WO1989011208A1 - Epoxy resin-impregnated prepreg - Google Patents

Epoxy resin-impregnated prepreg Download PDF

Info

Publication number
WO1989011208A1
WO1989011208A1 PCT/JP1989/000474 JP8900474W WO8911208A1 WO 1989011208 A1 WO1989011208 A1 WO 1989011208A1 JP 8900474 W JP8900474 W JP 8900474W WO 8911208 A1 WO8911208 A1 WO 8911208A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
bisphenol
weight
group
resin composition
Prior art date
Application number
PCT/JP1989/000474
Other languages
English (en)
French (fr)
Inventor
Kunio Nishimura
Tadashi Hirakawa
Original Assignee
Teijin Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP11038388A external-priority patent/JPH0671131B2/ja
Priority claimed from JP11038288A external-priority patent/JPH0671130B2/ja
Application filed by Teijin Limited filed Critical Teijin Limited
Priority to EP89905168A priority Critical patent/EP0515680B1/en
Priority to DE68924177T priority patent/DE68924177T2/de
Publication of WO1989011208A1 publication Critical patent/WO1989011208A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/246Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using polymer based synthetic fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/247Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using fibres of at least two types
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0275Fibers and reinforcement materials
    • H05K2201/0278Polymeric fibers

Definitions

  • the present invention relates to an epoxy resin composition immersion prepreg. More specifically, the present invention is useful for copper foil laminates for chip-on-board (COB), has excellent heat resistance and dimensional stability, and is also useful for chip-on-board (COB) When formed, silver migration is extremely low, and the resistance to insulation is extremely low even in an electric field under high temperature and high humidity, and the peel strength is high.
  • the present invention relates to a pre-prepared epoxy resin composition. Background art
  • copper foil laminates based on aromatic polyamide fibers with excellent heat resistance and dimensional stability have been developed, and are used as substrates for various distribution boards and the like that require high heat resistance and dimensional stability.
  • Such copper foil laminates are impregnated with a compound containing an epoxy resin or the like into a base material such as a woven or paper-like sheet made of aromatic polyamide fibers or a non-woven fabric. It is manufactured by laminating and molding at least one pre-preparer obtained by drying and copper foil.
  • Japanese Patent Application Laid-Open No. 61-100446 discloses an aromatic polyamide.
  • An electrically insulating material obtained by impregnating a resin composition comprising an epoxy resin and a rubber-based resin into a non-woven fabric whose main component is a resin is used as a base material and a Z or power layer.
  • a flexible printed wiring board is disclosed.
  • Japanese Patent Application Laid-Open No. 62-283695 discloses an epoxy resin obtained by adducting an aromatic amine curing agent on an aramide woven fabric base material having a thickness of 0.025 to 0.5 mm.
  • a flexible wiring board comprising a flexible board formed by impregnation and a metal foil wiring layer formed on one or both sides of the board is disclosed.
  • This silver migration phenomenon is caused by the fact that the aromatic polyamide fiber has a large hygroscopicity and is a base material containing a large amount of sodium chloride, and the epoxy resin It is thought to be caused by the synergistic effect of a matrix that contains a lot of sodium and chlorine.
  • a reduction in the insulation resistance of the electrodes ⁇ will result in a fatal defect. Therefore, the development of a copper foil laminated copper pre-predeer which does not lower the insulation resistance has been desired.
  • An object of the present invention is to be useful for a copper foil laminate for chip-on-board (COB), in which the decrease in edge resistance is extremely small even in an electric field under high temperature and high humidity, heat resistance and peel strength. It is an object of the present invention to provide an epoxy resin composition immersion pre-reader suitable for forming an excellent chip-on-board (COB).
  • the epoxy resin composition shaping pre-preda of the present invention is a resin composition containing an aromatic polyamide fiber as a main component and a base material containing the same, and containing an epoxy resin and a curing agent.
  • the aromatic polyamide fiber base material has an equilibrium moisture content of 3.0% by weight or less, an extracted sodium content of 80 ppm or less, and an extracted chlorine content of 50 ppm or less. Has a certain amount and
  • the epoxy resin composition is characterized in that it contains sodium of 5 ⁇ ⁇ ⁇ or less and chlorine of 600 ppm or less.
  • the epoxy resin in the epoxy resin composition has the following components:
  • a glycidyl ether compound consisting of a polycondensation product of bisphenol A and formaldehyde, and a reaction product of dichlorohydrin; a halogenated bisphenol A and honole At least one member selected from the group consisting of halogenated glycidyl ether compounds consisting of a polycondensation product with aldehyde and a reaction product with epichlorohydrin;
  • Y represents a member left from one C (CH 3 ) 2 — group and —CH 2 — group
  • R represents a dioxy compound multimer residue
  • each benzene nucleus is bromo. May be substituted by an atom
  • (I) is one which is capable of producing a reaction product with at least one member selected from the group consisting of bisphenol A, bisphenol F and tetraprobisphenol A.
  • the curing agent in the epoxy resin composition includes (A) a polycondensation product of bisfuninol A and formaldehyde, and (B) a polycondensation of bisphenol A nordogenated bisphenol A and formaldehyde.
  • it contains at least one member selected from the group consisting of products.
  • the ratio of the phenolic hydroxyl group equivalent of the curing agent to the epoxy equivalent of the epoxy resin is in the range of 0.6 to 3.
  • FIG. 1 is an explanatory diagram showing the migration state of silver on the surface of C 0 B manufactured using the pre-prepared product of the present invention.
  • FIG. 2, FIG. 3, and FIG. 4 are explanatory diagrams showing the migration state of silver on the surface of C ⁇ B manufactured using the conventional prepreg, respectively.
  • FIG. 5 and FIG. 6 are explanatory diagrams showing the migration state of silver on the surface of C 0 B manufactured using the pre-preparer of the present invention, respectively.
  • FIG. 7 and FIG. 8 are explanatory views showing the migration state of silver on the surface of C0B manufactured using a conventional pre-preparer.
  • the epoxy resin dip prepredder of the present invention comprises a base material containing an aromatic polyamide arrowhead fiber as a main component and an epoxy resin composition containing the base material.
  • the weight ratio of the aromatic polyamide fiber base material to the epoxy resin composition is preferably in the range of 20:80 to 60:40, and in the range of 30:70 to 55:45. And more preferably in the range of 35:65 to 50:50. If the content weight ratio is out of the above range, the dimensional stability, thermal expansion properties, insulation properties, etc. of the obtained pre-preparer will be unsatisfactory and obtained Welding of copper foil lamination ⁇ . idering), the heat resistance of the prepreg may be insufficient.
  • the polymer constituting the aromatic polyamide fiber used in the present invention is preferably 75 to 100% by mole of the polymer represented by the following formula (I) or (E). Unit :
  • Ar ⁇ , Ar 2 and Ar 3 are each independently of the other, substituted and unsubstituted formula aromatic ring group:
  • the above-mentioned linear or parallel-axis-bonded aromatic ring group has a part of a hydrogen atom directly bonded to the aromatic ring group is a halogen atom , A methyl group, and a methoxy group.
  • the aromatic polyamide fiber used in the present invention is formed by, for example, forming a wholly aromatic polyamide polymer as described above into a fiber by a conventional method, and stretching the fiber sufficiently. It is preferable to use a high modulus wholly aromatic polyamide fiber having a high degree of molecular orientation.
  • the aromatic polyamide fiber may be in the form of short fibers, pulp-like fibrils, and mixtures thereof. Pulp-like fibrils can be formed by grinding fibers.
  • the present inventors studied in detail the cause of silver migration, which was considered to be a drawback of a substrate for C0B based on aromatic polyamide fibers, and the cause thereof. did. As a result, No matter how much the purity of the epoxy resin composition is improved, it is impossible to prevent the occurrence of silver migration, and To prevent graying, first reduce the equilibrium moisture content, the amount of sodium hydroxide, and the chlorine content of the aromatic polyamide fiber itself as a base material below a certain value. In addition, it is necessary to reduce the amount of sodium and chlorine in the epoxy resin composition containing the curing agent to a certain value or less, respectively. The present inventors have found that significant reduction can be achieved and completed the present invention.
  • the aromatic polyamide arrowhead fiber used in the present invention has a reduced equilibrium moisture content, residual sodium content, and residual chlorine content as compared with the conventional aromatic polyamide fiber. It is an arrowhead weird.
  • Aromatic polyamides are generally obtained by wet spinning a polymer solution obtained by a polymerization reaction of aromatic diamine and aromatic dicarboxylic acid keratide.
  • the unstretched fiber is obtained by washing, drying and heating the fabric.
  • the equilibrium moisture content of the aromatic polyamide fiber is controlled by controlling the polymer composition and physical properties, the stretching conditions in the hot stretching process, and the heat treatment conditions. By adopting an optimal structure, it can be reduced to a desired value.
  • the aromatic polyamide fiber is a polymer obtained by isolating the polymer from the polymerization solution, dissolving it in an inorganic acid such as concentrated sulfuric acid, and wet-spinning the resulting solution, From inorganic acids Although it is necessary to remove it, it is difficult to achieve it only by simple washing, and it requires neutralization with sodium hydroxide aqueous solution and washing. However, as a result of this neutralization treatment, there is a disadvantage that a large amount of the inorganic salt of sodium remains in the fiber. For this reason, the aromatic polyamide fiber in the present invention is obtained by wet spinning the polymerization solution as it is without isolating the polymer obtained by polymerization in a non-proton amide solvent.
  • an inorganic acid such as concentrated sulfuric acid
  • the aromatic polyamide fiber used in the present invention a high-purity raw material is used in order to reduce the amount of sodium remaining therein, and a solvent, a coagulating liquid, an oil agent and the like are used. It is preferable to reduce the sodium as much as possible.
  • the main source of chlorine remaining in the aromatic polyamide fiber is hydrogen chloride, a by-product of the polymerization process.
  • Residual chlorine can be removed by neutralizing hydrogen chloride in the polymerization system with calcium hydroxide or the like and thoroughly washing the obtained fiber with water.
  • the aromatic polyamide fiber used in the present invention uses high-purity raw materials, minimizes chlorine in solvents, coagulating liquids, oils, etc., and keeps the degree of neutralization of the polymerization solution within the optimum range. It is preferable that the extruded spinning solution stream be de-solventized in a coagulating solution maintained at an appropriate pH value by using a spinning solution which has been sufficiently filtered, and is formed into a fiber. Thus, the residual amount of chlorine in the fiber can be significantly reduced.
  • the equilibrium moisture content of the aromatic polyamide fiber base material used in the present invention is 3.0% by weight, preferably 2.0% by weight or less.
  • the amount of steam is less than 80 ppm, preferably less than 70 ppm, and the chlorine content is less than 50 pm, preferably less than 40 ppm.
  • the equilibrium moisture content is a value obtained by determining the moisture content of the textile at equilibrium at 20'C and 65% I-H based on the JI S L1013 chemical fiber filament yarn test method. In addition, regarding the measurement,
  • I-Use a textile that has been washed in advance with 50 times of hexane for 30 minutes so as not to be affected by other deposits.
  • Extracted sodium content means that about 10 g of aromatic polyamide fiber is immersed in 100 g of pure water and boiled for 20 hours. The value obtained by dividing the absolute value obtained by quantitative analysis by the weight of the aromatic polyamide fiber before extraction is 100.
  • Extracted chlorine content Approximately 10 g of aromatic poison arrowhead fiber was immersed in 100 g of pure water and boiled for 20 hours. The filtrate was quantified by ion chromatography. The absolute value obtained by the separation is divided by the weight of the aromatic polyamide fiber before extraction.
  • the obtained C 0 B is placed in an electric field under high temperature and high humidity, and the sodium in the substrate is reduced.
  • the silver ion formed on the substrate surface is ionized, which makes it easier to form hydrates.
  • silver oxide remains on the positive electrode.
  • Silver is deposited on the negative electrode, and so-called silver migration occurs.
  • the extracted chlorine content of the aromatic polyamide fiber exceeds 20 ppm
  • the residual chlorine becomes chlorine ion.
  • the amount of chlorine ion in the substrate increases. Increasing the amount of these chlorines accelerates the ionization of the residual sodium and at the same time promotes the ionization of water.
  • some chlorine ions react with silver ions to form silver chloride, which promotes silver ionization. As a result, silver chloride changes to silver hydroxide, and further changes to silver oxide, and precipitates near the positive electrode, causing a so-called migration phenomenon to cause insufficiency.
  • the epoxy resin composition C 0 B placed in an electric field under high temperature and high humidity only has an excellent silver migration prevention property when the sodium content and chlorine content of the steel are below the upper limits described below. And any of these elements If these values exceed the respective upper limits, their silver migration prevention properties will be insufficient.
  • the thickness of the single fiber of the aromatic polyamide fiber of the present invention is preferably in the range of 0.1 to 10 denier.
  • the aromatic polyamide fiber base material may be in the form of a woven fabric, a knitted fabric, a nonwoven fabric, a paper sheet, or the like, or may be simply dispersed in an epoxy resin composition.
  • the aromatic polyamide woven fabric used in the present invention is composed of 60 to: L00 wt%, preferably 70 to 100 wt% of an aromatic boria mid woven fabric, and 0 to 40 wt%, preferably, It may contain from 0 to 30% by weight and at least one other kind of fiber.
  • Other kinds of fibers may be contained in the base material as long as the object and action and effect of the present invention are not impaired.
  • the ethoxy resin composition used in the present invention comprises an epoxy resin and a curing agent. If necessary, a curing accelerator, a lubricant, a flame retardant, a stabilizer, a mold release agent, a mold activator, and other inorganic or At least one member such as an organic filler, fluorine polymer fine particles, a pigment, a dye, and calcium carbide may be included.
  • the epoxy resin composition used in the present invention comprises an epoxy resin and a hardening bar, and the content of the curing agent is preferably 2 to 60% with respect to the epoxy resin content weight. Well, More preferably, it is 10 to 40%.
  • the epoxy resin composition used in the present invention has a sodium content of 5 ppm or less, preferably 3 ppm or less, and a chlorine content of 600 ppm or less, preferably 400 ppm or less.
  • These amounts of sodium and chlorine include those originally contained in the epoxy resin curing agent and additives and those derived from the bathing agents used in the production thereof. is there.
  • the sodium content is defined as the uncured mixture of an epoxy resin composition (usually a varnish) incinerated in a crucible with a solid content of about 2 g, and the ash is heated with a 30% aqueous solution of nitric acid (10). Pure water is added to the dissolved solution to make it 5Q, and the absolute value obtained by quantitative analysis of the amount of sodium contained by the atomic absorption method is divided by the weight before incineration.
  • the chlorine content refers to a concentration of about 2 ⁇ g of the solid content of the epoxy resin composition which is diluted and dissolved in methyl ethyl ketone, and the solid content of the solution is adjusted to 50%.
  • the type of epoxy resin used in the present invention is not particularly limited.
  • Diglycidyl ether compound consisting of a reaction product of at least one member selected from bisphenol A and halogenated bisphenol A with epichlorohydrin (for example, epoxy resin manufactured by petroleum-based epoxy resin) 828, 1001, 1002, 1003: 1004, 1005 etc. or 5045, 5046, 5048, 5049 etc.)
  • epichlorohydrin for example, epoxy resin manufactured by petroleum-based epoxy resin
  • the curing agent in the epoxy resin composition is not particularly limited, but generally, a curing agent comprising at least one member selected from a dicyandiamide compound, an aromatic polyamine, and a phenol resin is used. be able to.
  • Aromatic polyamide is suitable for obtaining a cured epoxy resin having high heat resistance.
  • a curing accelerator can be used in combination in the epoxy resin composition used in the present invention.
  • the curing accelerator it is preferable to use tertiary phosphines such as imidazoles, imidazolines or triphenylphosphine.
  • flame-retardant epoxy resin compositions used in copper foil laminate pre-preparers include tetrabromobisphenol A and bisphenol A, and epichlorohydrin.
  • a brominated bisphenol A-type epoxy resin composed of a copolymerized product, to which a heat-resistant ortho phenolic siloxane-type epoxy resin is added, and dicyandiamide or the like as a hardening agent have been frequently used.
  • the epoxy resin composition as described above has low heat resistance and contains dicyandiamide as a curing agent.
  • dicyandiamide has low solubility in a solvent and is easily crystallized.
  • the curing reaction tends to be non-uniform, and low molecular weight components tend to remain.
  • the aromatic polyamide fiber base material and the nutrient in the epoxy resin composition Even if the chlorine content is reduced to a very low level, the resulting COB has the drawback that silver migration is likely to occur if it is placed in an electric field under high temperature and high humidity. was there. Therefore, as a curing agent to replace dicyandiamid When an aromatic amine anhydride is used, the resulting cured epoxy resin composition has improved heat resistance, but the content of sodium chloride is extremely low. Even if it is lowered, C 0 B obtained therefrom has a disadvantage that silver migration is likely to occur.
  • epoxy resin c used in the present invention is:
  • a glycidyl ether compound consisting of a polycondensation product of bisphenol A and formaldehyde and a reaction product of epichlorohydrin, and bisphenol A halide A polycondensation product with formaldehyde and at least one member selected from the group consisting of a ⁇ -genated glycidyl ether compound consisting of a reaction product with epichlorohydrin;
  • Y represents a member selected from a —C (CH 3 ) 2 — group and a —CH 2 — group
  • R represents an epoxy compound multimer residue
  • each benzene nucleus may be replaced by 7 bromo atoms.
  • At least one of the reaction products At least one of the reaction products.
