WO1988009777A1 - Calcium silicate crystal board - Google Patents

Calcium silicate crystal board Download PDF

Info

Publication number
WO1988009777A1
WO1988009777A1 PCT/JP1987/000383 JP8700383W WO8809777A1 WO 1988009777 A1 WO1988009777 A1 WO 1988009777A1 JP 8700383 W JP8700383 W JP 8700383W WO 8809777 A1 WO8809777 A1 WO 8809777A1
Authority
WO
WIPO (PCT)
Prior art keywords
calcium silicate
secondary particles
oxide
crystal
flocculant
Prior art date
Application number
PCT/JP1987/000383
Other languages
English (en)
French (fr)
Inventor
Tsutomu Ide
Suguru Hamada
Original Assignee
Kabushiki Kaisha Osaka Packing Seizosho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Osaka Packing Seizosho filed Critical Kabushiki Kaisha Osaka Packing Seizosho
Priority to BR878707770A priority Critical patent/BR8707770A/pt
Priority to AT87903916T priority patent/ATE86235T1/de
Priority to DE8787903916T priority patent/DE3784512T2/de
Priority to AU75172/87A priority patent/AU606344B2/en
Priority to PCT/JP1987/000383 priority patent/WO1988009777A1/ja
Priority to EP87903916A priority patent/EP0317631B1/en
Priority to KR88001035A priority patent/KR960007365B1/ko
Publication of WO1988009777A1 publication Critical patent/WO1988009777A1/ja
Priority to US08/013,215 priority patent/US5411793A/en
Priority to US08/338,797 priority patent/US5491020A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/36Inorganic materials not provided for in groups C04B14/022 and C04B14/04 - C04B14/34
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/32Carbides; Nitrides; Borides ; Silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/42Glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00612Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure

