WO1987000555A1 - Continuous strip steel processing line having direct firing furnace - Google Patents
Continuous strip steel processing line having direct firing furnace Download PDFInfo
- Publication number
- WO1987000555A1 WO1987000555A1 PCT/JP1986/000352 JP8600352W WO8700555A1 WO 1987000555 A1 WO1987000555 A1 WO 1987000555A1 JP 8600352 W JP8600352 W JP 8600352W WO 8700555 A1 WO8700555 A1 WO 8700555A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- furnace
- heating
- reduction
- burner
- steel
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 252
- 239000010959 steel Substances 0.000 title claims abstract description 252
- 238000012545 processing Methods 0.000 title claims abstract description 64
- 238000010304 firing Methods 0.000 title abstract description 6
- 238000010438 heat treatment Methods 0.000 claims abstract description 532
- 238000002485 combustion reaction Methods 0.000 claims abstract description 36
- 230000009467 reduction Effects 0.000 claims description 88
- 239000007789 gas Substances 0.000 claims description 74
- 238000001816 cooling Methods 0.000 claims description 69
- 244000007853 Sarothamnus scoparius Species 0.000 claims description 62
- 230000003647 oxidation Effects 0.000 claims description 37
- 238000007254 oxidation reaction Methods 0.000 claims description 37
- 238000000034 method Methods 0.000 claims description 34
- 238000009434 installation Methods 0.000 claims description 22
- 238000005096 rolling process Methods 0.000 claims description 17
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 15
- 229910052760 oxygen Inorganic materials 0.000 claims description 15
- 239000001301 oxygen Substances 0.000 claims description 15
- 238000004140 cleaning Methods 0.000 claims description 14
- 238000005554 pickling Methods 0.000 claims description 13
- 238000007747 plating Methods 0.000 claims description 13
- 239000013067 intermediate product Substances 0.000 claims description 12
- 239000007788 liquid Substances 0.000 claims description 11
- 238000011144 upstream manufacturing Methods 0.000 claims description 10
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 8
- 229910052725 zinc Inorganic materials 0.000 claims description 8
- 239000011701 zinc Substances 0.000 claims description 8
- 239000000047 product Substances 0.000 claims description 7
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 4
- 230000032683 aging Effects 0.000 claims description 4
- 230000008859 change Effects 0.000 claims description 4
- 230000033001 locomotion Effects 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 3
- 239000000543 intermediate Substances 0.000 claims 6
- 230000035699 permeability Effects 0.000 claims 5
- 230000005070 ripening Effects 0.000 claims 3
- 235000011511 Diospyros Nutrition 0.000 claims 1
- 244000055850 Diospyros virginiana Species 0.000 claims 1
- 241000264060 Lethrinus Species 0.000 claims 1
- 241000269799 Perca fluviatilis Species 0.000 claims 1
- 230000001788 irregular Effects 0.000 claims 1
- 238000005496 tempering Methods 0.000 claims 1
- 230000001590 oxidative effect Effects 0.000 abstract description 18
- 239000011295 pitch Substances 0.000 abstract 1
- 239000010408 film Substances 0.000 description 38
- 239000002737 fuel gas Substances 0.000 description 26
- 238000002791 soaking Methods 0.000 description 21
- 238000000137 annealing Methods 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 14
- 239000000446 fuel Substances 0.000 description 13
- 239000002253 acid Substances 0.000 description 12
- 235000018290 Musa x paradisiaca Nutrition 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 10
- 239000000567 combustion gas Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 240000008790 Musa x paradisiaca Species 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 238000010791 quenching Methods 0.000 description 7
- 230000000171 quenching effect Effects 0.000 description 7
- 239000010731 rolling oil Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 5
- 241000234295 Musa Species 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 241000287463 Phalacrocorax Species 0.000 description 2
- LOUPRKONTZGTKE-WZBLMQSHSA-N Quinine Chemical compound C([C@H]([C@H](C1)C=C)C2)C[N@@]1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-WZBLMQSHSA-N 0.000 description 2
- 238000005273 aeration Methods 0.000 description 2
- 235000021015 bananas Nutrition 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000010960 cold rolled steel Substances 0.000 description 2
- 239000003779 heat-resistant material Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 210000000689 upper leg Anatomy 0.000 description 2
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 241000616862 Belliella Species 0.000 description 1
- 235000018185 Betula X alpestris Nutrition 0.000 description 1
- 235000018212 Betula X uliginosa Nutrition 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 235000001258 Cinchona calisaya Nutrition 0.000 description 1
- 244000223760 Cinnamomum zeylanicum Species 0.000 description 1
- 240000001980 Cucurbita pepo Species 0.000 description 1
- 235000009852 Cucurbita pepo Nutrition 0.000 description 1
- 241001537210 Perna Species 0.000 description 1
- 244000046052 Phaseolus vulgaris Species 0.000 description 1
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 1
- 244000082204 Phyllostachys viridis Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 208000000260 Warts Diseases 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003679 aging effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- LOUPRKONTZGTKE-UHFFFAOYSA-N cinchonine Natural products C1C(C(C2)C=C)CCN2C1C(O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-UHFFFAOYSA-N 0.000 description 1
- 235000017803 cinnamon Nutrition 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 210000002414 leg Anatomy 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229960000948 quinine Drugs 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 201000010153 skin papilloma Diseases 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000009331 sowing Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
- C21D9/54—Furnaces for treating strips or wire
- C21D9/56—Continuous furnaces for strip or wire
Definitions
- the present invention relates to a line for continuous treatment of a steel strip having a direct-fired heating furnace capable of non-oxidizing and reduction heating.