  • Preferred curing agents are a polycondensation product of bisphenol A and formaldehyde, and a polycondensation product of bisphenol A halogenated and formaldehyde. And at least one member selected from the group consisting of: a phenolic hydroxyl equivalent of the hardening agent with respect to the epoxy equivalent of the epoxy resin is 0.6 to 1.3, It is preferably in the range of 0.7 to 1.2.
  • Bisphenol A and brominated bisphenol A At least one member selected from the group consisting of 50 to 90 parts by weight of at least one glycidyl ether compound component consisting of a polycondensation product of formaldehyde and a reaction product of epichlorohydrin;
  • Tetrabromobisphenol A component 10 to 50 parts by weight and a reaction product of the above are particularly preferred.
  • reaction product of the above components (i), (ii) and (iii) can be produced, for example, in the presence of a catalyst comprising an imidazole compound (for example, dimethyl imidazole) or an imidazoline. it can.
  • a catalyst comprising an imidazole compound (for example, dimethyl imidazole) or an imidazoline. it can.
  • the C 0 B obtained by using the copper foil laminated board carrying the prepreg can be used to prevent silver migration, have heat resistance, and The peel strength can be improved in a good balance.
  • the molecular structure skeleton of the compound forming the curing agent d and the molecular structure skeleton of the compound forming the epoxy resin c are similar to each other, and therefore, the compatibility between the two is good, and the curing of these compounds is difficult. This is presumed to be because a well-balanced crosslinked structure was formed by the reaction.
  • the ratio of the epoxy equivalent of the epoxy resin c to the phenolic hydroxyl equivalent of the curing agent d is in the range of 0.6 to: 0.3, and preferably in the range of 07 to 1.2, as in the case of the former.
  • this equivalent ratio exceeds 1.3, a part of the curing agent d remains unreacted, and If it is less than 0.6, a part of the epoxy resin c will remain unreacted, and in any case, the performance of the obtained pre-preda will be reduced.
  • the brominated bisphenol A type epoxy resin may be used in an amount of 10 to 10% based on the total solid weight of the epoxy resin composition. It may be added in an amount of 30% by weight.
  • Bed opening arm ⁇ amount of the brominated bis Fuweno Lumpur A type E port key sheet resin have to preferred is that it is a 45 to 55 wt% 0
  • the epoxy resin composition of the present invention may contain a curing accelerator.
  • a curing accelerator an imidazole compound or an imidazoline compound is preferable.
  • the imidazole compounds are 2—methylimidazole, 2—ethylimidazole, 4-methylimidazole, 2—ethynole-4- (methylimidazole), 2—didecylimidazole, and 1 It is preferable to use 2-benzyl-2-methyldiazolidide, etc.
  • imidazoline compounds 2-ethyl-1-4-methyleneimidazoline, 2- ⁇ decylimidazolide It is preferable to use 2- and 2-methyldiazoline.
  • triphenylphosphine or the like may be used as another curing accelerator.
  • the epoxy resin composition of the present invention may be used in a range that does not impair the performance of the cured product, for example, a lubricant, an adhesion promoter, a flame retardant, a stabilizer (an antioxidant, an ultraviolet absorber, a polymerization inhibitor, etc.). ), Release agents, plating activators, and other inorganic or organic fillers (silica, Lux, titanium oxide, fluoropolymer fine particles, pigments, dyes, calcium carbide) and the like.
  • antimony oxide as an inorganic flame retardant.
  • Antimonium pentoxide is particularly excellent in its ⁇ because it has excellent varnish dispersibility and stability and has no elution contamination in the electroless plating.
  • the compounding amount of antimony oxide is preferably in the range of 0.2 to 10% by weight based on the total weight of the epoxy resin composition.
  • an aromatic polyamine may be added.
  • the aromatic polyamine diamino diphenyl 1-ter, diamino diphenyl methane, diamino diphenyl sulfone, 4,4'-methylenedianiline, diamino dinitryl sulfone, bis (3,4-diaminophenyl) sulfo , M-amino benzylamine, 4-methoxy 6-methyl-1-mphenylenediamine, and 4,4'-thiodianiline.
  • a halogenated aromatic polyamide may be used.
  • the epoxy resin composition of the present invention can be dissolved in various organic solvents.
  • solvents include, for example, acetone, methylethynoleketone, tonolene, xylene, methylisobutyrketone, ethyl ethyl drone, ethyl glycol monomethyl ether, N, N —Dimethylformamide, N, N —Dimethylformamide, methanol, ethanol, etc., and at least one of them can be used.
  • the prepredder of the present invention can be produced by immersing the epoxy resin composition in an aromatic polyamide woven fiber base material and drying the epoxy resin composition if necessary according to a usual production method.
  • the copper foil laminate of the present invention is obtained by laminating a required number of pre-predaders, laminating the copper foil on the pre-preda or the pre-preda laminate, and integrally molding the laminate by heating under pressure. And can be manufactured.
  • An electrode having a gap of 0.5 circles was created by screen printing using silver paste (DuPont No. 4929) on the substrate after the copper foil was etched.
  • the insulation resistance was measured by applying a DC voltage of 500 volts.
  • solder reflow was performed at 220 ° C for 2 minutes.
  • a pressure cooker test was performed for 200 hours under the condition of 2 kg / cm, with a DC voltage of 90 volts applied between the two electrodes.
  • the insulation resistance was measured by applying a DC voltage of 500 volts.
  • TMA heat separation machine
  • the peel strength of the 10Z copper foil at room temperature was measured by the method of JIS C6481. Examples 1 to 6, Comparative Examples 1 to ⁇
  • Comparative Examples 1 and 2 the woven fabric composed of polyphenylene terephthalamide (Kevr-111® woven fabric: single yarn weave degree) 42. 42 denier) was used as the substrate.
  • the basis weight of each of these substrates is SOgZnf, and their thickness is about 0.1 mm.
  • the above-mentioned wholly aromatic polyethylene amide fibers were cut into 3 im lengths, dispersed in water, and the obtained textile slurry was cut using a tapping type square paper machine. A 55-g / ⁇ paper sheet was weighed. The sheet was sandwiched between two metal meshes and dried in a hot air drier at 150 parts for 5 minutes.
  • an epoxy resin component composed of a brominated pivis-type epoxy resin and an ortho-resin-poloxy-type epoxy resin, a curing agent composed of disocyanamide, and 2-ethylethyl 4—Methyl imidazole and a curing accelerator were diluted in a 1/1 mixed solvent of methylethyl ketone / methinoreserosolve to prepare a varnish adjusted to a solid concentration of 60%.
  • This varnish (epoxy resin composition) had the sodium content and chlorine content shown in Table 1.
  • the varnish of Example 1 was spray-coated from both sides of the mesh onto the above-mentioned paper-like sheet, and further heated at 100 ° C for 2 minutes in a hot-air dryer.
  • the sheet was hot-pressed under a condition of 300 kgcm and 2 mZ using a pair of metal-rolled elastic calenders having metal rolls at a surface temperature of 190 mm.
  • a silver paste (4929, manufactured by DuPont) was applied to the above substrate by screen printing to form a silver electrode having a distance between electrodes of 0.5 cm.
  • the insulation resistance between the silver electrodes at 20'C and 65% RH was measured by applying a DC voltage of 500 volts, all of them showed a value of 0 ⁇ 10 15 ⁇ or more.
  • the printed circuit board was subjected to a solder flow of 220'C for 2 minutes, and a pressure cooker test of 121'C and 2 kg ci was performed for 200 hours while applying a voltage of 90 VDC to the electrodes.
  • Example 4 Example 5 Example 6 Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 5 Paper ⁇ 3 ⁇ 4 3 ⁇ 4 ⁇ Moisture 1.8 2.8 1.8 1.8 2.7 4.1 1.8 1.8 1.8 ⁇ .2
  • the equilibrium elongation percentage of a substrate using a wholly aromatic polyetheramide fiber as a base material was 3.0% by weight or less, and the amount of extracted sodium after boiling for 20 hours in pure water was 80 ppm or less. Only when the amount of extracted chlorine after boiling for 20 hours in pure water is 50 ppm or less, and the amount of sodium in the epoxy resin composition is 5 ppm or less and the chlorine content is 600 ppm or less However, it was found that silver migration did not occur in C 0 B formed using this pre-preda and there was almost no reduction in the silver electrode absolute resistance. On the other hand, when polyparafuylene nile terephthalamide fiber is used as the base material, the migration of silver in the COB obtained therefrom is large, and the resistance between the electrodes is greatly reduced. It turned out that.
  • FIG. 1 shows the migration state of silver in C 0 B obtained using the prepreg of Example 1
  • FIGS. 2, 3 and 4 show the results from the prepregs of Comparative Examples 3, 6, and 1, respectively.
  • the obtained silver migration status at C 0 B is shown.
  • no silver migration was observed between the COB silver electrode 1 and the surface 2 of the substrate made of a copper foil laminate.
  • FIGS. 2, 3 and 4 a migrated silver layer 3 was formed between the C 0 B silver electrode 1 and the substrate surface 2.
  • a glycidyl ether compound (epoxy equivalent: 208) consisting of a reaction product of a polycondensation product of bisphenol A with formaldehyde and epichlorohydrin (80 equivalents) was used, and bisphenol A epoxy resin was used. 20 parts by weight (epoxy equivalent: 187) and 30 parts by weight of tetrabromobisphenol A were reacted in the presence of 0.03 part by weight of dimethylimidazole to give an epoxy equivalent of 342 and containing bromine. Amount of 23% by weight of epoxy resin a_1 i,
  • a curing agent b-1 consisting of a polycondensation product of bisphenol A and formaldehyde was prepared.
  • the epoxy resin a—156 parts by weight, the brominated bisphenol A type epoxy resin (epoxy equivalent 470, the bromine content 48% by weight) 20 parts by weight, and the curing agent b—124 Parts by weight, and 0.04 parts by weight of 2-ethyl-4-methylidazole are added to the mixture to prepare an epoxy resin composition.
  • This composition is added with methylethylketone and ethylene glycol.
  • a mixed solvent with a monomethyl ether (mixing weight ratio: 1: 1) was added to prepare a varnish having a nonvolatile content of 60% by weight and a bromine content of 22.5% by weight (relative to solid content).
  • the varnish was soaked in the above-mentioned paper-like sheet, and the impregnated material was simply dried at 100 ° C. for 3 minutes to produce a prepreg having an epoxy resin composition solid content of 70% by weight.
  • two pieces of copper foil manufactured by Fukuda Metal Foil & Powder Industry Co., Ltd., trade name: copper foil CF-T9 (10Z)
  • four of the above pre-prepderers were laminated, and this was heated 170, 0
  • the copper foil laminate was prepared by pressing for 1 hour under the condition of kg / c, and the volume ratio of epoxy resin braid in the obtained copper foil laminate was about 60%. The thickness was 0.4 mm.
  • Table 2 shows the content of impurities in the base material and the resin in the copper foil laminate and the characteristics of the copper foil laminate.
  • Example 7 The same operation as in Example 7 was performed. However, the above wholly aromatic ball A plain woven fabric (basis weight: 62 Znf, thickness: 0.1 iM) was prepared using one telamide fiber, and the varnish described in Example 1 was soaked therein and dried at 100'C for 3 minutes. The solid content of the eboxy resin composition in the obtained pre-preda was 70% by weight.
  • Example 7 The same operation as in Example 7 was performed. However, 0.5 parts by weight of antimony pentoxide was further added to the varnish described in Example 7 to prepare a varnish having a nonvolatile content of 60% by weight. Further, the above-mentioned varnish was soaked in a paper sheet of wholly aromatic polyester amide fiber described in Example 1.
  • Example 7 The same operation as in Example 7 was performed. However, the varnish was prepared as follows. That is, a mixture of epoxy resin a-175 parts by weight and curing agent b-125 parts by weight was mixed with 0.04 parts by weight of 2-ethyl-4-methylimidazole and antimony pentoxide. An epoxy resin composition was prepared by adding 0 parts by weight, and a mixed solvent of methyl ethyl ketone and ethylene glycol monomethyl ether (mixing weight ratio of 1: 1) was added thereto. . The obtained varnish had a nonvolatile content of 60% by weight and a bromide content of 0.3% by weight (relative to the solid content). The varnish was soaked in a wholly aromatic polyether amide fiber paper sheet described in Example 7. Table 2 shows the test results. Example 1 1
  • epoxy resin a-2 prepared as follows was used instead of epoxy resin a-1.
  • Epoxy Resin a-2-Glycidyl ether compound (epoxy equivalent 470) consisting of reaction product of polycondensation product of bisphenol A bromide A and formaldehyde with chlorohydrin 80 weight 80 weight 20 parts by weight of bisphenol A type epoxy resin (epoxy equivalent: 187) and 30 parts by weight of tetrabromobisphenol A were reacted in the same manner as in Example 1.
  • the obtained epoxy resin a-2 had an epoxy equivalent of 420 and a bromo content of 28% by weight.
  • terephthalic acid chloride 100 mole parts of terephthalic acid chloride, 50 mole parts of paraphenylenediamine, and 50 mole parts of 3,4′-diaminodiphenyl ether having a lower purity than those described in Example 7 were used together. It is polymerized to produce wholly aromatic polyether amide (polyno, laphenylene-1,3 ', 4'-diamino diphenyl ether terephthalamide), and the copolymer is wet-spun. Further, fibers having the equilibrium moisture content, the extracted sodium content, and the extracted chlorine content shown in Table 2 and a 1.5-denier single fiber thickness were prepared. From this wholly aromatic polyester fiber fabric, a paper search sheet was prepared by the method described in Example 1.
  • a varnish having an impurity content shown in Table 2 was impregnated into the above-mentioned paper-like sheet, and dried with 100 parts for 3 minutes to prepare a prepreg.
  • the epoxy resin composition content of this pre-preda was 70% by weight.
  • Example 7 The same operation as in Example 7 was performed. However, a woven fabric (Kevra —— 49 ⁇ woven fabric K-120: single-filament fineness 1.42 denier, manufactured by Kanebo Co., Ltd.) was used as the base material.
  • the basis weight of this base material is 6 0 g ⁇ ⁇ , a thickness of about 0.1 Sir 0
  • Bisphenol A-type epoxy resin (Epoxy equivalent: 460, bromide content: 21% by weight) 82 2 parts by weight, brominated phenol-no-block epoxy resin (Epoxy equivalent: 275, bromide content: 36) % By weight) i parts by weight, 4 parts by weight of dicyandiamide, 2-ethyl-4-methylethyl imidazole 0. Q4 parts by weight, and a mixed solvent of methylethyl ketone and ethylene glycol monomethyl ether
  • a high-purity varnish was prepared from the mixture (weight ratio: 1/1). The varnish had a nonvolatile content of 60% by weight, and a bromo content of 22.3% by weight (relative to the solid content).
  • the varnish was soaked in a fabric made of Boliparaphenylene terephthalamide described in Comparative Example 8.
  • Example 7 The same operation as in Example 7 was performed. However, the paper described in Comparative Example 9 was soaked in a paper sheet-like sheet of all-aromatic aromatic polyetheramide described in Example.
  • Example 7 The same operation as in Example 7 was performed. However, terephthalic acid ⁇ -ride 100 mol part having a further lower purity than that described in Example 12 was added. 50 mole parts of raphenylene diamine and 50 mole parts of 3,4'-diammino diphenyl ether are copolymerized to obtain a wholly aromatic polyether amide (polyparaphenylene-1,3, 4'-Diamino diphenyl terephthalamide) was prepared. The copolymer was wet-spun to obtain the equilibrium water content, extracted sodium content, and A textile having an extracted chlorine content and a single fiber thickness of 1.5 denier was prepared. A paper-like sheet was prepared from the wholly aromatic polyether amide arrowhead in the same manner as in Example 7.
  • Example 7 the varnish described in Example 7 was soaked in the above-mentioned paper-like sheet, and dried at 100 ° C. for 3 minutes to prepare a prepreg.
  • the content of the epoxy resin composition in this prepreg was 70% by weight. Table 2 shows the test results. Comparative Example 1 2
  • Example 7 The same operation as in Example 7 was performed. However, the all-aromatic aromatic polyester fiber paper sheet described in Example 7 has the same composition as the varnish described in Example 12 and the impurity content described in Table 2. Varnish was impregnated.
  • Table 2 shows the test results. The same operation as in Example 7 was performed. However, the varnish described in Comparative Example 9 was soaked in the sheet of the wholly aromatic polyether amide fiber paper described in Comparative Example 11.
  • Table 2 shows the test results. m 14.
  • Example 7 The same operation as in Example 7 was performed. However, the varnish was prepared as follows.
  • the varnish was impregnated into a wholly aromatic polyetheramide woven paper-like sheet described in Example 7.
  • Comparative Example 14 20 parts by weight of brominated phenol A type epoxy resin described in 4, polycondensation of brominated phenol A with formaldehyde, and epichlorohydrin 57 parts by weight of an epoxy resin which is a glycidyl ether compound composed of a reaction product of the above, a curing agent b-123 parts by weight, 2-ethyl-4-methylimidazole 0.04 parts by weight, A varnish was prepared from a mixed solvent of acetyl ethyl ketone and ethyl glycol monomethyl ether (mixing weight ratio 1: 1). The varnish has a nonvolatile content of 60% by weight and a bromine content of 24.2% by weight (relative to the solid content).
  • the varnish was soaked in a paper-like sheet of a wholly aromatic polyester amide fiber described in Example II. ,
  • Example 7 Example 8 Example 9 Example 11 Example 12 Example 8 Example 9 ⁇ mn Example 12 Example 13 Example Example 15
  • Brominated bisphenol A type epoxy (Br 21% H21lT £%); 82 82 82 28 20 ⁇ Brominated bisphenol A type epoxy 1M resin (Br ⁇ ffl 8ffiffl%) 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
  • JIS Glycidyl ether compound made from brominated bisphenol A, formaldehyde and epi-alpha 57-lin
  • FIG. 5 shows the migration state of silver at C 0 B obtained using the pre-preparer of Example 7.
  • FIG. 6 shows the migration state of silver in C 0 B manufactured using the pre-preparer of Example 8.
  • FIG. 7 shows the migration state of silver in C 0 B manufactured using the pre-preparer of Comparative Example 8
  • FIG. 8 shows the migration state of silver in C 0 B manufactured using the pre-preparer of Comparative Example 11;
  • the epoxy resin resin immersion pre-preda of the present invention is made of an aromatic polyamide fiber as a base material, the coefficient of linear thermal expansion in the plane direction is as small as a silicon bare chip. Therefore, in the copper foil laminate ⁇ manufactured using this pre-preparer, no crack is generated in the bonding portion or the like.
  • the pre-spreader of the present invention since the pre-spreader of the present invention has a high heat resistance, the copper foil laminate manufactured using this pre-spreader may be subjected to a high temperature at the time of die bonding, or a wire or wire. It can withstand the high temperatures during wireless bonding.
  • the copper foil laminated board molded using the epoxy resin resin immersion prepreg of the present invention has a glass transition point Tg of 150 or more measured by TMA, has excellent heat resistance, and It has a peel strength of 10Z copper foil of 1.4cm or more at room temperature, and is useful as a COB substrate with excellent practicality for high density circuits.
  • the prepredder of the present invention has a low equilibrium moisture content, a low sodium content and a low chlorine content in the aromatic polyamide woven fiber base material, and has a low epoxy content in the epoxy resin composition. Because of its low carbon content and low chlorine content, C 0 B manufactured using this pre-prepared material has little migration of silver even in an electric field under high temperature and high humidity * and has a small decrease in insulation resistance. It has the advantage of being.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Reinforced Plastic Materials (AREA)