Definitions

  • the present invention relates to calcium silicate crystal boards:
  • Japan National Waiting Public Notice No. 4 S-408896 describes a board of silicate calcium crystals formed from secondary particles of zonotralite crystals and woody steel.
  • the board is made by mixing wood-based fibers with aqueous slurry of secondary particles of zono-lite, and using a forming machine to form a single-layered mat, which is press-formed under heating.
  • the body of calcium phosphate crystals obtained by such a method is formed by pressing a further layer of matte, and is composed of secondary particles and wood fibers as constituents.
  • the calcium silicate crystal board having the above composition has insufficient strength, especially in bending strength, in the region mainly containing wood fibers having a wood fiber content of more than 50%, and the tendency is that the wood fiber content is low.
  • the amount of calcium silicate A crystal exceeds 50% it becomes more remarkable.
  • the strength becomes inconsistent.
  • the amount of wood it is preferable that the strength is not so high, the above-described technology cannot satisfy both the inferiority and the sufficiently high strength at the same time.
  • An object of the present invention is to provide a calcium silicate crystal board having excellent mechanical strength, particularly excellent bending strength.
  • Another object of the present invention is that it mainly contains calcium silicate crystals, has a low content of woody fiber, or contains an inorganic fiber in place of it, and is therefore intense and has poor mechanical strength. It is an object of the present invention to provide a calcium silicate crystal board.
  • Another object of the present invention is to provide a calcium silicate crystal board having a uniform mechanical strength throughout even when the wall thickness is increased.
  • the board of the calcium silicate crystal of the present invention is made of calcium silicate 2 flffl or less, containing secondary particles of aluminum crystals and further containing iron pyramid material and a coagulant adsorbed on the surface of the secondary particles, and wherein the secondary particles are formed in accordance with each other.
  • This is characterized in that a plurality of the thin leaf bodies are formed by laminating a plurality of the thin leaf bodies, and the laminated thin leaf bodies are firmly connected and integrated by the calcium silicate crystal secondary particles on the surface thereof.
  • the board of the calcium silicate crystal of the present invention has a low specific gravity and a high strength unlike the known asbestos slates, and has good workability such as punching properties, and also has a pattern on the surface. It has the advantage of being easy.
  • each of a plurality of thin bodies forming a board is composed of carbon silica, carbide, nitride, silicide and metal together with calcium silica secondary particles, iron substance and coagulant.
  • at least one kind of oxide contains an inert substance, a board having high ripeness in a wide temperature range, particularly in a high temperature range, can be obtained.
  • the secondary particles of calcium silicate crystals forming the board of the present invention include tobermolite crystals, zonolite crystals and wallaceous crystals. These are secondary particles of tonite crystals. These crystals may be not only one kind but also a mixture of two or more kinds.
  • the secondary particles of the calcium silicate crystal can be produced, for example, by the method described in Japanese Patent Publication No. Sho 53-12526, Japanese Patent Publication No. Sho 533-164997. That is, the silicic acid raw material and the lime raw material can be manufactured by pressurizing and heating with stirring in a autoclave to cause a hydrothermal synthesis reaction.
  • Silica raw materials for producing the above calcium silicate crystals are natural amorphous silica, silica sand, silica gel, silica flour.
  • silicate ⁇ beauty lime raw material can be exemplified is properly can be used to ⁇ 2 or more kinds in combination.
  • the molar ratio of Ca 0 / S ⁇ 0 2 between the silicic acid raw material and the lime raw material is about 0.7 to 0.9 when tobermolite crystals are to be synthesized, and about 0.7 to 0.9 for zonolite crystals. 0.90 ⁇ ; I, about 15.
  • the raw material slurry is prepared by further adding water to the h! B silicate raw material and the lime raw material.
  • the amount of water used for preparing the raw slurry is at least 5 times the solid content of the raw slurry, preferably 10 to 50 times the solid content.
  • the raw slurry thus prepared is then subjected to a hydrothermal synthesis reaction with stirring. This reaction is usually carried out under a saturated steam pressure of 4 i3 ⁇ 4 / e 3 or more, preferably from 33 ⁇ 4 to 3013 ⁇ 4 / en 2 for about 0,5 to 20 hours, so that calcium silicate crystal secondary particles can be obtained.
  • the zonolite crystal obtained by the above hydrothermal synthesis reaction is further calcined at about 1,000
  • the crystals that form the (secondary particles) can be made into 3-Wallathite without forming the secondary particles.
  • the fiber material used in the present invention includes organic fibers and inorganic fibers.
  • Organic fibers include, for example, cellulose fibers such as wood pulp, waste paper bulbs, knots, hemp, and rayon, polyamides and polyesters. , Vinylon, polyolefin, etc. can be used.
  • a board having a large strength can be obtained even if calcium silicate crystals are mainly used and a small amount of a fibrous substance is added thereto. Therefore, it is possible to obtain a high-strength board excellent in insolubility by arranging a small amount of organic fibers.
  • a strong inorganic board by combining only inorganic steel without using organic steel.
  • the iron fiber content may be as small as 2 to 30% by weight in the molding machine, and in such a calcium silicate crystal-based region, the board of the present invention has eroded strength and is suitable for production.
  • the papermaking properties are also good.
  • a particularly preferred content of the textile material is in the range of 2 to 20% by weight, particularly 5 to 15% by weight.
  • the flocculant used in the present invention includes a cationic flocculant, an anionic flocculant and a nonionic flocculant. These flocculants can be used alone or in combination. In particular, use a combination of a strong coagulant and an anionic coagulant. It is preferred to use When the board of the present invention is manufactured by using the coagulant, the water content is enhanced, and the paper can be efficiently formed and a strong board can be obtained.
  • Preferred flocculants are polymeric flocculants.
  • cationic flocculant examples include cationic polymer flocculants such as polyethyleneimine, dialkylamine • dichlorohydrin polycondensate, polyamideamine * epichlorhydrin modified product, and cationized polyacrylamide.
  • cationic inorganic flocculants such as polyaluminum chloride, aluminum sulfate, sodium aluminate, ferrous sulfate, ferric sulfate, and ferric chloride can be used.
  • specific examples of the anionic coagulant include ammonium polyatalylate, polyatalylates such as sodium polyacrylate, and copolymers of acrylamide and atalylic acid.
  • specific examples of the nonionic flocculant include polyacrylamide and polyethylene oxide.
  • the content of the flocculant in the molded article of the present invention is 1.5 or less, preferably 0.05 to 1.0% by weight when the cationic, aionic or nonionic flocculant is used alone.
  • a cationic flocculant is used.
  • anionic flocculant or nonionic 0.05 to 1.0% by weight of anionic flocculant or nonionic
  • the on-coagulant is preferably about 0.01 to 1.0% by weight, and the total addition amount of both is preferably not more than about 1.5% by weight.
  • the effect obtained by using such a flocculant is that when a cationic flocculant, an anionic flocculant, or a nonionic flocculant is used alone, the flocculant becomes calcium silicate. It is considered that secondary particles and arrowhead substance are adsorbed on the secondary particle table S and agglomerate. In the case of using a thionic flocculant or a nonionic flocculant, the cationic flocculant is adsorbed on the negatively charged calcium silicate secondary particles, and becomes positively charged. It is considered that the electrically charged calcium silicate secondary particles are strongly bonded and agglomerated with an anionic coagulant or a nonionic coagulant, thereby improving the water solubility of the solids in the slurry.
  • the board of the present invention may contain an inert substance such as a carbon material, a carbide, a nitride, a silicide, or a metal oxide, if necessary, in order to improve the new heat property, especially in a high temperature range.
  • an inert substance such as a carbon material, a carbide, a nitride, a silicide, or a metal oxide, if necessary, in order to improve the new heat property, especially in a high temperature range.
  • the inert material at least one of carbon, carbide, nitride, silicide, and metal silicide is used.
  • carbonaceous materials such as activated carbon, charcoal, coal, carbon black, and graphite
  • carbonized materials such as silicon carbide, boron carbide, and titanium carbide.
  • the particle size of the inert substance to be used is generally about 0.001 to 120 ⁇ m, preferably about 0.001 to 100 ⁇ m.
  • the inert material content of the ports of the present invention can vary over a wide range, but is usually between 2 and 70% by weight. Preferably it is in the range of 5 to 50% by weight.
  • an aqueous slurry of secondary particles of calcium silicate crystals is prepared.
  • This aqueous slurry can be produced by subjecting a lime raw material and a silicic acid raw material to a hydrothermal synthesis reaction as described above, or by dispersing secondary particle powder in water.
  • the aqueous slurry is mixed with a fibrous substance, a coagulant and, if necessary, an inert substance.
  • the amount of each compound may be in accordance with the desired content of each component in the target port as a solid content.
  • the inert substance is secondary particles of calcium silicate crystals.
  • the inert substance Prior to the production, it may be added to a raw material slurry containing a silicon raw material and a lime raw material and subjected to a hydrothermal synthesis reaction, whereby the inert substance is integrated with the secondary particles of calcium silicate crystals.
  • the strength of the spear and the board becomes large.
  • the papermaking can be done by either continuous papermaking (round net, long net, short net, etc.) or batch papermaking (CTC method, Chubbman method, etc.). Multiply the thinly-grown thin-leaved ko with leaves. It is preferable that the laminated sheet of paper is then cut with a cutter as necessary, and then dried simultaneously with pressure molding under ripening by a hot blaze or the like so as to have a predetermined thickness.
  • the heating temperature is degree in 1 5 0-2 0 0 a ⁇
  • molding pressure is about 1 0 to 5 O kg Roh en 2 are suitable.
  • the secondary particles of calcium silicate are connected to each other in each thin sheet formed by heating, and as a result, each thin sheet is formed.
  • the body self-association becomes strong, and the secondary particles of calcium silicate crystals on the surface of each thin leaf are connected to each other, resulting in a board with high strength in which the thin leaf is firmly integrated with each other.
  • Each thin leaf forming the board of the present invention has a thickness of 2 mm or less, particularly preferably about 0,2 to 1,0 mm. And — formed in the body. Even if the port of the present invention is thick, it has a uniform and large bending strength up to the inside, so that a thick port having a thickness of 20 or more can be obtained.
  • parts and % indicate “parts by weight” and “% by weight J”, respectively, unless otherwise specified.
  • the zonotrite crystal secondary particles and steel are mixed at a predetermined ratio. After addition, water was added to the mixture to produce a concentration of 2.0% by weight, and then a cationic coagulant “Polymaster 607” (dimethylamine, ebichlorohydrin polycondensate made by Hakuto Chemical Co., Ltd.) was added. 1%, and a predetermined amount of Anion-made coagulant Polymaster R 623 SJ (manufactured by Hakuto Chemical Co., Ltd., polyacrylamide * polyacrylic copolymer) was added to prepare a raw material slurry. .
  • a cationic coagulant “Polymaster 607” (dimethylamine, ebichlorohydrin polycondensate made by Hakuto Chemical Co., Ltd.) was added. 1%, and a predetermined amount of Anion-made coagulant Polymaster R 623 SJ (manufactured by Hakuto Chemical Co., Ltd., polyacryl
  • the raw slurry was used to make a sheet with a short netting machine to form a raw sheet of about 0.7 min in thickness, 30 sheets of the obtained green sheet were layered, and then hot-pressed at 185. Pressure molding was performed while heating in the above manner to obtain a 9 mm thick silicate molded plate.
  • Table 1 shows the mixing ratios and physical properties.
  • the physical properties of the molded body in the table were measured by the following methods.
  • the heating recovery rate is 100,000, which is the value after 3 o'clock heating.
  • a raw material slurry was prepared by adding in proportions.
  • Table 2 shows the mixing ratio and the physical properties of the molded plate.
  • Table 2 shows the mixing ratio and the physical properties of the molded plate.
  • the physical properties of a molded plate obtained in the same manner as described above without using a flocculant are shown as comparative examples.
  • a 17.5 mm slope was obtained. Further, after laminating four layers of the phantom bodies, they were press-formed while being heated at 185 by a hot press to obtain a calcium silicate molded plate having a thickness of 6 Omm.
  • Table 3 shows the mixing ratio and the physical properties of the molded product.
  • the slurry obtained above was dried at 100 at 24 hours and analyzed by X-ray diffraction. As a result, rutile crystal peaks were observed in the case where zonotrite crystals and titanium oxide powder were added.
  • a 0.7 mra green sheet was formed, 90 sheets of the obtained green sheets were laminated, and then pressed with a hot press to obtain a 40 mm thick calcium silicate crystal board.
  • the physical properties of the obtained molded article were measured in accordance with the method of JISA 9510, and the result is shown in Table 4.
  • a zonotrite crystal slurry was obtained in the same manner as in Example 4, except that the titanium oxide powder was not added.
  • the slurry was molded and treated in the same manner as in Example 1 to form a calcium silicate crystal with a thickness of 25 mm.
  • the composition in molding 2 was Zonotri-tonie secondary particles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Laminated Bodies (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Paper (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