- ⁇ Indirect heating using a radiant tube and a direct calorie heating method are known as heating methods in the continuous processing line of w: &.% steel.
- the latter direct-fired heating method is superior to the indirect blade heating method and has superior heating capacity, and can be used to burn out cold E-rolling. It has the advantage that it can be omitted, and is widely used for molten beans ⁇ -mechanical line ⁇ interrupted magnetic steel sheet ⁇ dull line.
- the largest continuous blunt equipment tends to be large-sized equipment in order to reduce manufacturing costs, but in such equipment, direct heating as described above is required. If the broom is composed of one pass, the furnace height will increase, causing flapping of the steel broom and difficulties in controlling furnace pressure. ,. Or more than one pass. In such a multi-pass direct heating power: In the case of thermal heating, the oxide film described above generates a pick-up in the heating furnace due to the above-mentioned oxide film. The surface quality of Gogokohashi is significantly impaired. In order to prevent roll pick-up in such a furnace roll, for example, a furnace roll as disclosed in Japanese Patent Application Laid-Open No. 53-540100 is disclosed.
- Complicated measures must be taken, such as providing an isolation room and keeping the isolation room in a protective atmosphere.
- a ⁇ -rule protection method is employed, even when a high-temperature condition such as an extinction heating furnace is used, the gap between the holes is reduced. It is very difficult to properly seal the room from the open fire and the inside of the open-furnace furnace. Therefore, in order to make the isolation room have a sufficient protective atmosphere, an enormous amount of protective gas is required. It is not practical.
- the conventional continuous processing line has the following problems.
- Steel brooms with ⁇ fire heating 'In a heat treatment furnace are oxidized or heated to 500 to 800 in a fired heating furnace, and then heat-treated in a subsequent atmosphere S furnace such as sword (] heat, soaking, quenching, etc. Then, cool it down to about 150 ° C or less, and oxidize it in the atmosphere does not become a problem, and then put it out into the atmosphere. Hold the above-mentioned atmosphere furnace at EE of about 15 to 15 mwc. In addition to preventing the intrusion of air, the furnace is filled with atmospheric power ( 3 to 20% remaining N 2 ;) to prevent heat and oxidation. In such an atmosphere furnace, a seal mouth method and a water seal method are considered as a seal mechanism of a portion for guiding the sashimi band into the atmosphere after heat treatment. O Do not have the following problems o
- Second problem In a continuous processing line in which an indirect heating furnace is installed following the direct heating furnace, the atmosphere gas of the indirect heating furnace flows into the direct heating furnace, and the fuel of the direct heating furnace is further increased. A mixture of the gas and the above atmosphere gas flows into the preheating furnace and is finally discharged.
- the furnace E fluctuates a lot due to the mutual interference between the respective zones due to the fluctuations in the flow rates of the individual bloom areas, and this raises the question that the furnace E cannot be managed.
- the combustion gas containing unburned components is introduced into the preheating furnace and the steel broom is preheated, the exhaust gas temperature at the outlet of the preheating furnace becomes low, and the unburned components are completely burned.
- the purpose of the present invention is to eliminate the drawbacks of such a conventional sales processing line and to provide an improved processing line of this type.
- the purpose of the present invention is to use a direct-fired heating furnace.
- Another object of the present invention is to provide a continuous treatment line in which a steel strip can be heated by an oxide or an S-shaped bearer in a continuous treatment line of a steel impregnation.
- Another object of the present invention is to provide a continuous treatment line capable of heating and equalizing the temperature of a steel broom in a non-oxidized or reduced state, and at a high temperature.
- Another object of the present invention is to provide a continuous treatment line 51 in which a steel broom can be always heated with a non-oxidizing and reducing state in an open flame heating furnace.
- Another purpose of this honkiaki is to provide a continuous treatment line that at least attains a non-oxidizing bear at the time of the direct fired knife D furnace. Further, another object of the present invention is to make the cinnamon band into a non-oxidized gourd at the time of contact with at least the inside of the furnace opening, thereby reducing the roll pick-up. This is where you can provide an intermittent processing line that can be prevented.
- Another object of the present invention is to provide a continuous molten zinc plating.
- Kirin ' the indirect heating time was shortened, and the surface activity of the emperor, which was indispensable to the metal-bonded package, was sufficiently obtained, and the overall furnace length was also shortened. To provide an intermittent processing line.
- Another purpose of the present invention is to properly control the ingress of air into the atmosphere furnace in a continuous treatment line having an open flame heating furnace and a subsequent atmosphere furnace. O Provide an intermittent processing line that can be prevented
- ⁇ 21Kiyo the purpose of ⁇ 21Kiyo is to use a fuel that uses fuel gas in a continuous line that has a preheating furnace, a direct heating furnace, and an indirect heating furnace in that order. Preheating of the broom can be performed in a continuous manner.
- the present invention has the following configuration.
- the direct-fired heating furnace of the continuous processing line has a plurality of reduction-type heating burners.
- the sword G can generate a region having a combustion intermediate product and no free oxygen, that is, a non-equilibrium region.
- each of these reduced-type JJ. Heat burners is arranged so that the flame collides with the steel surface substantially at right angles and at a non-equilibrium angle.
- the bar Na arranged in La Lee down direction in the (bar Na inside diameter) Bruno (Bruno 'over Na pitch) force 0.3 or higher and Do not Let' s Do that interval.
- Honki Ming is applicable to all types of continuous treatment lines having a Xiahui heating furnace.
- Non-oxidizing source heating temperature is
- a contact heating furnace is provided.
- a preheating furnace is installed upstream of the direct-fired heating furnace in the above line (2).