Description

明 細 書 ヱポキシ樹脂含浸プリ プレダ 技術分野
本発明は、 ェポキシ樹脂組成物舍浸プリ プレダに関するも のである。 更に詳し く 述べるならば、 本発明は、 チ ップオ ン ボー ド(COB) 用銅箔積層板に有用であって、 すぐれた耐熱性 および寸法安定性を有し、 それからチップオ ンボ一 ド(C O B ) を形成したとき、 銀のマイ グレーシ ョ ンの発生が極めて少な く、 徒って高温高湿下における電界中においても絶緣抵抗の 低下が極めて少な く 、 かつピール強度の高いものを提供する ことのできる、 エポキシ樹脂組成物舍浸プリ プレダに関する ものである。 背景技術
近年、 耐熱寸法安定性の優れた芳香族ポリ ァ ミ ド織維を基 材とする銅箔積層板が開発され、 高度の耐熱性と寸法安定性 を必要とする各種配電板などの基板として用いられつつある. このような銅箔積層板は、 エポキ シ樹脂などを舍む配合ヮニ スを芳香族ポリ ァ ミ ド繊維からなる織物や紙状シー ト、 又は 不織布などからなる基材に含浸乾燥させて得られる少な く と も 1枚のプリ プレダと、 銅箔とを積層成形するこ とによって 製造されている。
たとえば、 特開昭 61— 100446号公報には、 芳香族ポリ ア ミ ドを主戒分とする不織布に、 ェポキシ樹脂およびゴム系樹脂 からなる樹脂組成物を舍浸させた電気絶縁材料を、 基材およ び Z又は力バ一レイ として使用したことを特徴とするフ レキ シブルプリ ン ト配線板が開示されている。 また、 特開昭 62— 283695号公報には、 厚さが 0 . 025〜 0. 5 mmのァラ ミ ド織維布 基材に、 芳香族ァ ミ ン硬化剤をァダク ト したェポキシ樹脂を 含浸させて形成したフレキシブルな基板と、 この基板の片面 もし く は両面に形成された金属箔の配線層とを備えたことを 特徴とするフ レキシブル配線基板が開示されている。
しかるに、 このようにして得られた基板上に銀電極を形成 し、 この銀電極間に電界を与えると、 一定時間の経過後、 特 に高温高湿下の電舁中において、 基板中への銀のマィ グレー ショ ンが発生し、 その結果、 基板の铯縁抵抗が低下すること がしばしば見いだされた。
この銀マイ グレ一シ ョ ン現象は、 芳香族ポリ ア ミ ド織維が 大きな吸湿性を有し、 かつナ ト リ ゥムゃ塩素を多く舍有する 基材であること、 および、 エポキシ樹脂がナ ト リ ウムや塩素 を多く舍有するマ ト リ ックスであることの相乗的作用により 発生するものと考えられている。 特に、 C O Bのような高密 度配線板においては、 電極閩の絶縁抵抗の低下ば、 致命的欠 陥となる。 従って、 絶縁抵抗の低下のない銅箔積層扳用プリ プレダの開発が望まれていた。
一方、 配電板製品の寸法安定性を向上させるため、 基板に 対し一層高い耐熱性が要求され、 さらに、 配線回路幅の減少 に伴い、 耐熱性の向上がピール強度の低下を伴わないことが 要求されている。 このため高温高湿下における電界中におい ても、 銀マイ グレーシ ョ ン防止性に優れ、 かつ耐熱性および ピール強度の優れた銅箔積層板用プリ プレグの開発が望まれ ていた。 発明の開示
本発明の目的は、 チップオンボー ド(C O B ) 用銅箔積層板に 有用なものであって、 高温高湿下の電界中においても铯縁抵 抗の低下が極めて小さ く 、 耐熱性およびピール強度のす ぐれ たチップオンボー ド(CO B ) を形成するのに適したエポキシ樹 脂組成物舍浸プリ プレダを提供することにある。
本発明のェポキシ樹脂組成物舍浸プリ プレダは、 芳香族ポ リ ア ミ ド繊維を主成分とする基材と、 それを舍浸しており、 かつェポキシ樹脂と硬化剤とを舍む樹脂組成物とからなり、 前記芳香族ポリ ァ ミ ド繊維基材が、 3. 0重量%以下の平衡 水分率と、 8 0 pp m 以下の抽出ナ ト リ ウム含有量と、 5 0 p p m 以下の抽出塩素舍有量とを有し、
前記ェポキシ樹脂組成物が、 5 ρ ρ π. 以下のナ ト リ ウ ム と、 600 p p m以下の塩素とを舍有する、 ことを特徴とするものであ る。
本発明のェポキシ樹脂組成物舍浸プリ プレダにおいて、 ェ ポキシ樹脂組成物中のエポキシ樹脂は、 下記成分 :
( I ) ビス フ エノ ール Aとホルムアルデヒ ド との重縮合生 成物と、 ヱピク ロルヒ ドリ ンとの反応生成物からなるグ リ シ ジルエーテル化合物と、 ハロゲン化ビス フ エノ ール A とホノレ ムアルデヒ ドとの重縮合生成物と、 ェピク ロルヒ ドリ ンとの 反応生成物からなるハロゲン化グリ シジルエーテル化合物か らなる群から選ばれた少なく とも一員と、
( K ) 下記式 :
R 一く〇 Y R
Figure imgf000006_0001
〔但し、 上式中、 Yは、 一 C (CH 3) 2 —基、 および— CH 2 —基 から遺ばれた一員を表わし、 Rはヱポキシ化合物多量体残基 を表わし、 各ベンゼン核はブロム原子により置換されていて もよい〕
で表わされるビスフエノール A型、 およびビスフユノール F 型グリ シジルエーテル化合物から選ばれた少な く とも一員と、
( I ) ビスフエノ ール A、 ビスフエノ ール Fおよびテ ト ラ プロモビスフヱノ ール Aからなる群から選ばれた少なく とも 一員との反応生成物を舍むものであることが好ましい。
また、 エポキシ樹脂組成物中の硬化剤は、 (A ) ビスフニ ノ ール Aとホルムアルデヒ ドとの重縮合生成物、 および ( B ) ノヽロゲン化ビスフヱノ ール Aと、 ホルムアルデヒ ドとの重縮 合生成物とからなる群から選ばれた少なく とも一員を含むも のであることが好ましい。
更に、 エポキシ裰脂組成物において、 上記エポキシ樹脂の エポキシ当量に対し、 上記硬化剤のフユノール性水酸基当量 の比が、 0. 6〜し 3 の範囲内にあることが好ましい。 図面の簡単な説明
第 1図は、 本発明のプリ プレダを用いて製造された C 0 B の表面における銀のマイ グレーショ ン状況を示す説明図であ ¾、
第 2図、 第 3図および第 4図は、 それぞれ従来のプリ プレ グを用いて製造された C〇 Bの表面における銀のマイ グレー シ ョ ン状況を示す説明図であり、
第 5図、 および第 6図は、 それぞれ本発明のプリ プレダを 用いて製造された C 0 Bの表面における銀のマィ グレーショ ン状況を示す説明図であり、
そして、
第 7図、 および第 8図は、 それぞれ従来のプリ.プレダを用 いて製造された C 0 Bの表面における銀のマイ グレーショ ン 状況を示す説明図である。 発明を実施するための最良の形態
本発明のェポキシ舍浸プリ プレダは、 芳香族ポリ ア ミ ド鏃 維を主成分として舍む基材と、 それを舍浸しているエポキシ 樹脂組成物とを舍むものである。
芳香族ポリ ァ ミ ド繊維基材と、 ェポキシ樹脂組成物の舍有 重量比は、 20 : 80〜60 : 40の範囲内にあることが好ま し く 、 30 : 70〜55 : 45の範囲内にあることがより好ま し く 、 35 : 65 〜50 : 50の範囲内にあることがより一層好ま しい。 上記含有 重量比が上記範囲外になると、 得られるプリ プレダの寸法安 定性、 熱膨張性、 絶縁性などが不満足になり、 また得られる 銅箔積層扳の溶接^。 idering) のときのプリ プレグの耐熱性 が不十分となることがある。
本発明に用いられる芳香族ボリ ァ ミ-ド纖維を構威する重合 体は、 好まし く は、 75〜 100モル%の下記 ( I ) 式および ( E ) 式で示される橾り返えし単位 :
H H 0 0
I I 1! ( I )
N - Ar, - N - C Ar2- C
および
H 0
( n )
-- N Ar3- C -4- から選ばれた少なく とも 1員を舍むものである。
上記 ( I ) および ( 1 ) 式中、 Ar^ , Ar2および Ar3は、 それぞれ、 他から独立に、 置換された、 および置換されてい ない下記式の芳香環基 :
Figure imgf000008_0001
0
(但し、 上記芳香璟基中、 Xは— 0— , — S 一 C CH 3
i
- CH 2 —および 一 C 一 基から選ばれた一員を表わす) か
CH 3
ら選ばれた一員を表わすものである。
前記式 ( I ) の操り返えし単位を舍むポリ エステルにおい て、 Α Γ ιで表わされる芳香族環基の 15〜30 %が
(θ )- 0 —く〇〉 基であり、 残余の芳香族環基が
( O h- であることが好ま し く 、 この場合上記直線状、 又 は平行軸状結合芳香族環基は、 この芳香族環基に直接結合し ている水素原子の一部が、 ハロゲン原子、 メ チル基、 および メ トキシ基から選ばれた少な く とも一員により置換されてい てもよい。
本発明に用いられる芳香族ポリ ア ミ ド織維は、 例えば、 上 記のような全芳香族ポリ ア ミ ド重合体を、 従来の方法により 繊維に形成し、 これを十分に延伸して、 これに高度の分子配 向度を付与した高モジュラス全芳香族ポリ ア ミ ド繊維である ことが好ま しい。
芳香族ポリ ア ミ ド織維は、 短繊維、 パルプ状フ ィ ブリ ルぉ よびこれらの混合物のいづれの状態にあるものであってもよ い。 パルプ状フイ ブリ ルは、 繊維を磨砕することによって形 成することができる。
本発明者らは、 芳香族ポリ ア ミ ド織維を基材とする C 0 B 用基板の欠点とされていた銀のマイ ダレ一ショ ンの発生に関 し、 その原因について詳細に検討をした。 その結果、 基板中 のマ ト リ ッグスを構成している—エポキシ樹脂組成物の純度だ けをどれだけ向上させても、 銀のマイ グレーショ ンの発生を 防止することは不可能であること、 および、 銀のマイ グレー ショ ンを防止するには、 まず基材としての芳香族ポリ ア ミ ド 織維自身の平衡水分率、 ナ トリ ゥム舍有量および塩素含有量 とを、 それぞれ一定値以下に滅少させること、 および硬化剤 を舍むェポキシ樹脂組成物中のナ ト リ ゥム量と塩素量をそれ ぞれ一定値以下に泜減させることが必要であり、 これら要俘 の相乗作用により、 銀のマイ ダレ一ショ ンを著し く軽減でき ることを見出し本発明を完成させたのである。
すなわち本発明に用いられる芳香族ポリ ア ミ ド鏃維は、 従 来の芳香族ポリア ミ ド镞維に比べて、 平衡水分率、 残存ナ ト リ ゥム舍有量および残存塩素含有量を低減せしめた鏃維であ る。
芳香族ポリア ミ ド鎩 は、 一般に、 芳香族ジァ ミ ンと、 芳 香族ジ力ルボン酸ク口ライ ドとを重合反応させて得られるポ リ マーの溶液を湿式紡糸し、 得られた未延伸織維を水洗乾煖 し、 および熱延伸して得られるものである。 芳香族ポリア ミ ド織維の平衡水分率は、 ポリ マーの組成と物性と、 および熱 延伸工程における延伸条件、 および熱処理条件などをコ ン ト ロールし、 それによつて、 得られる織維構造を最適構造にす ることにより、 所望値に低下させることができる。
芳香族ポリ ア ミ ド織維が重合溶液からポリ マーを単離し、 これを濃硫酸などの無機酸に溶解し、 得られた溶液を湿式紡 糸して得られたものである場合、 織維から無機酸を十分に除 去することが必要であるが、 その達成は、 単純な水洗のみで は困難であって、 水酸化ナ ト リ ウム水溶液による中和および 水洗を必要とする。 しかしこの中和処理の結果、 ナ ト リ ウ ム の無機塩を繊維中に多量に残存させるこ とになる という欠点 がある。 このため、 本発明における芳香族ポリ ア ミ ド繊維は 非プロ ト ン系ア ミ ド溶媒中の重合によって得られるポリ マ一 を単離することな く 、 重合溶液をそのまま湿式紡糸して得ら れる織維であることが好ま しい。 この場合、 濃硫酸などの無 機塩を使用しないために、 水酸化ナ ト リ ウムによる中和処理 の必要がな く、 従って、 繊維中のナ ト リ ウムの残留量は極め て少ない。 本発明に用いられる芳香族ポリ ア ミ ド繊維の製造 に当り、 その中のナ ト リ ウム残留量を低下させるために、 高 純度の原料を使用し、 溶剤、 凝固液、 油剤などの舍有ナ ト リ ゥムを極力低減させるこ とが好ま しい。 次に芳香族ポリ ア ミ ド繊維中に残存する塩素は、 その重合工程において副生する 塩化水素が主な供給源である。 残留塩素は、 重合系中の塩化 水素は水酸化カルシウムなどで中和しておき、 さ らに得られ た繊維を十分水洗するこ とによって除去するこ とができ る。 本発明における芳香族ポリ ア ミ ド繊維は、 高純度の原料を使 用し、 溶剤、 凝固液、 油剤などの舍有塩素を極力低減させる とともに、 重合溶液の中和度を最適の範囲に保ち、 かつ十分 な濾過をした紡糸溶液を用い、 押し出された紡糸溶液流を、 適正な範囲の P H値に保たれた凝固液中で脱溶媒して織維化さ れたものであることが好ま し く、 これによつて繊維中の塩素 残存量を著し く低減させるこ とができる。 本発明に用いられる芳香族ポリ ア ミ ド織維基材において、 その平衡水分率は、 3. 0重量%、 好まし く は、 2. 0重量%以 下であり、 また、 抽出塩素ナ ト リ ゥム舍有量は、 8 0 ppm 以 下、 好まし く は 7 0 ppm 以下であり、 更に抽岀塩素含有量は 5 0 p m 以下、 好まし く は 4 0 ppm 以下である。
