WO1990001405A1 - Positioning method for an electrically-driven injection molding machine - Google Patents

Positioning method for an electrically-driven injection molding machine Download PDF

Info

Publication number
WO1990001405A1
WO1990001405A1 PCT/JP1989/000772 JP8900772W WO9001405A1 WO 1990001405 A1 WO1990001405 A1 WO 1990001405A1 JP 8900772 W JP8900772 W JP 8900772W WO 9001405 A1 WO9001405 A1 WO 9001405A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
allowable
width
section
positive
Prior art date
Application number
PCT/JP1989/000772
Other languages
English (en)
French (fr)
Inventor
Noriaki Neko
Masao Kamiguchi
Original Assignee
Fanuc Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Ltd filed Critical Fanuc Ltd
Priority to KR1019900700627A priority Critical patent/KR960015298B1/ko
Publication of WO1990001405A1 publication Critical patent/WO1990001405A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/21Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device
    • G05B19/23Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control
    • G05B19/231Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control the positional error is used to control continuously the servomotor according to its magnitude

Definitions

  • the present invention relates to a positioning method in an electric injection molding machine using a servomotor as a drive source for each axis.
  • the electric injection molding machine performs an injection molding cycle including an injection process by driving each of various operating parts such as an injection mechanism with one or more corresponding servo motors. Then, in each step of the injection molding cycle, corresponding positioning control for one or more control axes is executed. For example, in the final stage of the injection process, control for determining the position to the injection completion position on the injection axis is performed. For this reason, this type of injection molding machine is provided with a servo circuit for each axis for driving and controlling a servo motor for each axis, and each of the servo circuits is configured to detect a target motor rotation position from a numerical controller. The input pulse train and the pulse train indicating the actual motor rotation position from the position detector provided in the servomotor are input, and positioning to the target recuperation position is performed.
  • the actual motor rotation position is in the positive and negative regions adjacent to each other with the target rotation position as a boundary.
  • the positioning is completed when the vehicle enters the allowable positioning section having a predetermined width.
  • the positive side area is set to the relevant axis with respect to the target position g in the allowable positioning section.
  • the part on the opposite side of the origin of the coordinate system, and the negative side area is the part on the origin side.
  • the width of the positive side area and the width of the negative side area in the allowable position g determination section are set to the same value WZ2.
  • the symbol W indicates the width of the allowable position deciding section
  • PS indicates the target position.
  • the position on each control axis is desirable to determine the position on each control axis according to the operation mode of the associated operation unit, for example, the operation direction and the function to be achieved. For example, in order to perform injection with a predetermined shot amount, it is desirable to terminate the injection process and shift to the pressure-holding process at the screw movement position slightly exceeding the target injection completion position g.
  • the movable platen moving position slightly before the target mold opening completion position should be used to protect the mold. It is desired to complete the mold opening step at g.
  • the injection screw is moved to the allowable position concealment section related to the target injection completion position. It is desirable to position the movable platen in the negative side area, while positioning the movable platen in the positive side area of the allowable positioning section related to the target mold opening completion position.
  • the conventional injection molding machine In view of the operation mode of the operation section of the above, the target position g is shifted to either the positive or negative side by half the width WZ2 of the allowable position concealment section as necessary.
  • the target position is set to PS + W / 2 as shown in Fig. 5.
  • PS-WZ 2 is set as shown in Fig. 6.
  • An object of the present invention is to provide a method for determining the position of an operating part of an electric injection molding machine in an optimal form according to the operating form and for easy positioning.
  • the position determining method of the present invention provides an operation position of an operating portion of an electric injection molding machine driven by a servomotor within a preset allowable position determining section! Setting the width of the positive side area of the allowable position determining section (a); and determining the width of the negative side area adjacent to the positive side area of the allowable position determining section. (B) setting independently and independently of the width of the side region, preferably the positive and negative region Is set according to the working direction of the working part and the function to be achieved by the working part.
