WO1987002933A1 - Transparent high-density polyethylene film and process for its production - Google Patents

Transparent high-density polyethylene film and process for its production Download PDF

Info

Publication number
WO1987002933A1
WO1987002933A1 PCT/JP1986/000566 JP8600566W WO8702933A1 WO 1987002933 A1 WO1987002933 A1 WO 1987002933A1 JP 8600566 W JP8600566 W JP 8600566W WO 8702933 A1 WO8702933 A1 WO 8702933A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
density
density polyethylene
temperature
less
Prior art date
Application number
PCT/JP1986/000566
Other languages
English (en)
French (fr)
Inventor
Terumitsu Kotani
Toshio Taka
Yoshimasa Saito
Original Assignee
Showa Denko Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP24807985A external-priority patent/JPH062377B2/ja
Priority claimed from JP26267285A external-priority patent/JPS62122735A/ja
Priority claimed from JP26267385A external-priority patent/JPS62122741A/ja
Priority claimed from JP12720686A external-priority patent/JPS62284732A/ja
Application filed by Showa Denko Kabushiki Kaisha filed Critical Showa Denko Kabushiki Kaisha
Priority to DE86906464T priority Critical patent/DE3689520T2/de
Publication of WO1987002933A1 publication Critical patent/WO1987002933A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/52Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/22Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
    • B29C43/24Calendering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0026Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0063Density
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31Surface property or characteristic of web, sheet or block

