EP1444421B1 - Verfahren zur herstellung eines ventilsitzes - Google Patents

Verfahren zur herstellung eines ventilsitzes Download PDF

Info

Publication number
EP1444421B1
EP1444421B1 EP02792724A EP02792724A EP1444421B1 EP 1444421 B1 EP1444421 B1 EP 1444421B1 EP 02792724 A EP02792724 A EP 02792724A EP 02792724 A EP02792724 A EP 02792724A EP 1444421 B1 EP1444421 B1 EP 1444421B1
Authority
EP
European Patent Office
Prior art keywords
additional material
cylinder head
valve seat
weight
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02792724A
Other languages
English (en)
French (fr)
Other versions
EP1444421A1 (de
Inventor
Jürgen Claus
Reiner Heigl
Harald Pfeffinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
DaimlerChrysler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG filed Critical DaimlerChrysler AG
Publication of EP1444421A1 publication Critical patent/EP1444421A1/de
Application granted granted Critical
Publication of EP1444421B1 publication Critical patent/EP1444421B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/02Selecting particular materials for valve-members or valve-seats; Valve-members or valve-seats composed of two or more materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/02Selecting particular materials for valve-members or valve-seats; Valve-members or valve-seats composed of two or more materials
    • F01L3/04Coated valve members or valve-seats
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • Y10T29/49231I.C. [internal combustion] engine making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • Y10T29/49298Poppet or I.C. engine valve or valve seat making
    • Y10T29/49306Valve seat making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49405Valve or choke making
    • Y10T29/49409Valve seat forming