  • the widths of the positive and negative side areas of the allowable position determination section that reach the operation of the operation unit of the electric injection molding machine are set independently of each other, so that the burden on the operator or the programmer is increased. It is possible to determine the position of the operating part in an optimal form according to its operating form without reducing the accuracy of the positioning. In other words, it can be positioned at the optimal target position with optimal positioning accuracy in the light of the operating direction of the operating part and the function to be achieved by the operating part.
  • FIG. 1 is a flowchart showing a positioning completion determination process in the positioning method according to one embodiment of the present invention
  • FIG. 2 is a main part of an injection molding machine for actually traveling the method of FIG.
  • Fig. 3 shows an example of setting an allowable positioning section by the method of Fig. 1
  • Fig. 4 shows a setting example of an allowable positioning section by a conventional positioning method
  • Fig. 5 FIG. 6 is a diagram showing another example of setting of a conventional allowable positioning section
  • FIG. 6 is a diagram showing still another example of setting of a conventional allowable positioning section.
  • the electric injection molding machine to which the positioning method according to one embodiment of the present invention is applied includes various operating parts (not shown) such as an injection mechanism (described later), a screw rotation mechanism, a mold clamping mechanism, and an ejection mechanism.
  • the operation of these actuators is controlled by a numerical control device (hereinafter referred to as MC device) and a programmable machine control CJ. Controller (not shown).
  • MC device numerical control device
  • CJ. Controller not shown
  • the injection mechanism includes a pulse coder 3 and axially drives a screw 1 disposed in a heating cylinder 4 through a rotary motion conversion mechanism (not shown). Includes an injection servo motor 2 for performing
  • the NC unit 100 includes a central processing unit (hereinafter referred to as an NC CPU) 101 for numerical control, and the NC CPU 101 includes a management program for controlling the entire injection molding machine.
  • the stored ROM and the RAM 101b used for temporary storage of data are connected.
  • a servo circuit injection servo motor
  • Only the servo circuit corresponding to the motor 2 is denoted by reference numeral 106> is connected to each other via the servo interface 107.
  • the NC device 100 is connected to the BGM.
  • PMC CPU central processing unit
  • ROM 102 that stores a sequence program and the like for controlling the sequence operation of the injection molding machine.
  • 0 2 a and RAM 102 b used for temporary storage of data are connected.
  • Reference numeral 103 denotes a non-volatile memory for storing various types of molding condition parameters and an NC program for controlling various operations of the injection molding machine.
  • the NC program includes the width of the positive side area and the negative side area of each allowable positioning section for each axis (various operating parts), which are set independently of each other. The width of the territory is not described, along with the associated target position g.
  • the positive side area of the permissible positioning section refers to the part on the control axis opposite to the coordinate system origin set for the control axis with respect to the target position g
  • the negative side area refers to the part on the origin side. .
  • the coordinate system of the axis is coordinated along the operating direction (indicated by arrow a) of the operating part of the injection molding machine related to the control axis! : It is set so that (the operating position g of the operating part) decreases, and the width of the positive / negative side area of the allowable positioning section is set to W1 and W2, respectively.
  • the values Wl and W2 are positive or "0", and the section width W is equal to the sum of Wl and W2.
  • the transition from the injection process to the pressure-holding process is performed when the screw 1 has reached the target injection completion position or the screw movement position ⁇ slightly beyond the target position by the allowable distance toward the mold clamping unit ⁇ .
  • the tolerance of the injection axis! The width W 1 of the positive side area of the determined section is set to ⁇ 0 J.
  • the buses of the CPU 101, 102, the shared RAM I03, the input circuit 104, and the output circuit 105 are connected to a bus arbiter controller (hereinafter referred to as BAC).
  • This BAC 108 is used to select and control a bus that can be used in a certain information processing execution cycle in the NC device 100.
  • a manual data input device with a CRT display device (hereinafter referred to as CRT / MDI) 110 is connected to the BAC 108 via an operator panel controller 109, and the source of the CRTZMDI 110 is connected.