- the above-mentioned line (1) is equipped with a cleaning system upstream of the preheating furnace.
- the above-mentioned line has a cleaning system installed upstream of the preheating furnace.
- the continuous treatment line may be an intermittent molten dumbbell plating line.
- the arrangement of each set-up is made up of a direct-fired oxidizing furnace and a direct-fired reducing furnace (reduction furnace).
- Direct heating furnace with mold heating burner One indirect heating type soaking furnace-Line with melting device in order, or without the above soaking furnace It can be a line with a melting sub-complexing device.
- the continuous processing line has a direct-fired sword!] If the furnace has a heating furnace and an atmosphere furnace following it, the outlet of the atmosphere-g furnace described above.
- a means for detecting the furnace E of the S atmosphere furnace and a means for injecting the seal gas into the above-mentioned seal chamber when the furnace pressure is reduced are provided. As a result, it is possible to prevent the invasion of outside air into the atmosphere furnace.
- an intermediate chamber is provided between the furnaces, and furthermore, Between the open flame aging furnace and the preheating furnace, The afterburning chamber that completely burns the combustion exhaust gas in the open flame furnace and supplies it to the preheating furnace can be provided with a force S, thereby reducing the furnace gas. It prevents movement to other furnaces, prevents mutual interference between furnaces due to fluctuations in furnace gas pressure, and efficiently preheats the steel emperor using combustion gas. And force S.
- the reducing power G heat power can be provided over the entire range of heat of the direct heating furnace.
- the above-mentioned burner has a smaller heat capacity than a commonly used non-S-type burner (diffusion type nona), and it is arranged over the entire effective furnace length.
- the required heat quantity cannot be maintained unless the arrangement intervals are made close and a large number of burners are used.
- the first mode in which a person can be mourned is the arrangement of a reduced-type partner in which at least the brooms are in a non-oxidized state at the sowing point where they leave the open flame furnace.
- the content of the content is based on the effective furnace length of the open flame heating furnace,
- T C (TOUT one T ⁇ ) Bruno (TOUT one TI n)] l 0 o and However, TIN: direct flame heating furnace Nyuro ⁇ temperature (3 ⁇ 4)
- TOUT 1 steel heating furnace outlet temperature (° K) ⁇ ( ⁇ ): Steel base speed ⁇ (Ano sec)
- the second mode in which the steel and broom are brought into contact with at least one of the furnace inlets, is in an unoxidized state.
- a reduction type sword G-heater arrangement is adopted. The contents of the test are as follows: At least the outlet of the open-fired heating furnace and the outlet ⁇ -heat burner are located in the outlet outlet area including the front heating zone. It is something to do.
- the preheated burner which can form a non-equilibrium region in the flame, that is, a region in which a combustion intermediate product is present and no segregation oxygen is present.
- a non-equilibrium region in the flame that is, a region in which a combustion intermediate product is present and no segregation oxygen is present.
- flame cheeks' ⁇ reaction was complete C0 2, H 2 0, ⁇ 2, ⁇ 2, a region including the CO and the like (ie quasi-equilibrium region) oxide boorish der Runoni pairs
- the above non-equilibrium region including intermediate ions, radicals, etc. shows reducibility, and this flame collides with the steel at approximately right angles to the steel emperor, and in the non-planar region, in the region By heating, the steel can be heated without oxidizing it.
- Figs. 3 and 4 show an example of such a reduction-type heating burner, and are spaced from the inner wall (6) of the cylindrical burner tile (1) in the local direction.
- Plural combustion gas discharge holes (2) are provided and fuel gas & vent holes (3) are provided in the center of the inside of the burner.
- the fuel gas 5 ⁇ holes (3) are configured as follows. B) In the air supply direction of the air e ⁇ outlet (2), an angle ⁇ of 60 or less is added to a tangent line with respect to the internal station of the burner tile.
- Air ejection hole (2) force ⁇ Luo bar Na Thailand Le exit (5) or in 0. 6 D 3 D Doo Ru from.
- the heating burner thus configured is used with a S air ratio of 1.0 or less, a non-planar region is formed in the flame.
- Fig. 6 shows the g-element thermal conductivity of such a TIP heat burner, that is, the limit m that can be heated by ⁇ ⁇ conversion (the limit degree of temperature with respect to the bamboo strip ⁇ ). It can be seen that heating can be performed at about 900 X: in the range g with an air ratio of 0.85 0.95.
- a (T) i 27000 e ⁇ '(A / sec-) , ⁇ ⁇ f 6126 ⁇ , C ⁇
- the inner diameter of the heating burner is d
- the pitch of the heating burner in the line direction is P
- r d / p
- FIG. 1 shows the arrangement of reduced 7JP heat burrs (a) in Hon-ki
- Fig. 1 shows the staggered arrangement
- Fig. 2 shows the arrangement.
- the case of a parallel array is shown.
- the reduced JG heat donor (a) has the burner circle diameter d and the line diameter. Is arranged so that the ratio d / ⁇ to the binar bit P in the pin direction is 0.3 or more.
- the reduced heating id used in the present invention is arranged so that the flame collides substantially perpendicularly to the steel broom and collides with the zonal surface in the non-equilibrium region.
- a heating burner used in a conventional open flame heating furnace such as ⁇ f N 0 F
- a non-equilibrium region such as the above burner is clearly distinguished from other regions. Not formed in shape. Therefore, the visible flame becomes a steel broom! : When in contact, the surface is strongly oxidized. For this reason, one Bj is set so that the flame is formed parallel to the steel width so that the flame is not directly sensitive to the steel broom.