平衡水分率とは、 JI S L1013 化学織維フ イ ラメ ン ト糸試験 法に基づき 20 'C , 65 % I?Hにおける平衡状態での織維の水分率 を潮定した値である。 なお測定に関しては鐡維表面の油剤や
I - その他の付着物からの影響を受 oけないよう予め 5 0 て のシク 口へキサンにて 3 0分閩洗淨した織維を用いる。
抽出ナ ト リ ウ ム含有量とは、 芳香族ポリ アミ ド繊維約 1 0 gを純水 lOO gへ浸漬し 2 0時間煮沸した後の濾液について 舍有ナ トリ ゥム量を原子吸光法により定量分折して得られた 絶対値を、 抽出前の芳香族ポリ ア ミ ド繊維の重量で除した値 を百 。
抽出塩素舍有量とば、 芳香族ポ ア ミ ド鏃維約 1 0 gを純 水 lOO g へ浸漬し 2 0時間煮沸した後の濾液について、 塩素 含有量をイ オ ンク ロマ トグラフ法により定量分圻して得られ た絶対値を、 抽出前の芳香族ポリ ア ミ ド織維の重量で除した 値を舌 つ。
本発明に用いられる芳香族ポリ アミ ド繊維基材の平衡水分 率が 3. 0重量%を越えると、 得られる C 0 Bを高温高湿下の 電界中におく と、 基板中のナ ト リ ゥムゃ塩素がィオ ン化し、 このため、 基板表面上に形成された銀電極がィ オ ン化して水 和物を形成しやすく なり、 この結果、 陽電極に酸化銀が、 ま た陰電極に銀が折出し、 いわゆる銀のマイ グレーショ ンが発 生する。
また、 芳香族ポリ ア ミ ド織維基材中の抽出ナ ト リ ウム含有 量が 8 0 p pm を越えると、 得られる C O Bを高温高湿下の電 界中においたとき、 残留ナ ト リ ゥムはナ ト リ ゥムイ オ ンとな つて基板中へのイ オ ン化を促進し、 上述の理由で銀のマイ グ レ一ショ ンが発生する。
更に、 芳香族ポリ ア ミ ド織維の抽出塩素含有量が 2 0 p p m を越える と、 得られる C 0 Bを高温高湿下の電界中においた とき、 残留塩素は塩素イ オ ンとなって基板中のイオ ン化塩素 の量が増大する。 これらの塩素量が増える と、 残留ナ ト リ ウ ムのイオン化を加速し、 同時に水分の電離も助長される。 ま た一部の塩素イ オンは、 銀イ オンと反応し塩化銀を形成する ため、 銀のイオン化が促進される。 この結果塩化銀が水酸化 銀に変化し、 さ らには酸化銀に変化して陽電極付近に析出し、 いわゆる移行現象が発生し絶緣不良を引き起す。
即ち芳香族ポリ ア ミ ド繊維基材を用いたヱポキシ樹脂舍浸 基板では、 水分、 ナ ト リ ウム、 塩素の残存量がいずれも銀の マイ グレーショ ンに密接に、 関与しており、 従ってこれらの 定量値としての平衡水分率、 抽出ナ ト リ ウム含有量、 および 抽出塩素含有量が、 いずれも上述の各上限値以下であり、 か つ、 後に詳し く説明するようにェポキシ樹脂組成物中のナ ト リ ウム舍有量および塩素含有量が、 後述の上限値以下である ときにのみ高温高湿下で電界中におかれた C 0 Bは、 すぐれ た銀マイ グレーショ ン防止性を有し、 これらの元素のいずれ かが、 それぞれの上限値を越える場合は、 その銀マイ グレー ショ ン防止性は不十分となるのである。
本発明の芳香族ポリ ァ ミ ド織維の単織維太さは、 0. 1 〜10 デニールの範囲内にあることが好ましい。 芳香族ポリ ア ミ ド 織維基材は織物、 編物、 不織布または紙扰シー トなどの形態 を有するものであってもよ く、 また単にェポキシ樹脂組成物 中に分散されていてもよい。
本発明に用いられる芳香族ポリ ア ミ ド織維基犲は、 60〜: L 00 重量%、 好まし は 70〜 100重量%の芳香族ボリア ミ ド織雜 と、 0 〜40重量%、 好ましく ば 0 〜30重量%の、 少なく とも 1種の他種繊維とを含むものであってもよい。 他種繊維は、 本発明の目的、 作用効果を損わない限り、 基材中に含まれて いてもよ く、 たとえばガラス織維、 炭素織維、 ポリ エーテル ケ ト ン繊維、 ポリ エ一テルエ一テルケ ト ン鏃維、 ポリ ェ一テ ルイ ミ ド織維、 ポリ イ ミ ド镞維、 全芳香族ポリ エステル鐡維、 ポリ フエ二レンサルフア イ ド織維、 セラ ミ ック織維などから 選ぶことができる。
本発明に用いられるェボキシ樹脂組成物はエポキシ樹脂と、 硬化剤とを舍むもので、 必要により、 更に硬化促進剤、 滑剤、 難燃剤、 安定剤、 離型剤、 メ ツキ活性剤、 その他無機または 有機の充¾剤、 フ ッ素系ポリ マー微粒子、 顔料、 染料、 炭化 カルシウムなどの少なく とも一員を舍んでいてもよい。
本発明に用いられるヱポキシ樹脂組成物は、 ェポキシ樹脂 と、 硬化荊とを舍むものであって、 硬化剤の含有量は、 ェポ キシ樹脂含有重量に対し 2〜 6 0 %であることが好まし く、 10〜 40%であるこ とがより一層好ま しい。
本発明に用いられるエポキシ樹脂組成物は、 5 ppm 以下、 好ま し く は 3 ppm 以下のナ ト リ ウム含有量と、 600ppm以下の 好ま し く は 400ppm以下の塩素含有量とを有するものである。 これらナ ト リ ウムおよび塩素の舍有量は、 上記エポキ シ樹脂 硬化剤および添加剤中に本来舍まれているものおよびこれら の製造に用いられる浴剤などに由来するものを包舍するもの である。
ナ ト リ ウム含有量とは、 エポキシ樹脂組成物の未硬化状態 の配合物 (通常ワニス) を固形分で約 2 gルツボ中で灰化し 該灰化物を硝酸の 3 0 %水溶液 1 0 で加熱溶解した溶液に 純水を加えて 5 Q 滅と し、 それに舍まれるナ ト リ ゥムの量を 原子吸光法により定量分析した絶対値を、 灰化前の重量で除 した値をいう。
また塩素含有量とは、 エポキシ樹脂組成物の固形分約 2 δ gをメ チルェチルケ ト ンに希釈溶解し、 この溶液の固形分濃 度を 5 0 %に調整し、 この溶液に舍まれる塩素の量を、 螢光 X線により定量分析した値を、 組成物の固形分重量で除した 値 ¾ s つ。
本発明において、 ヱポキシ樹脂組成物中のナ ト リ ゥム舍有 量が 5 ppm を越える場合、 あるいは塩素含有量が 600ppm を 越える場合は、 基材と して用いられる芳香族ポリ ア ミ ド繊維 の種類にかかわらず、 得られた C O Bを高温高湿下の電界中 においたとき、 基板中においてイオン化するナ ト リ ゥムゃ塩 素量が過大となり、 基板中の水分の電離を助長し、 それによ つて、 銀イ オ ンの生成を加速する。 この結果、 陽電極付近に は銀が圻岀して、 いわゆる銀のマイ グレーショ ンが発生し、 基板の絶緣不良を引き起こす。 この場合、 芳香族ポリ ア ミ ド 繊維基材の平衡水分率が 3. 0重量%を越えたり、 抽出ナ ト リ ゥム舍有量が 8 0 ppm を越えたり、 また抽出塩素含有量が 5 0 ppra を越えたりする と、 C O B中の銀のマイ グレーショ ンば一層促進される。
本発明に ¾いられるェポキシ樹脂の種類には特に限定はな いが、 一般に、
( A ) ビスフエ ノ ール Aおよびハ ロゲン化ビス フヱノ ール Aから選ばれた少な く とも一員とェピク ロルヒ ドリ ンとの反 応生成物からなるジグリ シジルエーテル化合物 (たとえば油 化シヱルエポキシ㈱製ェピコ一 ト 828 , 1001 , 1002 , 1003 : 1004 , 1005など、 または 5045 , 5046 , 5048 , 5049など) 、
( B ) ビスフエノ ール Aと、 アルキ レンォキサイ ドとの、 酸またはアル力リ触媒の存在下における反応生成物からなる 多価アルコ 一ル化合物と、 ヱ ピク ロルヒ ド リ ンとの反応生成 物からなるポリ ェ一テル型ポリ グリ シジルエーテル化合 ¾3 (例えば旭電化賴製 EP - 4000 など) 、
( C ) フユノールノ ボラ ッ ク型エポキシ化合物 (例えば油 化シェルエポキシ睐製ェピコ一 ト 152 , 154など) 、 および
C D ) オルソク レゾールノ ボラ ッ ク型ェポキシ化合物 (例 えば油化シヱルエボキシ㈱製ェピコー ト 180S65など) から選ばれた少な く とも一員からなるものを用いることがで さる。 ェポキシ樹脂組成物中の硬化剤にも特に限定はないが、 一 般に、 ジシア ンジア ミ ド化合物、 芳香族ポリ ア ミ ン、 および フエノ ール樹脂から選ばれた少なく とも一員からなるものを 用いることができる。 芳香族ポリ ア ミ ンは、 耐熱性の高いェ ポキシ樹脂硬化体を得るのに好適である。
さ らに、 本発明に用いられるエポキシ樹脂組成物中に硬化 促進剤を併用するこ ともできる。 硬化促進剤としてはィ ミダ ゾール類、 イ ミダゾリ ン類または ト リ フエニルホスフ ィ ンな どの 3級ホスフ ィ ン類などを用いるこ とが好ま しい。
従来から銅箔積層扳用プリ プレダに用いられる難燃性ェポ キ シ樹脂組成物としては、 テ ト ラブロモビスフエノ ール Aお よびビスフヱノ ール Aと、 ェピク ロルヒ ド リ ンとの共重合生 成物からなるブロム化ビスフヱノール A型エポキシ樹脂に、 耐熱性のオルソク レゾ一ルノ ボラ ック型ヱポキシ樹脂と、 硬 化剤としてジシア ンジア ミ ドなどを加えたものが多用されて きた。 しかし上記のようなエポキシ樹脂組成物は、 耐熱性が 低く、 またジシア ンジア ミ ドを硬化剤として含んでいるが、 ジシア ンジア ミ ドは溶剤に対する溶解性が低く 、 また結晶し やすいため、 組成物全体として硬化反応が不均一になりやす く、 また低分子量成分が残留しやすいこ となどの問題点があ り、 このため芳香族ポリ ア ミ ド繊維基材およびヱポキシ樹脂 組成物中のナ ト リ ゥムゃ塩素の含有量を極めて低い水準に低 減させても、 得られる C O Bには、 それを高温高湿下の電界 中におく と、 銀のマイ グレーショ ンが発生しやすいという欠 点があった。 そこで、 ジシアンジア ミ ドに代る硬化剤として 芳香族ァミ ンゃ酸無水物を用いた場合、 得られるェポキシ樹 脂組成物の硬化物は、 向上した耐熱性を有するが、 そのナ ト リ ゥムゃ塩素の含有量を極めて低い水準に低减させても、 そ れから得られる C 0 Bには、 銀のマイ グレーショ ンが発生し やすいという欠点がある。 近年、 耐熱性と耐湿性を有するフ エノ 一ルノ ボラ ック樹脂やオルソク レゾ一ルノ ボラ ッ ク樹脂、 メ タク レゾ一ルノ ボラ ッ ク樹脂、 ノ、'ラク レゾ一ルノ ボラ ック 樹脂、 レゾルシンノ ボラ ッグ樹脂などノ ボラ ック樹脂が半導 体の封止用ェポキシ樹脂の硬化剤として用いられている。 こ れらのノ ボラ ック樹脂を用いた場合は、 C O Bにおける銀の マイ グレーショ ンをかなりの程度に防止することができる。 しかし銅箔積層板においては、 ビール強度が著しく低下して しまう という欠点を有する。 一方ピール強度を向上させるた めに、 高接着性のエポキシ樹脂を添加すると、 得られる銅箔 積層板の耐熱性が低下する。
徒って銀マイ グレーショ ン防止性を有し、 かつ耐熱性とピ ール強度の優れる銅箔積層扳を得るためには、 全く従来と異 なるェポキシ樹脂と硬化剤との組成の開発が望まれていた。 上記要望を潢足させるエポキシ樹脂組成物として、 下記の エポキシ樹脂および硬化剤を用いることが好ましい。
すなわち、 本発明に用いられる好ましいエポキシ樹脂 (以 下エポキシ樹脂 c と記す) は、