Definitions

  • the invention relates to a process for the preparation a valve seat for a cylinder head of an internal combustion engine according to the preamble of claims 1, 16, 23 and 29 more defined type. Furthermore, concerns the invention a valve seat assembly for a Cylinder head of an internal combustion engine.
  • From DE 35 17 077 C1 is a method for tanks the valve seat surface of a gas exchange valve known in which in a circumferential recess on the valve plate preferably of a nickel or cobalt base superalloy existing tank material introduced becomes.
  • the base material of the cylinder head consists essentially of aluminum and as Additional material for the formation of the valve seat is either Iron or nickel or an alloy with a used as the main component of these two metals.
  • a disadvantage here is that iron and nickel are essential higher melting point than that of aluminum have existing cylinder head. This can cause that upon exposure to a laser beam the cylinder head may already have melted, though the filler first begins to melt. Furthermore It can happen that the previously liquid iron already is solidified while the aluminum is still as Melt is present. This leads to the formation of intermetallic Phases in the border region between iron and Aluminum material, which is a very brittle microstructure May have consequences. That's why it's difficult to get a homogeneous one Connection between the valve seat to be created and to reach the base material of the cylinder head, whereby here also the different surface tensions the materials play a big role.
  • a cylinder head made of an aluminum alloy describes EP 02 28 282 B1.
  • the valve seats This cylinder head is made of a plated Copper alloy layer formed.
  • valve seats When using copper as the material for valve seats is, however, arises especially in diesel internal combustion engines the disadvantage that in the diesel fuel contained sulfur attacks the copper, causing Problems with exhaust gas development and corrosion arise.
  • the use of copper for valve seats is therefore useful only for Otto internal combustion engines and therefore can not be done in an economic way be used.
  • a method for surface treatment of light metal components, in particular of light metal pistons of Internal combustion engines, with a strength-increasing and / or wear-resistant filler material goes out of the DE 22 00 003 A1.
  • this object is achieved in that as an additional material an alloy or a mixture of an aluminum-iron alloy and at least one another ingredient is used.
  • the cylinder head acts it is in such an alloy to a to the base material of the cylinder head, which is often off an aluminum-silicon alloy consists of its own Alloy. This allows a very good metallurgical Connection without the formation of brittle intermetallic Phases at the interface between the coating or the additional material and the base material. This results in a low tendency to cracking.
  • the iron content in the invention for the Additional alloy used advantageously increases the hardness of the same.
  • Another alternative solution gives the task in that as an additional material an alloy or a mixture of an iron-carbon alloy and at least one other ingredient used becomes.
  • This composition is in principle based on proven Materials of valve seat rings mounted as separate parts, However, it can also by the inventive Melting process can be applied and has a high hardness and very good wear properties on.
  • Another alternative solution gives the task in that as an additional material an alloy or a mixture of a nickel-chromium alloy as well at least one further ingredient is used.
  • Such an alloy allows high temperature and wear resistance and has, if appropriate Selection of the other ingredient, very good tribological properties.
  • a valve seat assembly for a cylinder head of a Internal combustion engine is described in claim 46.
  • valve seats widening, annular areas that partially overlap, the areas exist between the actual ones Valve seats, the so-called valve webs, too from the higher quality material for the valve seats.
  • a part of a cylinder head 1 is a in their entirety not shown internal combustion engine shown.
  • the cylinder head 1 an inlet channel 2, which in the present Case, of course, also as outlet channel could be trained.
  • the inlet channel 2 is through a gas exchange valve 3, in the following the simplicity half referred to as valve 3, closed or opened, so that a fuel / air mixture from the Inlet 2 into a combustion chamber 4 of the cylinder head 1 can occur.
  • the cylinder head 1 is provided with a valve seat 5, at which the valve 3 in its closed Condition is applied and so the inlet channel 2 of the Combustion chamber 4 separates.
  • FIGS. 2 to 6 show various embodiments the valve seat 5, wherein the method for producing the respective valve seat 5 at a later date with reference to the Figures 7 and 8 will be described.
  • Fig. 3 is another embodiment of the valve seat 5, which are similar to those according to FIG Fig. 2 is.
  • valve seat 5 Another embodiment of the valve seat 5 show Figures 5 and 6, wherein here the valve seat 5 a much wider range than the ones described above Embodiments occupies.
  • the valve seats 5 are around an annular area 5a extended.
  • the individual areas 5a overlap partially so that the areas between the actual Valve seats 5, namely the so-called Valve bars, also from the higher quality material for the valve seats 5 exist.
  • Fig. 7 and Fig. 8 are two different methods for the production of the valve seat 5 shown.
  • a light metal alloy e.g. an aluminum-silicon alloy
  • an additional material 7 applied in the form of a powder.
  • the additional material 7 will be at a later date discussed in more detail.
  • Alternative to an aluminum-silicon alloy as the base material of the cylinder head 1 are of course other light metal alloys and optionally also cast iron or other alloys conceivable.
  • a nozzle 8 is arranged, which the additional material 7 in the direction of the cylinder head 1 outputs.
  • the additional material 7 on hits the cylinder head 1 so it is in the embodiment according to Fig. 7 process simultaneously from a laser beam 9 together with the outer layer of the base material of the cylinder head 1 melted to to produce a melt 10 on the cylinder head 1.
  • the laser beam 9 is as an energy source as well the use of an electron beam, not shown possible to get out of the additional material 7 by Incorporation of energy to produce the melt 10.
  • the nozzle 8 and the laser beam 9 constantly in one Continued circular motion.
  • the laser or Electron beam 9 in the feed direction according to the arrow A has removed from the melt 10, this solidifies a layer 11 which forms the valve seat 5.
  • Fig. 8 shows an alternative method of manufacture the valve seat 5, wherein the additional material 7, for example in the form of a paste, a wire, a sintered body or a powder preform applied to the cylinder head 1 or in the groove. 6 introduced and then with the laser beam 9 or also with an electron beam to the melt 10th is melted. Here, too, arises again the melt 10 after removal of the laser beam 9 in Arrow direction A, the layer 11, the valve seat. 5 forms. This process is called a two-step process designated.
  • the additional material 7 by absorbing energy even before hitting the surface of the cylinder head 1 heated or partially or completely is melted, so can the primary Energy source, ie the laser beam 9 or the electron beam, introduced energy can be reduced.
  • the base material of the cylinder head 1 only slightly melted, causing the occurrence brittle phases and cracking in the interface between the cylinder head 1 and the valve seat 5 is reduced becomes. In this way, you can also otherwise less suitable materials than filler material 7 use. This procedure is especially for the described above, two-stage process well suited.