- FIG. 1 and FIG. 2 are explanatory diagrams each showing an example of a heating arrangement in the present invention.
- Figures 3 and 4 show: ⁇ An example of a heating burner used in a direct-fired heating furnace in the invention line. IV in the figure, a cross section along the IV line,
- Fig. 5 shows one measurement example of the non-equilibrium region formation range S in the heating burners shown in Figs. 3 and 4.
- " ⁇ -graph,-Fig. 6 shows the heating burner in the same manner.
- FIG. 7 is a view showing an embodiment of the line of the present invention.
- Figure-,- Figure S is an illustration of another example of ⁇ Kimei Line
- Fig. 9 is a graph showing the behavior of oxide film formation and the change of steel temperature in the open flame heating furnace shown in Fig. 8.
- FIG. 10 shows: Ferr II diagram showing another embodiment of ⁇ Kimei line, Figure ii is shown in Figure i0! : A graph showing the behavior of oxide film formation and the change in steel temperature in a fired heating furnace.
- the first Figure 2 - the first Figure 4 is an explanatory view showing an example of by that ⁇ La fin in their respective Mizunoto ⁇ , the first 5 figure click Li one two down in the first 4 Fig.
- Fig. 16 is a graph showing the relationship between the air ratio of the combustion exhaust gas and the non-oxidizing preheating limit temperature in the preheating furnaces of Figs. 13 and 14;
- FIGS. 17 to 19 are explanatory diagrams showing examples of the annealing line according to the present invention, respectively, and FIGS. 20 (A) and (B) are each an example.
- FIG. 4 is an explanatory diagram showing an example of continuous molten S-lead metal quinine by using a sword;
- M 2 1 is a graph showing the temperature rise of each blunt cycle of the Mekky line by the conventional method and the Mekky line of the 20th (A). rough ,
- Fig. 2 2 is an illustration showing an example of the ⁇ of the ⁇ line
- Fig. 23 is an explanatory diagram showing an example of the line of the Honkiaki line.
- Fig. 24 is a partial enlargement of the intermediate room in Fig. 23 Figure
- FIGS. 25 to 29 are graphs showing the characteristics of the heating burner shown in FIGS. 3 and 4, and FIG. 25 is a burner shaft between the fuel gas discharge hole and the air discharge hole. the relationship between the distance and the gas temperature and 0 2 conc Doi on-intensity from bar burner outlet in a case where the distance N that put in the direction as one 0.
- the reduction-type heating burner with the above arrangement conditions can heat the steel brooms in a non-oxidizing and reducing state from start to finish by being installed over the entire heating effective range of the direct-fired heating furnace. As a result, a reliable non-oxidized state can be obtained.
- Figure 7 shows an example of this: 1 no.
- the above-mentioned heating burner (a) is placed in the entire effective heating range, that is, in the entire area where heating is required. That is, the heating burners (a) are arranged on both sides of the steel ⁇ (S) at intervals in the longitudinal direction of the heating furnace. ⁇
- this type of burner has a smaller heat capacity than a commonly used non-reducing type burner (split type burner). If this type of burner is arranged over the entire heating area of the pass, the interval between the burners must be close. Unless a large number of burners are used, it is not possible to secure the necessary amount of heat. For this reason, in the present invention, the above-mentioned reduced heating burner is arranged only in a necessary and sufficient range to obtain a predetermined purpose, and in the remaining range, a non-reduced burner is arranged. ⁇
- the steel strip exits the open flame heating furnace, it can be set as the “steel impregnated non-oxidized state” with the goal of being in the non-oxidized state. . ⁇
- the above-mentioned reduction-type heating burner is arranged only in a predetermined range on the outlet side of the direct-fired heating furnace, and the conventional non-reduction-type heating is provided in the remaining furnace length.
- the burner is placed in a basic burner dispensing mode, and the non-reducing heating burner placed on the inlet side of the open flame heating furnace allows the reduction heating burner placed on the outlet side.
- the non-reducing heating burner placed on the inlet side of the open flame heating furnace allows the reduction heating burner placed on the outlet side.
- T C (TOUT - T * ) / (TOUT- T IN) ] x 100 was However, Ti N: direct fired furnace inlet steel ⁇ S (K) TOUT: direct fired furnace outlet steel strip temperature (°)
- the heat source is referred to as the above-described reduction type heating source, and the heating source for the remaining furnace length is referred to as the non-reduction type heating source.
- the amount of oxidation of the steel in the open fire furnace is determined by the contact time of the steel strip with the two regions.
- the reduction rate g A (T) in the non-equilibrium region and the oxidation speed ⁇ ( ⁇ ) in the quasi-equilibrium region can be obtained by the following equations.
- Each speed of this is that the things that can be applied to the lower heating value 2000 Kca ⁇ ZNm 3 or more of the fuel ' ⁇ gas.
- T steel strip temperature ( ⁇ ) Therefore, in the furnace length direction, the steel strip sheet temperature at the boundary between the non-reduction-type heating burner installation area and the reduction-type heating burner installation area is ⁇ *. , The oxide film thickness at the outlet of the open flame furnace
- T IN is the temperature of the steel at the entrance of the open flame heating furnace (K)
- TOUT Temperature of steel broom at outlet of open flame heating furnace K)-F (T): Heating rate (.K sec)
- All-round heat exchangers allocated to all effective furnace lengths of the II fired heating furnace (8) are divided into six groups, 1 to 6. If, for example, 24 or more areas are required for the total length of the reactors in accordance with the above-mentioned Article, in the heating burner group from 1 to # 6, * 5, ⁇ 6 (a range of about 30 of the total effective furnace length) is equipped with a reducing type heating burner, and the remaining # 1 to # 4 A non-reduction type heating burner is arranged in the above.Note that the above-mentioned plurality of reduction type heating burners are arranged with the predetermined pitch as described above. Nor .