( I ) ビスフヱノ ール Aとホルムアルデヒ ドとの重縮合生 成物と、 ェピク ロルヒ ドリ ンとの反応生成物からなるグリ シ ジルエーテル化合物、 およびハロゲン化ビスフエノ ール Aと ホルムアルデヒ ドとの重縮合生成物と、 ェ ピク ロルヒ ドリ ン との反応生成物からなるハ πゲン化グリ シジルェ一テル化合 物からなる群から選ばれた少なく とも一員と、
( Π ) 下記式 :
R —く〇 )— Y— < 0^- R
〔但し、 上式中、 Yは— C (CH 3 ) 2 —基、 および— C H 2 —基か ら選ばれた一員を表わし、 Rはエポキ シ化合物多量体残基を
1
表わし、 各ベンゼ ン核はブロム 7原子により置換されていても よい〕
で表わされるビスフユノ 一ル A型およびビスフエノ 一ル F型 グリ シジルエーテル化合物から選ばれた少な く とも一員と、 ( I ) ビスフエノ ール A、 ビス フ エ ノ ール Fおよびテ ト ラ プロモ ビスフヱノール Aからなる群から選ばれた少な く とも 一員と、
の反応生成物の少な く とも一種を舍むものである。
また、 好ましい硬化剤 (以下硬化剤 d と記す) は、 ビス フ エノール Aとホルムアルデヒ ドとの重縮合生成物と、 および ハ ロゲン化ビス フ ヱ ノ 一ル Aとホルムアルデヒ ドとの重縮合 生成物とからなる群から選ばれた少な く とも一員を舍むもの であって、 前記ヱポキシ樹脂のヱポキシ当量に対し、 前記硬 化剤のフ ユノール性水酸基当量の比が、 0. 6 〜 1. 3、 好ま し く は 0. 7〜 1. 2 の範囲内にあることが好ま しい。
上記のエポキシ樹脂 c のう ち、
( i ) ビスフヱ ノ ール Aおよびブロ ム化ビス フ ユ ノ ール A から選ばれた少なく とも一員と、 ホルムアルデヒ ドとの重縮 合生成物と、 ェピク ロルヒ ドリ ンとの反応生成物からなる少 なく とも一種のグリ シジルエーテル化合物成分 50〜90重量部 と、
( ϋ ) 少な く とも一種のビスフユノ ール型ェポキシ樹脂成 分 5 〜 5 0重量部と、
( i ) テ ト ラブロモビスフヱノ ール A成分 10〜50重量部と、 の反応生成物を舍むものが、 特に好ましい。
上記成分 ( i ) , ( ii ) および ( iii ) の反応生成物は、 例え ばィ ミダゾ一ル化合物 (例えば、 ジメ チルイ ミダゾール) 、 又はイ ミダゾリ ン類からなる触媒の存在下に製造することが できる。
本発明のプリプレグに、 上記エポキシ樹脂 c と、 硬化剤 d とを用いることにより、 このプリプレダを舍む銅箔積層板を 用いて得られる C 0 Bの銀マイグレーショ ン防止性、 耐熱性 およびピール強度をバラ ンスよ く向上させるこ とができる。 これは、 硬化剤 dを構成する化合物の分子構造の骨格と、 ェ ポキシ樹脂 cを構成する化合物の分子構造骨格とが、 互に類 似し、 従って両者の相溶性がよ く、 これらの硬化反応により バランスのよい架橋構造が形成されるためであると推定され る。
エポキシ樹脂 c のエポキシ当量と、 硬化剤 d のフユノール 性水酸基当量との比は、 前逑のように 0. 6〜:. 3、 好ま しく は、 0 7〜 1. 2 の範囲内にある。 この当量比が、 1. 3を越え る場合、 硬化剤 dの一部分が未反応伏態で残留し、 また、 0. 6 未満ではェポキ シ樹脂 c の一部分が未反応のま 残留す る こ とになり、 いづれの場合も、 得られるプリ プレダの性能 が低下する。
本発明のェポキ シ樹脂組成物にさ らに高度の難燃性が必要 の場合は、 ブロム化ビスフヱノ ール A型エポキ シ樹脂を、 ェ ポキ シ樹脂組成物の全固形分重量に対し 10〜30重量%の添加 量で配合してもよい。 このブロム化ビス フヱノ ール A型ェポ キ シ樹脂のブ口ム舍有量は 45〜55重量%である こ とが好ま し い 0
さ らに本発明のェポキシ樹脂組成物に、 硬化促進剤が舍ま れていて もよい。 硬化促進剤と してはィ ミダゾール化合物ま たはィ ミダゾリ ン化合物が良好である。 ィ ミダゾール化合物 と しては 2 —メ チルイ ミダゾ一ル、 2 —ェチルイ ミダゾ一ル、 4 ーメ チルイ ミダゾール、 2 —ェチノレ一 4 —メ チルイ ミ ダソ" ール、 2 — ゥ ンデシルイ ミダゾール、 および 1 —ベ ンジル一 2 —メ チルイ ミ ダゾ一ルなどを用いる こ とが好ま しい。 また ィ ミ ダゾ リ ン化合物と しては、 2 —ェチル一 4 — メ チルイ ミ ダゾリ ン、 2 —ゥ ンデシルイ ミダゾリ ンおよび 2 —メ チルイ ミダゾリ ンなどを用いる こ とが好ま しい。
またその他の硬化促進剤と して、 ト リ フヱニルホ ス フ ィ ン などを用いてもよい。
さ らに本発明のェポキ シ樹脂組成物は、 硬化物の性能を損 なわない範囲内で、 例えば滑剤、 接着促進剤、 難燃剤、 安定 剤 (酸化防止剤、 紫外線吸収剤、 重合禁止剤など) 、 離型剤、 メ ツキ活性剤、 その他無機または有機の充填剤 ( シ リ カ、 タ ルク、 酸化チタ ン、 フッ素系ポリマー微粒子、 顔料、 染料、 炭化カルシウ ム) などを含んでいてもよい。 特に無機難墩剤 としてば、 酸化ア ンチモンを用いることが好ましく、 その Φ でも特に五酸化ァンチモ ンは、 ヮニス分散性や安定性に優れ、 かつ無電解メ ッキ中への溶出汚染がないので最も好ましいも のである。 酸化ア ンチモ ンの配合量は、 エポキ シ樹脂組成物 の全面彤分重量に対し 0. 2〜 1 0重量%の範囲にあることが 好ましい。
さらに本発明のェポキシ樹脂組咸物が硬化剤 dを含む場合- それに加えて、 芳香族ポリ アミ ン類が添加されていてもよい, 芳香族ポリ ア ミ ンとしては、 ジァ ミノ ジフエ二ルェ一テル、 ジア ミ ノ ジフエニルメ タ ン、 ジア ミ ノ ジフ エニルスルホ ン、 4 , 4 ' ーメ チ レンジァニ リ ン、 ジア ミ ノ ジニ ト リ ルスルホ ン、 ビス ( 3 , 4 —ジァ ミ ノ フエニル) スルホ ン、 m—ア ミ ノ ベンジルァ ミ ン、 4 ーメ ト キ シー 6 —メ チル一 mフ エニ レ ンジァ ミ ン、 および 4 , 4 ' —チォジァニリ ンなどを用いる ことができる。 またハロゲン化芳香族ポリ ア ミ ンを用いても よい。
本発明のエポキシ樹脂組成物ば種々の有機溶剤に溶解する ことができる。 このような溶剤としては、 例えばアセ ト ン、 メ チ レエチノレケ ト ン、 トノレェ ン、 キ シ レン、 メ チルイ ソ ブチ ルケ ト ン、 醉酸ェチル、 エチ レ ングリ コールモノ メ チルェ一 テル、 N , N —ジメ チルホルムア ミ ド、 N , N —ジメ チルァ セ トアミ ド、 メ タノール、 およびエタノール等の少な く とも 1種からなるものを用いることができる。 本発明のプリ プ レダは、 通常の製造方法に従い、 芳香族ポ リ ア ミ ド織維基材にェポキシ樹脂組成物を舍浸させ、 必要に 応じて乾燥することにより製造するこ とができる。
また、 本発明の銅箔積層扳は、 所要枚数のプリ プレダを積 層し、 プリ プレダ、 又はプリ プレダ積層体上に銅箔を重ね、 この積層体を加圧加熱により、 一体硬化成形するこ とにより 製造することができる。 実施例
以下実施例により本発明をさ らに詳し く説明する。 実施例 中で用いた測定法は下記の通りである。
<銀電極間絶縁抵抗 >
銅箔をヱ ッチング後の基板上に銀ペース ト (デュポン社製 No. 4929 ) を用いてスク リ 一ン印刷により 0. 5 圓の間隙を有す る電極を作成し、 20 °C , 65 % R Hで 9 6時間調湿後ただちに 500ボル トの直流電圧印加による絶縁抵抗を測定した。 さ ら に 220 °Cで 2分間のハンダリ フローを行った。 次に該両電極 間に 9 0 ボル ト の直流電圧を印加しながら 12 1て , 2 kg / cm の条件でプレ ッ シ ャーク ッカー試験を 200時間実施した。 基 板を 20 'C , 65 % R Hで 9 6時間調湿後直ちに 500ボル トの直流 電圧印加による絶緣抵抗を測定した。
<銀のマイ グ レーシ ョ ン度 >
上述のプレ ッ シ ャーク ッカ一試験終了後直ちに光学顕微鏡 により銀電極間の表面を観察し評価した。 <ガラス転移点 : T g >
熱分圻機械装置 ( T MA :理学電気踩製) を用いた。 20て, 0%BHにおいて幅 4. 5腿、 長さ 2 3醒のサンプル (完全エ ツ チング物) を切り出しチャ ッ ク間距離 2 0舰で T M Aにセ ッ ト した。 引張モ一ドで荷重 5 g、 昇温速度 10 'C /min で 200 てまで昇温し、 次に 5 'Cノ min で 5 0 'Cまで昇温し、 再度 ΙΟΐ/min で 200'Cまで昇温した。 二度目の昇温曲線におい てその微分係数がゼロになる点をガラス転移点 : T g ( 'C ) とした。
<ピール強度 : P S >
10Z銅箔の常温におけるピール強度を、 JIS C6481 の方法 で測定した。 実施例 1〜 6、 比較例 1 〜 Ί
実施例 1 〜 6および比較例 3 〜 Ί の各々において、 特定純 度を有するテレフタル酸クロライ ド 100モル ラフェニ レンジァ ミ ン 5 0 モル%、 3 , 4 ' —ジア ミ ノ ジフエニルェ —テル 5 0 モル%を共重合させて、 全芳香族ポリ エーテルァ ミ ド (ポリノヽ。ラフェニレン、 3 , 4 ' —ジア ミ ノ ジフエニル ェ一テルテレフタルア ミ ド) を製造し、 この共重合体を湿式 紡糸して第 1表記載の平衡水分率、 抽岀ナ ト リ ウム、 および 抽出塩素量と、 並びに 1. 5デニールの単糸織度を有する織維 を作成した。 この織維から織物を作成し基材として用いた。 一方、 比較例 1 〜 2 において、 ポ 'ラフェニレンテレフタ ルア ミ ドからなる織物 (ケブラ一一 4 9 ®織物 : 単糸織度 丄. 42デニール) を基材として用いた。 これらの基材の目付け は、 いずれも S O g Z nfであり、 それらの厚みは約 0. 1 mmで あ つ 7こ。
一方上述の全芳香族ポリ エ一テルア ミ ド繊維を、 3 im長に カ ッ ト し、 これを水に分散させ、 得られた織維スラ リ ーから タ ッ ピー式角型抄紙機を用いて秤量 5 5 g / πΐの紙状シー ト を抄紙した。 この紙状シ一 トを二枚の金属メ ッ シュにはさん で熱風乾燥機中で 150てで 5分間の乾燥を行った。 次にェポ キ シ樹脂組成物として、 臭素化工ピビス型エポキシ樹脂、 お よびオルソク レゾ一ルノ ポラ ッ ク型ェポキシ樹脂とからなる エポキシ樹脂成分と、 ジシァンジア ミ ドからなる硬化剤と、 2 —ェチルー 4 —メ チルイ ミダゾールからなる硬化促進剤と を、 メ チルェチルケ ト ン /メ チノレセ ロ ソルブの 1 Ζ 1 混合溶 媒に希釈し、 固形分濃度 6 0 %に調整されたワ ニスを作成し た。 こ のワ ニス (エポキシ樹脂組成物) は、 第 1 表記載のナ ト リ ゥム舍有量および塩素含有量を有していた。 次に上述の 紙状シー ト に対しメ ッ シュの両面より、 実施例 1 のワ ニスを スプレー塗布し、 熱風乾燥機中で 100 'Cで 2分間さ らに
170 Ϊで 3 0分間乾燥させた。 付着樹脂量は約 5重量%であ つた。 次いで表面温度 190て の金属ロールを有する一対の金 属ノ弾性ロールカ レ ンダーを用い 300 kgノ cm、 2 m Z分の条 件で、 こ の紙状シー トに熱圧加工を施した。
上記織物 (比較例 1、 および 2 ) 、 および紙状シー ト (実 施例 1 〜 6、 比較例 3〜 7 ) の各々に上記ヱポキシ樹脂組成 物ワ ニスを舍浸させ、 100てで 3分間の乾燥を施してプリ プ レグを作成した。 次に、 日鉱グールドホイル㈱社製 J T C銅 箔 ( 10Z) 2枚と上記プリ プレダ 4枚とを積層し、 これに、 ホッ トプレスを用い、 170 X .- 50k /cmの条件で 1時間プレ スを施した。 得られた銅箔積層板をエ ッチングし、 純水にて 十分洗浄の後、 8 0 'Cで 1時間の熱風乾燥を施した。 得られ た基板中、 エポキシ樹脂組成物 (固形分) の体積比率は約 6 0 %であり、 その厚さは 0. 4譲であった。