Definitions

  • the present invention relates to a high-density polyethylene film having excellent transparency, and a method for producing the same. Particularly, the film has a good strength balance in the M and T directions and has an impact strength of the film.
  • the present invention relates to a transparent high-density polyethylene film having a remarkably large strength, strength and a large Young's modulus, and a method for producing the same.
  • the present invention relates to a high-density polyethylene film having higher strength, excellent transparency, and good heat sealability, and a method for producing the same.
  • HDPE high-density polyethylene
  • an air-cooled infiltration method is generally performed, but in this method, the molecular orientation is adjusted by a blow ratio. By rinsing, an excellent film could be obtained, but due to cooling with air, only an opaque or translucent film could be obtained.
  • the films obtained by these methods certainly have excellent transparency, but the obtained films are significantly oriented in the stretching direction and the pressing direction.
  • the drawbacks are that the film tends to be easily torn due to its directionality, insufficient strength is obtained, the ripening shrinkage is not uniform, the film is distorted, and the heat seal cannot be performed. There was.
  • the inversion method was mainly used to obtain a strong film from an HDPE film.
  • the inversion method when performing inflation molding, to obtain a high-density film, as shown in Japanese Patent Publication No. 56-5172 and Japanese Patent Application Laid-Open No. 60-15122, vertical orientation is required. It was necessary to balance the composition of ⁇ .
  • Japanese Patent Application Laid-Open No. 53-31768 discloses a pair of raw thermoplastic resin films set in a gap smaller than the thickness of the film and having a surface roughness of 0.5 s or less.
  • Techniques for obtaining transparent films have been proposed.
  • One of the special features of this technology is that the surface roughness of the mouth used for the transparency treatment is made as good as possible, and as a result, the factor that affects the haze value of the film is improved.
  • the purpose is to improve the external haze value, which is one of the key factors, to obtain a film with excellent transparency and gloss.
  • the surface roughness of the roll is specified, the surface roughness of the ⁇ -roll is improved, and at the same time, the temperature is set to be lower than or lower than the melting point of the film during the treatment, and There is a limit to the transparency of the HD ⁇ film only by passing through the gap between a pair of mouthpieces.
  • the present invention in the subsequent examination process, an example relating to the HD ⁇ film will be described from the embodiment. Deleted.
  • Japanese Patent Application Laid-Open No. Sho 59-5032 discloses a film in which an HD-infrared raw film is subjected to pressure treatment at a constant temperature between smooth surfaces to improve optical characteristics. Techniques for obtaining the same have been proposed. However, this technology is also the same as the above-mentioned technology, and in the publication, the degree of writhing of the film and the degree of lack of transparency mainly occur from the surface characteristics of the film. As described in this report, a film with improved optical characteristics by improving the external haze value, which is one of the factors that influence the haze value of the film, cannot be obtained.
  • the raw film is pressure-treated between two or more opposed nozzles, in order to facilitate plastic deformation of the film. However, there is no specific description of the heat treatment by the roll, and in the embodiment, such a raw film is placed between two smooth sheets. Scissors, Only the method of flattening the raw film by contact with the sheet surface is specifically described.
  • the present invention solves the drawbacks of the prior art, is highly transparent, has good balance in the ⁇ and ⁇ directions of the film, has a high impact strength of the film, and has a high Young's strength. It is an object of the present invention to provide a highly transparent HD-based film which has a high efficiency, a good heat-sealing property, and a method for producing the same.
  • the surface roughness of the film is 0.001 to ( ⁇ ; ⁇ !!). It is preferably 0.002 to 0.15 ⁇ m, particularly preferably 0.005 to 0.15 m, and the C-axis orientation function (F c) of the crystal in the finolem is 0.10 to 0.50, preferably 0.10 to 0.40, It is particularly preferably 0.10 to 0.30, and the difference ⁇ between the refractive index of the amorphous part and the crystalline part in the film is 0.1000 to 0.1070, preferably 0.1000 to 0, 1065, and particularly preferably.
  • a transparent, high-density polyethylene film having a haze value of less than 10%, preferably less than 8%, is provided between 0.1005 and 0.1060.
  • low-density polyethylene having a density of 0.935 g Zed or more and high-pressure low-density polyethylene having a density of 0.910 to 0.930 g Zo or a density of 0.880 to 0.930 g Zcri ⁇ ⁇ ⁇ ⁇
  • the surface roughness of the film is 0.001 ⁇ .
  • Katsufu I Lum amorphous portion and the difference delta eta is 0.1000 ⁇ of the refractive index of the crystal portion in 0.1070, is favored by rather a 0.1000 ⁇ O.lOSb ', is particularly preferably 0.1005 to 0.1060, Hay's value
  • a transparent high density polyethylene film of less than 10%, preferably less than 8% is provided.
  • the amount of the high-pressure method low-density polyethylene or the straight low-density low-density polyethylene is preferably from 1 to 50% by weight, and particularly preferably from 1 to 30% by weight.
  • a raw film made of high-density polyethylene having a density of 0.935 g / cd or more is converted into three heating rolls under the following temperature conditions: And a method for producing a highly transparent and high-density polyethylene film having a haze value of less than 10%, which is characterized by passing through a space and then cooling.
  • the temperature conditions of the above three heating rollers are as follows: the three heating rolls are divided into a first heating roll (hereinafter referred to as R i) and a second heating roll in accordance with the passing order of the raw film. role (hereinafter referred to as R 2) and the third heating roll (Hereinafter referred to as R 3), the temperature of R 2 is higher than the temperatures of R i and R 3, and the temperature of R 2 is equal to or lower than the melting point of the film and equal to or higher than 105.
  • R i first heating roll
  • R 3 the third heating roll
  • the temperature of R 2 is higher than the temperatures of R i and R 3
  • the temperature of R 2 is equal to or lower than the melting point of the film and equal to or higher than 105.
  • an inflation-molded raw film having a blow ratio of 3 or more is passed under the above-mentioned temperature conditions and a draw ratio of 3 times or more.
  • high-density polyethylene film according to the first invention according to the present invention at least 50% by weight, preferably 70% by weight of high-density polyethylene having a density of 0.935 g / cd or more. % And a so-called high-pressure low-density polyethylene having a density of 0.910 ⁇ ⁇ to 0.930 g ⁇ (hereinafter referred to as “LD ⁇ ⁇ ”). Tanned the above problems.
  • At least 50% by weight of high-density polyethylene having a density of not less than OgZ is preferable.
  • a film comprising a composition comprising 7% by weight or more and a straight low-density polyethylene copolymer having a density of 0.88 g ⁇ to 0.930 g Zcri (hereinafter referred to as "L_LDPE").
  • L_LDPE straight low-density polyethylene copolymer having a density of 0.88 g ⁇ to 0.930 g Zcri
  • the high-density polyethylene constituting the raw high-density polyethylene film in the present invention may be an ethylene homopolymer or a copolymer of ethylene and one or more comonomers. It may be a polymer. Examples of such a copolymer include ethylene / propylene, ethylene / butene-11, and ethylene / hexene-11 copolymer. Further, the high-density polyethylene may be a blend with other polymers, or may be a composition containing additives such as antioxidants, pigments and inorganic fillers. You can No.
  • Examples of other polymers that are blended are low-density polyethylene, polypropylene, or copolymers of ethylene and butyl acetate, or ethylene and ethylene.
  • An example of the copolymer with the relay rate is shown.
  • the high-density polyethylene is preferably at least 50%, and preferably at least 70%.
  • the raw film is manufactured by various film forming methods such as an inflation method and a T-die method.
  • good results can be obtained by applying the production method of the present invention to a high-density polyethylene film produced by the infusion method, which has a problem in transparency.
  • the high-density polyethylene has a density of 0.935 g Zcd or more, preferably 0.935 to 0.975 g, and more preferably 0.945 to 0.960 g / oi. If the density is less than 0.935 g / c, it will not be possible to provide the excellent properties of HDPE film, such as waist strength (Young's modulus) and barrier properties (moisture proof), impact strength, etc. .
  • the present invention is applied to a relatively high-molecular-weight polyethylene resin or resin composition having the above density to reduce the high-density polyethylene to at least 50%, more preferably 70 to 90%.
  • melt index of high density polyethylene (measured under condition 4 according to Jis K-7210, below) (Referred to as “MFR”) below l.Og / lOmin, preferably below 0.5g Z 10min, more preferably below O.lg / lOtnin, particularly preferably below 0.06g Is good.
  • MFR melt index of high density polyethylene
  • the MFR of LDPE and L-LDPE is usually 0.1 to 10.0 g / 10 min, preferably 0.1 to 3.0 g and 10 min, more preferably 0.1 to 2.0 g and 10 min. O.lg not MFR strong
  • the LDPE and L-LDPE of (1) are used, the fluidity is poor, so that the film described below has poor moldability, and it is difficult to produce a good film.
  • LDPE or L-LDPE exceeding 10 minutes is used, a film having good strength cannot be obtained.
  • the blow ratio in the inflation molding is preferably 3 or more. If it is smaller than 3, the orientation in the horizontal direction will be small, and the orientation in the vertical direction will be too large by the heat treatment in the later step, and it will be difficult to obtain a sufficiently strong film.
  • L-LDPE which can be used for the production of the film of the present invention
  • those comprising ethylene and ⁇ -olefin are used.
  • ⁇ - 'refining fins are those having 3 to 10 carbon atoms, such as propylene, butene-1, hexene-11, octene, 4-methyl-pentene, etc. It is preferably used.
  • the L-LDPE used has a density of 0.88 g or more and Zcri or more and 0.930 g / cd or less. It is very difficult to produce a straight low-density PE copolymer having a density of less than 0.88 g oi.
  • the density of the low-density low-density PE copolymer exceeds 0.93 ( ⁇ no, there is a disadvantage that the heat sealing property cannot be improved.