  • the CPU 101 for NC is servo-in according to the NC block diagram and various control parameters stored in the shared RAM 103 and the sequence program stored in R ⁇ M102a. While performing pulse distribution to the servo circuits of the various working parts of the injection molding machine via the interface 107,? ⁇ 3 Usage 1> 102 executes the sequence control of those related to the various operation units.
  • an injection molding cycle consisting of a series of processes such as mold checking, mold closing, mold clamping, weighing, injection, holding pressure, product removal, etc., is basically performed as conventionally known. .
  • the servo interface a register (not shown) built into the ⁇ -Is 107 has a command pulse train from the NC CPU 101 and a pulse from the pulse coder 3 corresponding to the register.
  • the feedback pulse train is supplied, and a value indicating the actual rotational position of the servo motor (the actual operating position of the associated operating unit) corresponding to the register is stored in each of the registers.
  • the NC CPU 101 synchronously reads the stored values of the respective registers in the service interface 107 and shares them via the BAC 108. In the current value register (not shown).
  • the CPU for PMC 102 has finished determining the position for each axis.
  • the determination process is executed at a predetermined cycle.
  • the processing for the injection axis will be described as an example with reference to FIG.
  • the PMC CPU 102 obtains the current actual movement position gPA of the injection axis from the injection axis current value register in the shared RAM 103 via the BAC 108 at regular intervals.
  • the target injection completion position PS described in the NC program and the widths W 1 and W 2 of the positive / negative area of the allowable positioning section related thereto are read from the shared RAM 103, and then. Based on these parameters, it is determined whether or not the screw 1 has moved to a position that falls within the allowable positioning section related to the injection completion position.
  • step S3 it is determined whether or not the value PA is equal to or greater than a value PS-W2 obtained by subtracting the width W2 of the negative side area of the allowable position g determination section from the value PS.
  • step S2 When the coordinate system is set for the injection axis as shown in Fig. 3, the actual position A gradually decreases as the injection process progresses. At the beginning of the injection process, the actual value of PA is larger than the value PS + W1, and the determination result in step S2 is negative (NO). In this case, for 1 day. ? 11102 determines that the positioning of the screw 1 to the target injection completion position has not been completed, ends the current determination processing cycle, and performs the same determination in the next determination processing cycle. Thereafter, if the determination result in step S2 becomes affirmative (YES) in a certain determination processing cycle, then, in step S3, whether the value PA is equal to or greater than the value PS-W2 as described above. It is determined whether or not.
  • step S3 the determination result in step S3 is positive.
  • the PMC CPU 102 determines that the screw 1 has reached the target injection completion position or the movement position slightly beyond the target position, and writes the positioning completion signal to the shared RAMI 03 (Step S 4), the determination process on the injection completion position ends.
  • the injection process ends in response to the positioning completion signal, and as a result, the shot amount is accurately controlled. After that, it enters the pressure holding process.
  • step S2 determines whether the determination result in step S2 is affirmative, but the determination result in step S3 is negative, the screw 1 is not controlled due to an overrun in the drive control of the screw 1. It is determined that the positioning to the injection completion position has not been completed, and the current determination processing cycle ends, and the processing of FIG. 1 is repeated in the next determination processing cycle. Thereafter, the result of the determination at step S3 is affirmative, and the routine goes to step S4.
  • the present invention is not limited to the above embodiment, and various modifications are possible.
  • the positioning widths W1 and W2 are described in the NC program.
  • the positioning widths W1 and W2 are manually shared by the CRTMDI110 keyboard according to the setting of the positioning widths W1 and W2.
  • the values Wl and W2 may be stored in a predetermined storage area of the RAM 103 and referred to during the positioning completion determination processing.
  • the completion of the positioning is determined based on the target position PS, the actual position gPA, and the positioning widths W1 and W2. However, this may be determined based on the actual position deviation.
  • the absolute value of the actual position deviation stored in the position deviation register provided in the servo circuit or servo interface and then transferred to the shared RAM is compared with each of the positioning widths Wl and W2. Then, when the absolute value of the actual position deviation becomes smaller than both positioning bands, it is determined that the positioning is completed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