  • the region of the valve seat 5 may be provided a magnetic field, which the additional material 7 or from the additional material. 7 resulting melt 10 contoured and / or mixed, resulting in a more homogeneous distribution of the substances within the melt 10 leads. Furthermore, you can possibly in the melt 10 located in this way Outgas pores.
  • an alloy or a mixture of an aluminum-iron alloy as well be used at least one other ingredient.
  • the aluminum-iron alloy 6 - 13 % By weight of iron and 87-94% by weight of aluminum.
  • the additional material 7 1 - 3% by weight vanadium and / or 1 - 3% by weight Silicon included.
  • the additional material 7 30-55% by weight of nickel and then optionally 3 - Contains 15% by weight of copper.
  • the additional material 7 5 - 20% by weight of nickel and then optionally 35-45 Weight% copper included.
  • Nickel and copper arise Nickel-aluminum or copper-aluminum phases, which increase the hardness of the valve seat 5.
  • Another component of the additional material 7 can 0.2-1% magnesium by weight and 0.2-2% by weight Boron, titanium and / or scandium. This causes a finer formation of intermetallic phases and an improved homogeneity of the structure.
  • the additional material Contains 7 hard material components, which from a compound of a metal with carbon, Oxygen or nitrogen exist. Such hard materials increase the wear resistance of the valve seat 5 considerably.
  • the hard material components can homogeneously over the volume of the valve seat 5 be distributed or it is possible that the hard material components inhomogeneous over the volume of the valve seat 5 are distributed, wherein the content of the hard material components from the cylinder head 1 increase toward the surface of the valve seat 5.
  • the latter alternative ie a so-called Gradient layer, leads to an increasing Concentration of hard constituents to the surface of the valve seat 5, whereby the hardness and thus the wear characteristics of the valve seat. 5 increase.
  • this is the susceptibility to cracking in the connection zone, ie at the connection surface the valve seat 5 with the cylinder head 1, reduced.
  • an aluminum-iron alloy or a mixture of these metals can also be an alloy or a filler 7 Mixture of aluminum and titanium are used.
  • the additional material 7 for example 30-40% by weight of aluminum and 60-70% by weight Titanium included.
  • the additional material 7 13 - 17% by weight Aluminum and 83-87% by weight of titanium may also be provided.
  • the additional material 7 can in this case at least contain another component, namely 0.5 - 5 Weight% or 17-50% by weight of niobium, resulting in reduction the embrittlement tendency very well suited is. It is also possible that the additional material 7 0.5 - 5% by weight chromium, vanadium, manganese, molybdenum and / or tantalum.
  • a third possibility for the formation of the additional material 7 may be that for the same an alloy or a mixture of an iron-carbon alloy and at least one other ingredient is used.
  • Manganese and / or 5 - 15% by weight molybdenum and / or Contains cobalt By the use of nickel and / or chromium can form carbides that reduce the hardness of the valve seat 5 increase.
  • the additional material 7 contains 10 to 25% by weight of copper. Cobalt, copper and molybdenum improve lubricating properties, Copper's thermal conductivity.
  • a fourth way to carry out the process is that as additional material 7 an alloy or a mixture of a nickel-chromium alloy and used at least one other ingredient is then, in which case the nickel-chromium alloy 10-30 Containing% by weight of chromium and 70-90% by weight of nickel can.
  • the additional material 7 10 - 40 contained by weight% molybdenum. Furthermore, it is it is possible that the additional material 7 5 - 10% by weight Contains copper and / or cobalt. It is also possible that the additional material 7 5 - 12% by weight aluminum and 0.1-2% by weight of carbon and / or yttrium contains.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)
  • Lift Valve (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines Ventilsitzes für einen Zylinderkopf einer Brennkraftmaschine nach der im Oberbegriff der Ansprüche 1, 16, 23 und 29 näher definierten Art. Des weiteren betrifft die Erfindung eine Ventilsitzanordnung für einen Zylinderkopf einer Brennkraftmaschine.
Die DE 199 12 889 A1 beschreibt ein gattungsgemäßes Verfahren zur Herstellung eines Ventilsitzes. Dabei wird ein Zusatzmaterial, nämlich eine Legierung oder ein Gemisch aus einer Aluminium-Silizium-Legierung und Nickel, durch einen Laserstrahl mit dem Basismaterial des Zylinderkopfes verschmolzen.
Aus der DE 35 17 077 C1 ist ein Verfahren zum Panzern der Ventilsitzfläche eines Gaswechselventils bekannt, bei welchem in eine umlaufende Vertiefung am Ventilteller vorzugsweise aus einer Nickel- bzw. Kobaltbasis-Superlegierung bestehendes Panzermaterial eingebracht wird.
Ein Verfahren zur Beschichtung der Oberfläche von metallenen Werkstücken mit einem pulver- oder drahtförmig vorliegenden Zusatzwerkstoff beschreibt die DE 199 12 894 A1.
Ein weiteres derartiges Verfahren ist aus der EP 00 92 683 B1 bekannt. Das Basismaterial des Zylinderkopfes besteht dabei im wesentlichen aus Aluminium und als Zusatzmaterial zur Bildung des Ventilsitzes wird entweder Eisen oder Nickel bzw. eine Legierung mit einem dieser beiden Metalle als Hauptbestandteil verwendet.
Hierbei ist nachteilig, daß Eisen und Nickel einen wesentlich höheren Schmelzpunkt als der aus Aluminium bestehende Zylinderkopf aufweisen. Dies kann dazu führen, daß bei der Beaufschlagung mit einem Laserstrahl der Zylinderkopf bereits geschmolzen sein kann, wenn das Zusatzmaterial erst zu schmelzen beginnt. Außerdem kann es passieren, daß das zuvor flüssige Eisen bereits erstarrt ist, während das Aluminium noch als Schmelze vorliegt. Dies führt zur Bildung von intermetallischen Phasen im Grenzbereich zwischen Eisen- und Aluminiumwerkstoff, was ein sehr sprödes Gefüge zur Folge haben kann. Deshalb ist es schwierig, eine homogene Verbindung zwischen dem zu schaffenden Ventilsitz und dem Basismaterial des Zylinderkopfes zu erreichen, wobei hier auch die unterschiedlichen Oberflächenspannungen der Materialien eine große Rolle spielen.
Einen aus einer Aluminiumlegierung bestehenden Zylinderkopf beschreibt die EP 02 28 282 B1. Die Ventilsitze dieses Zylinderkopfes sind aus einer aufplattierten Kupferlegierungsschicht ausgebildet.
Wenn Kupfer als Material für Ventilsitze verwendet wird, entsteht jedoch insbesondere bei Dieselbrennkraftmaschinen der Nachteil, daß der im Dieselkraftstoff enthaltene Schwefel das Kupfer angreift, wodurch Probleme hinsichtlich Abgasentwicklung und Korrosion entstehen. Die Verwendung von Kupfer für Ventilsitze ist somit nur für Ottobrennkraftmaschinen sinnvoll und kann daher nicht in wirtschaftlicher Art und Weise eingesetzt werden.
In der DE 196 39 480 A1 ist ein Verfahren zur Innenbeschichtung von Zylinderlaufflächen mittels pulverförmiger Zusatzstoffe, die durch Laserstrahlung auflegiert werden, beschrieben.
Ein Verfahren zur Oberflächenvergütung von Leichtmetallbauteilen, insbesondere von Leichtmetallkolben von Brennkraftmaschinen, mit einem festigkeitssteigernden und/oder verschleißfesten Zusatzwerkstoff geht aus der DE 22 00 003 A1 hervor.
Es ist Aufgabe der vorliegenden Erfindung, alternative Verfahren zur Herstellung von Ventilsitzen für den Zylinderkopf einer Brennkraftmaschine zu schaffen.
Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß als Zusatzmaterial eine Legierung oder ein Gemisch aus einer Aluminium-Eisen-Legierung sowie wenigstens einem weiteren Bestandteil verwendet wird.