次に銀ペース ト (デュポン社製 4929 ) を、 上記基板上にス ク リ ーン印刷により塗布し、電極間距離 0. 5讓の銀電極を形成 させた。 20'C , 65%RHにおける銀電極間の絶縁抵抗を 500ボ ルトの直流電圧を印加して測定したところ、 全てし 0 X 1015 Ω以上の値を示した。 この画路基板に、 220'C , 2分のハン ダリーフローを施し、 電極に直流 9 0 ボルトの電圧を印加し ながら 121 'C , 2 kg ciのプレッ シャーク ッカー試験を、 200 時間行った。
プレッ シャーク ッカ一試験後、 20°C , 65%RHにおける電極 間絶緣抵抗を同様に測定し、 さ らにその表面を観察して、 銀 のマイ グレ一ショ ンの扰況を観察した。
第 1表にこれらのデータを示す。
m l ¾
^材形^ 繊維の; ω¾ 基材中の不純物 エポキシ ¾腊組 実施 荬施 実施 実施 ¾施 実施 比蛟 比蛟 比蛟 比蛟 比铰 比蛟 1ヒ蛟 成物中の不 ½物 例 1 例 2 例 3 例 4 例 5 例 6 例 1 例 2 例 3 例 4 例 5 例 6 例マ 紙 企芳¾族ポ 平 ί 水分率 1.8 2.8 1.8 1.8 2.7 4.1 1.8 1.8 1.8 Ί.2 リ ェ一テ レ
7ミ ト霍 抽出ナトリ ウム 58 52 68 53 67 58 95 54 52 90
k Pm)
抽出塩素 31 30 32 46 45 29 31 68 22 74
(ppm)
ίϋϋ 物 全芳香旅ポ 平 ffi水分率 1.8
リエーテル (世量%)
7ミ ド細 E 抽出ナ ト リウム 58
(ppm)
抽出塩紫 31
ρο
物 ポリハ'ラフ 平衡水分率 4.1 Ί.1
二レンテ (iai%)
レフタルァ 抽出ナ トリゥム 110 110
ミ ド賺 (ppm)
抽出塩素 25 25
(ppm)
ナ ト リ ゥム舍有 2 2 2 2 2 5 2 10 2 2 2 10 10 ffl (. pm)
塩紫舍 ^fiffi 327 327 327 327 327 580 327 2300 327 327 327 2300 2300 (.PPm)
¾扳性能 饭¾極 ΙίίΙ絶緣抵沆 (Ω) 7.9 8.3 2.4 1.9 2.3 1.5 9.5 1.2 1.3 2.1 2.4 7.3 8.4
X X X X X X X X X X X X X
10'5 10'5 1014 10" 10'< 10 10" 10。 10" 10" 10" 10'° 10' ίΐΐのマイグレーショ ン^ (光学¾微 iftWi ) なし なし なし なし なし なし 大 大 小 小 小 中 大 11 定 ◎ ◎ o O O 〇 X X X X X X X X X X
この結果、 全芳香族ポリエーテルァ ミ ド織維を基材として 使用した基板の平衡永分率が 3. 0重量%以下、 純水煮沸 2 0 時間後の抽出ナ ト リ ウム量が 8 0 ppm 以下、 純水煮沸 2 0時 間後の抽出塩素量が 5 0 ppm 以下であって、 ヱポキシ樹脂組 成物中のナ ト リ ウム舍有量が 5 ppm 以下、 塩素含有量が 600ppm 以下の場合のみ、 このプリ プレダを用いて形成された C 0 B に銀のマイ グレーショ ンが発生せず銀電極間絶緣抵抗の低下 が殆んどないことが判明した。 これに対して、 ポリパラフユ 二レンテレフタルア ミ ド織維を基材として用いた場合は、 こ れから得られた C O Bにおける銀のマィ グレーショ ンが大き く、 艮電極間铯緣抵抗の低下が大きいことも判明した。
第 1図は、 実施例 1 のプリ プレダを用いて得られた C 0 B における銀のマイ グレーショ ン状況を示し、 第 2 , 3および 4図はそれぞれ比較例 3 , 6および 1 のプリ プレグから得ら れた C 0 Bにおける銀のマイ グレーショ ン状況を示す。 第 1 図において、 C O Bの銀電極 1 と銅箔積層板からなる基板の 表面 2 との間に銀のマイ グレーショ ンは認められなかった。 しかし、 第 2 , 3および 4図においては C 0 Bの銀電極 1 と、 基板表面 2 との間に、 マイ グレーショ ンした銀層 3が形成さ れていた。 施例
100モル部の高純度テレフタル酸ク口ライ ドと.5 0 モル部 のノ ラフエ二レンジァ ミ ンと、 5 0 モル部の 3 , 4 ' —ジァ ミノ ジフエニルエーテルとを共重合させて、 全芳香族ポリ ェ —テルア ミ ド (ポ リ ノ ラフ エ二レ ン一 3 , 4 ' —ジア ミノ ジ フ ヱ ニルェ一テルテレフタルア ミ ドを調製し、 こ の共重合体 を湿式紡糸して、 第 2表記載の平衡水分率、 抽出ナ ト リ ウ ム 量、 および抽出塩素量と、 並びに、 1. 5デニールの単織維太 さを有する織維を作成した。 上述の全芳香族ポリ エーテルァ ミ ド繊維を長さ 3 腿にカ ッ ト し、 これを水に分散させて短繊 維ス ラ リ ーを調製し、 こ のス ラ リ ーからタ ツ ビー式角型抄紙 機を用いて、 秤量 55 g Z m2の紙状シー トを抄紙した。 こ の紙 状シー 卜を二枚の金属メ ッ シュにはさみ、 熱風乾燥機中で、 これに 150てで 5分間の乾燥を施した。 次に、 この紙状シ一 ト に対し、 金属メ ッ シュの両面より、 ナ ト リ ウ ム含有量が 1 ppm 、 塩素含有量が 150p pmの水分散型エポキシ樹脂組成物 をスプレー塗布し、 これを熱風乾燥機中で 100 'Cで 2分間、 さ らに 160てで 3 0分間、 乾燥した。 得られた紙状シー トの 付着樹脂量は約 5重量%であった。 次いでこの紙状シー ト に 表面温度 190 °Cの金属ロールを有する一対の金属 /弾性ロー ルカ レ ンダ一を用いて、 300 kg Z cm , 2 m /分の条件で熱圧 加工を施した。
次にビスフヱノール Aとホルムアルデ ヒ ド との重縮合生成 物とェピク ロルヒ ドリ ンとの反応生成物からなるグリ シジル エーテル化合物 (エポキ シ当量 208 ) 8 0重量都と、 ビス フ ユ ノール A型エポキシ樹脂 (ェポキシ当量 187) 2 0重量部と、 およびテ ト ラブロモ ビスフ エノ ール A 3 0重量部とをジメ チ ルイ ミダゾール 0 . 03重量部の存在下で反応させてェポキシ当 量 342 、 ブロ ム含有量 2 3重量%のエポキ シ樹脂 a _ 1 を調 i ,
次にビスフエノ ール Aと、 ホルムアルデヒ ドとの重縮合生 成物からなる硬化剤 b — 1を調製した。
前記エポキシ樹脂 a — 1 5 6重量部と、 ブロム化ビスフエ ノ ール A型エポキシ樹脂 (エポキ シ当量 470 、 ブロム含有量 4 8重量%) 2 0重量部と、 前記硬化剤 b — 1 2 4重量部と を混合し、 この混合物に 2—ェチルー 4—メ チルイ ミダゾ一 ル 0. 04重量部を加えてエポキシ樹脂組成物を調製し、 この組 威物に、 メ チルェチルケ ト ンとエチレングリ コールモノ メ チ ルエーテルとの混合溶剤 (混合重量比 1ノ 1 ) を加え、 不揮 発分含有量 6 0重量%、 ブロム含有量 22. 5重量% (固形分対 比) のワニスを調製した。
上述の紙状シー トに前記ワニスを舍浸し、 この含浸物を 100 'Cで 3分簡乾燥し、 エポキシ樹脂組成物固形分含有量が 7 0重量%のプリプレダを製造した。 次に 2枚の銅箔 (福田 金属箔粉工業睐製、 商標 : 銅箔 CF - T9 ( 1 0Z) と、 前記プリ プレダ 4枚とを積層し、 これにホ ッ トプレスにて 170て , 0 kgノ c の条件で 1時間プレスを施して銅箔積層扳を作成した, 得られた銅箔積層扳中のェポキシ樹脂組咸物の体積比率は約 6 0 %であり、 銅箔積層板の厚みは 0. 4咖であった。
この銅箔積層扳中の基材、 および樹脂中の不純物含有量お よび、 この銅箔積層板の特性を第 2表に示す。 実施例 8
実施例 7 と同じ操作を行った。 但し、 前記全芳香族ボリ ェ 一テルア ミ ド織維を用いて平織物 (目付 62 Z nf、 厚さ 0. 1 iM ) を作成し、 これに実施例 1記載のワ ニスを舍浸し、 100 'Cで 3分間乾燥した。 得られたプリ プレダ中のェボキシ樹脂組成 物固形分含有量は 7 0重量%であった。
テス ト結果を第 2表に示す。 実施例 9
実施例 7 と同じ操作を行った。 但し、 前記実施例 7記載の ワ ニスに、 更に五酸化ア ンチモ ン 0. 5重量部を加えて不揮発 分 6 0重量%のワ ニスを調製した。 また、 実施例 1 記載の全 芳香族ポリ エ一テルア ミ ド繊維紙状シー トに上述のワ ニスを 舍浸した。
テス ト結果を第 2表に示す。 実施例 1 0
実施例 7 と同じ操作を行った。 但し、 ワ ニスを、 下記のよ う に調製した。 すなわちエポキ シ樹脂 a — 1 7 5重量部と、 硬化剤 b — 1 2 5重量部とを配合し、 これに 2 —ェチルー 4 —メ チルイ ミダゾール 0 . 04重量部、 五酸化ァ ンチモ ン 6. 0重 量部を加えてエポキ シ樹脂組成物を調製し、 これにメ チルェ チルケ ト ン とエチ レ ング リ コ ールモノ メ チルェ一テルとの混 合溶剤 (混合重量比 1 ノ 1 ) を加えた。 得られたワ ニスの不 揮発分含有量は 6 0重量%であり、 ブロム含有量は Π . 3重量 % (固形分対比) であった。 また、 実施例 7記載の全芳香族 ポリ エーテルア ミ ド繊維紙状シー ト に、 上記ワ ニスを舍浸し テス ト結果を第 2表に示す。 実施例 1 1
実施例 7 と同様の操作を行った。 但し、 ェポキシ樹脂 a — 1 の代りに、 下記のようにして調製したェポキシ樹脂 a —2 を 用いた。
ェポキシ樹脂 a — 2 の調製 - ブロム化ビスフエノ 一ル Aとホルムアルデヒ ドとの重縮合 生成物と工ピク ロルヒ ドリ ンとの反応生成物からなるグリ シ ジルエーテル化合物 (エポキ シ当量 470) 8 0重量部と、 ビス フエノ ール A型エポキシ樹脂 (ェポキシ当量 187 ) 2 0重量部 と、 およびテ ト ラブロモビスフエノール A 3 0重量部とを、 実施例 1 と同様の方法で反応させた。 得られたヱポキシ樹脂 a — 2 はエポキシ当量 420 、 ブロム含有量 2 8重量%を有し ていた。
ェボキシ樹脂 a - 2 7 9重量部と、 硬化剤 b — 1 · 2 1重量 部とを混合し、 この混合物に 2—ェチルー 4 ーメ チルイ ミダ ゾ一ル (K 04重量部、 およびメチルェチルケ ト ンとエチレング リ コールモノメ チルェ一テルとの混合溶剤 (混合重量比 1 / 1 ) とを加えて、 不揮発分 6 0重量%、 ブロム含有量 22. 1重量% (固形分対比) のワニスを調製した。
実施例 7記載の全芳香族ポリ エーテルァ ミ ド鐡維紙状シー トに、 上逮のワニスを舍浸した。
テス ト結果を第 2表に示す。 荬施例 1 2
実施例 7記載のものに比べ純度の低いテレフタル酸ク ロラ ィ ド 100モル部、 パラ フ ヱニ レ ンジァ ミ ン 5 0 モル部、 3 , 4 ' ー ジア ミノ ジフ エ ニルエーテル 5 0 モル部を共重合させ て、 全芳香族ポリ エーテルア ミ ド (ポリノ、。ラ フェニレ ン一 3 , 4 ' — ジア ミ ノ ジフ エ ニルエーテルテ レフ タ ルア ミ ド) を調 製し、 この共重合体を湿式紡糸して、 さ らに第 2表記載の平 衡水分率と、 抽出ナ ト リ ウ ム含有量と、 および抽出塩素含有 量と、 並びに、 1. 5 デニール単繊維太さを有する繊維を作成 した。 この全芳香族ポリ ヱ一テルァ ミ ド織維から実施例 1記 載の方法で紙找シー トを作成した。
次に第 2表記載の不純物含有量を有するワ ニスを、 上記紙 状シー トに含浸し、 これを 100てで 3分間乾燥してプリ プレ グを調製した。 こ のプリ プレダのェポキシ樹脂組成物含有量 は 7 0重量%であった。
テス ト結果を第 2表に示す。 比較例 8
実施例 7 と同じ操作を行った。 但し、 基材と してポリ パラ フ エ二 レ ンテ レフタルア ミ ドからなる織物 (ケブラ —— 4 9 © 織物 K - 120 : 単糸繊度 1 . 42デニール、 カネボウ㈱製) を用い た。 こ の基材の目付は 6 0 g Ζ πίであり、 厚さは約 0. 1 卿で あっ た 0
テス ト結果を第 1表に示す。 比較例 9
実施例 7 と同じ操作を行った。 但し、 下記のようにして調 製したワニスを用いた。 - ワニスの調製