明 細 害
電動式射出成形機における位 g決め方法
技 術 分 野
本発明は、 各軸の駆動源にサーボモータを用いた電動 式射出成形機における位置決め方法に閲する。
背 景 技 術
電動式射出成形機は、 射出機構などの各種作動部の各 々をこれに対応する 1 つ以上のサーボモー タで駆動して 射出工程などを含む射出成形サイ クルを行っている。 そ して、 射出成形サイクルの夫々の工程において、 これに 対応する' 1 つ以上の制御軸に関する位置決め制御が実行 される。 例えば、 射出工程の最終段階において、 射出軸 上で射出完了位笸への位 g決め制御が行われる。 このた め、 この種の射出成形機は、 各軸のサーボモータを駆動 制御する ための各軸のサーボ回路を備え、 各該サーボ回 路は、 数値制御装置からの目標モー タ回転位匱を表すパ ルス列とサーボモータに設けた位置検出器からの実際モ ー タ回転位置を表すパルス列とを入力し、 目標回耘位匿 への位置決めを行う。
一般には、 所要の整定時間内に所要の精度で位置決め を行う ために、 実際モー タ回転位置が、 目標回転位置を '境界と して互いに相隣る正側領域および負側領域よ'りな る所定幅の許容位置決め区間内に入ったと きに位蚩决め を完了するよう に している。 こ こで、 正側領域とは許容 位置決め区間の目標位 gに関し、 関連する軸に設定した 座標系の原点と反対側の部分を、 負側領域とは原点側の 部分を指す。 従来は、 第 4図に示すように、 許容位 g決 め区間の正側領域の幅と負側領域の幅とを同一の値 W Z 2に設定している。 図中、 符号 Wは許容位匿決め区間の 幅を、 P Sは目標位瑟を示す。
そして、 各々の制御軸上での位匿決めを関連する作動 部の作動形態たとえば作動方向, 達成すべき機能に応じ た形態で行うのが望ましい場合がある。 例えば、 所定の ショッ ト量で射出を行うべく、 目標射出完了位 gを僅か に超えたスク リ ュ移動位置において射出工程を終了して 保圧工程へ移行することが望ましく、 一方、 所定の型開 きス ト ロークを超えて型開き動作を行うと損傷を生じ得 るタイブの金型を使用する場合は金型の保護を図るべく、 目標型開き完了位置の僅かに手前の可動プラテン移動位 gにおいて型開き工程を完了することが望まれる。 換言 すれば、 射出軸および型締軸の夫々の座標系原点を反射 出方向側および反型開き方向側にとった場合、 射出スク リュを目標射出完了位瑟に関連する許容位匿決め区間の 負側領域に位 g決めし、 一方、 可動プラテンを目標型開 き完了位置に関連する許容位置決め区間の正側領域に位 置決めすることが望ましい。
しかし、 上記従来法によれば、 許容位置決め区間内へ の位置决めは確かに可能であるものの、 当該区間の正方 向および負側領域のいずれか任意の一方に位置決めする ことはできない。 そこで、 従来は、 閬達する射出成形機 の作動部の作動形態に照ら して、 必要に応じて、 目標位 gを許容位匿決め区間の幅の半分 W Z 2だけ正負いずれ かの側に偏倚させている。 すなわち、 上述の射出工程か ら保圧工程への移行時のように目標位置 P Sを超えた移 動位置に位置決めする場合、 第 5図に示すよ うに、 目標 位置を P S + W / 2に設定する一方、 型開き完了時のよ うに目標位匿の手前の移動位置に位 g決めする場合は、 第 6図に示すよ う に P S — W Z 2 に設定している。 この ように、 夫々の目標位置をこれに関連する作動部の作動 形態に照ら して必要に応じて偏倚させねばならないため、 制御プログラムの作成に労力が必要で、 また、 目標位!: の偏倚に伴って許容位置決め区間の正負いずれかの領域 の実質的な幅が増大するので位箧決め精度が低下する。
発 明 の 開 示
本発明の目的は、 電動式射出成形機の夫々の作動部の 作動位匿をその作動形態に応じた最適な形態でしかも容 易に位置決めを行える位蚩決め方法を提供する ことにあ る。
上述の目的を達成するため、 本発明の位匿決め方法は、 サーボモータで駆動される電動式射出成形機の作動部の 作動位匿を予め設定した許容位匿決め区間内に位!:決め するもので、 前記許容位蚩決め区間の正側領域の幅を設 定する工程 ( a ) と、 前記許容位蘆決め区間の正側領域 と相隣る負側領域の幅を前記正側領域の幅と別個独立に 設定する工程 ( b ) とを備え、 好ま し く は、 正負側領域 の幅を作動部の作動方向および作動部が達成すべき機能 に応じて設定する。
上述のように、 本 明は、 電動式射出成形機の作動部 の作動に閬達する許容位置决め区間の正負側領域の幅を 互いに別個独立に設定するようにしたので、 オペレータ またはプログラマの負担を軽減しかつ位 g決め精度の低 下を来すことな く、 作動部をその作動形態に応じた最適 な形態で位匿決めできる。 換言すれば、 作動部の作動方 向および作動部が達成すべき機能に照ら して最適な位置 決め精度で最適な目標位置に位置決めでき る。
図 面 の 簡 単 な 説 明