Bei entsprechender Ausführung des Zylinderkopfes handelt es sich bei einer derartigen Legierung um eine zum Grundwerkstoff des Zylinderkopfes, der häufig aus einer Aluminium-Silizium-Legierung besteht, arteigene Legierung. Dies ermöglicht eine sehr gute metallurgische Anbindung ohne die Bildung spröder intermetallischer Phasen an der Grenzfläche zwischen der Beschichtung bzw. dem Zusatzmaterial und dem Grundwerkstoff. Hierdurch ergibt sich eine geringe Neigung zur Rißbildung. Der Eisengehalt in der erfindungsgemäß für den Zusatzmaterial verwendeten Legierung steigert vorteilhafterweise die Härte derselben.
Eine alternative Lösung der Aufgabe ergibt sich dadurch, daß als Zusatzmaterial eine Legierung oder ein Gemisch aus Aluminium und Titan verwendet wird.
Auch hierbei gelten die bereits oben im Bezug auf die Verwendung einer arteigenen Legierung angegebenen Vorteile bezüglich einer geringen Neigung zur Rißbildung. Es entsteht vorteilhafterweise eine intermetallische Phase aus Titan und Aluminium, die Vorteile bezüglich der Härte, der Verschleißfestigkeit und der Temperaturstabilität dieser Legierung mit sich bringt.
Eine weitere alternative Lösung der Aufgabe ergibt sich dadurch, daß als Zusatzmaterial eine Legierung oder ein Gemisch aus einer Eisen-Kohlenstoff-Legierung sowie wenigstens einem weiteren Bestandteil verwendet wird.
Diese Zusammensetzung basiert im Prinzip auf bewährten Materialien von als separaten Teilen montierten Ventilsitzringen, sie kann jedoch ebenfalls durch das erfindungsgemäße Schmelzverfahren aufgebracht werden und weist eine hohe Härte und sehr gute Verschleißeigenschaften auf.
Eine weitere alternative Lösung der Aufgabe ergibt sich dadurch, daß als Zusatzmaterial eine Legierung oder ein Gemisch aus einer Nickel-Chrom-Legierung sowie wenigstens einem weiteren Bestandteil verwendet wird.
Eine derartige Legierung ermöglicht hohe Temperatur- und Verschleißfestigkeiten und besitzt, bei entsprechender Auswahl des weiteren Bestandteils, sehr gute tribologische Eigenschaften.
Sämtlichen der genannten Lösungen ist gemein, daß die Verbindung des Ventilsitzes mit dem Zylinderkopf sehr dauerhaft ist und somit in der Praxis äußerst gut eingesetzt werden kann. Des weiteren tragen die beschriebenen Gemische und Legierungen zu einer erheblichen Erhöhung der Prozeßsicherheit bei.
Eine Ventilsitzanordnung für einen Zylinderkopf einer Brennkraftmaschine ist in Anspruch 46 beschrieben.
Durch die erfindungsgemäßen, die Ventilsitze erweiternden, ringförmigen Bereiche, die sich teilweise überlappen, bestehen die Bereiche zwischen den eigentlichen Ventilsitzen, die sogenannten Ventilstege, auch aus dem hochwertigeren Werkstoff für die Ventilsitze. Hierdurch wird vorteilhafterweise die Rißanfälligkeit dieser Ventilstege und des zugehörigen Bereich des jeweiligen Brennraumes des Zylinderkopfes erheblich verringert. Dadurch ist in diesem Bereich eine höhere thermische und mechanische Belastung des Zylinderkopfes möglich.
Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen sowie aus den nachfolgend anhand der Zeichnung prinzipmäßig dargestellten Ausführungsbeispielen.
Es zeigt:
Fig. 1
ein in einem Zylinderkopf einer Brennkraftmaschine angeordnetes Ventil mit einem Ventilsitz;
Fig. 2
eine alternative Ausführungsform des Ventilsitzes in einer vergrößerten Darstellung;
Fig. 3
eine weitere alternative Ausführungsform des Ventilsitzes in einer vergrößerten Darstellung;
Fig. 4
eine weitere alternative Ausführungsform des Ventilsitzes in einer vergrößerten Darstellung;
Fig. 5
eine weitere alternative Ausführungsform des Ventilsitzes in einer vergrößerten Darstellung;
Fig. 6
eine weitere alternative Ausführungsform des Ventilsitzes in einer vergrößerten Darstellung;
Fig. 7
das erfindungsgemäße Verfahren als einstufiger Prozeß; und
Fig. 8
das erfindungsgemäße Verfahren als zweistufiger Prozeß.
In Fig. 1 ist ein Teil eines Zylinderkopfes 1 einer in ihrer Gesamtheit nicht dargestellten Brennkraftmaschine gezeigt. In an sich bekannter Weise weist der Zylinderkopf 1 einen Einlaßkanal 2 auf, welcher im vorliegenden Fall selbstverständlich auch als Auslaßkanal ausgebildet sein könnte. Der Einlaßkanal 2 wird durch ein Gaswechselventil 3, im folgenden der Einfachheit halber als Ventil 3 bezeichnet, verschlossen bzw. geöffnet, so daß ein Kraftstoff/Luft-Gemisch aus dem Einlaßkanal 2 in einen Brennraum 4 des Zylinderkopfes 1 eintreten kann.
Der Zylinderkopf 1 ist mit einem Ventilsitz 5 versehen, an welchem das Ventil 3 in seinem geschlossenen Zustand anliegt und so den Einlaßkanal 2 von dem Brennraum 4 trennt.
In den Figuren 2 bis 6 sind verschiedene Ausführungsformen des Ventilsitzes 5 dargestellt, wobei das Verfahren zur Herstellung des jeweiligen Ventilsitzes 5 zu einem späteren Zeitpunkt unter Bezugnahme auf die Figuren 7 und 8 beschrieben wird.
Der in einer umlaufenden Nut 6 des Zylinderkopfes 1 untergebrachte Ventilsitz 5 gemäß Fig. 2 weist eine Dicke von ca. d = 1 - 6 mm auf, ist an demjenigen Eckpunkt, der sich vollständig innerhalb des Zylinderkopfes 1 befindet, mit einem Radius r versehen und der Winkel α, den die Verbindungsfläche des Ventilsitzes 5 mit dem Zylinderkopf 1 gegenüber der Längsachse des Ventils 3 aufweist, beträgt ca. α = 0° - 45°. Durch den beschriebenen Aufbau, insbesondere durch die genannte Dicke d, ergibt sich eine ausreichende Verschleißreserve für eine eventuelle Nachbearbeitung, beispielsweise im Falle einer erforderlichen Reparatur.
In Fig. 3 ist eine weitere Ausführungsform des Ventilsitzes 5 dargestellt, welche ähnlich zu derjenigen gemäß Fig. 2 ist. Im Unterschied zu Fig. 2 ist jedoch der Winkel α gegenüber der Längsachse des Ventils 3 negativ, d.h. der Ventilsitz 5 weist eine Hinterschneidung mit einem Winkel von ca. α = 2 - 15° gegenüber der Nut 6 in dem Zylinderkopf 1 auf, die eine Verkeilung der Beschichtung bzw. des Ventilsitzes 5 gegen Herausfallen aus der Nut 6 bildet.
Die Dicke d des Ventilsitzes 5 gemäß Fig. 4 beträgt ca. d = 0,5 - 5 mm und der Winkel α der in diesem Fall gerade ausgeführten Verbindungsfläche des Ventilsitzes 5 mit dem Zylinderkopf 1 gegenüber der Längsachse des Ventils 3 beträgt ca. α = 45°, wobei selbstverständlich geringe Abweichungen möglich sind.
Bei sämtlichen Ausführungsformen gemäß der Figuren 2, 3 und 4 sind geometrische Platzeinsparungen gegenüber herkömmlichen Sitzringgeometrien möglich.
Eine weitere Ausführungsform des Ventilsitzes 5 zeigen die Figuren 5 und 6, wobei hier der Ventilsitz 5 einen weitaus größeren Bereich als bei den oben beschriebenen Ausführungsformen einnimmt. Mit anderen Worten, die Ventilsitze 5 sind um einen ringförmigen Bereich 5a erweitert. Die einzelnen Bereiche 5a überlappen sich teilweise, so daß die Bereiche zwischen den eigentlichen Ventilsitzen 5, nämlich die sogenannten Ventilstege, auch aus dem hochwertigeren Werkstoff für die Ventilsitze 5 bestehen. Dies führt zu einer erheblichen Verringerung der Rißanfälligkeit der Ventilstege und dem zugehörigen Bereich des jeweiligen Brennraumes 4 des Zylinderkopfes 1, so daß in diesem Bereich eine höhere thermische und mechanische Belastung des Zylinderkopfes 1 möglich ist. Die Dicke d des Ventilsitzes 5 beträgt d = 1 - 10 mm.
In Fig. 7 und Fig. 8 sind zwei unterschiedliche Verfahren zur Herstellung des Ventilsitzes 5 aufgezeigt. Auf das Basismaterial des Zylinderkopfes 1, beispielsweise einer Leichtmetall-Legierung, wie z.B. einer Aluminiurn-Silizium-Legierung, wird ein Zusatzmaterial 7 in Form eines Pulvers aufgebracht. Auf die Bestandteile des Zusatzmaterials 7 wird zu einem späteren Zeitpunkt näher eingegangen. Alternativ zu einer Aluminium-Silizium-Legierung als Basismaterial des Zylinderkopfes 1 sind selbstverständlich auch andere Leichtmetall-Legierungen und gegebenenfalls auch Grauguß- oder sonstige Legierungen denkbar.