- Fig. 9 shows an example of the behavior of oxide film formation and the change in steel strip temperature in such a facility.
- the area where the non-reducing heating burner is located (weak oxidation heating area)
- the oxide film generated in (1) is subjected to S-source up to the original substrate-based oxide film thickness in the area where the reduction-type heating burner is located (reducing power. You can see that it has been sent out of the heating furnace.
- the roll pick-up based on the steel oxide is an open passage on the side of the path that constitutes the open flame heating! F. This can be prevented if the steel ⁇ is in a non-oxidized state before the steel II, and the steel ⁇ can be sent out of the II fired heating furnace in a non-oxidized state. Let's set such "steel impregnated state" as the target state. I can do it.
- the reduction-type heating burner should be installed in the outlet area of the pass including at least the heating area immediately before the direct-fired heating furnace in each pass. [Pana inner diameter Nova pitch] ⁇ 0.3).
- a sufficient amount of heat can be secured by arranging a non-reducing type heating burner with a large heat capacity in the inlet side heating area for each path constituting the open flame heating furnace.
- reduction that can reduce the oxide film formed on the steel broom surface in the inlet heating zone. It will be sent to the next pass, or the soother.
- FIG. 10 shows an example of this, and (I) is the first in a diagram in which a two-pass type fired heating furnace is used.
- Scan (D) the second 0 scan (10a) ⁇ (10d) is passing plate ⁇ in the furnace - a le.
- each c. (10b) and (10d) ⁇ ⁇ In the heating area in front, the above-mentioned reduced type sword D heat.
- the heating burner group shown in Fig. 10 uses a nozzle that forms a nozzle-mix short flame, and its quasi-equilibrium region is Are arranged so as to collide with
- the first. A shield to shield the rolling roll (lob) and (10c) from the direct fire from the open flame on the exit side of the source (I) and the entrance side of the second pass (II) A plate (13) is protruded.
- the steel impregnation (s) is oxidized to a certain degree by heating by the heating burner group CL2) at the entrance and intermediate area of each pass.
- Rolls (10b) and (10d) immediately before the burner group the oxide film is reduced by reduction heating by L1J, and the rolled rolls (I0b), (10c), and (10d) are focused. It is tightly oxidized and is sent to the indirect heating furnace from the heating furnace ⁇ side without oxidation.
- the present invention can be applied to any type of continuous treatment line having an open fired heating furnace, and all of the above-mentioned aspects are applied to any of these aspects. Configuration can be applied.
- the temperature of the steel broom is non-oxidized
- the indirect heating furnace (9) is connected to the direct heating furnace (8) as shown in FIG. Can be provided.
- the intermittent treatment line that is intended for Honkiaki is Two basic modes (force s that does not exclude other modes) are considered that the interrupted annealing line is a continuous molten zinc plating line.
- Direct heating furnace Indirect heating furnace and cooling furnace mainly for cooling by cooling in order, and an intermittent line equipped with a temper rolling mill on the exit side of the final processing broom.
- the steel broom is! : Heated by an S-type heating burner in a fire heating furnace, and sent out to the indirect heating furnace in an unoxidized state.
- an open flame heating furnace the rolling oil adhering to the steel broom surface is burned off during heating.
- an indirect heating furnace (3T) is soaked in a reducing atmosphere, but the atmosphere is maintained in a non-oxidized state because the steel is sent to the indirect heating furnace with almost no oxidation.
- a small reduction ⁇ (3 ⁇ 4: 3 to 10%) is sufficient.
- a cooling roll is provided, and cooling is performed mainly by mouth cooling.
- An overage treatment furnace is usually installed behind the cooler, and after the Teijin exits the final cooling zone at the back of the overage treatment furnace, the steel is rolled by an S-rolling mill. .
- this Yo I Do equipment binding ⁇ the non-oxidizing heating that put in a heating furnace of providing yet this the direct flame heating furnace is possible, continue Ku indirect heating furnace (soaking. Broom) very Ku low the ⁇ 2 concentration in Roll cooling allows the steel broom to cool rapidly to the overageing temperature, eliminating the need for reheating for overaging treatment.For these reasons, the conventional discontinuous annealing furnace This will enable operations with significant energy savings. Also, by non-oxidizing heating and water roll? The oxidation method prevents steel oxidation and eliminates the need for acid equipment. .
- a preheating furnace was installed in front of the open flame heating furnace, and the steel broom was preheated in this preheating furnace by gas introduced from the open flame heating furnace and the like. After that, it is led to a direct heating furnace.
- the heating time is short, so the effect of heating time is small, and the operation is performed by setting the heating temperature to a relatively high value in a batch.
- Reducing]! Fire In equipment that employs a heating furnace, there is a strong tendency to set the heating temperature to a higher temperature because operations are performed with the aim of reducing the speed. Therefore, by performing preheating of Emperor in such intermittent treatment of steel brooms, the heating in the direct heating furnace was reduced.
- the heating temperature ⁇ (final heating temperature) tends to be higher when using the indirect heating method, so that extra energy is required. Energy is required, but the preheating; F is set. This has the advantage of lowering ⁇ and lowering the heating temperature ⁇ more than necessary.
- a steel surface cleaning system (2) is provided in front of the preheating furnace.
- steel is mainly used. Iron powder attached to the surface is removed. After cold rolling, the surface of the steel strip is usually rolled (HO) Powder (rolling waste, etc.) is attached.