  • the film of this study is formed from the above high-density PE and L-LDPE. However, it is needless to say that antioxidants and pigments may be added as necessary.
  • a composition comprising the above-described low-density PE or L-LDPE or LDPE in the above-mentioned mixing ratio is formed into a raw film.
  • a method of forming the composition into a film an infusion method or a T-die method is used.
  • the blow ratio should be 3 or more. Is desirable.
  • the blow ratio is less than 3, the orientation of the constituent molecules in the horizontal direction becomes insufficient, and the orientation of the molecules in the vertical direction becomes too large in the post-process involving heat treatment. A disadvantage that cannot be sufficiently improved occurs.
  • the transparency of the film in Honmei can be divided into the transparency of the film surface and the inside.
  • the total Haze value of this film (hereinafter sometimes simply referred to as haze) is, for example, 75%. %,
  • the surface haze can be separated into 60% and the partial haze can be separated into 15% .
  • this surface haze is the scattering of light due to the unevenness of the fine structure caused by crystallization of the film surface layer. Physically smoothing this surface can be significantly improved by setting the film surface roughness to 0.1 or less in the present invention.
  • the cellophane tape can be made transparent by pasting cellophane tape on both sides of the glass (opaque).
  • Known methods include laminating a resin having good transparency on both sides of the lum or co-extrusion molding. However, as mentioned earlier, this method only reduces scattering at the film surface, and it does not provide sufficient transparency.
  • the present inventors thoroughly investigated the factors causing the internal haze, and found that the cause of the internal haze was the orientation of the crystal lattice axis.
  • D 730, D 720 is 730 ⁇ - L, infrared in 720 cm 1
  • F a, F b, and F c are the orientation functions of the a, b, and c axes of the crystal, and the difference between the refractive indices of the crystal and the amorphous material ⁇ n is the Lolenz-Loienz deformation formula (plastic Vol 31 ⁇ 2 ⁇ 34)
  • n D is the refractive index of the film, which was measured with an Abbe refractometer.
  • is the film density, which was determined from the density piping.
  • ⁇ ⁇ is a crystal And the density difference between amorphous and amorphous. The following literature values were used.
  • the resin according to the present invention is a thermoplastic resin having a density of at least 50%, preferably at least 70%, of HDPE having a density of 0.935 g or more, as an HDPE film.
  • Properties such as waist strength (Young's modulus), barrier properties (moisture proof), impact strength, etc. Density of 0.935 g Zcrf or more, and various additions for modifying this resin This is because even if a blending agent, a bulking agent, or a blending resin is blended, the above-mentioned HDPE can be used at least 0% or more to take advantage of these characteristics.
  • the reason why the film surface roughness is set to 0.1 or less is that the external convexity is large in the case of HDPE, and scattering of light on the surface causes deterioration of external haze. This is because such unevenness is eliminated, and this is one condition for achieving the desired highly transparent film of the present invention.
  • each heating roll for example, a metal roll having a hard chrome plating layer on its surface is used. Good to be polished.
  • a roll having a smooth surface processed or finished to have a mirror-like gloss can be used.
  • the ripening roll requires the temperature of the second roll (R 2) to be higher than the temperature of the other first roll (R i) or the third roll (R 3 ). .
  • the raw film is most intermediate. Is also set to a high temperature, a temperature difference is provided between the rolls, it may be passed between heating rolls consisting of strains of R 1, R 2 and R 3.
  • the temperature of R 1 is desirably 50'c or higher, and is preferably 55 or higher.
  • the temperature of R 2 is 105 or lower than the melting point of the raw film. It must be at least c. Therefore, the heating rolls are all but is Se Tsu preparative below the melting point of the raw off I Lum, it is necessary to provide a ⁇ difference between the R 2 and the other B Lumpur i.e. R t and R 3 . Temperature of RI and R 3 may When set to a temperature not higher than the temperature of the R 2.
  • the temperature of R 3 is preferably 70′c or more, particularly preferably 75 or more. If the temperature of R 3 exceeds 120, it is difficult to obtain good transparency. Also 7 Q. If it is less than C Fi Lum is in close contact with the R 2, hardly sufficient transparency can not be obtained.
  • R 2 is externally heated using an infrared heater or the like.
  • the heating temperature is higher than 803 ⁇ 4C, but lower than the temperature at which the high-density polyethylene used can melt. Therefore, it is desirable to be 180'c or less (preferably 160 or less).
  • 180'c or less preferably 160 or less.
  • the raw film is passed through the gap between the three heating ports, which has a thickness of the raw film or less, to obtain a transparent film having a thickness of the raw film or less.
  • Stretching ratio should be 3 times or less. If the stretching is performed more than three times, the film will be too strong in the machine direction and a sufficiently strong film will be obtained.
  • Preferred stretching ratio or compression ratio is from 1
  • cooling with two chill rolls (hereinafter referred to as R 4 and R 5)
  • the temperature of these chill rolls is not particularly limited, but is preferably 70 to 30 or more. Chill above 70'c
  • the thickness of the raw film used in the present invention is not particularly limited.
  • the thickness is preferably 2.3 times or less, more preferably 1.05 'to 1.8 times the film thickness.
  • a highly transparent high-density boron having a haze value of less than 10%.
  • the haze value in the present invention is an external haze value.
  • High-density polyethylene films are manufactured by the inflation method.
  • the molecule ⁇ According to the transparent treatment of the present invention, the molecule ⁇
  • the unevenness is smoothed, and the wavelength of the unevenness becomes 4000 A or less.
  • the present invention relates to this external haze value.
  • the non-uniform thickness of microcrystals and the internal porosity contained in the crystal are considered as factors of the opacity from the inside of the film.
  • the density of the film before processing is 0.948 g Zoi, for example, but the density of the film after processing is 0.952 g Zed, and the density is increased by the transparency processing. It is considered that the above-mentioned inner void / non-uniform layer has been removed.
  • LDPE low-density polyethylene
  • L-LDPE 3 ⁇ 4g 0.917 / ci s MF R -0.79g / 10min, ethylene-butene Echiru groups / 00C 20 - 1 copolymer.
  • HDPE with a melt index of 0,05 g, 10 min, and a density of 0.949 goi is used.
  • the blow film was blown at 5, blow line 500mm, take-up speed was 10m / min, and a 100 «" raw film was formed by the inflation method.
  • the heat treatment was performed under the following conditions: The temperature of the chill roll was set to R5 at 50. Table 1 shows the results.
  • a high-density polyethylene film was obtained in the same manner except that the conditions shown in Table 2 were used. Table 2 shows the results.
  • a high-density polyethylene film was obtained in the same manner as in Example 2 except that the blow ratio was set to 2 and the conditions shown in Table 2 were used. Table 2 shows the results.
  • High-density polyethylene having a MFR of 0.05 g and a melting point of 130'c (density 0.950 g Zoi, blow ratio 3) with a melting point of 130'c was prepared to a thickness of 20 m by ordinary inflation. , 30 m and 40 m webs [hereinafter referred to as “web (1)”, “web (2)”, and “web”), respectively.
  • these raw materials shown in Table 3
  • these raw materials have a temperature of R i of 85, a temperature of R a of 115, a temperature of R 3 of 110′c, and a temperature of chill rolls R 4 and R 5 .
  • Films with the respective thicknesses shown in Table 4 were produced using a mouthpiece with a good surface gloss set at 50. The haze of the obtained film was measured. Table 3 shows the results. Note that R 2 was heated by an infrared heater.
  • For the high-density ⁇ , use a material with a density of 0.950 g and a melt index of 0.04 g / lOmin, and for a straight low-density PE copolymer, a density of 0.88 g Zcd and a melt-in A disk with a 4 g nomin was used.
  • the compounding ratio of the high-density PE and the low-density low-density PE copolymer was (100/0) in Comparative Example 12, (95/5) in Comparative Example 13, (70/30) in Example 13, The value was set to (60/40) in Example 14 and (40/60) in Comparative Example 14.
  • compositions having the above mixing ratios were each formed into a film having a thickness of ⁇ by an inflation molding method to obtain a raw film.
  • the molding temperature was 200 ° C and the blow ratio was 3.
  • Each raw film produced in this way was heat-treated with three heating rolls, and then cooled with two chill rolls to obtain a 70 m film.
  • the temperature of each heating roll was 100'c for the first roll (R i) and 115 for the second roll (R 2).
  • the temperature of the chill roll was set to 30 at.
  • Table 4 shows the physical properties of the obtained film.
  • the film was cut into a 15 mm wide scotch, and this was heat-sealed under the conditions of a sealing pressure of 2 kg ⁇ 4 and a sealing time of 1 second. Peel the piece at a speed of 300 mm / min and examine the peel strength. As a result, the heat sealability was expressed by the seal temperature of the test piece having the separation strength of 1 kg.
  • the film of the present invention has excellent impact strength, and also has good balance of properties such as heat sealability, haze value, yield strength, and Young's modulus. This was confirmed.
  • a high-density polyethylene film excellent in transparency with a small haze value is obtained, and this film also has high transparency and low transparency. It has been considered that it is difficult to achieve high transparency without impairing the film strength in the case of high-density polyethylene films, because it has both the film strength.
  • the invention has achieved this, and its industrial significance is significant. Since the high-density polyethylene film according to the present invention having the above-described structure has flexibility and an appropriate melting temperature, the high-density polyethylene film has excellent properties. In addition to the high properties of high strength and high transparency, it also has good impact strength and heat sealability.
  • the film of the first invention can be easily heat-sealed at low temperature, And it is hard to break even if it receives an impact. Furthermore, according to the production method of the present invention, a film having good transparency can be produced in addition to high strength, easy heat sealability, high impact strength, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