Zum Aufbringen des Zusatzmaterials 7 ist im Bereich des zu bildenden Ventilsitzes 5 eine Düse 8 angeordnet, welche das Zusatzmaterial 7 in Richtung des Zylinderkopfes 1 ausgibt. Wenn das Zusatzmaterial 7 auf den Zylinderkopf 1 auftrifft, so wird es bei der Ausführungsform gemäß Fig. 7 prozeßsimultan von einem Laserstrahl 9 zusammen mit der äußeren Schicht des Basismaterials des Zylinderkopfes 1 aufgeschmolzen, um an dem Zylinderkopf 1 eine Schmelze 10 zu erzeugen. Statt des Laserstrahls 9 ist als Energiequelle auch der Einsatz eines nicht dargestellten Elektronenstrahls möglich, um aus dem Zusatzmaterial 7 durch Einbringung von Energie die Schmelze 10 zu erzeugen.
Um einen fortschreitenden Prozeß zu erreichen, werden die Düse 8 und der Laserstrahl 9 ständig in einer Kreisbewegung weiterbewegt. Wenn sich der Laser- oder Elektronenstrahl 9 in Vorschubrichtung gemäß dem Pfeil A von der Schmelze 10 entfernt hat, erstarrt diese zu einer Schicht 11, die den Ventilsitz 5 bildet.
Fig. 8 zeigt ein alternatives Verfahren zur Herstellung des Ventilsitzes 5, bei welchem das Zusatzmaterial 7 beispielsweise in Form einer Paste, eines Drahtes, eines Sinterkörpers oder eines Pulverpreformlings auf den Zylinderkopf 1 aufgebracht bzw. in die Nut 6 eingebracht und anschließend mit dem Laserstrahl 9 oder auch mit einem Elektronenstrahl zu der Schmelze 10 aufgeschmolzen wird. Auch hier entsteht wiederum aus der Schmelze 10 nach Entfernung des Laserstrahls 9 in Pfeilrichtung A die Schicht 11, die den Ventilsitz 5 bildet. Dieses Verfahren wird als zweistufiger Prozeß bezeichnet.
Wenn das Zusatzmaterial 7 durch Aufnahme von Energie bereits vor dem Auftreffen auf die Oberfläche des Zylinderkopfes 1 erwärmt bzw. teilweise oder vollständig aufgeschmolzen wird, so kann die durch die primäre Energiequelle, also den Laserstrahl 9 oder den Elektronenstrahl, eingebrachte Energie verringert werden. Dadurch wird das Basismaterial des Zylinderkopfes 1 nur geringfügig angeschmolzen, wodurch das Auftreten spröder Phasen und die Rißbildung in der Grenzfläche zwischen dem Zylinderkopf 1 und dem Ventilsitz 5 verringert wird. Auf diese Weise lassen sich auch ansonsten weniger geeignete Werkstoffe als Zusatzmaterial 7 verwenden. Diese Vorgehensweise ist besonders für den oben beschriebenen, zweistufigen Prozeß gut geeignet.
In nicht dargestellter Weise kann im Bereich des Ventilsitzes 5 ein Magnetfeld vorgesehen sein, welches das Zusatzmaterial 7 bzw. die aus dem Zusatzmaterial 7 entstehende Schmelze 10 konturiert und/oder durchmischt, was zu einer homogeneren Verteilung der Stoffe innerhalb der Schmelze 10 führt. Des weiteren können auf diese Weise eventuell in der Schmelze 10 sich befindliche Poren ausgasen.
Sowohl bei dem Verfahren gemäß Fig. 7 als auch bei dem Verfahren gemäß Fig. 8 können für das Zusatzmaterial 7 verschiedenartige Gemische und Legierungen verwendet werden, die im folgenden angegeben sind:
Als Zusatzmaterial 7 kann zunächst eine Legierung oder ein Gemisch aus einer Aluminium-Eisen-Legierung sowie wenigstens einem weiteren Bestandteil verwendet werden. Dabei kann die Aluminium-Eisen-Legierung 6 - 13 Gewichts-% Eisen und 87 - 94 Gewichts-% Aluminium enthalten.
Als weiteren Legierungsbestandteil kann das Zusatzmaterial 7 1 - 3 Gewichts-% Vanadium und/oder 1 - 3 Gewichts-% Silizium enthalten.
Des weiteren ist es denkbar, daß das Zusatzmaterial 7 30 - 55 Gewichts-% Nickel und dann gegebenenfalls 3 - 15 Gewichts-% Kupfer enthält.
Alternativ hierzu kann das Zusatzmaterial 7 auch 5 - 20 Gewichts-% Nickel und dann gegebenenfalls 35 - 45 Gewichts-% Kupfer enthalten.
Durch die Verwendung von Nickel und Kupfer entstehen Nickel-Aluminium- bzw. Kupfer-Aluminium-Phasen, welche die Härte des Ventilsitzes 5 erhöhen.
Ein weiterer Bestandteil des Zusatzmaterials 7 kann 0,2 - 1 Gewichts-% Magnesium sowie 0,2 - 2 Gewichts-% Bor, Titan und/oder Scandium sein. Dies bewirkt eine feinere Ausbildung von intermetallischen Phasen und eine verbesserte Homogenität des Gefüges.
Gegebenenfalls ist es außerdem denkbar, daß das Zusatzmaterial 7 Hartstoffkomponenten enthält, welche aus einer Verbindung eines Metalls mit Kohlenstoff, Sauerstoff oder Stickstoff bestehen. Derartige Hartstoffe erhöhen die Verschleißbeständigkeit des Ventilsitzes 5 erheblich.
Wahlweise können die Hartstoffkomponenten homogen über das Volumen des Ventilsitzes 5 verteilt sein oder es ist möglich, daß die Hartstoffkomponenten inhomogen über das Volumen des Ventilsitzes 5 verteilt sind, wobei der Gehalt der Hartstoffkomponenten von dem Zylinderkopf 1 zu der Oberfläche des Ventilsitzes 5 hin zunehmen. Die letztgenannte Alternative, also eine sogenannte Gradientenschicht, führt zu einer zunehmenden Konzentration von harten Bestandteilen zur Oberfläche des Ventilsitzes 5 hin, wodurch sich die Härte- und somit die Verschleißeigenschaften des Ventilsitzes 5 erhöhen. Gleichzeitig wird hierdurch aber die Rißanfälligkeit in der Anbindungszone, also an der Verbindungsfläche des Ventilsitzes 5 mit dem Zylinderkopf 1, reduziert.
Das für die Hartstoffkomponenten bezüglich der Vorteile Ausgesagte gilt auch für die Bestandteile an Nickel und Kupfer, die einerseits homogen über das Volumen des Ventilsitzes 5 oder andererseits inhomogen über das Volumen des Ventilsitzes 5 verteilt sein können, wobei der Gehalt der Bestandteile an Nickel und Kupfer von dem Zylinderkopf 1 zu der Oberfläche des Ventilsitzes 5 hin zunehmen.
Alternativ zu der Ausführung mit einer Aluminium-Eisen-Legierung bzw. einem Gemisch aus diesen Metallen kann als Zusatzmaterial 7 auch eine Legierung oder ein Gemisch aus Aluminium und Titan verwendet werden. In diesem Fall kann das Zusatzmaterial 7 beispielsweise 30 - 40 Gewichts-% Aluminium und 60 - 70 Gewichts-% Titan enthalten. Alternativ hierzu kann auch vorgesehen sein, daß das Zusatzmaterial 7 13 - 17 Gewichts-% Aluminium und 83 - 87 Gewichts-% Titan enthält.
Das Zusatzmaterial 7 kann in diesem Fall wenigstens einen weiteren Bestandteil enthalten, und zwar 0,5 - 5 Gewichts-% oder 17 - 50 Gewichts-% Niob, was zur Verminderung der Versprödungsneigung sehr gut geeignet ist. Möglich ist auch, daß das Zusatzmaterial 7 0,5 - 5 Gewichts-% Chrom, Vanadium, Mangan, Molybdän und/oder Tantal enthält.
Eine dritte Möglichkeit zur Bildung des Zusatzmaterials 7 kann darin bestehen, daß für dasselbe eine Legierung oder ein Gemisch aus einer Eisen-Kohlenstoff-Legierung sowie wenigstens einem weiteren Bestandteil verwendet wird.
Als weiterer Bestandteil kann in dieser Ausführungsform des Verfahrens 0,5 - 4 Gewichts-% Nickel und/oder 0,5 - 4 Gewichts-% Chrom und/oder 0,5 - 4 Gewichts-% Mangan und/oder 5 - 15 Gewichts-% Molybdän und/oder Kobalt enthält. Durch die Verwendung von Nickel und/oder Chrom können Carbide entstehen, die die Härte des Ventilsitzes 5 steigern. Des weiteren kann in diesem Zusammenhang vorgesehen sein, daß das Zusatzmaterial 7 10 - 25 Gewichts-% Kupfer enthält. Kobalt, Kupfer und Molybdän verbessern die Schmiereigenschaften, Kupfer die thermische Leitfähigkeit.
Eine vierte Möglichkeit zur Ausführung des Verfahrens besteht darin, daß als Zusatzmaterial 7 eine Legierung oder ein Gemisch aus einer Nickel-Chrom-Legierung sowie wenigstens einem weiteren Bestandteil verwendet wird, wobei dann die Nickel-Chrom-Legierung 10 - 30 Gewichts-% Chrom und 70 - 90 Gewichts-% Nickel enthalten kann.
Für diese Ausführungsform kann als weiterer Legierungsbestandteil 3 - 5 Gewichts-% Silizium verwendet werden. Weitere mögliche Legierungsbestandteile bestehen in 3 - 5 Gewichts-% Bor sowie in 3 - 5 Gewichts-% Eisen.
Gegebenenfalls kann in dem Zusatzmaterial 7 10 - 40 Gewichts-% Molybdän enthalten sein. Des weiteren ist es möglich, daß das Zusatzmaterial 7 5 - 10 Gewichts-% Kupfer und/oder Kobalt enthält. Außerdem ist möglich, daß das Zusatzmaterial 7 5 - 12 Gewichts-% Aluminium sowie 0,1 - 2 Gewichts-% Kohlenstoff und/oder Yttrium enthält.