ブロム化ビスフユノ ール A型エポキシ樹脂 (エポキシ当量 460 、 ブロム舍有量 2 1重量%) 8 2重量部と、 ブロム化フ ヱノールノ ボラ ッ ク型エポキシ樹脂 (エポキシ当量 275、 ブ ロム含有量 3 6重量%) i 重量部と、 ジシア ンジア ミ ド 4 重量部と、 2 —ェチルー 4 一メ チルイ ミダゾール 0. Q4重量部 と、 およびメ チルェチルケ ト ンとエチレングリ コールモノ メ チルェ一テルとの混合溶剤 (混合重量比 1 / 1 ) から高純度 ワニスを調製した。 このワニス中の不揮発分含有量ば 6 0重 量%であり、 ブロム含有量は 22. 3重量% (固形分対比) であ つた。
比較例 8記載のボリパラフエ二レンテレフタルア ミ ドから なる織物に、 上記ワニスを舍浸した。
テス ト結果を第 2表に示す。 比較例 1 0
実施例 7 と同じ操作を行った。 但し、 実施例了記載の全芳 香族ポリエーテルァ ミ ド織維紙状シー トに、 比較例 9記載の ヮ二スを舍浸した。
テス ト結果を第 2表に示す。 比較例 1 1
実施例 7 と同じ操作を行った。 但し、 実施例 1 2記載のも のに比べさ らに純度の低いテレフタル酸ク πライ ド 100モル 部と、 ノ、。ラフェニレ ンジァ ミ ン 5 0 モル部と、 3 , 4 ' — ジ ァ ミ ノ ジフヱニルエーテル 5 0 モル部とを共重合させて、 全 芳香族ポリ エーテルア ミ ド (ポリ パラフエ二レ ン一 3 , 4 ' —ジア ミノ ジフエ二ルェ一テルテレフタルア ミ ド) を調製し. こ の共重合体を湿式紡糸して、 第 2表記載の平衡水分率、 抽 出ナ ト リ ウ ム含有量、 および抽出塩素含有量と、 1. 5デニ一 ルの単繊維太さを有する織維を作成した。 前記全芳香族ポリ エーテルア ミ ド鏃維から、 実施例 7 と同様の方法で紙状シー トを作成した。
次に実施例 7記載のワ ニスを、 上記紙状シ一 トに舍浸し、 100 ΐで 3分間乾燥してプリ プレダを作成した。 このプリ プ レグ中のヱポキシ樹脂組成物含有量は 7 0重量%であった。 テス ト結果を第 2表に示す。 比較例 1 2
実施例 7 と同じ操作を行った。 但し、 実施例 7記載の全芳 香族ポリ ヱ一テルア ミ ド繊維紙状シ一 トに、 実施例 1 2記載 のワニスと同組成を有し、 第 2表記載の不純物含有量を有す るワ ニスを含浸させた。
テス ト結果を第 2表に示す。 実施例 7 と同じ操作を行った。 但し、 比較例 1 1記載の全 芳香族ポリエーテルァ ミ ド繊維紙扰シートに、 比較例 9記載 のワニスを舍浸した。
テス ト結果を第 2表に示す。 m 1 4 。
実施例 7 と同じ操作を行った。 但し、 ワニスを下記のよう にして調製した。
ワニスの調製
比較例 9記載のブロム化ビスフニノール A型エポキシ樹脂 2 8重量部と、 ブロム化フエノ ールノ ポラ ック型エポキシ樹 脂 4 3重量部と、 オルソク レゾールノ ボラ ッ ク樹脂 2 9重量 部と、 2 —ェチル一 4 —メ チルイ ミダゾール 0. 04重量部とお よびメチルェチルケ ト ンとエチレングリ コールモノ メ チルェ 一テルとの混合溶剤 (混合重量比 1 Z 1 ) からワニスを調製 した。 このワニス中の不揮発分含有量は 6 0重量%であり、 ブロム含有量は 21. 4重量% (固形分対比) であった。
実施例 7記載の全芳香族ポリ エーテルァ ミ ド織維紙状シー トに上記ワニスを含浸した。
テス ト結果を第 2表に示す。 比較例 1 5
実施例 7 と同じ操作を行った。 但し、 下記のように調製し たワニスを用いた。 ワ ニスの調製
比較例 1 4記載のブロ ム化ビスフ エ ノ ール A型エポキ シ樹 脂 2 0重量部と、 ブロ ム化フ エ ノ ール Aとホルムアルデ ヒ ド との重縮合と、 ェ ピク ロルヒ ドリ ン との反応生成物からなる グリ シジルエーテル化合物であるエポキシ樹脂 5 7重量部と、 硬化剤 b — 1 2 3重量部と、 2—ェチル— 4—メ チルイ ミダ ゾール 0 . 04重量部とおよびメ チルェチルケ ト ンとエチ レ ング リ コールモ ノ メ チルエーテルとの混合溶剤 (混合重量比 1 ノ' 1 ) からワ ニスを調製した。 このワ ニスの不揮発分含有量は 6 0 重量%であり、 ブロ ム含有量は 24 . 2重量% (固形分対比) で め つ 7こ
実施例 Ί記載の全芳香族ポリ エ一テルア ミ ド繊維紙状シ一 卜 に上記ワ ニスを舍浸した。 ,
テス ト結果を第 2表に示す。
Figure imgf000038_0001
維の • 材屮の不^物舍有 ffl mm mm ½施 雄 比敉 比蛟 比較 J:bf¾ 比較 比較 比蚊 比蛟
例 7 例 8 例 9 細 例 11 例 12 例 8 例 9 麵 mn 例 12 例 13 例 例 15
:Φ族ポ 平 i¾i水分- (fliffl%) 1.8 1.8 1.8 1.8 2.7 1.8 2 1.0 Z 1.8 1.8
リエーテル
90 58 50
7ミ ド顯 Jill出ナ トリ ウム (ppm) 58 58 58 53 G7 58 90 58
Jill出 お (ppm) 31 31 31 31 45 31 74 31 31 31
¾ 物 企 ¾番旅ポ 平 i¾j水分率 (ffil%) 1.8
エーテル
7ミ ド ϋ維 抽出ナ トリゥム (ΡΡ" . • 58
讪出 ¾ί紫 (p m) ; 31 O σ
¾ '1¾ ポリバラフ 平 ®i水分率 &%) . 4,1 4.1
ェニレンァ
レフタルァ llll出ナ トリゥム (ppm) 110 110
ミ ド繊維
讪出塩索 (PPP) 25 25
2 ¾ (つづき) 維の S 中の不 $'&物含有 爽施 mm ¾施 卖施 卖施 m 比較 比較 比蛟 比蛟 比較 讓 例マ 例 8 例 9· 例 10 例 11 例 12 例 9 例 10 例 12 例 13 14 例 15 ェポ ビスフエノ一ル Aとホルムアルデヒ ドとェビクロルヒ ドリ
キシ ンとから 造されたグリ シジルエーテル化合物と、 ビスフ 56 56 56 75 56 56 56 56
1WMS エノール A型ダリ シジルエーテル化合物と、 テ トラブロ-て-
X a-1 ビスフ ノール Aとの反応生成物
X
ポ 'エポ ブロム化ビスフエノール Aとホルムアルデヒ ドとェビク el
ポ キシ ルヒ ドリ ンとから ¾造されたダリ シジルエーテル化合物と 79
キ \i\rn ビスフヱノール Α型ダリ シジルエーテル化合物と、 テ トラ
キ 0-2 ブ口-て-ビスフエノール Aとの反応生成物
シ ブロム化ビスフヱノール A型エポキシ (Br含 ¾H21lT£ %); 82 82 82 28 20 ΙίΊ ブロム化ビスフヱノール A型エポキシ 1M脂 (Br舍冇 ffl 8ffiffl%) 20 20 20 20 20 20 20
Jlfj
JIS ブロム化ビスフエノ一ル Aとホルムアルデヒ ドとェピク αルヒ ド 57 リ ンから ¾造されたグリ シジルエーテル化合物
m
ブ口ム化フユノ一ルノボラック U 14 14 43 成
硬化 ビスフ ノール Αとホルム 7ルデヒ ドとの Il ffi合物 24 24 U 25 21 24 2Ί 24 U 23 物 硬
化 オルソクレゾ一ルノ ボラツク^) IS 29 剂
ジシァンジア ミ ド 4 4 K
2—- Xチルー /!—メチルイ ミダゾール 0.0Ί 0.04 0.0Ί 0.04 Ο.0Ί 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
ΙίΓΐίΗ匕ァンチモン 0.5 6.0
不 ナ トリゥム含: ίίΗ (ΡΡΠ,) 2 2 2 3 2 5 2 0 0 2 10 0 1 2 :沌
物 塩粱合 : fit (vim) 327 327 332 341 415 580 327 30G 30C 327 2300 306 311 298 ガラス' Ιί:移点: Ύ (5 CC ) 168 1G7 165 175 162 167 165 118 119 1G9 168 117 152 137 ビール強 IS: : P S (kg/cm) 1.6 1.6 1.6 1.5 1.6 1.6 1.G 2.1 2.1 1.6 1.6 2.1 0.1 1.Ί
^11il¾l!!l¾$¾;]lSljt (Ω) 7.9 ί¾.3 5.6 4.1 7.3 1.5 1.9 Ί.5 5.G 2.8 3.0 7.4 1.9 1.7
X X X X X X X X X X X X X X
性 10'5 10'5 10'5 10" 1015 10" 10" 107 10" 10, z 101 10° 10'5 10'5
^のマイグレーショ ン tS! (光学 Wi微 なし なし なし なし なし なし 大 大 屮 小 大 大 なし なし
†i| 定 o 0 Ο 〇 Ο 〇 X X X X X X X X
第 2表から明らかなように、 全芳香族ポリ エーテルア ミ ド 織維を基材として含むプリ プレダ—銅箔積層板において、 こ の芳香族ポリァ ミ ド織維の、 2(TC , 65 %時の平衡水分率が 3. 0重量%、 以下、 純水煮沸 2 0時間後の抽出ナ ト リ ウ ム舍 有量が 8 0 ppm 以下、 純水煮沸 2 Q時間後の抽出塩素含有量 が 5 0 ppm 以下であり、 かつェポキシ樹脂組成物中のナ ト リ ゥム舍有量が 5 ppm 以下、 塩素含有量が 600ppm以下である場 合のみ、 得られた銅箔積層扳および C O Bの耐熱性およびピ 一ル強度がすぐれており、 銀のマイ グレーショ ンが発生せず、 銀電極間絶緣抵抗の低下が殆んどないことが判明した。
これに対して、 ポリノ、'ラ フェニ レンテ レフタルア ミ ド織維 や、 低純度の全芳香族ポリ エーテルア ミ ド繊維を基材として 用いた場合、 又ばジシァ ンジァミ ドを硬化剤とする耐熱性の 低いェポキシ樹脂組成物を舍浸させた場合は、 得られる C 0 Bに銀のマイダレ一ショ ンが発生し、 銀電極間絶緣抵抗の低 下が大きかった。 また本発明の特定:!:ポキシ樹脂組成物と異 るェポキシ樹脂組成物を舍浸させた場合は、 得られる銅箔積 層板の耐熱性やピール強度が低く基板としての性能が不十分 であった。
第 5図は、 実施例 7 のプリ プレダを用いて得られた C 0 B における銀のマイ グレーショ ン状況を示し、
第 6図は、 実施例 8 のプリ プレダを用いて製造された C 0 Bにおける銀のマイ グレーショ ン状況を示し、
第 7図は、 比較例 8 のプリ プレダを用いて製造された C 0 Bにおける銀のマイ グレーショ ン状況を示し、 第 8図は、 比較例 1 1 のプリ プレダを用いて製造された C 0 Bにおける銀のマイ グレーショ ン状況を示す。
第 5および 6図において、 C 0 Bの銀電極 1 と銅箔積層板 からなる基板の表面 2 との間に、 銀のマイ グレーショ ンが認 められなかった。
しかし、 第 7および 8図においては、 C 0 Bの銀電極 1 と 銅箔積層扳からなる基板の表面 2 との間に、 マイ グレーショ ンした銀層 3が形成されていた。 産業上の利用可能性
また本発明のェポキシ樹脂舍浸プリ プレダは、 芳香族ポリ ア ミ ド繊維を基材としているために、 その平面方向の温度線 膨張係数は、 シリ コ ンベア一チップと同程度に小さい。 従つ てこのプリ プレダを用いて製造された銅箔積層扳は、 そのダ ィ ボンディ ング部などにク ラ ックが発生することがない。 ま た、 本発明のプリ プレダは、 高度の耐熱性を有するため、 こ のプリ プレダを用いて製造された銅箔積層板は、 ダィ ボンデ ィ ング時の高温度や、 ワイ ヤ一あるいはワイ ヤーレスボンデ ィ ング時の高温度に耐えるこ とができる。
すなわち、 本発明のエポキシ樹脂舍浸プリ プレダを用いて 成形した銅箔積層板は、 その T M Aにより測定されたガラス 転移点 T gが 150て以上であって、 すぐれた耐熱性を有し、 かつ常温において 1. 4 ノ cm以上の 1 0Z銅箔のピール強度を 有するものであって、 高密度回路用として実用性に優れた C O B用基板として有用なものである。 また、 本発明のプリ プレダは、 その芳香族ポリア ミ ド織維 基材の平衡水分率、 ナ ト リ ウム含有量および塩素含有量が少 な く、 かつ、 エポキシ樹脂組成物のナ ト リ ゥム舍有量および 塩素含有量が少ないため、 このプリ プレダを用いて製造され た C 0 Bは、 高温高湿下の電界 *においても銀のマイ グレー ショ ンが少なく、 絶縁抵抗の低下も少ないという長所を有す るものである。