明 細 害
高密度ボ リ エチ レ ン系透明フ ィ ルム及びその製法
〔技術分野〕
本発明は透明性の著し く す ぐれた高密度ポ リ エチ レ ン系フ イ ルム及びその製造方法に関し、 特に、 M方向、 T方向の強 度バラ ンスが良く てフ ィ ルムの衝撃強度が著し く 大き く 、 力、 つ、 ヤ ング率の大きな値を有する透明な高密度ポ リ エチ レ ン 系フ ィ ルム及びその製造方法に関する。
本発明は、 更に強度が高く 、 優れた透明性を有し、 しかも ヒ ー ト シ一ル性の良い高密度ポ リ エチ レ ン系フィ ルム と、 そ の製造方法に関するものである。
〔背景技術〕
従来、 高密度ボ リ エチ レ ン (以下 H D P E という場合もあ る) 透明フ ィ ルムを得るには、 溶融樹脂をス リ ッ トダイ を通 してチルロールや水により急冷する方法が一般に行なわれて いる。 しかし、 この方法では、 加工性を良く するために、 分 子量の小さい樹脂が使用され、 したがって得られた透明フ ィ ルムの強度は比較的弱いものであ った。
また、 フ ィ ルムの強度を得るため高分子量 H D P Eを使用 して成膜する方法としては空冷ィ ンフ レー シ ョ ン法が一般に 行なわれているが、 この方法ではブロ ー比により分子配向を ラ ンス させる こ とによ り強度のす ぐれたフ ィ ルムを得るこ とが出来るが、 空気での冷却のため、 不透明又は半透明のフ ィ ルム しか得られなかった。
また、 かかるフィ ルムを、 加熱した表面光沢を有する口— ル間を通過させ、 その表面平滑性を上げるこ とによ り 、 高分 子量 H D P Eでも、 ある程度 〔ヘイ ズ ( Ha z e) 値 : 15%程度〕 透明化する試みがなされているが、 Haz e値 10%以下のす ぐれ た透明性を得るには到っていない。
また、 H D P Eフィルムの透明化のためには半透明で得ら れる H D P E フィ ルムを 5〜 10倍に一軸延伸したり、 ロ ール 間で圧廷する方法も知られている。 しかし、 これらの方法で 得られたフ ィ ルムは、 確かに透明性にはすぐれるが、 得られ たフィルムは延伸方向ゃ圧廷方向に著しく配向しているため にフィ ルム強度面で著し く方向性が出て引き裂け易く なつた り、 充分な強度が得られなかったり、 熟収縮性が不均一でフ イ ルムに歪が発生したり、 ヒ — ト シールができなく なったり するという欠点があつた。
従来 H D P E フ ィ ルムで強度の強いフ ィ ルムを得るにはィ ンフ レーシヨ ン法が主に取られていた。 さ らに、 イ ンフ レ一 シヨ ン成形を行う場合、 高密度フ ィ ルムを得るには、 特公昭 56 - 5172号公報や特開昭 60— 15122 号公報に,示されるように、 縦と撗の配合のバラ.ンスを取る必要があった。
すなわち、 縦方向に配向しすぎると縦裂けしやすく 、 横方 向に配向しすぎると胴裂けしやすく 、 高強度フ ィ ルムが得ら れな く なって しま う 。 このため、 一般には、 イ ンフ レー シ ョ ン成形時にバブルの膨張比とダイ径との比であるブロ ー比と 引取ス ピー ドゃフロス トライ ン高さを考慮して成形される。 しかし、 縦と橫の配向性のバラ ンスを取ってフ ィ ルムに多少 の強度を付与し得たと して も、 高密度ポ リ エチ レ ンの場合、 透明性が悪く用途が限定されてしまうのが現状である。
高密度ポ リ エチ レ ン系フ ィ ルムの透明性を改良するために 更にい くつかの方法が提案されている。
ί列えば、 特開昭 53 - 31768 号公報には、 原反熱可塑性樹脂 フィ ルムを、 その厚さより も小さな間隙にセ ッ トされ、 その 表面粗度が 0, 5 s以下である一対のロールの間隙に、 該フィ ルムの融点より低いか、 軟化点以下の温度で、 通過させ、 圧 延処理して、 原反フイ ルムの厚さより小さな厚さのフ ィ ルム で、 *り度 (ヘーズ) が 4 %以下の透明フ ィ ルムを得る技術 が提案されている。 こ の技術の特に特徴となっている点は、 透明化処理に使用する口ールの表面伏態を出来るだけ良好に して、 これにより 、 フ ィ ルムのヘイ ズ値を左右するフ ァ ク タ 一である外部ヘイ ズ値を良好にして、 透明性や光沢性に優れ たフ ィ ルムを得んとするものである。 しかしながら、 このよ う にロ ールの表面粗度を規定し、 σ —ルの表面伏態を良く し、 同時に、 当該処理に際してその温度をフ ィ ルムの融点より低 いか融点以下とし、 かつ、 1 対の口ール間隙間を通過させる だけでは、 H D Ρ Ε フ ィ ルムにおける透明化には限界があり、 事実この発明ではその後の審査過程において、 H D Ρ Εフィ ルムに関する例を実施例から削除している。
一方、 特開昭 59— 5032号公報には、 H D Ρ Ε イ ンフ レー シ ョ ン生フ ィ ルムを、 平滑な表面間で一定温度下で圧力処理し て光学的特性を改善したフ ィ ルムを得る技術が提案されてい る。 しかしながら、 こ の技術も前述した技術と同榛に、 当該 公報中に、 フ ィ ルムの蠢り の程度および透明性の不足の程度 はそのフ ィ ルムの表面特性から主と して起こるこ とを今回発 見したと記載されているよう に、 フ ィ ルムのヘイ ズ値を左右 する 1 つのファ クタ一である外部ヘイ ズ値を良好にして光学 的特性を改善したフ ィ ルムを得んとするもので、 この公報で は、 二以上の相対して配置された口 一ラー間にて、 生フ ィ ル ムを圧力処理し、 その際、 フ ィ ルムの塑性変形を容易にする ために一定温度下に加熱することが記載されているが、 当該 ロールによる加熱処理の具体的な記載はな く 、 その実施例に は、 かかる生フ ィ ルムを二枚の平滑なシー ト間にはさみこみ、 これらシー ト表面との接触によって生フ ィ ルムを平坦化処理 する方法が具体的に記載されているのみである。
〔発明の開示〕
本発明は、 かかる従来技術の有する欠点を解消し、 高透明 で、 しかも、 フ ィ ルムの Μ方向、 Τ方向にバラ ンスが良く て、 フ ィ ルムの衝撃強度が大で、 かつ、 ヤ ング率も大であり、 し かもヒ ー ト シール性が良好であり、 高透明の H D Ρ Ε系フィ ルムおよびその製造方法を提供するこ とを目的とする。
本発明のその他の目的および新規な特徴は本明細書全体の 記述からも明らかになるであろう。
本発明に従えば、 密度 0.935 g Zed以上の高密度ボリ ェチ レ ンよ り なる厚み 10〜 200^ mのフ ィ ルムにおいて、 フィ ル ムの表面粗度が 0.001 〜(^;^ !!!、 好ま し く は 0.002 〜 0.15 μ m . 特に好適には 0.005 〜 0.15 mであり、 フイ ノレム内の 結晶の C軸配向関数 ( F c ) が 0.10〜 0.50、 好ま し く は 0.10 〜 0.40、 特に好適には 0.10〜 0.30であり 、 かつフ ィ ルム内の 非晶部と結晶部の屈折率の差 Δ ηが 0.1000〜 0.1070、 好ま し く は 0.1000〜 0, 1065であり、 特に好適には 0.1005〜 0.1060で あり、 ヘイ ズ値 10%未満、 好ま し く は 8 %未満の透明な高密 度ポ リ エチ レ ン系フ ィ ルムが提供される。
本発明に従えば、 更に密度 0.935 g Zed以上の髙密度ポリ エチ レ ン 50重量%以上と、 密度 0.910 〜 0.930 g Zo£の高圧 法低密度ポリ エチ レ ン又は密度 0.880 〜 0.930 g Zcriの直鑌 伏低密度ボリ エチ レ ンとからなる厚み 10〜 200 mのフ ィ ル ムにおいて、 フ ィ ルムの表面粗度が 0.001 Ο. Π^ πι好ま し く は 0.001 〜 0.15 m、 特に好適には 0.01〜 0.15 mであり 、 フ ィ ルム内の結晶の C軸配向関数 ( F c ) がー 0.3 〜 + · 0,50、 好ま し く は— 0.2 〜 0.40、 特に好適には— 0.2 〜 0.30であり、 かつフ ィ ルム内の非晶部と結晶部の屈折率の差 Δ ηが 0.1000 〜 0.1070、 好ま し く は 0.1000〜 O.lOSb'であり、 特に好適には 0.1005〜 0.1060であり、 ヘイ ズ値 10%未満、 好ま し く は 8 % 未満の透明な高密度ボ リ エチ レ ン系フ ィ ルムが提供される。 なお、 上記高圧法低密度ポリ エチ レ ン又は直鑌伏低密度ポ リ エチ レ ンの量は 1 〜 50重量%が好ま し く 、 1 〜 30重量%が特 に好適である。
以下、 該加熱ロ ールを三本使用した場合について説明する。 本 明者らは、 高密度ポ リ エチ レ ンフ ィ ルムの透明化技術 に関し鋭意検討したところ、 透明化処理に際し平滑な表面を 有するロール間を、 融点以下の温度で、 原反フ ィ ルムをそれ 以下の厚さ となるよ う に通過させるこ とは必要ではあるが、 従来^のごと く 単に一対のロール間を各 π —ルを同一温度と して通過させたのでは高密度ポ'リ ヱチ レ ン ' ·0透明化は不充分 で、 三本の加熱ロ ー ルを使用し、 または外部から加熱し、 そ れも、 これらロ ール間に温度差を設け、 次いで急冷するこ と によ り 、 格段に高透明の高密度ポ リ エチ レ ンフ ィ ルムが得ら れる ことを知った。 そ して本法によればフィ ルム表面での結 晶部分の凹凸の問題である外部ヘイ ズ値のみならず、 内部へ ィ ズ値も大幅に小さ く できるこ とが判った。 本発明に従えば、 更にかかる知見に基づいて、 密度が 0,935 g /cd以上の髙密 度ボ リ エチ レ ンよ り成る原反フ ィ ルムを、 下記の温度条件下 の三本の加熱ロール間を通過させ、 次いで、 冷却するこ とを 特徴とするヘイ ズ値が 10%未満の高透明高密度ポ リ エチレン フ ィ ルムの製造方法が提供される。 なお、 上記三本の加熱口 — ルの温度条件は、 三本の加熱ロールを、 当該原反フ ィ ルム の通過順位に従い第 1 の加熱ロ ール (以下 R i という) 、 第 2 の加熱ロー ル (以下 R 2 という) および第 3 の加熱ロール (以下 R 3 という) とすると、 R2 の温度は R i および R 3 の温度より髙く 、 R2 の温度は当該フ ィ ルムの融点以下 105 で以上とする。 とりわけ、 ブロー比が 3以上であるイ ンフ レ ー シ ョ ン成形した原反フィルムを上記の温度条件で通過させ 延伸比 3倍以上のものが好適である。
本発明に従った第一の発明の高密度ポ リ エチ レ ン系フ ィ ル ムにおいては、 0.935 gノ cd以上の密度を有する高密度ボリ エチ レン少く iも 50重量%、 好ましく は 70重量%以上と、 0.910 § Ζαί〜 0.930 gノ α£の密度を有するいわゆる高圧法 低密度ポ リ エチ レ ン (以下、 「 L D Ρ Ε」 という ) とによ つ てフ ィ ルムを形成するこ とによ って、 上記問題点の鞣決を図 つた。
また、 第二の発明の高密度ポ リ エチ レ ン系フ ィ ルムの製造 方法にあっては、 O g Z 以上の密度を有する高密度ポ リ エチ レ ン少く とも 50重量%、 好ま し く は 7Q重量%以上と、 0.88g ^〜 0.930 g Zcriの密度を有する直鑌伏低密度ポリ エチ レ ン共重合体 (以下、 「 L _ L D P E」 という) とから なる組成物をフィ ルム伏に成形した後、 表面光沢の優れた 3 本以上の加熱口ールによつて熱処理することによつて上記問 題点の解決を図った。