Claims (15)

  1. Verfahren zur Herstellung eines Ventilsitzes für einen Zylinderkopf einer Brennkraftmaschine, bei welchem durch Einbringung von Energie ein Zusatzmaterial an derjenigen Stelle mit dem Zylinderkopf verschmolzen wird, an welchem der Ventilsitz gebildet werden soll,
    dadurch gekennzeichnet, daß
    als Zusatzmaterial (7) eine Legierung oder ein Gemisch aus Aluminium und Titan verwendet wird, wobei das Zusatzmaterial (7) 30 - 40 Gewichts-% Aluminium und 60 - 70 Gewichts-% Titan enthält.
  2. Verfahren zur Herstellung eines Ventilsitzes für einen Zylinderkopf einer Brennkraftmaschine, bei welchem durch Einbringung von Energie ein Zusatzmaterial an derjenigen Stelle mit dem Zylinderkopf verschmolzen wird, an welchem der Ventilsitz gebildet werden soll,
    dadurch gekennzeichnet, daß
    als Zusatzmaterial (7) eine Legierung oder ein Gemisch aus Aluminium und Titan verwendet wird, wobei das Zusatzmaterial (7) 13 - 17 Gewichts-% Aluminium und 83 - 87 Gewichts-% Titan enthält.
  3. Verfahren nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, daß
    das Zusatzmaterial (7) wenigstens einen weiteren Bestandteil enthält.
  4. Verfahren nach Anspruch 3,
    dadurch gekennzeichnet, daß
    als weiterer Bestandteil 0,5 - 5 Gewichts-% Niob verwendet wird.
  5. Verfahren nach Anspruch 3,
    dadurch gekennzeichnet, daß
    als weiterer Bestandteil 17 - 50 Gewichts-% Niob verwendet wird.
  6. Verfahren nach einem der Ansprüche 3 bis 5,
    dadurch gekennzeichnet, daß
    das Zusatzmaterial (7) 0,5 - 5 Gewichts-% Chrom, Vanadium, Mangan, Molybdän und/oder Tantal enthält.
  7. Verfahren nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet, daß
    das Zusatzmaterial (7) mittels eines Laserstrahls (9) mit dem Zylinderkopf (1) verschmolzen wird.
  8. Verfahren nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet, daß
    das Zusatzmaterial (7) mittels eines Elektronenstrahls mit dem Zylinderkopf (1) verschmolzen wird.
  9. Verfahren nach einem der Ansprüche 1 bis 8,
    dadurch gekennzeichnet, daß
    im Bereich des Ventilsitzes (5) ein Magnetfeld vorgesehen ist, welches das Zusatzmaterial (7) bzw. die aus dem Zusatzmaterial (7) entstehende Schmelze (10) konturiert und/oder durchmischt.
  10. Verfahren nach einem der Ansprüche 1 bis 9,
    dadurch gekennzeichnet, daß
    das Zusatzmaterial (7) gleichzeitig mit der Energieeinbringung auf den Zylinderkopf (1) aufgebracht wird.
  11. Verfahren nach einem der Ansprüche 1 bis 10,
    dadurch gekennzeichnet, daß
    das Zusatzmaterial (7) in Pulverform auf den Zylinderkopf (1) aufgebracht wird.
  12. Verfahren nach einem der Ansprüche 1 bis 11,
    dadurch gekennzeichnet, daß
    das Zusatzmaterial (7) mittels einer Düse (8) auf den Zylinderkopf (1) aufgebracht wird.
  13. Verfahren nach einem der Ansprüche 1 bis 12,
    dadurch gekennzeichnet, daß
    das Zusatzmaterial (7) auf den Zylinderkopf (1) aufgebracht wird und anschließend mittels der Energieeinbringung mit dem Zylinderkopf (1) verschmolzen wird.
  14. Verfahren nach Anspruch 13,
    dadurch gekennzeichnet, daß
    das Zusatzmaterial (7) in Pulverform auf den Zylinderkopf (1) aufgebracht wird.
  15. Ventilsitzanordnung für einen Zylinderkopf einer Brennkraftmaschine, mit mehreren, nach einem Verfahren gemäß einem der Ansprüche 1 bis 14 hergestellten, aus dem Zusatzmaterial (7) bestehenden Ventilsitzen (5), wobei die Ventilsitze (5) jeweils derart um einen ebenfalls aus dem Zusatzmaterial (7) bestehenden ringförmigen Bereich (5a) erweitert sind, daß sich die einzelnen ringförmigen Bereiche (5a) wenigstens teilweise überlappen.
EP02792724A 2001-11-15 2002-10-18 Verfahren zur herstellung eines ventilsitzes Expired - Lifetime EP1444421B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10156196 2001-11-15
DE10156196A DE10156196C1 (de) 2001-11-15 2001-11-15 Verfahren zur Herstellung eines Ventilsitzes
PCT/EP2002/011682 WO2003042508A1 (de) 2001-11-15 2002-10-18 Verfahren zur herstellung eines ventilsitzes