明 細 書
珪酸カルシウム結晶のボー ド
技術分野
本発明は珪酸カルシウム結晶のボー ドに関する:
背景技術
日本国待許公告昭 4 S - 4 0 8 9 6号には、 ゾノ トラ ィ ト結晶の二次粒子と木質鐵雜とから形成きれた珪酸々 ルシゥム結晶のボー ドが記されている。 上記ボー ドはゾ ノ トライ ト繪晶の二次粒子の水性スラリ一に木質織維を 配合しフォーミ ングマシンを甩いて一層のゥエツ トマツ ドとし、 これを加熱下にプレス成形して製造されている このような方法により得られる珐酸カルシウム結晶のボ 一 ドは、 一層のゥェッ トマツ トをプレスして構成されて おり づ二次粒子と木質繊維とを構成成分として耩成さ れている。
上記構成の珪酸カルシウム繪晶のボー ドは、 強度殊に 曲げ強度が木質鐡維含量が 5 0 %をこえる木質繊維主体 領域に於てさへ不充分であり、 この傾向は木質繊維含量 が少く なり珪酸カルシゥ A結晶の量が 5 0 %を越える結 晶主体領域では一層顕著となる。 殊に珪酸カルシウム結 晶の量が 8 0 %を越える領域では強度は不漓足なものと なる。 一方不燃性の見地から木質織維量は少なければ少 ない程好ましいが、 上記技術では不墩性と篛足すぺき大 きな強度とを同時に充足させることはできない。 また上 記方法では強度ある製品を得る為には木質鐵 を配合す る とが不可欠であり、 木質繊維を配合することなく こ れに代えて無機質鐵維を配合することを教えていない。 しかも上記ボードではポー ド厚が大きくなると内部及び 外部に珪酸カルシウム转晶と鐵維との組成差が生じ強度 的に不均一となり、 曲げ強度が低下する傾向がある。 殊 にこの锾向はボー ドの肉厚が 2 0 an以上になると著るし くなる。
発明の開示
本発明は機械的強度殊に曲げ強度に優れた珪酸カルシ ゥム結晶のボー ドを提傈することを目的とする。
本癸明の他の目的は珪酸カルシウム結晶を主体として 含有し、 木質鐵維含量が少なく或いはこれに代えて無機 質織維を含有し従って不熾性であり、 しかも檨械的強度 に侵れた珪酸カルシウム結晶のボードを提供することを 目的とする。
本発明の他の目的は肉厚が厚くなつても内部迄均質で 葰れた機械的強度を有する珪酸カルシウム結晶のボー ド を提供することにある。
本発明の珪酸カルシウム結晶のボー ドは、 珪酸カルシ ゥ厶結晶の二次粒子を含有し更に鐵錐質物質及び該二次 粒子表面に吸着された凝集剤を含有し且つ上記二次粒子 が相互に遵結して形成される厚さ 2 flffl以下の薄葉体が複 数枚積層されて形成され、 上記積層された薄葉体 ΐ目互が その表面部の珪酸カルシウム結晶二次粒子により強固に 連結され一係化されていることにより特徵付けられる。
本発明者の研究によれば、 珪酸カルシウム結晶の二次 粒子と繊維貲物質から構成される珪酸カルシウム結晶め ボー ドにおいて上記二次粒子がその表面部に凝集剤を吸 着保持し、 且つ該二次粒子が相互に違結して薄葉钵を形 成すると共に複数の薄葉侔が積層.された状態で各薄棄体 表面部の二次粒子により強固に連結され一体化されるこ とにより、 珪酸カルシウム結晶が主体となっても著るし く大きな機械的強度を有すること、 木質織維量が 2 0重 量%よりも少なく或いはこれに代えて合成鐡維ゃ無機質 繊維が配合されても大きな機械的強度を発現すること及 び厚さが大きくなっても全烊として均.一で大きな機狨的 強度を有することが見出された。
しかも本発明珪酸カルシウム結晶のボー ドは、 従采公 知の石綿スレー ト扳等と異なって低比重で高強度であり、 釕打ち性等の加工性が良好で、 表靣への模様付けも容易 にできるという利点がある。 k また本発明に於てボードを形成する複数の薄葉体の各 々が珪漦カルシウム結晶二次粒子、 鐵維質物質及び凝集 剤.と共に炭素質錄質、 炭化物、 窒化物、 珪化物及び金属 酸化物の少く とも 1種である不活性物質を含有するとき は、 広い温度領域殊に高温領域で高い断熟性を有するボ — ドが得られる。 従って本発明ボードに上記不活性物質 を含有せしめることほ本発明の好ましい実施態様である 本発明ボー ドを形成する珪酸カルシウム結晶の二次粒 子は、 トベルモライ ト結晶、 ゾノ トライ ト結晶及びワラ ス トナイ ト結晶の二次粒子であり、— これら繪晶は 1種の みでなく 2種以上の混合系であってもよい。 上記珪酸カ ルシゥム結晶の二次粒子は、 例えば特公昭 5 3 - 1 2 5 2 6号、 特藺昭 5 3 - 1 4 6 9 9 7号の方法で製造する ことができる。 即ち、 珪酸原料と石灰原料とをォ一 トク レーブ中で攪拌しながら加圧加熱して水熱合成反応せし めることにより製遑することができる。
上記珪酸カルシウム鍩晶を製造するための珪酸原料は 天然無定形珪漦、 珪砂、 シリカゲル、 シリカフラワー
(フエ口シリコンダス ト等〉 、 ホワイ トカーボン、 珪藻 土、 湿式リ ン酸製造プロセスで副生する珪フッ化水素酸 と水酸化アルミユウムとを反応させて得られるシリカ等 を例示できる。 また石灰原料としては、 生石疢、 消石灰、 力一パイ ト滓、 セメ ン ト等を例示できる 0 これら珪酸及 び石灰原料物質は単独でもしく は 2種以上混台して使用 できる。 また、 珪酸原料と石灰原料の C a 0/ S ί 02 モル比はトベルモラィ ト結晶を合成しょうとする場合は、 0. 7〜0, 9程度、 ゾノ トライ ト結晶を合成しようと する場合は 0. 90〜; I, 1 5程度である。
h!B珪酸原料と石灰原料に更に水を加えて原料スラリ 一が調製される。 この原料スラ リーを調製する際の水の 量は原料スラ リーの固形分に対し 5簠量倍以上、 好まし く は 1 0〜 50重量倍である。 かく して調製された原料 スラ リーは次いで攪拌下に水熱合成反応に供される。 こ の反応は通常 4i¾/e 3 以上、 好ましく はら〜 301¾/ en2 の飽和水蒸気圧下で、 遒常 0, 5〜 20時間程度行 われることにより珪酸カルシゥム結晶二次粒子が得られ る。 また上記の水熱合成反応で得られたゾノ トライ ト結 晶を更に 1 000で程度で焼成することによりその形状