本発明における原反高密度ポ リ エチ レ ンフ ィ ルムを構成す る高密度ポ リ エチ レ ンは、 エチ レ ンホモポ リ マーでも、 ェチ レ ンと一種または二種以上のコモノ マーとの共重合体であつ てもよい。 かかる共重合体の例としては、 エチ レ ン/プロピ レ ン、 エチ レ ン /ブテ ン 一 1、 エチ レ ン /へキセ ン一 1 コ ポ リ マーが例示される。 更に高密度ポ リ エチ レ ンとしては、 他 の重合体とのブレ ン ド物であってもよ く 、 また、 酸化防止剤 や顔料や無機充填剤などの添加剤を舍む組成物であつてもよ い。 ブ レ ン ドされる他の重合体の例と しては、 低密度ポ リ エ チ レ ンやボ リ プロ ピレ ンやエチ レ ンと酢酸ビュルとのコ ボ リ マーやエチ レ ンとエチ レ ンァ ク リ レー ト とのコ ポ リ マ一が例 示される。 この際、 高密度ポ リ エチ レ ンは少な く とも 50%、 好ま し く は 70%以上含まれるこ とが好ま しい。
当該原反フ ィ ルムは、 イ ンフ レー シ ョ ン法、 Tダイ法など 各種の成膜法により製造される。 特に、 透明性に問題のある、 ィ ンフ レー シ ョ ン法によって製造された高密度ポ リ エチ レ ン フ ィ ルムに本発明の製造方法を適用すると良結果を得るこ と ができる。
また、 当該高密度ボリ エチ レ ンの密度は、 0.935g Zcd以 上、 好ま し く は 0.935 〜 0.975gノ 、 更に好適には 0.945 〜 0.960 g /oiである。 密度が 0.935 g /c 未満では H D P Eフ ィ ルムと しての優れた性質例えば腰の強さ (ヤ ング率) やバリ ヤ—性 (防湿性) ゃ衝擊強さなどを備えるこ とができ ない。 上記密度を有する比較的高分子量のポ リ エチ レ ン系樹 脂ないし樹脂組成物に本発明を適用して高密度ポ リ エチ レ ン を少く とも 50%、 更に好ま し く は 70〜 90%含むこ とが好ま し いとしたフ ィ ルムにより一層の強度を求める場合には高密度 ポ リ エチ レ ンのメ ル ト イ ンデイ ク ス ( Jis K- 7210にしたがい、 条件が 4で測定、 以下 「 MFR 」 と云う) を l.Og / lOmin 以 下、 好ま し く は 0.5g Z 10min 以下、 更に好ま し く は O.lg / lOtnin 以下、 特に好ま し く は 0.06gノ lOmin 以下とするの がよい。 原反フ ィ ルムはィ ンフ レーショ ン法により成膜され る。
L D P E及び L 一 L D P Eの M F Rは通常 0.1〜 10.0g / 10分であり、 0.1 〜 3.0gノ 10分のものが好ま し く 、 特に 0.1 〜 2, 0g 10分のものが好適である。 M F R力く O.lg未 潢の L D P E及び L 一 L D P Eを用いると、 流動性が悪いた めに後記のフ ィ ルムの成形性が悪く 、 良好なフ ィ ルムを製造 することが困難である。 一方、 lO.Ogノ 10分を越えた L D P E又は L 一 L D P Eを使用すると、 良好な強度を有するフ ィ ルムが得られない。
ィ ンフ レ一 シ ョ ン成形におけるブロー比は 3以上であるの が好ま しい。 3 より小さいと横方向への配向が小さ く 、 後ェ 程での熱処理により縦方向への配向が大き く なりすぎ、 充分 に強度の強いフィ ルムが得に く く なる。
また、 本発明のフィ ルムの製造に使用するこ とができる L — L D P Eとしては、 エチレンと α—ォ レフ イ ンとからなる ものが用いられる。 α —'才 レフ ィ ンと しては炭素数が 3 〜 10 個のもの、 例えばプロ ピ レン、 ブテ ン — 1 、 へキセ ン 一 1 、 ォクテ ン、 4 -メ チル—ペンテ ンなどが好適に用いられる。 また、 この L — L D P Eには、 密度が 0.88g Zcri以上 0.930 g /cd以下のものが用いられる。 直鑌伏低密度 P E共重合体 の密度が 0.88 g oi未満のものを製造することは非常に困難 である。 また直鑌伏低密度 P E共重合体の密度が 0.93(^ ノ を越えるとヒ ー ト シール性が改良できない不都合がある。 本究明のフ ィ ルムは上記高密度 P Eと L 一 L D P E とから 形成するこ とができるが、 必要に応じて酸化防止剤や顔料な どが添加されても良いこ とは勿論である。
本発明に係るフィ ルム製造方法によれば、 まず上述した髙 密度 P Eまたは前記の配合割合の L — L D P E も し く は L D P E とからなる組成物を原反フイ ルムに成形する。 組成物を フ ィ ルム状に成形する方法としては、 ィ ンフ レーショ ン法ゃ Tダイ 法等が用いられる。 イ ンフ レー シ ョ ン法によつて上記 組成物をフ ィ ルム成形する場合、 ブロー比を 3以上とするこ とが望ま しい。 ブロー比が 3未満であると、 構成分子の横方 向への配向が不充分となり、 熱処理を伴う後工程で分子の縦 方向への配向が大となりすぎるため、 得られるフィ ルムの強 度を充分向上できない不都合が生じる。
本癸明におけるフ ィ ルムの透明性とはフ ィ ルムの表面と内 部の透明性に分けるこ とが出来る。 空冷イ ンフ レー シ ョ ン法 で成形した H D P E フ ィ ルム (例えば 40 « "厚のもの 〔メ ノレ ト フ ロ ー イ ンデ ッ ク ス ( M I ) = 0. 04 g ノ l Om i n 密度 ( D ) =
0. 949 g / cii ) の透明性について表面要因と内部要因との二 つに分けて測定した結果、 本フィ ルムの全 Haz e値 (以下、 単 にヘイ ズという場合もある) は例えば 75%であり、 この內、 表面ヘイ ズは 60%、 內部ヘイ ズは 15%に分離出来、 特に、 こ の表面ヘイ ズはフ ィ ルム表面層の結晶化に生じる微細構造の 凹凸による光の散乱に起因するもので、 物理的にこ の表面を 平滑にするこ とは、 本発明においてフ イ ルム表面粗度を 0. 1 以下とするこ とにより著し く 改良することが可能である。 例えて言えば、 ス リ ガラ.ス (不透明) の両面にセ ロハ ンテ ープを貼り付けるこ とによ り透明化出来るの と同じ原理であ り 、 こ の応用例と して H D P E フ ィ ルムの両側に透明性の良 い樹脂を貼り合せたり 、 共押出成形する方法が知られている。 しかし先にも述べたよ う に、 この方法はあ く までフィ ルムの 表面での散乱を小さ く する方法で、 これだけでは充分な透明 性が得られない。
このため内部ヘイ ズを解消しなければ、 上記の場合ヘイ ズ 15%以下のすぐれた透明性のフ ィ ルムを得るこ とが出来ない。 このため本発明者らはこの内部ヘイ ズの原因となる因子を 徹底的に究明し、 内部ヘイ ズの原因が結晶格子軸の配向性
(ポ リ エチ レ ンの a 、 b、 c铀の屈折率のゆらぎと、 非晶層 (部) と結晶層 (部) の屈折率の差 Δ ηから来る屈折率のゆ らぎとの和と考えた。 結晶格子軸の配向性を配向関数 F c力、 ら求め、 をし。18112-し016112 式から求め、 種々のデータよ り フ ィ ルムの透明性の関数を研究した結果、 ? (: と 11 はフ イ ルムの内部の透明性と密接な関係にあることを見い出した。 即ち、 F c が大き く なるほど ( c軸配向が均一になる) 、 △ riが小さ く なるほどフィ ルム内部の透明性は良く なる事が 判明した。
この結果、 フ ィ ルム厚 200 以下において、 F c が 0.1以 上で Δ nが 0.1070以下になると、 表面粗度が 0.1 以下の表 面が平滑な H D P Eフィ ルムの透明性はより一層著し く 向上 することを見い出し本発明に至った。
ここで c铀配向関数 F c は Stein に従い偏光赤外スぺク ト ルから求められる。 ( Macloiiiolecule 1 i 1 6 1 9 6 8 ) F a = ( D 730 -1 ) / ( D 730 + Z )
F b = ( D 720 -L ) / ( D 720 + Z )
F a — F b ャ F c = 0
ただし、 D 730 、 D 720 は 730αη -L、 720cm 1 における赤外
2 色比、
F a、 F b 、 F c は結晶の a 、 b、 c軸の配向関数 また結晶と非晶の屈折率の差 Δ nは Lolenz- Loienz の変形式 (プラ スチ ッ ク Vol 31Να 2 Ρ 34)
( η 2 - 1 ) ( η 2 + 2 ) 厶 Ρ 厶 η η = · 力、ら得る。
6 η ρ
ただし、 n Dはフ ィ ルムの屈折率であり 、 アッベ型屈折率計 により測定した。
Ρ はフ ィ ルム密度であり密度配管より求めた。 Δ ρ は結晶 と非晶の密度差であり下記の文献値を用いた。
結晶密度 : l.Olg Zed E.R.Walter : J. Polymer
Sci 21 561 " 9
非晶密度 : 0.85g / cd A. .Doolittle: J.App.Phys. 22
1471 c 1 9
Hazeの測定は ASTMD- 1003による。
さ らに、 フ ィ ルム表面の平滑性を示す表面粗度は JIS B060 1-55試験法に準拠して測定した。
本発明での樹脂が密度 0.935 g ノ ^以上の H D P Eを少く とも 50%以上、 好ま し く は 70%以上舍む熱可塑性樹脂と して いるのは H D P E フ ィ ルムと してのす ぐれた性質例えば腰の 強さ (ヤ ング率) 、 バリ ヤ一性 (防湿性) 、 衝撃強さなどを 有する性質と して密度 0.935 g Zcrf以上であり、 また本樹脂 の改質のため種々の添加剤や増量剤又はブ レ ン ド用樹脂等を ブ レ ン ド しても上記 H D P Eを少く とも了 0%以上舍むこ と により これらの特性を生かすためである。
また、 本 ¾明において、 フ ィ ルム表面粗度を 0.1 以下と しているのは、 外部の Π3凸が H D P Eの場合大き く 、 光を表 面で散乱する事が外部ヘイ ズ悪化の原因となり 、 この凹凸を な く し、 本発明の所望の高透明フ ィ ルム となすこ とのできる 一つの条件となるからである。
各加熱ロールには、 例えば、 その表面に硬質ク ロムメ ツキ 層を有する金属ロ ールが使用される。 研磨されていると良い。
その他、 鏡面様光沢を有するよう加工または仕上げされた、 平滑な表面を有する ロールを使用するこ とができる。
加熟ロールは、 その第 2 のロール ( R 2 ) の温度を、 他の 第 1 の ロ ール ( R i ) や第 3 の ロ ール ( R 3 ) の温度より も 高く する必要がある。 すなわち、 原反フ ィ ルムは、 中間が最 も高温に設定され、 ロール間に温度差を設けた、 R 1 、 R 2 および R 3 の系統より成る加熱ロール間を通過させるとよい。
R 1 の温度は 50 'c以上とすることが望ま し く 、 とりわけ 55 で以上が好適である。
上記 R 2 の温度は原反フ ィ ルムの融点以下 105。c以上であ るこ とが必要である。 したがって、 加熱ロールは、 全て、 原 反フ ィ ルムの融点以下にセ ッ ト されるが、 R 2 と他のロ ール すなわち R t と R 3 との間には溫度差を設ける必要がある。 R I と R 3 の温度は R 2 の温度より も高く ない温度に設定す るとよい。
R 3 の温度は 70 'c以上が好ま し く 、 とりわけ 75で以上が好 適である。 R 3 の温度が 120 をこえると良好な透明性が 得られ難い。 また、 7 Q。C未満ではフィ ルムが R 2 に密着し、 充分な透明性が得られ難い。