- HO rolled Powder
- the rolling oil is burnt and removed by the open flame heating furnace and preheating; however, the iron powder is removed, and the rolling oil accumulates in the furnace, the atmosphere in the furnace, and the gas inside the furnace. It circulates between the roll and the steel broom, causing a press on the product surface. In this facility, such iron powder is removed by the above-mentioned cleaning facility.
- Fig. 12 shows an embodiment corresponding to the above line (1).
- Fire heating furnace (8) Indirect heating furnace (9), cooling furnace, overaging furnace (as), (40)
- a final cooling furnace (16) is provided, and a chamber (18) is disposed on an outlet side of the final cooling furnace (16) with an outlet looper (17) interposed therebetween.
- the indirect heating furnace (9) following the open flame heating furnace (8) is an indirect heating system using a radiant tube, and is basically the same as a conventional indirect heating furnace. However, in this continuous annealing line, the direct heating furnace (8) has a reducing ability and the steel broom is sent to the indirect heating furnace (9) in a non-oxidized state. In a heating furnace, an atmosphere that does not oxidize the steel broom, that is, 3 ⁇ 4: 3 to 10%, usually 4 to 6 ⁇ is generally sufficient.
- a plurality of cooling rolls (L9) (normally water-cooled rolls) are provided, and the length of contact of the cooling ⁇ -roll (19) with the steel (S) is increased. By making it variable, the cooling end point temperature can be adjusted.
- a hard chrome roll for the work lock.
- Such a roll is referred to as Japanese Patent Application No. 60—4 1 0 0 9
- a mouthpiece as shown in Japanese Patent Application No. 60-41011 is particularly preferred. This mouth is less likely to cause scuffing due to the steel strip edge, so that the occurrence of scratches on the steel broom surface due to the mouth flaws can be appropriately prevented, and coarse S on the steel strip can be prevented.
- the print ratio can be maintained, which makes it possible to perform intermittent annealing of the steel strip width cycle free.
- Fig. 13 shows an embodiment corresponding to the line (1) above.
- a preheat (20) C2 pass is provided in front of the open flame heating furnace (8).
- the combustion gas from the I-fired heating furnace (8) or the indirect heating furnace (9) is introduced into the preheating furnace (20), and the preheating furnace (S)
- the heat is going to take place.
- the oxidation of the steel strip is governed by the preheating temperature and the air ratio when the combustion exhaust gas used is generated, and the air during combustion according to the preheating temperature is determined.
- the use of combustion exhaust gases with different ratios enables the steel strip to be preheated with little oxidation, specifically, as shown in Fig. 16.
- the steel broom is preheated in the range of less than 280 ⁇ , use the combustion exhaust gas generated at an air ratio of 1.0 or more, and if the steel broom is preheated to more than 280 ⁇ , By using combustion ⁇ gas generated at an air ratio of less than 1.0, the steel strip is preheated almost irrespective of the preheating temperature and almost without oxidation. It turns out that we can do this.
- the preheating furnace (20) it is possible to perform the preheating of the oxidation by the regulation of the air ratio of the combustion gas, but the following! : Since a reduction operation of the oxide film is obtained in the fired heating furnace (8), a certain degree of oxidation in the preheating furnace (7) is permitted, and this result is shown by the chain line in Fig. 16). Approximately 50 C ⁇ Preheat allowable temperature Therefore, even with an air ratio of about 1 o, it is possible to preheat about 400, and the preheating furnace (7) has a function to remove the oil from the steel strip surface rolling oil. I can do my best.
- Fig. 14 shows an embodiment corresponding to the above line (3).
- the main purpose is to remove powder from the front of the preheating furnace (20) via an inlet looper (21).
- a clean jungle facility (23) is provided. Since the main purpose of this clean ing facility (22) is to remove iron powder, simple installation is sufficient.
- Fig. 15 shows an example of such a cleaning facility, where (23) is an aluminum tank, (24) is a scrubber (brush iron), and (25) ) Is the knock-up nozzle (26) is a hot-water spray nozzle, (27) is a hot-water lens, and (28) is a driver. Ninging makes it possible to sufficiently remove iron powder.
- continuous annealing line as an example of foam, 2 II fire heating furnace, indirect heating furnace, and liquid cooling are mainly installed in this order, and final treatment is performed.
- the steel strip is subjected to non-oxidative reduction heating in the direct heating furnace in the same manner as the above-mentioned lines (1) to (4), sent to the indirect heating furnace, and uniformly heated in a reducing atmosphere. Heated.
- the steel strip is fed into this indirect heating furnace almost completely in a non-oxidized state, and since the new acid film generated by liquid cooling by the subsequent intermediate pickling can also be removed, the atmosphere Is weakly reducing g (H 2 : 2
- ⁇ 5 1 ⁇ is sufficient.
- quenching mainly by liquid cooling is performed by liquid cooling, and the steel is cooled to almost the temperature S by overaging or pleating by almost always or hot water.
- the steel brooms were quenched by the intermediate acid wart facility to remove the oxide film formed by quenching, and then overaged in an overageing furnace.
- the steel strip that has been subjected to a final cooling process is rolled by a temper rolling mill.
- Such continuous annealing equipment uses a direct-fired heating furnace capable of non-oxidizing heating, and performs rapid cooling after heating and soaking to perform liquid cooling such as hot water or water cooling.
- a direct-fired heating furnace capable of non-oxidizing heating, and performs rapid cooling after heating and soaking to perform liquid cooling such as hot water or water cooling.
- liquid cooling such as hot water or water cooling.
- the conventional direct heating furnace and the liquid cooling method even if a reduction furnace is provided after the direct heating furnace, the oxide film remains unavoidable, and the liquid cooling method is more difficult.