第 1 図は本発明の一実施例の位置決め方法での位箧決 め完了判別処理を示すフローチャー ト、 第 2図は第 1 図 の方法を実旅するための射出成形機の要部を示す概略図、 第 3図は第 1 図の方法での許容位置決め区間の設定例を 示す図、 第 4図は従来の位箧決め方法での許容位置決め 区間の設定例を示す図、 第 5図は従来の許容位置決め区 間の別の設定例を示す図、 および、 第 6図は従来の許容 位置决め区間のさらに別の設定例を示す図である。
発明を実施するための最良の形態
本発明の一実施例の位蘆決め方法が適用される電動式 射出成形機は、 射出機構 (後述) , スク リ ュ回転機構, 型締機構, ェジェク ト機構等の各種作動部 (図示省略) を備え、 これら作動部の動作を後述の数値制御装置 (以 下、 M C装置とい う) とプログラマブルマ シンコン ト CJ ーラ (図示省略) とによ り制御するように している。 第 2図を参照する と、 射出機構は、 パルスコ ーダ 3を有し 加熱シ リ ンダ 4内に配されたスク リ ュ 1 を図示しない回 転運動ノ直線運動変換機構を介して軸方向駆動するため の射出サーボモー タ 2を.含んでいる。
N C装置 1 0 0は数値制御用の中央処理装置 (以下、 N C用 C P U) 1 0 1 を含み、 N C用 C P U 1 0 1 には 射出成形機を全体的に制御するための管理プログラムを 言己憶した R OM l O l a と、 デー タの一時記憶に用いる R AM 1 0 1 b とが接続され、 さ らに、 各種作動部のサ ーボモー タを駆動制御するためのサーボ回路 (射出サー ボモー タ 2に対応するサーボ回路のみを符号 1 0 6で示. す〉 がサーボイ ンターフ ェイ ス 1 0 7を介して夫々接続 されている。 また、 N C装箧 1 0 0はブ□グラマブルマ シンコ ン ト ロー ラ用の中央処理装置 (以下、 PMC用 C P Uと いう) 1 0 2を含み、 PMC用 C P U 1 02には 射出成形機のシーケンス動作を制御するためのシーケン スブログラム等を記憶した R OM 1 0 2 a と、 データの 一時記憶に用いる R AM 1 0 2 b とが接続されている。
参照符号 1 0 3は、 ノ'(ブルメモ リ, CMO Sメモリ等 よ りな り、 射出成形機の各種動作を制御するための N C プログラム, 各種成形条件パラメ ータを記憶するための 不揮発性の共有 R AMを示す。 N Cプログラムには、 各 軸 (各種作動部) についての夫々の許容位置決め区間の、 互いに別個独立に設定された正側領域の幅および負側領 域の幅が、 関連する目標位 gと共に記述ざれている。 こ こで、 許容位置決め区間の正側領域とは、 制御軸上の目 標位 gに関して当該制御軸に設定した座標系原点と反対 側の部分を、 負側領域とは原点側の部分を指す。 第 3図 に示す例において、 軸の座標系は、 当該制御軸に関連す る射出成形機の作動部の作動方向 (矢印 aで示す) に沿 つて座標位!: (作動部の作動位 g) が減少するように設 定ざれ、 又、 許容位置決め区間の正負側領域の幅は W 1 および W 2に夫々設定されている。 値 W l , W 2は正ま たは 「 0」 で、 区間幅 Wは W l, W 2の和に等しい。 本 実施例では、 スク リュ 1 が目標射出完了位置または当該 目標位置を許容距離だけ型締装蚩側に僅かに超えたスク リュ移動位箧をとつたときに射出工程から保圧工程への 移行を行うべく、 射出軸に関する許容位!:決め区間の正 側領域の幅 W 1 を Γ 0 J に設定している。
再び第 2図を参照すると、 N C装 g l O Oにおいて、 C P U 1 0 1, 1 02および共有 RAM I 0 3ならびに 入力回路 1 04, 出力回路 1 05の夫々のバスがバスァ ービタコン ト ローラ (以下、 B A Cという) 1 0 8に接 続され、 この B A C 1 0 8によって N C装置 1 0 0での 或る情報処理実行サイクルにおいて使用可能なバスを選 択制御するようになっている。 また、 B A C 1 0 8には オペレータパネルコン ト ローラ 1 09を介して C R T表 示裝箧付き手動データ入力装置 (以下、 C R T /MD I という) 1 1 0が接続され、 C R T Z M D I 1 1 0のソ フ ト キー, テンキ ーを含む各種操作キーをオペ レータ操 作する こ とによ り成形条件パラメ ータを含む各種制御パ ラメー タを入力可能になっている。
以下、 上述の構成の射出成.形機の作動を説明する。
射出成形機の稼働時、 共有 R AM 1 0 3に格納された N Cブ口グラムおよび各種制御パラメー タならびに R〇 M l 0 2 aに格納されたシーケンスプログラムに従って、 N C用 C P U 1 0 1 がサーボイン タ ーフ ェ イス 1 0 7を 介して射出成形機の各種作動部の関連する もののサーボ 回路にパルス分配を行う一方で、 ? <3用€ ? 1] 1 0 2 が各種作動部の関連するもののシーケンス制御を実行す る。 これによ り、 型閲き, 型閉じ, 型締, 計量, 射出, 保圧, 製品取り 出 し等の一連の工程よ り なる射出成形サ ィクルが基本的には従来公知のよ うに行われる。