本発明の好ま しい態様では R 2 を外部より赤外線ヒータ ー など使用して加熱することである。 加熱温度は 80 ¾よ り も高 い温度であるが、 使われる高密度ポ リ エチ レ ンが容融する温 度より も低い温度である。 したがって、 180 'c以下 (好適に は 1 60で以下) が望ま しい。 この加熱によ って原反が 50 ' m より も薄く 、 かつ 1 〜 3倍の延伸の場合でも、 充分均一な透 明性を有するフ ィ ルムを得るこ とができる。 因みに、 原反フ イ ルム厚が 50 mより も薄いと、 外部加熱をしないと均一な 透明性を有するフ イ ルムが得られない。 この際、 加熱はロ ー ルのフィ ルムが接触する面に前記の温度範囲になるよ うに均 一に加熱するこ とが好ましい。
原反フ ィ ルムは、 原反フ ィ ルム厚以下と した、 上記三本の 加熱口一ルの間隙を通過させ、 原反フィ ルム厚以下の透明フ イ ルムを得る。 延伸比を 3倍以下とする。 3倍より も大きな延伸を行う と、 縦方向への配向が進みすぎて充分強度の強いフ ィ ルムが得ら
れな く なってしま う。 好ま しい延伸比又は圧縮倍率は 1 より
大き く 3 以下である。
加熱ロール通過後のフ ィ ルムは、 次いで、 冷却する。 例え
ば、 二本のチルロール (以下 R 4 、 R 5 とする) により冷却
する。 これらチルロールの温度は、 特に限定されないが、 70 で以下 30で以上とすることが好ま しい。 70'cをこえるとチル
ロ ールの ί殳目をはたし難い。 30'c未満ではフィ ルムの充分な
フ ラ ッ ト性を確保し難い。
本発明に使用される原反フ ィ ルムの厚さは、 特に限定され
るものではな く 、 所望の製品厚などにより決定される もので
はあるが、 製品フ ィ ルム厚より も厚いがフ ィ ルム厚の 3倍未
满、 好ま し く は 2. 3倍以下、 更に好適にはフ ィ ルム厚の 1 . 05 ' 〜 1 . 8 倍のものが良い。
本発明に従えばヘイ ズ値が 10%未満の高透明の高密度ボ リ
エチ レ ンフ ィ ルムが得られる。 ヘイ ズ値は、 AST D - 1003に準
拠して測定される。 本発明におけるヘイ ズ値は外部へィ ズ値
と内部ヘイ ズ値とを合計した数値を示す。
高密度ポ リ エチ レ ンフ ィ ルムは、 ィ ンフ レー シ ョ ン法で製
膜後の自由表面伏態ではその表面が結晶化しているのでラメ
ラ 、 . 100〜 1 10 A ) の集積体が表面に凹凸伏に突出して
おり、 その大きさが可視光線の波長 ( 4000〜 8000 A ) に相当
するため乱反射を生じ当該フ ィ ルムを不透明化させる。
本発明透明化処理により、 分子鑌が動き易い伏態で表面の
凹凸が平滑化され、 当該凹凸の波長が 4000 A以下となって、
外部ヘイ ズ値を良好にさせる。 本発明はこの外部ヘイ ズ値の
みならず、 内部ヘイ ズ値を小さ く するこ とができるという重 要な特徵を有している。 フィルムにおける内部からの不透明 性の要因として微結晶の不均一厚や結晶中に含まれる内部ポ ィ ドが考えられる。
本発明では当該透明化処理により、 例えば処理前のフィ ル ムの密度が 0.948g Zoiであったのが、 処理後のフィ ルムの 密度は 0.952g Zedとなって、 密度が上昇しており、 上記内 部ボィ ドゃ不均一層が除去されていると考えられる。
〔実施例〕
以下に本発明を実施洌及び比較例を以つて説明する。
実施例 1 3及び比較例 1 4
実施例及び比較例については H D P E ( D = 0.949g i^ MI= 0.04g / 10分) をィ ンフ レー シ ョ ン法によ り 50 の原反 フ ィ ルムを製造し、 本原反フ ィ ルムを表面光沢を有する加熱 ロール間に通し (樹脂の融点以下の温度) 、 表面粗度
以下で、 F c及び Δ ηを変化させたフィ ルムを製造し、 本フ イ ルムの物性を第 1表に示した。
但し、 実施例 3、 比較例 4は H D Ρ Εと低密度ポリエチ レ ン ( L D P E、 D = 0.921 . MI= 1.5 ) のブ レ ン ド系とした 以外は上記と同様とした。
1 ) 成形材 650 Ext 、 ダイ ス 1000 ス ノ、。ィ ラル
2 ) 温度 C i = C 2 = C 3 = H = D = 190°c
3 ) 引取ス ピー ド ΙδιηΖ min
4 ) ブロー比 ( B. ν.β ) = 4.0
5 ) フィ ルム厚み 50 第 1 表
Figure imgf000017_0001
(フイノレム厚み 45 μ)
L-LDPE=¾g 0.917 /cis MF R -0.79g/10min 、 ェチル基/ 00C 20のエチレンーブテン— 1共重合体。
実施例
メ ル トイ ンデ フ ク ス 0,05 gノ 10m in 、 密度 0.949 g oiの H D P Eを用いる。 イ ンフ レー シ ョ ン法で、 ブロー比 5、 フ ロス ト ライ ン 500mm、 引取ス ピー ド 10mノ min で、 100 « " の 原反フィ ルムを成形し、 延伸比 3倍で、 第 1表に示す条件下 で熱処理を行なった。 なお、 チルロ ールの温度は = R 5 で 50でとした。 第 1表にその結果を示す。
なお、 以下の例において、 破断強度の測定は JIS- Z- 1702に 準拠して行った。
実施例 5 〜 9及び比較例 5 〜 Ί
第 2表に示す条件とした以外は同様にレて高密度ポリ エチ レ ンフィ ルムを得た。 第 2表にその結果を示す。
比較例 8
ブロー比を 2 とし、 かつ、 第 2表に示す条件とした以外は 実施例 2 と同様にして高密度ボリ エチ レ ンフ ィ ルムを得た。 第 2表に結果を示す。
第 2 表 1 R 2 3 Haze 破断強度 処理後
( kg / cni ) 厚 さ ( 'c ) ( ° ) ( - ) ( % ) MD/ TD ( U )
70 128 85 5.5 445/ 415 82
5 105 128 105 5.2 475/ 398 67
6 105 120 105 5.6 460/ 408 73
7 60 120 85 8.8 453/ 438 87
8 110 120 85 7.1 488/ 385 68
9 70 121 85 7.3 461/ 418 84 比較例 5 70 138 85 第 2 口 一ノレに巻きつく
6 70 125 130 58 453/ 395 72
7 70 90 85 68 473/ 435 68
8 70 125 105 6.3 553/ 223 65
実施例 10〜 12
MFR が 0.05gノ 10分であり、 融点が 130'cである高密度ボ リ エチ レ ン (密度 0.950g Zoi、 ブロー比 3 ) を通常のイ ン フ レー ショ ン法によって厚さが 20 m、 30 mおよび 40 m の原反 〔以下、 それぞれ 「原反 (1)」 、 「原反 (2)」 、 「原反は)」 と云う〕 を製造した。 これらの原反 (第 3表に示す) を R i の温度が 85て、 R a の温度が 115で 、 R 3 の温度が 110'cな らびにチルロ ール R 4 および R 5 の温度が 50で に設定されて いる表面光沢がすぐれている口ールを使ってそれぞれの厚さ が第 4表に示されているフイ ルムを製造した。 得られたフィ ルムのヘイ ズの測定を行なった。 それらの結果を第 3表に示 す。 なお、 R 2 を赤外線ヒーターによって加熱した。
' 第 3表 224
フ ィ ル'ムの ヘイ ズ ί直 実 施 例 原反の種類 厚 さ
( M m ) ( % ) 実施例 1 0 原 反 (1) 15
〃 1 1 〃 (2) 21
" 1 2 〃 (3) 50
Figure imgf000020_0001
比較例 9 〃 (1) 15
〃 1 0 〃 (2) 21
〃 1 1 " は) 30 なお、 実施例 10〜 12によって得られたフイ ルムは、 すべて 全体が均一に透明であった。 なお、 比較例 9 〜 11は赤外線ヒ ータを使用せず、 加熱ロールを使って加熱した。 比較例 9 〜 11では均一な透明性を有するフ ィ ルムが得られなかった。
実施例 13·^4及び比 例 12〜 14
高密度 Ρ Εには密度 0.950 gノ 、 メ ル ト イ ンデッ クスが、 0.04g / lOmin の ものを用い、 直鑌伏低密度 P E共重合体に は密度が 0.88g Zcd、 メ ル ト イ ンデ ッ ク ス力 4 gノ lOmin の ものを用いた。
高密度 P Eと直鑌伏低密度 P E共重合体との配合比は、 比 較例 12で ( 100 ノ 0 ) 、 比較例 13で (95ノ 5 ) 、 実施例 13で ( 70/ 30) 、 実施例 14で (60/40) 、 比較 ί¾14で ( 40/ 60) に設定した。
上記配合比からなる組成物をそれぞれィ ンフ レーショ ン成 形法によ って厚さ ΙΟθ ΐηに製膜し、 原反フ ィ ルムとした。 その際、 成形温度は 200°c、 ブロー比は 3 であった。
このよ う に して製造された各原反フ ィ ルムを、 3本の加熱 ロールで熱処理した後、 2本のチルロールで冷却して 70^ m のフ ィ ルムを得た。 各加熱ロールの温度は、 第 1 ロール ( R i ) 100'c、 第 2 ロール ( R 2 ) 115。c、 第 3 ロ ール ( R 3 ) 100'cに設定された。 また、 チルロ ールの温度は 30 で に設定された。
得られたフ ィ ルムの物性を第 4表に示す。
第 4 表 ヘイ ズ値 降伏強度 ャ ング率 低温シ―ル性 衝搫強度
( % ) ( kg / ci ) ( 。c ) kg cm mm) 比較例 12 6 2 10,500 135 188
〃 13 6.0 1.9 9,300 133 210 実施例 13 4.3 1.75 8,700 120 320
" 14 4.5 1.35 7,600 115 315 比較例 14 4.8 0.98 5, 100 105 285
\
各物性は次の方法によって測定した。
へィ ズ値 AST D 1003 に準拠
降伏強度…… J I S Z 1702 に準拠
ャ ング率 A ST MD 882に準拠
ヒー ト シール性 まず、 フ ィ ルムを巾 15mmのたんざ く 伏に 切り取り、 これをシール圧力 2 kgノ《4、 シール時間 1 秒の条 件下で温度を変えてヒー ト シールし、 この試験片を 300mm/ 分の速度で剥離して剝離強度を調べる。 その結果、 この剝離 強度が 1 kgを示した試験片のシール温度をもってヒ ー ト シ一 ル性を表した。
衝撃強度…… ASTM - D - 781に準拠
第 4表の結果から、 本発明のフ ィ ルムは優れた衝撃強度を 有し、 またヒー ト シール性、 ヘイ ズ値、 降伏強度、 ヤ ング率 等について バラ ンスの良い物性を有する ものであることが 確認できた。
〔発明の効果〕
本発明によれば上記実施例にも示すよう にヘイ ズ値が小の 透明性にす ぐれた高密度ポ リ エチ レ ン系フ ィ ルムが得られ、 このフ ィ ルムはまた、 透明性とフ ィ ルム強度とを兼備したも ので、 従来高密度ポ リ エチ レ ンフ ィ ルムにあ ってはフ ィ ルム 強度を阻害せずに高透明化するこ とは困難とされていたが、 本発明ではこれを実現したものでその工業上の意義は大なる ものがある。 以上説明した構成を有する本 明に係る高密度 ポ リ エチ レ ン系フ ィ ルムは、 柔軟性を有しかつ適当な溶融温 度を有するものとなるので、 高密度ボリ エチ レ ンの有する優 れた性質である高強度と高透明性等に加え、 良好な衝撃強度 とヒー ト シ一ル性をも兼備したものとなる。 従って、 第 1 発 明のフィ ルムは、 低温で容易にヒー ト シールするこ とができ、 かつ衝撃を受けても破れ難いものとなる。 更に本発明の製造 方法に従えば、 高強度、 易ヒ ー ト シール性、 高衝撃強度等に 加え、 良好な透明性を有するフ ィ ルムを製造することができ る。