(二次粒子〉 を 化させることなく、 これを耩成する結 晶を;3—ワラス トチイ トとすることができる。
本発明において使用され 鐡維質物質としては有機質. 纖雜及び無機質繊維が包含される。 有機質織維としては 例えば木材パルプ、 古紙バルブ、 ノ ッ トカス、 麻、 、 レーョン等のセルロース織維、 ポリアミ ド、 ポリエステ ル、 ビニロン、 ポリオレフイ ン等の合成鐵維を使^でき る。 また無機賛鐡維としては、 岩錦、 スラグウール、 ガ ラズ鐵雜、 シリカプアイノ 一、 セラ ミ ックフアイパー、 ^素鐵維、 無檨ゥイスカー、 石線等を使甩できる d これ 等織維質物質は 1種のみでなく適宜 2種以上混合して使 周できる。'
本発明においては珪酸カルシウム結晶を主体とし、 こ れに少量の織維質物質を配合しても大きな強度を有する ボー ドを得ることができる。 従って少量の有機質繊維を 配会して不璣性に優れた高強度ボー ドを得ることが可能 となる。 また有機質鐵維を用いることなく無機質鐵雜の みを記合して強度大なる不機性ボー ドを得ることができ る。 鐵維贅物質含量は成形係中に於て 2 - 3 0重量%と いう少ない量でよく、 斯かる珪酸カルシウム結晶主体領 域に於て本発明ボードは侵れた強度を備えしかも製造に 当たっての抄造性も良好である。 特に好ましい織維質物 質の含有量は 2〜2 0重量%、 铢に 5〜 1 5重量%の範 囲である。
本発明に於て用いられる凝集剤はカチオン性凝集剤、 ァニオン性凝集剤及びノニオン性凝集剤を包含する。 こ れら凝集剤は単独で或いは遒宜組合わせて使用できる。 殊に力チ才ン性凝集剤とァニォン性凝集剤を組合わせ使 用するのが好ましい。 凝集剤の使用により本発明ボー ド を製遣するに当り、 泸水性が高められ効率良く抄造でき ると共に強度あるボ一 ドを得ることが可能となる。 好ま しい凝集剤は高分子凝集剤である。 カチオン性凝集剤の 具体例として、 ポリェチレンィ ミ ン、 ジアルキルァミ ン • ヱピクロルヒ ドリ ン重縮合物、 ポリアミ ドアミ ン *ェ ピクロルヒ ドリ ン変性物、 カチォン化ポリアク リルァミ ド等のカチオン性高分子凝集剤があげられる。 またポリ 塩化アルミニゥム、 硫酸アルミニゥム、 アルミ ン酸ソー ダ、 硫酸第一鉄、 硫酸第二鉄、 塩化第二鉄等のカチオン 性無機凝集剤を用いることもできる。 また、 ァニオン性 凝集剤の具体例として、 ポリアタリル酸ァンモニゥムや、 ポリアク リル酸ソ一ダ等のポリアタリル酸塩及びァク リ ルアミ ド♦アタリル酸共重合体等があげられる。 また、 ノニ才ン性凝集剤の具体例として、 ポリアク リルァミ ド や、 ポリエチレンオキサイ ド等があげられる。
本発明成形^中における凝集剤の含量はカチオン性、 ァユオン性又はノ -オン性凝集剤を単独で配合する場合 は、 1 . 5望量%以下好ましく は 0 . 0 5〜 1 . 0重量 %であり、 また力チ才ン性凝集剤とァニオン性又はノニ 才ン性凝集剤を併用するときはカチォン性凝集剤
0 . 0 5〜 1 . 0重量%程度ァニオン性凝集剤又はノニ オン性凝集剤を 0 0 1〜 1 . 0重量%程度とし、 且つ 両者の合計添加暈が 1, 5重量 程度を越えないように するのがよい。
本発明に於てこのような凝集剤の使用による効果が得 られるのは、 カチオン性凝集剤又はァニオン性凝集剤或 いはノニオン性凝集剤をそれぞれ単独で使^すると、 該 凝集剤が珪酸カルシウム二次粒子表 S部に吸着され二次 粒子及び鏃維質物質を包含凝集させるためと考えられる。 そして力.チォン牲凝集剤又はノユオン性凝集剤を锊用す る場合は負の電荷をもつ珪酸カルシウム二次粒子にカチ オン性凝集剤が吸着されて正電荷に蒂電し、 この正に荷 電きれた珪酸カルシウム二次粒子を、 ァニオン性凝集剤 又はノニオン性凝集剤で強く接合凝集させ、 これらによ り、 スラ リー中の固彤分の泸水性が向上す.るものと考え られる。
本発明ボー ドは新熱性殊に高温域での新熱性を改善す るために必要に応じ炭素物質、 炭化物、 窒化物、 珪化物 又は金属酸化物等の不活性物質が配合され得る。 上記不 活性物質としては炭素物黉、 炭化物、 窒化物、 珪化物及 び金属漦化物の少なく とも 1種を使甩する。 具体的には、 例えば活性炭、 木炭、 石炭、 カーボンブラック、 黒鉛等 の炭素 質、 炭化珪素、 炭化硼素、 炭化チタン等の炭化 物、 窒化珪素、 窒化硼素、 窒化チタン等の窒化物、 珪化 カルシウム等の珪化物、 酸化鉄 〈へマタイ ト、 マグネタ ィ ト等) 、 酸化チダン (ルチル等) 、 酸化鍚、 酸化マン ガン、 酸化ジルコニウム、 .ィルメナイ ト、 ジルコン、 ク Dマイ ト、 酸化セリ ウム、 酸化ランタン、 酸化ィ ッ ト リ ゥム、 酸化ネオジム等の金属酸化物を挙げることができ、 これらは 1蘀又は 2鑌以上混合して^いることができる。 また、 用いる不活性物質の粒径は、 通常 0 . 0 0 1〜 1 2 0 β m程度、 好ま しく は 0 , 0 0 1〜 1 0 0 が適 当でめる。
本発明ポー ドの不活性物質含量は広い範匪に亘り得る が通常 2〜 7 0重量%。 好ましく は 5〜 5 0重量%の範 囲である。
本発明ボー ドを製造するにに当ゥては、 先ず珪酸カル シゥム結晶の二次粒子の水性スラ リーを調製する。 この 水性スラリーは石灰原料と珪酸原料とを前述した如く水 熱合成反応きせることにより製造できるし、 また二次粒 子の粉末を水に分散させることによっても製造できる。 この水性スラ リーに繊維質物質、 凝集剤及び必要に応じ 不活性物質が配合される。 夫々の配合量は固形分として 目的とするポー ド中での各成分の所望含量に一致きせれ ばよい。 不活性物質は珪酸カルシウム結晶の二次粒子調 製に先立 て珪漦原料と石灰原料とを含む原料スラ リー に添加し、 水熱合成反応に従わしめてもよく、 これによ り不活性物質は珪酸カルシウム結晶の二次粒子と一体化 され、 その鎗果、 ボー ドの強度が大きなものとなる。