パルス分配処理実行中、 サーボイ ンタ ー フ : πイ ス 1 0 7に内蔵のレジスタ (図示略) の各々には N C用 C P U 1 0 1 からの指令パルス列と該レジスタに対応するパル スコーダ 3からのフ ィ ー ドバックパルス列とが供給され、 各該レジスタに当該レジスタに対応するサーボモータの 実際回転位置 (閬連する作動部の実際作動位匿) を表す 値が記憶される。 N C用 C P U 1 0 1 は、 サ―ボインタ 一フ ェ イ ス 1 0 7内の夫々のレジスタの記憶値を同期的 に読取 り、 これを B AC 1 0 8を介して共有 R AM I 0 3内の夫々の現在値レジスタ (図示略〉 に書込む。
P MC用 C P U 1 02は各軸についての位 g決め完了 判別処理を所定周期で実行する。 以下、 第 1図を参照し て、 射出軸についての処理を例にとって説明する。
射出工程開始後、 PMC用 C P U 1 02は、 B AC 1 0 8を介して共有 RAM 1 03内の射出軸用現在値レジ スタから射出軸についての現在の実際移動位 gP Aを所 定周期で読取ると共に (ステップ S 1 )、 N Cブログラ ムに記述された目標射出完了位箧 P Sおよびこれに関連 する許容位置決め区間の正負側領域の幅 W 1, W2を共 有 R AM 1 03から読取り、 次いで、 これらパラメータ に基づいてスク リ ュ 1が射出完了位箧に関連する許容位 置決め区間内に入る位置まで移動したか否かを判別する。 すなわち、 ステップ S 2において値 P Aが目標射出完了 位 gP Sと許容位置決め区間の正側領域の幅 W 1 ( = 0 ) との和 P S + W 1 に等しいか又は小さいか否かを判別し、 ステップ S 3において値 P Aが値 P Sから許容位 g决め 区間の負側領域の幅 W 2を減じた値 P S— W 2に等しい か又は大きいか否かを判別する。
射出軸に第 3図のように座標系を設定した場合、 射出 工程の進行に伴って実際位 Aが漸減する。 射出工程 閲始当初は実際位匱 P Aは値 P S +W 1 よ りも大き く、 ステップ S 2での判別結果が否定 (NO) となる。 この 場合、 1 〇用。? 11 1 02は、 スク リ ュ 1の目標射出 完了位置への位匿決めが完了していないと判別して今回 判別処理サイクルを終了し、 次の判別処理サイクルにお いて同様の判別を行う。 その後、 或る判別処理サイクルにおいてステップ S 2 での判別結果が肯定 ( Y E S ) となると、 次に、 ステツ ブ S 3 において上述のよ うに値 P Aが値 P S - W 2に等 しいか又は大きいか否かを判別する。 通常は、 ステップ S 3での判別結果は肯定となる。 この場合、 P M C用 C P U 1 0 2は、 目標射出完了位置または当該位置を僅か に超えた移動位箧にスク リ ュ 1 が到達したと判別して位 置決め完了信号を共有 R A M I 0 3に書込み (ステップ S 4 ) 、 射出完了位箧についての判別処理を終了する。 この位置決め完了信号の害込みに応じて射出工程が終了 し、 結果と して、 ショッ ト量が正確に制御される。 その 後、 保圧工程に入る。
しかし、 ステップ S 2での判別結果が肯定であっても ステップ S 3での判別結果が否定であれば、 スク リ ュ 1 の駆動制御上のオーバシユ ー ト などに起因してスク リ ュ 1 の射出完了位箧への位置決めが完了していないと判別 して今回の判別処理サイ クルを終了し、 次の判別処理サ ィクルにおいて第 1 図の処理を繰り返す。 その後、 ステ ッブ S 3での判別結果が肯定とな り、 上記ステップ S 4 に移行する。
射出成形機のその他の制御軸についての位匿決めも上 述のよ う に行われる。 例えば、 所定の型開きス ト α —ク を超えて型閎き動作を行う と損傷を生じ得るタイプの金 型を射出成形機に搭載した場合、 型締装箧の型開き完了 位 gに閬連する許容位箧決め区間の正負いずれか対応す る側の領域の幅を 「0」 に設定し、 目標型開き完了位匿 またはこれより僅か手前の可動ブラチン移動位箧におい て型開き動作を完了させ、 金型の保護を図る。
本発明は上記実施例に限定されず、 種々の変形が可能 である。 例えば、 上記実施例では位箧決め幅 W 1, W 2 を N Cプログラムに記述するようにしたが、 C R T M D I 1 1 0のキーボー ドの手動操作による位置決め幅 W 1, W 2の設定に応じて共有 R A M 1 0 3の所定記憶領 域内に格納し、 位箧決め完了判別処理中に斯く記憶した 値 W l , W 2を参照するようにしても良い。 また、 上記 実施例では目標位置 P S, 実際位 g P A, 位置決め幅 W 1, W 2に基づいて位置決め完了を判別するようにした が、 実際位置偏差に基づいてこれを判別しても良い。 こ の場合、 サーボ回路またはサーボインターフェイス内に 設けた位匿偏差レジスタに記憶ざれ、 次いで、 共有 R A Mに転送, 格納された実際位置偏差の絶対値と位置決め 幅 W l, W 2の各々とを比較し、 実際位箧偏差の絶対値 が双方の位置決め幅よりも小ざくなつたときに位置決め 完了と判別するようにする。