Claims

請 求 の 範 囲
1 . 密度 0.935 gノ 以上の高密度ポ リ エチ レ ンより なる 厚み 10〜 200 のフ ィ ルムに於て、 フ ィ ルムの表面粗度が
(^(^ 〜 !!!以下であり、 フ ィ ルム内の結晶の Cli配向 関数 ( F c ) が 0.10〜 0.50であり、 かつ、 フ ィ ルム内の非晶 部と結晶部の屈折率の差△ nが 0.1000〜 0,1070であり、 ヘイ ズ値 10%未満の透明な髙密度ポ リ エチ レ ン系フ ィ ルム。
2 . 密度が 0.935g Ze 以上の高密度ポ リ エチ レ ンを用い、 ブロー比 3 以上でィ ンフ レー シ ョ ン成形した原反フィ ルムを、 下記の温度条件下の少く とも三本の加熱ロール間を通過させ、 延伸比 5倍以下に熱処理を行い、 次いで、 冷却して成るヘイ ズ値 10%未満の高透明の高密度ポ リ エチ レ ン系フ ィ ルムの製 造方法であって、 上記加熱ロールの温度条件が、 加熱ロール を、 当該原反フ ィ ルムの通過順位に従い、 最初ないし最後よ り 3 番目までの加熱ロール (以下 という〉 、 最後より 2 番目の加熱ロール (以下 R 2 という) および最後の加熱ロ ー ル (以下 R 3 という) とすると、 R 2 の温度は R丄 および R 3 の温度より高く 、 R .2 の温度は当該フ ィ ルムの融点以下 105 - で以上である髙密度ポ リ エチ レ ン系フ ィ ルムの製造方法。
3 . 加熱ロールの他に更に外部加熱手段による加熱を用い る請求の範囲第 2項記載の製造方法。
4. 0.935 g / 以上の密度を有する高密度ポ リ エチ レ ン が 50重量%以上と、 0.910 g _ cd〜 0.930 g Zoiの密度を有 する高圧法低密度ボリ エチ レ ンとからなる厚みが 10〜 200 β mのボ リ エチ レ ン系フィ ノレムにおいて、 フ ィ ルムの表面粗度 が 0.001〜 0.17 mであり 、 フ ィ ルム内の結晶の C铀配向関 数 ( F c ) が— 0.3 〜 + 0.50であり、 かつフ ィ ルムの非晶部 と結晶部の屈折率の差 A ηが 0.1000〜 0.1070を有するへィ ズ 値が 10%未満の透明な高密度ポ リ エチ レ ン系フ ィ ルム。
5. 0.935g Zci以上の密度を有する高密度ボリ エチ レ ン 50重量 上と、 0.880 Zed〜 0.930g Ζαί.の密度を有する 直鑌伏低密度ボ リ エチ レ ンとからなる厚みが 10〜 200 mの ポ リ エチ レ ン系フ ィ ルムにおいて、 フ ィ ルムの表面粗度が 0.0ひ1〜 0.17 mであり、 フ ィ ルム内の結晶の C铀配向関数 ( F c ) が— 0.3 〜 + 0.50であり、 かつフィ ルムの非晶部と 結晶部の屈折率の差 Δ nが 0.1000〜 0.1070を有するヘイ ズ値 が 10%未満の透明な髙密度ポリ エチ レン系フィルム。
PCT/JP1986/000566 1985-11-07 1986-11-07 Transparent high-density polyethylene film and process for its production WO1987002933A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE86906464T DE3689520T2 (de) 1985-11-07 1986-11-07 Durchsichtiger polyäthylenfilm hoher dichte und dessen herstellung.