Claims

請 求 の 範 囲
1. 芳香族ポ リ ア ミ ド繊維を主成分とする基材と、 これを 舍浸しており、 かつェポキシ樹脂と硬化剤とを舍む樹脂組成 物とからなり、
前記芳香族ポリ ア ミ ド鏃維基材が、 3. 0重量%以下の平衡 水分率と、 8 0 ppm 以下の抽出ナ ト リ ウ ム含有量と、 5 0 pPm 以下の抽出塩素含有量とを有し、
前記エポキ シ樹脂組成物が、 5 ppm 以下のナ ト リ ゥ ムと、
600ΡΡΠ1以下の塩素とを舍有する、
ェポキ シ樹脂組成物舍浸プリ プレダ。
2. 前記基材と前記樹脂組成物の重量比が、 20 : 80〜60 : 40の範囲内にある、 請求の範囲第 1 項記載のプリ プレダ。
3. 前記樹脂組成物中の硬化剤の含有量が、 前記エポキ シ 樹脂の重量に対し 2 〜 6 0重量%の範囲内にある、 請求の範 囲第 1項記載のプリ プレダ。
4. 前記芳香族ポリ ア ミ ド繊維を構成する重合体が、 75〜 100モル%の、 下記 ( I ) 式および ( Π ) 式で示される繰り 返し単位 :
H H 0 0
( I )
-f- N -Ar,- N - C -Ar2- C +
および
H 0
I II ( Π ) -- N - Ar3- C
〔但し、 上式中、 A r t , A r 2および A r 3は、 それぞれ他から 独立に、 置換された、 および置換されていない下記式の芳香 環基 :
〔ο
(o> To丁
V / 〇ヽ 〔〇 -
Figure imgf000044_0001
〇 oTo
■ί ~ \
および 广 X - 0 )
0
(但し、 上記芳香環基中に、 Xは— 0— , — s — , — έ— ,
CH3
I
— CH2 —および —— C— 基から選ばれた一員を表す) から
CH3
選ばれた一員を表わす〕
から選ばれた少な く とも一員を舍む、 請求の範囲第 1項記載 のプリ プレグ。
5. 前記式 ( I ) の橾り返し単位において、 Ar,で表され る芳香族環基の 15〜30%が 基であり、
Figure imgf000044_0002
残余の芳香族環基が. / OV-基である、 請求の範西第 4項 記載のプリ プレグ。
6. 前記 0 ίθ)基 よひ
Figure imgf000044_0003
人 ·「 基の少 なく とも一員が、 ハ oゲン原子、 メ チル基、 およびメ トキン 基から選ばれた少な く とも一員からなる置換基を有する、 請 求の範囲第 5項記載のプリ プレグ。
7. 前記芳香族ポリ アミ ド繊維が、 短繊維、 パルプ状フ ィ ブリル、 またはこれらの混合物の状態にある、 請求の範囲第 1項記載のプリ プレダ。
8. 前記芳香族ポリ ア ミ ド織維が、 0. 1 〜 1 0デニールの 単繊維太さを有する、 請求の範囲第 1 項記載のプリ プレダ。
9. 前記芳香族ポリ ア ミ ド織維基材が、 織物、 編み物、 不 織布、 または紙钛シー トの形状を有している、 請求の範囲第 1 項記載のプリ プレダ。
10. 前記芳香族ポリ ア ミ ド繊維が、 前記ヱボキ シ樹脂中に 分散されている、 請求の範囲第 1 項記載のプリ プレダ。
11 . 前記芳香族ポリ ア ミ ド繊維基材が、 60〜 100重量%の 芳香族ポリ ア ミ ド織維と、 0 〜 4 0重量%の少な く とも 1種 の他種繊維とからなる、 請求の範囲第 1 項記載のプリ プレダ <
12. 前記ェポキシ樹脂が、
( A ) ビス フ ヱノ ール Aおよびハ ロゲン化ビスフユノ ール Aから選ばれた少な く とも一員と、 ェ ピク ロルヒ ド リ ンとの 反応生成物からなるジグリ シジルェ一テル化合物、
( B ) ビスフエノ ール Aと、 アルキ レ ンォキサイ ドとの反 応生成物からなる多価アルコ ール化合物と、 ェピク ロルヒ ド リ ンとの反応生成物からなるポリ エーテル型ボリ グリ シジル ェ一テル化合物、
( C ) フヱノ ールノ ボラ ッ ク型エポキシ化合物、 および
( D ) オルソク レゾ一ルノ ボラ ック型エポキ シ化合物 から選ばれた少なく とも一員からなる、 請求の範囲第 1項記 載のプリ プレダ。
13. 前記硬化剤が、 ジシア ンジア ミ ド化合物、 芳香族ポ リ ァミ ン化合物、 およびフ ノ一ル樹脂から選ばれた少なく と も一員を舍む、 請求の範囲第 1項記戴のプリ プレダ。
14. 前記エポキシ樹脂組成物中の前記ェポキシ樹脂が、
( I ) ビスフ ユノ ール Aとホルムアルデヒ ドとの重縮合生成 物と、 ヱ ビク ロルヒ ドリ ンとの反応生成物からなるグリ シジ ルエーテルィ匕合物、 およびノ、 ロゲン化ビスフ エノ 一ル A とホ ルムァルデヒ ドとの重縮合生成物とェ ピク ロルヒ ドリ ンとの 反応生戚物からなる八 πゲン化グリ シジルェ一テル化合物か らなる群から選ばれた少なく と'も一員と、
( Π ) 下記式 :
R
Figure imgf000046_0001
〔但し、 上式中、 Yは、 — C (CH 3 ) 2 —基および一 CH 2 —基か ら選ばれた一員を表わし、 Rはェポキシ化合物多量体残基を 表わし、 各ベンゼン梭は、 ブロムにより置換されていてもよ い〕
で表わされるビスフヱノール A型およびビスフエノ一ル F型 グリ シジルエーテル化合物から選ばれた少な く とも一員と、 ( I ) ビスフ エノ ール A、 ビスフエ ノ ール Fおよびテ ト ラ プロモビスフヱノール Aからなる群から選ばれた少なく とも —員と、
の反応生成物の少なく とも一種を舍む、 請求の範囲第 1項記 載のプリ プレグ。
15. 前記エポキ シ樹脂組成物中の前記硬化剤が、 ビス フ ノ ール Aとホルムァルデヒ ドとの重縮合生成物と、 およびハ 口ゲン化ビスフ ヱ ノ 一ル A とホルムアルデヒ ド との重縮合生 成物とからなる群から選ばれた少な く とも一員を舍む、 請求 の範囲第 1項記載のプリ プレダ。
16. 前記エポキシ樹脂組成物において、 前記エポキシ樹脂 のエポキ シ当量に対し、 前記硬化剤のフユノ ール性水酸基当 量の比が、 0. 6 〜 1. 3 の範囲内にある、 請求の範囲第 1 項記 載のプリ プレグ。
17. 前記ヱボキシ榭脂が、
( ί ) ビスフ ヱノ ール Αおよびブロ ム化ビス フ エ ノ ール A から選ばれた少な く とも一員 と、 ホルムアルデヒ ド との重縮 合生成物と、 ェピク ロルヒ ドリ ン との反応生成物からなる少 な く. とも一種のグリ シジルエーテル化合物成分 50〜90重量部 と、
( ϋ ) 少な く とも一種のビスフユノール型エポキシ樹脂成 分 5 〜 5 0重量部と、
( iii ) テ ト ラブロモ ビス フ ヱ ノ ール A成分 10〜50重量部と、 の反応生成物を含む、
請求の範囲第 1項記載のプリ プレグ。
18. 前記エポキシ樹脂組成物が、 その全固形分重量に対し、 10〜30重量%の、 ブロム化ビス フヱノール A型ェポキシ樹脂 を含む、 請求の範囲第 1項記載のプリ プレダ。
19. 前記ブロム化ビスフユノール A型ェポキシ樹脂に用い られているブロム化ビスフヱノ ール Aが 45〜 55重量%のブロ ムを舍有するものである、 請求の範囲第 1 8項記載のプリ プ レグ。
20. 請求の範囲第 1項記載の少な とも一枚のェポキシ樹 脂舍浸プリプレダと、 銅箔とからなる積層体の加熱加圧処理 生成体からなる、 銅箔積層扳。
PCT/JP1989/000474 1988-05-09 1989-05-09 Epoxy resin-impregnated prepreg WO1989011208A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP89905168A EP0515680B1 (en) 1988-05-09 1989-05-09 Epoxy resin-impregnated prepreg
DE68924177T DE68924177T2 (de) 1988-05-09 1989-05-09 Mit epoxyharz imprägnierter prepreg.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP63/110383 1988-05-09
JP63/110382 1988-05-09
JP11038388A JPH0671131B2 (ja) 1988-05-09 1988-05-09 プリプレグ
JP11038288A JPH0671130B2 (ja) 1988-05-09 1988-05-09 プリプレグ

Publications (1)

Publication Number Publication Date
WO1989011208A1 true WO1989011208A1 (en) 1989-11-16

Family

ID=26450022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1989/000474 WO1989011208A1 (en) 1988-05-09 1989-05-09 Epoxy resin-impregnated prepreg

Country Status (3)

Country Link
EP (1) EP0515680B1 (ja)
DE (1) DE68924177T2 (ja)
WO (1) WO1989011208A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995031495A1 (fr) * 1994-05-11 1995-11-23 Asahi Kasei Kogyo Kabushiki Kaisha PIECE MOULEE EN POLYAMIDE AROMATIQUE para-ORIENTEE, ET PROCEDE DE PRODUCTION D'UNE TELLE PIECE
CA2614648A1 (en) * 2005-07-21 2007-01-25 Nippon Kayaku Kabushiki Kaisha Polyamide resin, epoxy resin compositions, and cured articles thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5572096A (en) * 1978-11-27 1980-05-30 Hokuriku Elect Ind Moistureeproof printed board
JPS5722235B2 (ja) * 1974-04-30 1982-05-12
JPS5873192A (ja) * 1981-10-28 1983-05-02 株式会社日立製作所 印刷配線板
JPS58126146A (ja) * 1982-01-23 1983-07-27 日立化成工業株式会社 積層板
JPS59228785A (ja) * 1983-06-10 1984-12-22 松下電工株式会社 金属面積層板の製法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4897301A (en) * 1985-01-23 1990-01-30 Toyo Boseki Kabushiki Kaisha Flexible sheet reinforced with poly(aromatic amide) non-woven fabric and use thereof
US4590539A (en) * 1985-05-15 1986-05-20 Westinghouse Electric Corp. Polyaramid laminate
JPS6230145A (ja) * 1985-08-01 1987-02-09 Matsushita Electric Works Ltd 電子材料用エポキシ樹脂組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5722235B2 (ja) * 1974-04-30 1982-05-12
JPS5572096A (en) * 1978-11-27 1980-05-30 Hokuriku Elect Ind Moistureeproof printed board
JPS5873192A (ja) * 1981-10-28 1983-05-02 株式会社日立製作所 印刷配線板
JPS58126146A (ja) * 1982-01-23 1983-07-27 日立化成工業株式会社 積層板
JPS59228785A (ja) * 1983-06-10 1984-12-22 松下電工株式会社 金属面積層板の製法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0515680A4 *

Also Published As

Publication number Publication date
DE68924177D1 (de) 1995-10-12
DE68924177T2 (de) 1996-02-15
EP0515680A4 (en) 1991-08-07
EP0515680A1 (en) 1992-12-02
EP0515680B1 (en) 1995-09-06

Similar Documents

Publication Publication Date Title
GB2444010A (en) Resin composition, sheet-like formed body, prepreg, cured body, laminate, and multilayer laminate
JP2000264986A (ja) プリプレグ及び積層板
JP5259580B2 (ja) エポキシ樹脂組成物、樹脂フィルム、プリプレグ、及び多層プリント配線板
JP2001220455A (ja) プリプレグ及び積層板
JP4770019B2 (ja) プリプレグ及び金属箔張り積層板
JP2003231762A (ja) プリプレグ及び積層板
US5436301A (en) Epoxy resin-impregnated prepreg
WO1989011208A1 (en) Epoxy resin-impregnated prepreg
JP2000290490A (ja) 難燃硬化性樹脂組成物
JP2002308948A (ja) 硬化性樹脂組成物
JP2002212390A (ja) 絶縁樹脂組成物、銅箔付き絶縁材および銅張積層板
JP3069367B2 (ja) 硬化性ポリフェニレンエーテル樹脂組成物並びにこれを用いた複合材料および積層体
JP2003213021A (ja) プリプレグ、これを用いた金属張積層板および印刷配線板
JPH0722718A (ja) 印刷配線板用エポキシ樹脂組成物、印刷配線板用プリプレグの製造方法及びコンポジット積層板の製造方法
JPH11209456A (ja) 印刷配線板用難燃性エポキシ樹脂組成物及びこれを用いたプリプレグ、金属箔張り積層板
JPH0476019A (ja) 硬化性ポリフェニレンエーテル・エポキシ樹脂組成物
JPH0671131B2 (ja) プリプレグ
JP4171952B2 (ja) 熱硬化性樹脂組成物、プリプレグ、積層板及びプリント配線板
JP3344228B2 (ja) 積層板用エポキシ樹脂組成物
JPH09143247A (ja) 積層板用樹脂組成物、プリプレグ及び積層板
JPH1077392A (ja) エポキシ樹脂組成物、エポキシ樹脂プリプレグ、エポキシ樹脂積層板及び多層プリント配線板
JP2005002227A (ja) 積層板用樹脂組成物、有機基材プリプレグ、積層板及びプリント配線板
JPH0812744A (ja) 樹脂組成物およびプリプレグ
JP3098766B2 (ja) 新しい硬化性ポリフェニレンエーテル・エポキシ樹脂組成物
JP2591543B2 (ja) アラミド基材銅張積層板のエッチング方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1989905168

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

WWP Wipo information: published in national office

Ref document number: 1989905168

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1989905168

Country of ref document: EP