次いで珪酸カルシウム結晶の二次粒子、 鐵維質物質、 凝集剤 ¾び必要に応じ不活性物質を含有する水性スラリ —を抄造する。 抄造に当ってスラリ一中の固形分濃度を
0. 2〜 3重量%程度に調製するのが望ましい。
抄造に当たっては連続式抄造 (丸網式、 長網式、 短網 式等) やバッチ式抄造 (C T C法、 チャッブマン法等) の何れで 俥^できる。 抄造した薄葉倖を複数葉養層す る。 積層した抄遼シートを次いで必要に応じカッターで 切断した後、 所定厚さとなるようホッ トブレズ等により 加熟下に加圧成形と同時に乾燥するのが好ましい。 加熱 温度は 1 5 0〜 2 0 0で程度が違当であり、 成形圧は 1 0〜 5 O kgノ en2 程度が適当である。
このように藿曆された薄葉侔シー トを加熱下に加圧成 形することにより抄造された各薄葉铮内に於て珪酸カシ ルゥム繪晶二次粒子が相互に連結しその锗果各薄葉体自 伴が強度あるものとなり しかも各薄葉侔表面部の珪酸カ ルシゥム結晶二次粒子が相互に連結し、 その結果薄葉係 が栢互に強固に一 化きれた強度大なるボー ドが得られ る。 本発明ボー ドの断面を 70倍の光学顕徵鏡で観察す ると各層は珪酸カルシウム結晶二次粒子により一体的に 結合しており各層の境界を顕微鏡的に認識することはで きない。
本発明ボー ドを形成する各薄葉馋は厚さ 2mm以下殊 に好ましく は 0, 2〜1, 0mm程度であり、 本発明ボ 一 ドは上記薄葉体の複数枚珠に 3〜 200枚が積層して —体化きれて形成される。 本発明ポー ドは肉厚となって も内部迄均一で大きな曲げ強度を有し、 従って厚さ 20 以上の強度大きな肉厚ポー ドを得ることが可能となる。
実 施 例
以下、 製造例及び実施例を挙げて、 更に具钵的に説明 する。 各例中 「部」 及び Γ%」 とあるのほ、 特記がない 限り、 それぞれ 「重量部」 及び 「重量%J を示す。
製造例
約 85での温水で消和した生石灰 49分と珪石粉末 5 1部 (C a O/S i 02 モル比 1. 0) を画形分の 1 2 倍の水になるように水の量を調整して原料スラ リ一とし、 1 Sk^/cra2 の圧力で 4時間攪拌下水熱合成反応させて ゾノ トライ ト結晶の二次粒子の水性スラ リーを得た。
実施例 1
ゾノ トライ ト結晶二次粒子と鐵雜とを所定の割合で混 合した後更に水を加えて 2. 0重量%の濃度に翳製した 後、 カチオン製凝集剤 「ポリマスタ 607」 (伯東 化学 (椽) 製、 ジメチルァ ミ ン ,ェビクロルヒ ドリ ン重 縮合物) を 0. 1 %添加し、 更にァニオン製凝寒剤 Γポ リマスター R 623 SJ (伯東化学 (株) 製、 ポリアタ リルアミ ド * ポリアクリル漦共重合物:) を所定量添加し て原料スラリ一を調製した。
この.原料スラリーを用いて短網式抄造機にて抄造を行 ない厚さ約 0, 7minの生シートを抄造し更に得られた 生シー トを 30枚藿層した後ホ トプレスにて 185で で加熱しながら加圧成形して厚さ 9 mmの珪酸カシルゥ ム成形板を得た。
配合割合及び物性結果を第 1表に示す。
試 ?4 No. 1 2 3 4 5 配合(重量部)
ゾノトフィトー次粒子 79.7 84. r 89.7 89.7 95. Τ ノ、レプ(N B KJP) 20 15 8
ガラス繊維 2 2 4 セフ:;ツク繊維 S
力ナオン性凝集剤 0.1 0,1 0.1 0.1 0.Ι
(ポリマス夕一: — 6 0 7)
了 オノ性^^ ί 0.2 0.2 0.2 0.2
(ホリマス夕一 R— 6 23 S)
成开本厚き {mm) q Q ΰ - Q
9 難枚数(枚) 30 30 30 30 30 密 度 (gZCHI3 ) 0.639 0.6E1 0.628 0.624 0.680 曲げ強さ OcgZeai2 ) 161 149 140 125 105 加熱線霍率 (%) 1.72 1.44 1.17 1.00 1.17 不燃性合否 小燃 不燃 不燃 不燃 加工性 良 良 良 良 * 良
尚表中の成形体物性は下記方法により測定した
1 ) 密度、 曲げ強さ及び加熱線収綰率
J I S A 9 5 1 0に準鹚。 但し加熱鎳収繡率は 1 0 0 0で、 3時藺加熱後の値である。
2 ) 不镲性合否
建設省告示 1 8 2 8号による。
3 ) 加工牲
釘打ち及びノコ引き等で評価し、 割れ及び角欠けを 生じないものを良とした。
実施例 2 .
ゾノ トライ ト锆晶二次粒子、 パルプ、 ガラス鐵維を所 定の割合で混合した後、 更に水を加えて 2, 0雷量%の 濃度に篛製した後、 高分子凝集剤を所定の割合にて添加 して原料スラ リーを調合した。
この原料スラリーに更に水を加えて饞度を 0 . 6 % (液量 5 H ) に謂製した後、 沪遏面積 3 2 c m 3 2 c m、 6 0メ ツシュ金網使用の夕ッ ビングマシンを使 て シー トを作成し、 泸水性を評価した。
更にこのようにして得られた厚さ約 1 m mの生シート を 9 0枚積層した後実施例 1と同様にして加圧成形して 厚さ 4 O m mの挂酸カルシウム成形板を得た。
配合割合及ぴ成形板物性を第 2表に示す。 尚比較の為に凝集剤を用いることなく上記と同様にし て得た成形板の物性を比較例として示す。
第 .2
料 ^ 1 2 3 4 5 比讓 配合割合 {%)
ゾノトライト二次粒子 89.7 89.7 89.7 89. T 89.7 90 メ^?ルプ 8 8 $ 8 8 S ガラス aig 2 2 2 2 2 2 カチオン性凝集斉 ί
ポリマスター R^607 0.1 0.1
ァロンフロック C— 325 0.3
ァニォン性麟剤
ポリマスタ一 R— 623S 0.2 o.a