- an oxide film is generated, even if an oxide film removing device such as a thin film is provided subsequently, the oxide film remains, making it difficult to ensure the surface quality of the product. .
- the steel surface is oxidized to some extent by the preheating, it has a direct-fired heating furnace that can reduce the oxidation and has an intermediate scrubber. High-temperature preheating can be performed.
- the zone in which the S-type burner is installed must maintain the fold state at all times to reduce and heat the surface of the steel.
- it is necessary to adopt a method such as extinguishing the heating burner of the heating zone By providing this with an auxiliary combustion function, it is possible to finely adjust the heat load, especially when heating thin materials.
- Fig. 17 shows an embodiment corresponding to the above line (1). From the entry side, a direct-fired heating furnace (8), an indirect heating furnace (9), a cooling furnace (14), and an intermediate pickling facility (29), an overaging treatment furnace (15), and a final cooling furnace are provided, and an outlet looper (L7) is interposed at the outlet side of the final cooling furnace (16), and the room temperature (18) ) Is provided.
- the indirect heating furnace (9) following the open flame heating furnace (8) is an indirect heating method using a radiant tube, and is basically the same as a conventional indirect heating furnace. However, in this continuous annealing line]!
- the fire heating furnace (8) has a reducing ability, and the steel broom is sent to the indirect heating furnace (9) in a non-oxidized state, and then the intermediate acid is added.
- Kiri S gas so as not to oxidize the steel in this soaking broom because not Yatoe the ⁇ , i.e., H 2:. 2 ⁇ 5 ° h usually favored rather the legs cut solid-gas about 3-4 Yes.
- the steel strip (S) was immersed in water. It is quenched by being cooled. In water, the spray force S is applied from the nozzle to the steel strip, and the vapor film is removed.
- the intermediate pickling equipment (29) is composed of a pickling tank (30), a rinsing tank (31), and a dryer (32).
- HC 5%, 40 to 60 CX 1 The acid aging treatment for about 5 seconds and the rinsing treatment with 80-water are performed.
- the overaging treatment furnace (15) the steel strip (S) is overaged or rebound in a slightly reducing atmosphere S. Processing is performed.
- Tenno ,. -It is preferable to use a mill (18) similar to that described in the above line (1).
- -Fig. 18 shows an example of the above line (1), in which a preheating furnace (20) is installed in front of the heating furnace (8). The contents of the preheating furnace (20) are the same as those described in the above line (1). .
- FIG. 19 shows an embodiment corresponding to the above-mentioned line (1), in which an inlet looper (21) is provided in front of the preheating layer (20).
- the cleaning equipment (22) was installed mainly for iron powder removal through 5 U. The contents of this cleaning equipment (22) are described below. This is the same as described in the above line 3.
- the steel broom! Indirect 7JQ thermal heating after heating in a fire furnace • Maintained in a specified temperature range for at least 5 seconds in a soaking furnace.
- the steel baking is heated ⁇
- the recrystallization temperature is exceeded, the nuclei of the crystal grains ripen and the grain growth starts, but the soaking time is such that the 'grains' reach the specified grain size In the minimum time it takes to grow () No o
- the steel broom thus heated and soaked is maintained at a predetermined temperature as required, and then quenched in a quenching furnace at a cooling rate of 40 C nosec or more. .
- a cooling rate of 40 C nosec or more it is necessary to precipitate the solid solution (C) in the heating and soaking furnace in an overaging furnace that continues quenching as quickly as possible.
- speed is necessary to create the [C] state in which the solid solution is dissolved in a supersaturated state.
- the higher the cooling rate the higher the degree of solution of the solid solution [C], and the shorter the overaging time, so the minimum cooling rate is regulated.
- the steel brooms that have undergone such a heat treatment are subjected to over-aging treatment, final cooling, and the like, if necessary, to obtain products.
- Preheating furnace Preheats the cooling steel strip to -250 to 330 mm around the high-temperature combustion exhaust gas of 1200 to 140 ⁇ which exits from the open flame preheating furnace.
- the pre-heated cold-rolled steel strip is reduced to 43 3 to 800 0 using a direct-fired heating burner.
- Overage processing is performed by holding for 30 seconds or more in the range of 400 to 150 TC.
- -Fig. 20 (A) shows an example of an intermittently melting smelting line.
- (34) is a direct flame reduction furnace
- (35) is an indirect heating type of soaking! F
- this soaking furnace (35) the molten S Is placed.
- the direct-fired reduction furnace ( 34 ) the above-mentioned reduction-type heating burner is arranged at a predetermined pitch.
- Fig. 20 shows the continuous molten zinc plating.
- O Another example of a line, in which a soaking furnace is not provided, and a molten zinc plating device is provided after the open flame reduction furnace ( 34 ).
- Such a line configuration is adopted when the direct fire oxidation furnace (33) and the direct fire reduction furnace (34) can sufficiently heat and equalize the steel (S).
- the steel strip is heated directly in a direct-fired oxidation furnace (), and at the same time, the oil attached to the surface is burned and removed.
- Emperor is oxidized.
- the steel broom (S) is continuously heated by direct flame reduction in the II fire reduction furnace (34), and the oxide film formed on its surface is reduced and removed. Oxidation film on the surface of the steel broom is strongly reduced by heating in a direct fire reduction furnace (34), and strong oxidation and strong reduction are realized together with oxidation in a direct fire incinerator (33).
- Fig. 21 shows the heating teeth of each annealing cycle of the line shown in Fig. 20 (A) and the line of the conventional type (one type of Zenjima and N0F type).