Claims

請 求 の 範 囲
1 . サーボモー タで駆動される電動式射出成形機の作動 部の作動位置を予め設定した許容位置決め区間内に位 匿決めするもので、 前記許容位 g決め区間の正側領域 の幅を設定する工程 (.a ) と、 前記許容位置決め区間 の正側領域と相隣る負側領域の幅を前記正側領域の幅 と別個独立に設定する工程 ( b ) とを備えることを特 徴とする位置決め方法。
2 . 前記正側および負側領域の幅は、 前記作動部の作動 方向および当該作動部が達成すべき機能に応じて夫々 設定される請求の範囲第 1 項記载の位置決め方法。
3 . 前記許容位置決め区間の正負側領域の幅を、 前記許■ 容位匿決め区間に関連する目標位匿と共に制御ブログ ラム中に記述する工程を含む請求の範囲第 1 項記載の 位置決め方法。
4 . 前記許容位箧決め区間の正負側領域の幅の手動設定 に応じて両前記幅の設定値を前記射出成形機の記恡装 蚩に読出し可能に格納する工程を含む請求の範囲第 1 項記載の位置決め方法。
5 . 前記作動部の実際作動位匱および目標作動位置なら びに前記許容位 g決め区間の正負側領域の幅に基づい て前記作動部の実際作動位箧が前記許容位置決め区間 内に入ったと判別した ときに前記作動部の作動位置に ついての位置決めを完了する工程を含む請求の範囲第 1 項記載の位箧決め方法。
PCT/JP1989/000772 1988-08-04 1989-07-27 Positioning method for an electrically-driven injection molding machine WO1990001405A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019900700627A KR960015298B1 (ko) 1988-08-04 1989-07-27 전동식 사출 성형기에 있어서의 위치 결정방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP63193347A JPH085107B2 (ja) 1988-08-04 1988-08-04 電動式射出成形機における位置決め方式
JP63/193347 1988-08-04

Publications (1)

Publication Number Publication Date
WO1990001405A1 true WO1990001405A1 (en) 1990-02-22

Family

ID=16306388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1989/000772 WO1990001405A1 (en) 1988-08-04 1989-07-27 Positioning method for an electrically-driven injection molding machine

Country Status (6)

Country Link
US (1) US5028365A (ja)
EP (1) EP0382857B1 (ja)
JP (1) JPH085107B2 (ja)
KR (1) KR960015298B1 (ja)
DE (1) DE68910500T2 (ja)
WO (1) WO1990001405A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11555033B2 (en) 2020-06-18 2023-01-17 Akagera Medicines, Inc. Oxazolidinone compounds, liposome compositions comprising oxazolidinone compounds and method of use thereof
US11591544B2 (en) 2020-11-25 2023-02-28 Akagera Medicines, Inc. Ionizable cationic lipids