ノニォ,ン性職剡
ポリマスター R— 620 0.2 0.3
成形体物性
概^:厚さ ( 〉 40 40 40 40 40 40 積餍微(枚) 90 90 90 90 90 90 成形体密度 (g/CDl3 ) 0.625 0.β82 0.635 0.629 0.630 0.5S4 曲げ強さ Ofg/CDl2 ) 135 1S1 120 119 116 85 加雌麵率 {%> 1,21 1,21 1.17 LS0 1.17 1.17 不燃性合否 不燃 不燃 不燃 不燃 不燃 不燃 加工性 良 良 良 良 良
実施例 3
実施例 1と同様の方法にて製造した抄造用スラリーを 用いて短網式抄造機にて抄造を行ない厚さ約 0, 7ιππιの 生シ一 トを抄造し更に得られた生シー トをメ一キング口 —ルにて加圧しながら卷き取った後展開して厚さ
17, 5mm坂状体を得た。 更にこの扳妖体を 4層積層 した後ホッ トプレスにて 185でで加熱しながら加圧成 形して厚さ 6 Ommの珪酸カルシウム成形板を得た。
配合割合及び成形体物性を第 3表に示す。
第 3 表
試 料 Να 1 記合割合 <%) - ゾノトライト 次粒子 S9, 7 バルブ(ΝΒΚΡ) 8. 0 ガラス ¾i (セラミツク鎮難) 2. 0 カチオン性^^ (ポリマズター R— 607) 0. 1 ァニオン牲^^ 0 (ポリマスタ一: — 623S) 0. 2 メィキングロール展開品
厚さ Cmm) 17. 5
(枚) 45 含フ 211 成形
厚さ (mm) 60
4 密度 (g/cm3 ) 0. 554 曲げ強さ (kgZcm2 ) 115 加繊贿率(%) 1. 27 不燃性合歪 不襟に合格 加工性 良 実施例 4
生石疢 (C a 095%) S 0での温水中で消和して石 灰乳を得た。 この石灰乳に平均粒子径 7. l ii mの珪石 粉末 (S i 02 94%) を C a 0 S i O2 モル比が
1. 00となるように加え、 更に所定量の酸化チタン粉 末 (ルチル、 平均粒子径 1, 2 m)-及び水を添加して, 全体の水量が固形分の 12倍量となるように漉合して原 料スラ リーを得た 0
これを飽和蒸気圧 1
Figure imgf000021_0001
、 温度1 9_ 1 でォー ト クレープ中で回転数 40 r, p, m. で攪拌しながら 6 時間水熱合成反応を行なって結晶スラリーを得た。
上記で得たスラ リ,を 100でで 24時間乾燥して X 線回折分析したところゾノ トライ ト結晶と酸化チタン粉 末を添加したものについてはルチル結晶のピークが認め られた。
このスラリーにパルプ 8%、 ガラス織維 2%をそれぞ れ混合した後、 更に水を加えてスラ リー瀵度を 2. 0 % にした後カチ才ン性凝集剤 (ポリマスタ一 R— 607 ) (伯東化学 (棣) 製) をスラリー固形分に対して 0. 1 %添加した後、 更にァニ才ン性凝集剤 (ポリマスター R - 623 S) (伯東化学 (株) 製) をスラリ一固形分に 対して 0. 2%添加した。 次いで、 このスラリーに水を加えて濃度を 1. 0%に 調整した後、 短篛式抄造機を用いて抄造し、 厚さ約
0. 7mraの生シ一 トを抄造し更に得られた生シ一 トを 90枚積層した後ホッ トプレスにて加圧成形して厚さ 4 0 mmの珪酸カルシウム結晶のボー ドを得た。 得られた 成形俅の物性は、 J I S A 9510の方法に準じて測 定し、 その繪果を第 4表に示す 0
第 4 表 試 料 1 2 3
^^中 (.%) 90 69.7 49.7 ゾノトライトニ次粒子
ルチル 0 20 40 パルプ(NBKP) 8 8 8 ガラス, 2 2 2 良 良 良 厚き (mm> 40 40 40
(枚) 90 90 90 密度(g cm" 0.403 0.404 0J06 曲げ強さ (gZcms ) 65.2 49.8 42. B 加纖麵率 (96) 1.20 1.19 1.22 & (Kcal/a.h. で〉
70で 0.068 0,056 0.052
150で 0.071 0.061 0.054
250V 0-082 0,067 0.056
350 0.094 0.073 0.058 実施例 5
実施例 4において、 酸化チタン粉末を添加しないこと 以外は同様の方法でゾノ トライ ト結晶スラリーを得た。
このスラ リーに所定の不活性物質を成彤烊中の含有量 が: 25 %となるように添如した後、 実施例 1と同様にし て成形して厚さ 25 mmの珪酸カルシウム结晶のボー ド を得た (成形侔中の組成はゾノ トライ トニ次粒子
64, 7 % 不活性物質 25 %, バルブ 8%、 ガラス鐵 維 2%、 カチオン牲凝集剤 0. 1%、 ァニオン性凝集剤 0, 2 %) o
得られた成形体の物性は第 5表の違りであった。
第 5 表 試 料 ^ 4 5 6 7 8 9 1 0 不活性物質
炭化珪 酸 化 鉄 ィルメ 酸化マ 窒化挂 酸化セ 酸化チタン 素 (へマタイト〉 ナイ卜 ンガン 素 リウム (ルチル) 成形体中含有量 (%〉 25 25 25 25 25 25 25
、離子 ί ( ra〉 8.5 0.8 5.4 4.0 5.0 1.8 1.2 嵩密度(g ½3 ) 0.410 0.40S 0.400 0.權 0.411 0.405 0.409 成 曲げ強さ (lig/cffl2》 45. a 44.2 45.1 48*7 44.1 43.0 44.B 形 熱伝導率
体 , cai/n.h°C
物 平均雕で
性 70 0.056 0.056 0.057 ひ.055 0.05B 0.057 0.055
150 0.059 0.059 0.059 0.058 0.059 0.059 0.05S
250 0.064 0.064 O.065 0.064 0.064 0.065 0.06S
350 0.071 0.072 0.075 0.071 0.071 0.075 0.070

