15 Brico Eng Iron-based powder
JP3469435B2 (ja) * 1997-06-27 2003-11-25 日本ピストンリング株式会社 内燃機関用バルブシート
JPH1162525A (ja) * 1997-08-07 1999-03-05 Fuji Oozx Inc 内燃機関用バルブ及びその製造方法
JP2001050020A (ja) 1999-05-31 2001-02-23 Nippon Piston Ring Co Ltd 内燃機関用の弁装置
JP3596751B2 (ja) 1999-12-17 2004-12-02 トヨタ自動車株式会社 焼結合金配合用硬質粒子、耐摩耗性鉄基焼結合金、耐摩耗性鉄基焼結合金の製造方法及びバルブシート
US7294167B2 (en) * 2003-11-21 2007-11-13 Hitachi Powdered Metals Co., Ltd. Alloy powder for forming hard phase and ferriferous mixed powder using the same, and manufacturing method for wear resistant sintered alloy and wear resistant sintered alloy
GB2440737A (en) * 2006-08-11 2008-02-13 Federal Mogul Sintered Prod Sintered material comprising iron-based matrix and hard particles
KR101499707B1 (ko) * 2006-09-22 2015-03-06 회가내스 아베 (피유비엘) 야금 분말 조성물, 및 제조 방법
GB2451898A (en) 2007-08-17 2009-02-18 Federal Mogul Sintered Prod Sintered valve seat
CN101809180B (zh) 2007-09-28 2013-04-03 霍加纳斯股份有限公司 冶金粉末组合物及生产方法
JP5122904B2 (ja) * 2007-10-05 2013-01-16 日立粉末冶金株式会社 焼結複合摺動部品の製造方法
US8163232B2 (en) * 2008-10-28 2012-04-24 University Of Utah Research Foundation Method for making functionally graded cemented tungsten carbide with engineered hard surface
JP5742447B2 (ja) * 2011-05-09 2015-07-01 大同特殊鋼株式会社 高硬度肉盛合金粉末
EP2570507A1 (de) * 2011-09-19 2013-03-20 Sandvik Intellectual Property AB Verfahren zur Herstellung von Schnelldrehstahl
US20130156555A1 (en) * 2011-12-15 2013-06-20 General Electric Company Braze materials, brazing processes, and components with wear-resistant coatings formed thereby
KR101438602B1 (ko) * 2012-04-02 2014-09-05 현대자동차 주식회사 밸브시트용 소결합금 및 이를 이용한 밸브시트 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP2018529015A (ja) 2018-10-04
DE102015213706A1 (de) 2017-01-26
JP6767398B2 (ja) 2020-10-14
US10612432B2 (en) 2020-04-07
WO2017012841A1 (de) 2017-01-26
US20180209311A1 (en) 2018-07-26
EP3325194A1 (de) 2018-05-30

Similar Documents

Publication Publication Date Title
EP3325194B1 (de) Tribologisches system umfassend einen ventilsitzring und ein ventil
DE102005022104B4 (de) Gesinterte Legierung auf Eisenbasis mit dispergierten harten Partikeln
EP0372223B1 (de) Sinterwerkstoff auf Kupferbasis, dessen Verwendung sowie Verfahren zur Herstellung von Formteilen aus dem Sinterwerkstoff
DE60300224T2 (de) Sinterlegierung für Ventilsitze, Ventilsitz und Verfahren zu seiner Herstellung
DE3851982T2 (de) Stahl mit hoher Abnutzungsbeständigkeit.
DE69906221T2 (de) Ventilsitz aus Metallpulver
DE2846122C2 (de) Sinterlegierung für die Herstellung von Gleitelementen für Motoren
DE102006048442B4 (de) Fertigungsverfahren für ein verschleißfestes Sinterelement, einen gesinterten Ventilsitz, und Fertigungsverfahren hierfür
DE69412685T2 (de) Ventilschaftführung, hergestellt aus einer Sinterlegierung auf Eisen-Basis mit sehr guter Beständigkeit gegen Verschleiss und Abrieb
DE3048035C2 (de) Verwendung einer Legierung als Werkstoff zur Herstellung von Sinterkörpern und Verfahren zur Herstellung eines verschleißfesten Sinterkörpers
DE60306300T2 (de) Hartstoffpartikel, verschleissbeständige Eisenbasissinterlegierung, Verfahren ihrer Herstellung und Ventilsitz
DE3327282A1 (de) Sinterlegierung fuer ventilsitze
EP3007842B1 (de) Verfahren zur herstellung von warmbeständigen und verschleissfesten formteilen, insbesondere motorkomponenten
DE2851100C3 (de) Verschleißfeste Sinterlegierung
DE3015897A1 (de) Verschleissfeste sinterlegierung
DE3224420C2 (de) Verfahren zur Nachbehandlung eines gesinterten Gleitelements
DE4112892C2 (de) Kolbenring
DE10236015B4 (de) Gesinterte Legierung für einen Ventilsitz mit hervorragender Verschleißbeständigkeit und ein Verfahren zur Herstellung hierfür
DE10319828B4 (de) Gesintertes Kettenrad und Verfahren zur Herstellung hierfür
DE69503591T2 (de) Wärmebeständige, gesinterte Eisen-Legierung für einen Ventilsitz
DE68917869T2 (de) Hochfestes Gusseisen mit hohem Chromgehalt und daraus hergestellte Ventilkipphebel.
DE60300728T2 (de) Sinterlegierung auf Eisenbasis zur Verwendung als Ventilsitz
DE102012202859A1 (de) Ventilsystem zur Ladungswechselsteuerung
EP2052096B1 (de) Stahlkolbenring
DE69703589T2 (de) Metallpulvermischung auf eisenbasis und damit hergestellter komponente

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171208

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: JAEGGI, PETER

Inventor name: WINTRICH, KLAUS

Inventor name: RUCH, ROLAND

Inventor name: SCHOLL, ROLAND

Inventor name: HECKENDORN, HEIKO

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190322

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 19/07 20060101ALI20191018BHEP

Ipc: C22C 33/02 20060101ALI20191018BHEP

Ipc: C22C 38/46 20060101ALI20191018BHEP

Ipc: C22C 22/00 20060101ALI20191018BHEP

Ipc: C22C 38/42 20060101ALI20191018BHEP

Ipc: C22C 38/44 20060101ALI20191018BHEP

Ipc: B22F 5/00 20060101AFI20191018BHEP

Ipc: C22C 38/04 20060101ALI20191018BHEP

Ipc: B22F 5/10 20060101ALI20191018BHEP

Ipc: C22C 38/52 20060101ALI20191018BHEP

Ipc: C22C 38/34 20060101ALI20191018BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200107

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016010001

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1272284

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200615

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200921

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200920

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200821

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200820

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016010001

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200630

26N No opposition filed

Effective date: 20210223

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200520

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1272284

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240527

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240619

Year of fee payment: 9