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP24807985A JPH062377B2 (ja) 1985-11-07 1985-11-07 ポリエチレンフイルムの製造方法
JP60/248079 1985-11-07
JP26267285A JPS62122735A (ja) 1985-11-25 1985-11-25 高密度ポリエチレン系フイルム
JP26267385A JPS62122741A (ja) 1985-11-25 1985-11-25 高密度ポリエチレン透明フイルム
JP60/262672 1985-11-25
JP60/262673 1985-11-25
JP12720686A JPS62284732A (ja) 1986-06-03 1986-06-03 ポリエチレンフイルムの熱処理方法
JP61/127206 1986-06-03

Publications (1)

Publication Number Publication Date
WO1987002933A1 true WO1987002933A1 (en) 1987-05-21

Family

ID=27471281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1986/000566 WO1987002933A1 (en) 1985-11-07 1986-11-07 Transparent high-density polyethylene film and process for its production

Country Status (4)

Country Link
US (1) US4954391A (ja)
EP (1) EP0246328B1 (ja)
DE (1) DE3689520T2 (ja)
WO (1) WO1987002933A1 (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2643348B2 (ja) * 1988-09-01 1997-08-20 三井石油化学工業株式会社 ポリエチレン樹脂組成物およびフィルム
US5601778A (en) * 1990-03-30 1997-02-11 Solvay & Cie Process for producing a resin film based on a copolymer of ethylene and vinyl acetate
BR9205821A (pt) * 1991-03-29 1994-08-23 Bpi Environmental Inc Polímero de polietileno de alta densidade e alto peso molecular, processo para sua produção, película fina, saco transparente e processo para melhorar as propriedades de transparência de películas plásticas
US5338589A (en) * 1991-06-05 1994-08-16 Hoechst Aktiengesellschaft Polyethylene molding composition
CA2078366A1 (en) * 1991-09-18 1993-03-19 Joel L. Martin Polyethylene blends
KR930006091A (ko) * 1991-09-18 1993-04-20 제이 이이 휘립프스 폴리에틸렌 블렌드 및 그로부터 제조된 필름, 병 또는 파이프
US5284613A (en) * 1992-09-04 1994-02-08 Mobil Oil Corporation Producing blown film and blends from bimodal high density high molecular weight film resin using magnesium oxide-supported Ziegler catalyst
NZ285634A (en) * 1994-05-09 1999-01-28 Dow Chemical Co Medium modulus polyethylene film and fabrication method
US5792534A (en) 1994-10-21 1998-08-11 The Dow Chemical Company Polyolefin film exhibiting heat resistivity, low hexane extractives and controlled modulus
US5858491A (en) * 1994-11-02 1999-01-12 Dow Belgium Hollow molded articles and process for manufacturing them
CA2218970A1 (en) * 1996-10-22 1998-04-22 Kenichi Fujiwara Soft transparent polyolefin resin sheet and method for producing the same
CA2282430A1 (en) * 1997-02-28 1998-09-03 Idemitsu Petrochemical Company Limited Soft transparent polyethylene resin sheet and process for producing the same
US6391411B1 (en) 1999-06-03 2002-05-21 Printpack Illinois, Inc. Machine direction oriented high molecular weight, high density polyethylene films with enhanced water vapor transmission properties
US7086778B2 (en) * 2000-10-09 2006-08-08 Levtech, Inc. System using a levitating, rotating pumping or mixing element and related methods
US20030131569A1 (en) * 2002-01-02 2003-07-17 Playtex Products, Inc. Odor control cassette
US20040175464A1 (en) 2003-03-07 2004-09-09 Blemberg Robert J. Multilayer structures, packages, and methods of making multilayer structures
US20040175466A1 (en) 2003-03-07 2004-09-09 Douglas Michael J. Multilayer barrier structures, methods of making the same and packages made therefrom
US7011892B2 (en) * 2004-01-29 2006-03-14 Equistar Chemicals, Lp Preparation of polyethylene films
US20050175803A1 (en) * 2004-02-06 2005-08-11 D. Ryan Breese Preparation of polyethylene films
US20050200046A1 (en) * 2004-03-10 2005-09-15 Breese D. R. Machine-direction oriented multilayer films
US8440125B2 (en) 2004-06-28 2013-05-14 Equistar Chemicals, Lp Polyethylene films having high resistance to deformation or elongation
WO2007146945A2 (en) * 2006-06-12 2007-12-21 Aspen Aerogels, Inc. Aerogel-foam composites
US8029888B2 (en) * 2008-06-30 2011-10-04 Basell Polyolefine Gmbh Preparation of transparent high density polyethylene sheets
CN101863100A (zh) * 2009-04-20 2010-10-20 上海冠生园食品有限公司 一种可食用包装薄膜的成型装置
CN102909813A (zh) * 2012-10-15 2013-02-06 常州海川卓越密封材料有限公司 一种共混改性超疏水表面的制备方法
CA2837591A1 (en) 2013-12-19 2015-06-19 Nova Chemicals Corporation Polyethylene composition for extrusion coating

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5116360A (ja) * 1974-07-31 1976-02-09 Nippon Petrochemicals Co Ltd Netsukasoseijushishiito mataha fuirumuno atsuenhoho
JPS5331768A (en) * 1976-09-06 1978-03-25 Nippon Petrochemicals Co Ltd Method of producing transparent film
JPS53117069A (en) * 1977-03-22 1978-10-13 Sumitomo Chem Co Ltd Manufacture of polyolefin resin sheets
JPS595032A (ja) * 1982-06-10 1984-01-11 ビ−ピ−・ケミカルズ・リミテツド 熱可塑性樹脂フイルムおよびその処理方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB980260A (en) * 1960-05-19 1965-01-13 Kodak Ltd Improvements in the preparation of polyolefin sheeting
US3998914A (en) * 1972-02-01 1976-12-21 Du Pont Of Canada Limited Film from a blend of high density polyethylene and a low density ethylene polymer
SE422070B (sv) * 1980-09-04 1982-02-15 Unifos Kemi Ab Streckt polyetenbaserat termoplastmaterial och forfarande for dess framstellning
FR2493854B1 (fr) * 1980-11-13 1985-10-11 Naphtachimie Sa Compositions de polyethylene ameliorees pour extrusion notamment pour extrusion-soufflage
US4438238A (en) * 1981-01-30 1984-03-20 Sumitomo Chemical Company, Limited Low density copolymer composition of two ethylene-α-olefin copolymers
FR2528054B1 (fr) * 1982-06-03 1986-05-16 Charbonnages Ste Chimique Compositions de copolymeres ethylene/a-olefine et de polyethylene radicalaire et leur application a la fabrication de films
JPS59242A (ja) * 1982-06-26 1984-01-05 Fujitsu Ltd 複合通信方式
JPS60154034A (ja) * 1984-01-23 1985-08-13 Toa Nenryo Kogyo Kk ポリエチレン延伸フイルム
EP0176177B1 (en) * 1984-07-25 1989-09-20 Idemitsu Petrochemical Co. Ltd. Thermoplastic sheet preparation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5116360A (ja) * 1974-07-31 1976-02-09 Nippon Petrochemicals Co Ltd Netsukasoseijushishiito mataha fuirumuno atsuenhoho
JPS5331768A (en) * 1976-09-06 1978-03-25 Nippon Petrochemicals Co Ltd Method of producing transparent film
JPS53117069A (en) * 1977-03-22 1978-10-13 Sumitomo Chem Co Ltd Manufacture of polyolefin resin sheets
JPS595032A (ja) * 1982-06-10 1984-01-11 ビ−ピ−・ケミカルズ・リミテツド 熱可塑性樹脂フイルムおよびその処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0246328A4 *

Also Published As

Publication number Publication date
US4954391A (en) 1990-09-04
EP0246328B1 (en) 1994-01-05
DE3689520D1 (de) 1994-02-17
EP0246328A4 (en) 1989-01-19
EP0246328A1 (en) 1987-11-25
DE3689520T2 (de) 1994-04-28

Similar Documents

Publication Publication Date Title
WO1987002933A1 (en) Transparent high-density polyethylene film and process for its production
JPH0222033A (ja) 低温熱収縮性フィルム
JPH06254946A (ja) ポリプロピレン樹脂シート又はフィルムの製造方法
EP1439957B1 (en) Non-oriented polypropylene film
JPH0392328A (ja) 透明性高密度ポリエチレン圧延シート類の製法
CN105235336B (zh) 一种耐低温的双向拉伸聚丙烯薄膜及其制备方法
CN110303748B (zh) 一种较薄聚烯烃收缩膜及其生产工艺
JP4919620B2 (ja) 3層架橋フィルム
JPS6311968B2 (ja)
JPS61130018A (ja) ポリプロピレンシ−トおよびその製造方法
JPS6030537B2 (ja) 容器等の製造方法
JPH07133363A (ja) 白色フイルム
JPS587329A (ja) ポリオレフインフイルムの製造方法
JPH01306448A (ja) ポリプロピレン系樹脂組成物、シート類及びその製造方法
JP4475699B2 (ja) 透明性に優れる高強度高分子量ポリオレフィンフィルムおよびその製造方法
JPS63199242A (ja) 高密度ポリエチレンフイルムおよびその製造方法
JPH02127041A (ja) ひねり包装用フィルム
JPH0380092B2 (ja)
JP4345901B2 (ja) 高伸びを有する高分子量ポリオレフィン透明フィルムおよびその製造方法
WO2024202808A1 (ja) 延伸フィルム及びその製造方法
JPS62122741A (ja) 高密度ポリエチレン透明フイルム
JPH0124405B2 (ja)
JPH0859855A (ja) 二軸延伸ポリオレフィンフィルム
JPS61152418A (ja) 熱成形用熱可塑性樹脂シートの製造方法
JPH1086299A (ja) マット調ポリプロピレン二軸延伸複合フィルム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IT

WWE Wipo information: entry into national phase

Ref document number: 1986906464

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1986906464

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1986906464

Country of ref document: EP