Claims

請求の範囲
- 1 珪酸カルシウム結晶の二次粒子を含有し更に織維質 物質及び該二次粒子表面部に吸着された凝集剤を食有 し且つ上記二次粒子が相互に連結して形成きれる厚さ δ 2 m m以下の薄葉 i :が複数枚積層されて形成され、 上 記積層きれた薄葉体相互がその表面部の珪酸カルシゥ ム結晶二次粒子により強固に違結されー侓化されてい ることを特徵とする珪酸カルシウム結晶のボー ド。 . 2 珐酸カルシウム結晶がトベルモラィ ト結晶、 ゾノ ト0 ライ ト結晶及び (又は) ワラズ トナイ ト結晶である諳 求の範囲第 1項記載の珪酸カルシウム結晶のボー ド。 3 凝集剤が高分子凝集剤であることを特徵とする請求 の範囲第 1頊記載の珪酸カルシウム結晶のポー ド。 4 高分子凝集剤がカチ才ン性高分子凝集剤とァニ才ン5 又はノニオン性高分子凝集剤であることを特徵とする 諳求の範囲第 3項に記载の珪酸カルシウム結晶のボー ド。
織維質物質の含有量が 2〜 3 0重量%である請求の 範囲第 1項記載の珪酸カルシゥム結晶のボー ド。
0 6 繊維質物質の含有量が 2 2 0重量%である請求の 範囲第 5頊記載の珪酸カルシウム結晶のボー ド。
7 織維質物質の含有量が 5〜 1 5重量%である請求の 範囲第 5項記戴の珪酸カルシウム結晶のボー ド。
薄葉体が珪酸カルシウム結晶二次粒子、 織維質物質 及び凝集剤と共に、 更に炭素物質、 炭化物、 窒化物、 珪化物及び金属酸化物の少なく とも 1種である不活性 物質を含有する諳求の範囲第 1項記載の珪酸カルシゥ ム結晶のボー ド。
上記不活性物質が 2〜 7 0重量%配合されている請 求の範锂第 8項に記载の珪漦カルシウム結晶ボー ド。
炭素物質が、 木炭、 石炭、 カーボンブラ ック及び黒 鉛の少なく とも 1種であり、 炭化物が炭化珪素、 炭化 硼素及び炭化チタンの少なく とも 1鑌であり、 窒化物 が窒化珪素、 窒化礪素及び窒化チタンの少なく とも 1 種であり、 珪化物が珪化カルシウムであり、 金属酸化 物が酸化鉄、 酸化チタン、 酸化錫、 酸化マンガン、 酸 匕ジルコニウム、 ィルメナイ ト、 ジルコン、 クロマイ ト、 酸化セリ ウム、 酸化ラ ンタン、 酸化ィ ッ ト リ ウム 及び酸化ネオジムの少なく とも 1種である請求の範囲 第 8項に記載の珪酸カルシウム結晶のボー ド。
PCT/JP1987/000383 1987-06-12 1987-06-12 Calcium silicate crystal board WO1988009777A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
BR878707770A BR8707770A (pt) 1987-06-12 1987-06-12 Placas de cristais de silicato de calcio
AT87903916T ATE86235T1 (de) 1987-06-12 1987-06-12 Brett aus calciumsilicatkristallen.
DE8787903916T DE3784512T2 (de) 1987-06-12 1987-06-12 Brett aus calciumsilicatkristallen.
AU75172/87A AU606344B2 (en) 1987-06-12 1987-06-12 Calcium silicate crystal board
PCT/JP1987/000383 WO1988009777A1 (en) 1987-06-12 1987-06-12 Calcium silicate crystal board
EP87903916A EP0317631B1 (en) 1987-06-12 1987-06-12 Calcium silicate crystal board
KR88001035A KR960007365B1 (en) 1987-06-12 1988-02-04 Molding of calcium silicate
US08/013,215 US5411793A (en) 1987-06-12 1993-02-01 Molded boards of calcium silicate and process for producing the same
US08/338,797 US5491020A (en) 1987-06-12 1994-11-10 Molded boards of calcium silicate and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1987/000383 WO1988009777A1 (en) 1987-06-12 1987-06-12 Calcium silicate crystal board