Publications (2)

Publication Number Publication Date
EP1444421A1 EP1444421A1 (de) 2004-08-11
EP1444421B1 true EP1444421B1 (de) 2005-08-17

Family

ID=7705896

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02792724A Expired - Lifetime EP1444421B1 (de) 2001-11-15 2002-10-18 Verfahren zur herstellung eines ventilsitzes

Country Status (7)

Country Link
US (1) US7013858B2 (de)
EP (1) EP1444421B1 (de)
JP (1) JP3835694B2 (de)
KR (1) KR20050037497A (de)
AT (1) ATE302333T1 (de)
DE (2) DE10156196C1 (de)
WO (1) WO2003042508A1 (de)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10255447A1 (de) * 2002-11-28 2004-06-24 Daimlerchrysler Ag Ventilsitz und Verfahren zur Herstellung eines Ventilsitzes
JP4038724B2 (ja) * 2003-06-30 2008-01-30 トヨタ自動車株式会社 レーザクラッド加工装置およびレーザクラッド加工方法
DE10329912B4 (de) * 2003-07-02 2005-06-09 Daimlerchrysler Ag Verfahren zur Herstellung eines Ventilsitzes
DE10353473B4 (de) * 2003-11-15 2007-02-22 Daimlerchrysler Ag Bauteil einer Brennkraftmaschine und Verfahren zu dessen Herstellung
KR100656607B1 (ko) * 2004-07-15 2006-12-11 현대자동차주식회사 밸브의 윤활구조
JP5101838B2 (ja) * 2006-05-16 2012-12-19 ヤンマー株式会社 金属部材の表面硬化方法
US7757396B2 (en) * 2006-07-27 2010-07-20 Sanyo Special Steel Co., Ltd. Raw material powder for laser clad valve seat and valve seat using the same
DE102008003871A1 (de) 2008-01-08 2009-07-09 Volkswagen Ag Blechhalbzeuge und Verfahren zum Veredeln von Blechhalbzeugen mit Hilfe von Laserstrahlverfahren
DE102008015854A1 (de) * 2008-03-27 2009-10-01 Volkswagen Ag Ventilsitzring
NL2001869C2 (nl) 2008-08-01 2010-02-02 Stichting Materials Innovation Cilinderkop met klepzitting alsmede werkwijze voor het vervaardigen daarvan.
DE102008050388B3 (de) 2008-10-02 2009-10-22 Märkisches Werk GmbH Verfahren zur Reparatur von Schäden eines wassergekühlten Zylinderkopfes bei 4-Takt-Verbrennungsmotoren, sowie Zylinderkopf
US9228458B2 (en) * 2010-02-19 2016-01-05 Ford Global Technologies, Llc Valve seat insert
KR101316474B1 (ko) * 2011-09-19 2013-10-08 현대자동차주식회사 엔진밸브시트 및 그 제조방법
US9011086B2 (en) * 2011-12-07 2015-04-21 Honeywell International Inc. Treated valve seat
JP5858007B2 (ja) * 2013-07-01 2016-02-10 トヨタ自動車株式会社 バルブシート用の肉盛方法及びシリンダヘッドの製造方法
WO2015089252A1 (en) * 2013-12-13 2015-06-18 Dm3D Technology, Llc Method of manufacturing high-conductivity wear resistant surface on a soft substrate
KR101610166B1 (ko) * 2014-12-04 2016-04-20 현대자동차 주식회사 밸브시트 구조
JP7095334B2 (ja) * 2018-03-16 2022-07-05 トヨタ自動車株式会社 シリンダヘッド
JP7554464B2 (ja) 2020-10-27 2024-09-20 株式会社キンキ 切断刃
GB2620065A (en) * 2021-03-26 2023-12-27 Jaguar Land Rover Ltd A casting for internal combustion engine