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4429304C1 (de) * 1993-09-11 1995-06-14 Procontrol Ag Regelantrieb für mehrere Regelgrößen
DE4409823C1 (de) * 1994-02-08 1995-01-19 Procontrol Ag Regelantrieb
JP2838647B2 (ja) * 1994-05-16 1998-12-16 住友重機械工業株式会社 射出成形機におけるエジェクタ機構のエジェクタ戻限完了位置設定方法及び装置
US20030048624A1 (en) * 2001-08-22 2003-03-13 Tessera, Inc. Low-height multi-component assemblies
DE102005023919A1 (de) * 2005-05-24 2006-11-30 Krauss-Maffei Kunststofftechnik Gmbh Verfahren zur Ablaufprogrammierung eines Spritzgießzyklus einer Spritzgießmaschine
DE102006055330A1 (de) * 2006-11-23 2008-05-29 Kraussmaffei Technologies Gmbh Verfahren zur Ablaufprogrammierung eines Spritzgießzyklus einer Spritzgiessmaschine
CN105759715A (zh) * 2016-02-23 2016-07-13 柳州职业技术学院 智能自整定注塑机控制方法
CN116619712B (zh) * 2023-07-17 2023-10-17 广东伊之密高速包装系统有限公司 一种注塑机的轴定位系统及其控制方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62290513A (ja) * 1986-06-11 1987-12-17 Japan Steel Works Ltd:The 射出成形機の工程制御方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59224323A (ja) * 1983-06-03 1984-12-17 Tekunopurasu:Kk 型内圧波形による監視方法
JPS62299320A (ja) * 1986-06-19 1987-12-26 Fanuc Ltd 射出成形機の自動原点調整方式
DE3827285A1 (de) * 1987-08-13 1989-02-23 Toshiba Machine Co Ltd Steuervorrichtung fuer eine spritzgiessmaschine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62290513A (ja) * 1986-06-11 1987-12-17 Japan Steel Works Ltd:The 射出成形機の工程制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0382857A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11555033B2 (en) 2020-06-18 2023-01-17 Akagera Medicines, Inc. Oxazolidinone compounds, liposome compositions comprising oxazolidinone compounds and method of use thereof
US11566023B2 (en) 2020-06-18 2023-01-31 Akagera Medicines, Inc. Oxazolidinone compounds, liposome compositions comprising oxazolidinone compounds and method of use thereof
US11591544B2 (en) 2020-11-25 2023-02-28 Akagera Medicines, Inc. Ionizable cationic lipids

Also Published As

Publication number Publication date
DE68910500T2 (de) 1994-03-03
KR900701502A (ko) 1990-12-01
DE68910500D1 (de) 1993-12-09
JPH0243019A (ja) 1990-02-13
KR960015298B1 (ko) 1996-11-07
EP0382857A1 (en) 1990-08-22
US5028365A (en) 1991-07-02
EP0382857B1 (en) 1993-11-03
JPH085107B2 (ja) 1996-01-24
EP0382857A4 (en) 1991-01-02

Similar Documents

Publication Publication Date Title
EP0273979B1 (en) Method and apparatus for numerically controlling two axes simultaneously in an injection molding machine
JPH01244819A (ja) 射出成形機の成形条件記録装置
WO1990001405A1 (en) Positioning method for an electrically-driven injection molding machine
JPH01275016A (ja) トグル式型締装置における自動型厚調整方式
US5154935A (en) Injection pressure control apparatus for an electrically-operated injection molding machine
EP0455820B1 (en) Method of correcting defective molding in injection molding machine
WO1990005057A1 (en) Back pressure control method and apparatus for electric injection molding machine
US5251146A (en) Injection compression molding method and an apparatus therefor
EP0331733B1 (en) Software servo controller of injection molding machine
JPS62119019A (ja) 射出成形機
JP2772587B2 (ja) 電動射出成形機の金型保護制御方法及び装置
JPH0251378B2 (ja)
JPS6330226A (ja) 保圧から計量への切換制御方法
JP2660570B2 (ja) 電動式射出成形機における手動計量方法
JP3366921B2 (ja) 圧縮成形制御方法
EP0219551B1 (en) Numerical controller having overtravel checking function
JP2759888B2 (ja) 保圧から計量への切換制御方法
JPH01272431A (ja) 射出成形機の成形制御方法
JPH082574B2 (ja) 電動式射出成形機における圧縮成形制御方法
JPH02307723A (ja) 自動型厚調整方法
JP2566534B2 (ja) 射出成形機の成形制御方法
JPS62161516A (ja) エジエクト開始方式
JPH0412203B2 (ja)
JPH0667579B2 (ja) 射出成形機の制御装置
JPH02169225A (ja) パージ終了検出方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1989908875

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWP Wipo information: published in national office

Ref document number: 1989908875

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1989908875

Country of ref document: EP