Publications (1)

Publication Number Publication Date
WO1988009777A1 true WO1988009777A1 (en) 1988-12-15

Family

ID=13902715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1987/000383 WO1988009777A1 (en) 1987-06-12 1987-06-12 Calcium silicate crystal board

Country Status (7)

Country Link
EP (1) EP0317631B1 (ja)
KR (1) KR960007365B1 (ja)
AT (1) ATE86235T1 (ja)
AU (1) AU606344B2 (ja)
BR (1) BR8707770A (ja)
DE (1) DE3784512T2 (ja)
WO (1) WO1988009777A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT7672U3 (de) * 2004-12-03 2006-02-15 Sturn Hartwig Bild

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3878542T2 (de) * 1987-06-26 1993-08-26 Japan Insulation Co Ltd Geformte kalziumsilikatplatte sowie verfahren zur herstellung.
AU2001250832A1 (en) 2000-03-14 2001-09-24 James Hardie International Finance B.V. Fiber cement building materials with low density additives
MXPA03007890A (es) 2001-03-02 2003-12-04 James Hardie Res Pty Ltd Aparato para rociadura.
US7993570B2 (en) 2002-10-07 2011-08-09 James Hardie Technology Limited Durable medium-density fibre cement composite
US7998571B2 (en) 2004-07-09 2011-08-16 James Hardie Technology Limited Composite cement article incorporating a powder coating and methods of making same
EP2010730A4 (en) 2006-04-12 2013-07-17 Hardie James Technology Ltd SURFACE-SEALED, REINFORCED BUILDING ELEMENT
US8209927B2 (en) 2007-12-20 2012-07-03 James Hardie Technology Limited Structural fiber cement building materials
CN109250963B (zh) * 2018-09-29 2021-07-16 福建省昊立建设工程有限公司 一种复合增韧混凝土及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52105926A (en) * 1976-03-04 1977-09-06 Nippon Asbestos Co Ltd Paper making method for plate of light asbestosscalciumsilicate
JPS52135330A (en) * 1976-05-10 1977-11-12 Nippon Asbestos Co Ltd Production of calcium silicate boad free from asbestos
JPS5312526B1 (ja) * 1967-12-25 1978-05-01
JPS53146997A (en) * 1976-11-04 1978-12-21 Osaka Patsukingu Seizoushiyo K Spherical secondary particles of superlight calcium silicate
JPH06183667A (ja) * 1992-12-24 1994-07-05 Toshiba Corp エレベータ用油圧ジャッキ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3878542T2 (de) * 1987-06-26 1993-08-26 Japan Insulation Co Ltd Geformte kalziumsilikatplatte sowie verfahren zur herstellung.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5312526B1 (ja) * 1967-12-25 1978-05-01
JPS52105926A (en) * 1976-03-04 1977-09-06 Nippon Asbestos Co Ltd Paper making method for plate of light asbestosscalciumsilicate
JPS52135330A (en) * 1976-05-10 1977-11-12 Nippon Asbestos Co Ltd Production of calcium silicate boad free from asbestos
JPS53146997A (en) * 1976-11-04 1978-12-21 Osaka Patsukingu Seizoushiyo K Spherical secondary particles of superlight calcium silicate
JPH06183667A (ja) * 1992-12-24 1994-07-05 Toshiba Corp エレベータ用油圧ジャッキ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT7672U3 (de) * 2004-12-03 2006-02-15 Sturn Hartwig Bild

Also Published As

Publication number Publication date
KR960007365B1 (en) 1996-05-31
BR8707770A (pt) 1989-10-31
AU606344B2 (en) 1991-02-07
KR890000735A (ko) 1989-03-16
ATE86235T1 (de) 1993-03-15
EP0317631A4 (en) 1989-09-26
DE3784512D1 (de) 1993-04-08
DE3784512T2 (de) 1993-09-09
EP0317631A1 (en) 1989-05-31
EP0317631B1 (en) 1993-03-03
AU7517287A (en) 1989-01-04

Similar Documents

Publication Publication Date Title
US4144121A (en) Method for producing asbestos-free calcium silicate board and the board produced thereby
US6506248B1 (en) Building products
EP0127960B1 (en) A process for the manufacture of autoclaved fibre-reinforced shaped articles
WO1988009777A1 (en) Calcium silicate crystal board
JPH0151600B2 (ja)
JP5190399B2 (ja) けい酸カルシウム板の製造方法
JP5350060B2 (ja) 木質セメント板及びその製造方法
US5491020A (en) Molded boards of calcium silicate and process for producing the same
JP2519075B2 (ja) 珪酸カルシウム結晶のボ―ド
JP2554534B2 (ja) 珪酸カルシウム成形板及びその製造方法
JP2525187B2 (ja) 珪酸カルシウム板の製造方法
JPS59187700A (ja) 耐熱性繊維質成形体の製造法
JP2525203B2 (ja) 珪酸カルシウム板の製造法及び装置
JPS59199564A (ja) ケイ酸カルシウム系耐熱材料の製造法
WO1990007472A1 (en) Lightweight molding and production thereof
JPS59217659A (ja) 軽量珪酸カルシウム成形体の製造方法
KR100855122B1 (ko) 고강도 슬래그 석고보드 조성물 및 고강도 슬래그석고보드의 제조방법
JPS6117463A (ja) 無機質複合成形体の製造法
JPS6213301B2 (ja)
JPS59141452A (ja) 珪酸カルシウム成形体の製法
JPH0581554B2 (ja)
JPS63231905A (ja) 無機質複合板の製造方法
JPS59146967A (ja) 軽量珪酸カルシウム成形体の製造方法
JPS59146968A (ja) 無定形炭素含有ゾ−ノトライト系珪酸カルシウム成形体及びその製造法
JPS60112663A (ja) 珪酸カルシウム系成形体及びその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1987903916

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1987903916

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1987903916

Country of ref document: EP