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB618607A (en) 1946-06-04 1949-02-24 William Thomas Davies Improvements in or relating to the production of corrosion resistant coatings on poppet valves for internal-combustion engines
DE2200003B2 (de) * 1972-01-03 1977-09-15 Karl Schmidt Gmbh, 7107 Neckarsulm Verfahren zur oberflaechenverguetung von leichtmetallkolben
IT1155320B (it) * 1982-04-22 1987-01-28 Fiat Auto Spa Metodo per l'ottenimento di una sede valvola su una testata di un motore endotermico e motore con sedi valvola ottenute con tale metodo
JPS59129746A (ja) * 1983-01-18 1984-07-26 Mitsubishi Metal Corp エンジンバルブおよび同バルブシ−ト用Co基合金
DE3517077C1 (de) * 1985-05-11 1986-11-06 M.A.N.- B & W Diesel GmbH, 8900 Augsburg Verfahren zum Panzern der Ventilsitzflaeche eines thermisch und mechanisch hoch belastbaren sowie gegen Korrosion geschuetzten Gaswechselventils fuer eine schweroelbetriebene Brennkraftmaschine
JPS62150014A (ja) * 1985-12-25 1987-07-04 Toyota Motor Corp アルミニウム合金製バルブシ−トレスシリンダヘツド
DE4443772C2 (de) 1994-02-18 2000-06-29 Mitsubishi Materials Corp Motorventil mit verbesserter Hochtemperatur-Verschleißfestigkeit
US5611306A (en) 1995-08-08 1997-03-18 Fuji Oozx Inc. Internal combustion engine valve
DE19639480A1 (de) * 1996-09-26 1998-04-02 Guenter Hackerodt Verfahren zur Innenbeschichtung von Zylinder-Laufflächen, insbesondere von Aluminium-Laufflächen
JP3853100B2 (ja) * 1998-02-26 2006-12-06 三井金属鉱業株式会社 耐摩耗性に優れた銅合金
DE19912894A1 (de) * 1999-03-23 2000-07-20 Daimler Chrysler Ag Verfahren zur Oberflächenbeschichtung metallener Werkstücke
DE19912889A1 (de) * 1999-03-23 2000-09-28 Daimler Chrysler Ag Verfahren zur Herstellung eines Ventilsitzes

Also Published As

Publication number Publication date
WO2003042508A1 (de) 2003-05-22
EP1444421A1 (de) 2004-08-11
ATE302333T1 (de) 2005-09-15
US20050034700A1 (en) 2005-02-17
KR20050037497A (ko) 2005-04-22
DE10156196C1 (de) 2003-01-02
DE50203987D1 (de) 2005-09-22
JP2005509522A (ja) 2005-04-14
JP3835694B2 (ja) 2006-10-18
US7013858B2 (en) 2006-03-21

Similar Documents

Publication Publication Date Title
EP1444421B1 (de) Verfahren zur herstellung eines ventilsitzes
DE19523484C2 (de) Verfahren zum Herstellen einer Zylinderlaufbüchse aus einer übereutektischen Aluminium/Silizium-Legierung zum Eingießen in ein Kurbelgehäuse einer Hubkolbenmaschine und danach hergestellte Zylinderlaufbüchse
DE69405082T2 (de) Ventil für Brennkraftmaschine mit einer harten Auftragsschicht auf Eisenbasis
DE3605519C2 (de)
DE3937526C2 (de) Verschleißfeste Titanlegierung, Verfahren zu ihrer Herstellung und ihre Verwendung
DE102006042950B4 (de) Teilchendispersions-Kupferlegierung und Verfahren zur Herstellung derselben
DE69701569T2 (de) Bewegbares verschlussteil in der form eines verbrennungsmotors
DE1817321A1 (de) Kolbenring oder Zylinderdichtungsring
DE2540542A1 (de) Gusserzeugnis und verfahren zu dessen herstellung
DE3506302C2 (de)
DE60214976T2 (de) Verschleissfeste kupferbasislegierung
DE2931116C2 (de) Kolbenring für einen Kolben einer Brennkraftmaschine
DE2032804A1 (de) Kolbenring oder Zyhnderdichtungs ring
DE19908208B4 (de) Motorenbauteil mit Legierungsbeschichtung und seine Verwendung
DE102018212908B4 (de) Beschichteter Ventilsitzbereich eines Verbrennungsmotors
DE102018202540B4 (de) Motorblock eines Verbrennungsmotors mit optimierten Wärmeleiteigenschaften
DE10043108B4 (de) Metallurgische Bindung von Einsätzen mit mehrlagigen Beschichtungen innerhalb von Metallgußteilen
DE10255447A1 (de) Ventilsitz und Verfahren zur Herstellung eines Ventilsitzes
DE2100237A1 (de) Wolframlegierung und Verfahren zu ihrer Herstellung
EP3530400A1 (de) Verfahren zum herstellen eines bauteils, insbesondere fahrzeugbauteils, und entsprechend hergestelltes bauteil
DE102006036101A1 (de) Verfahren zur Herstellung von Ventilkomponenten
DE102015014192A1 (de) Funktionsschicht
EP0728917B1 (de) Auslassventil für eine Dieselbrennkraftmaschine
DE3246630C2 (de)
DE2146153A1 (de) Zylinderlaufbuchse fuer einen verbrennungsmotor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040423

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

RBV Designated contracting states (corrected)

Designated state(s): AT DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50203987

Country of ref document: DE

Date of ref document: 20050922

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20051114

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060518

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20081013

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20081024

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081014

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081021

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091018

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121228

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50203987

Country of ref document: DE

Effective date: 20140501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140501