- the all SANYO was shown to HiAtsushi, in La Lee down of the second 0 view (a), for the heating Te to base you are a II fire, Atsushibe heating efficiency is very in traditional ⁇ formula Since the temperature is high, it can be heated to a predetermined temperature in a short time. And, the result of this It can be shortened.
- the following configuration can be employed in addition to the above-described basic configuration of the direct-fired heating furnace.
- the atmosphere furnace is used to appropriately prevent air from entering the atmosphere furnace.
- Means for detecting a furnace pressure of the atmosphere furnace, and a seal chamber provided in the chamber when the furnace pressure decreases. Provide means for blowing air.
- the purpose of the present invention is to enable efficient preheating of the steel strip using the combustion exhaust gas.
- an afterburning chamber is provided between the open flame, heating furnace and preheating furnace to supply the exhaust gas in the above-described heating furnace to the preheating furnace in a completely fuel-bound state.
- Fig. 22 shows an example of the line described in 3.
- the line consists of a preheating furnace (7), a direct-fired heating furnace (8), and an atmosphere S furnace in order from the steel broom entrance side. (36).
- This atmosphere of the S furnace (36) is equipped with a broom for soaking, cooling, and, if necessary, overaging.
- a seal mouth ( 37 ) is provided at the mouth of the kiln (36), and a seal channel (38) is provided on the upstream side of the shell (). I'm afraid.
- the seal chamber (38) is equipped with a gas injection device ( 39 ), and the chamber is equipped with a furnace pressure gauge (40) for measuring the internal pressure of the atmospheric furnace. Is installed. According to such a line, the steel strip (s) passes through the preheating furnace (7), and then becomes non-oxidized or oxidized to 500 to 800 in an open flame heating furnace (8). After being reduced and heated, and subjected to further heating to a high temperature and soaking, quenching, and overaging in a subsequent atmosphere S furnace (36), oxidation in the atmosphere is not a problem. It is cooled down to below TC and then removed from the furnace via a 'seal roll' ( 37 ).
- high-temperature calcined gas is supplied to the burner by the fuel gas () and the combustion air ( 42 ). This burned gas collides directly with the steel broom (S) and heats the steel (S) to a predetermined temperature, and then becomes exhaust gas (43). After preheating to ⁇ 450 C, it is ejected from the collision through the furnace E control damper (44) and the exhaust fan ( 45 ).
- a passage is restricted between the I fire heating furnace (8) and the atmosphere furnace (36) in order to prevent the combustion gas from entering the atmosphere furnace.
- ⁇ In order to be able to pass through without difficulty, a considerable size of ⁇ is required (100 thighs x 200,000 leakage). ⁇ ) does not function as a gas seal. Therefore, the furnace pressure fluctuation of the open flame heating furnace (8) becomes the furnace pressure fluctuation of the atmosphere furnace (36) as it is.
- a furnace pressure gauge (48) was placed in the area where the atmosphere gas ( 46 ) flows from the atmosphere furnace (36) to the open flame heating furnace (8), and the pressure was set at 15 to 1 m. Furnace pressure control Dunno, so that it becomes 5 ⁇ wc.
- the furnace pressure controlled by (44) can be maintained at a constant pressure in a steady state, but when the burning conditions of the open flame heating furnace (8) are changed, for example, one zone out of multiple zones is used.
- the furnace closed operation of the damper ()
- Negative pressure may occur in the furnace (36).
- a seal roll (37) is provided at the part where the steel broom (S) exits from the atmosphere furnace (36), but there is a large gap in this part,
- a seal chamber (38) is provided upstream of the seal ( 37 ) in order to prevent this intrusion into the atmosphere.
- This seal chamber (38) and the atmosphere Furnace (3S) A gap is provided between C6I), and a pressure drop (eg, 5 ' ⁇ wc lower than the set E force) of the atmospheric furnace (36) is detected by the furnace pressure meter ( 40 ), and during that time, A blowing device ( 39 ) blows seal gas into the seal chamber (38).
- This poem Noregasu is, N 2 alone, but it may also also in Kiri S gas-gas mixed with 3 ⁇ 4 3 ⁇ 2 0% 0
- a small-diameter bypass pipe should be provided in the shutoff chamber (47). It is better to connect the piping to the seal chamber or separately.
- the amount of seal gas to be blown is a force S depending on the size of the throttle, 300 to 600 m-but that is enough, and the blow time is 10 to 20 seconds ⁇ .
- FIG. 23 shows an embodiment of the line configuration of the above 1 and 2.
- the preheating furnace (7), open flame heating furnace (8), indirect heating furnace (9), and gas jet cooling furnace (58 s ) are installed after the inlet side. Are provided in this order.
- a cooling furnace using roll cooling, an overaging furnace, and an outlet facility are provided in this order.
- a second intermediate chamber (4 3 ⁇ 4) is, that the 3 CD intermediate chamber (49 c) has not been each provided found between the direct flame heating furnace (8) and indirect heating furnace (9).
- ( 49 ) is an intermediate room
- (50) is a hole for supporting a steel broom (S) in this intermediate room
- (S1) is a small space with a small gap through the steel emperor (S) to sheet Lumpur plate
- the seal plate (51), seal ⁇ -rule (52) and Labyrinth seal (53) cannot reach the mouth (50) force It is provided in the order of J5.
- the mouth gap of the seal roll (52) can be approached to several jobs.
- the seal roll ( 52 ) may be water-cooled internally or without water. Water cooling (3) If not, use heat-resistant steel or ceramic.
- La bi Li down scan Shea Lumpur (5 3) is Ri Nodea also of for thermal radiation or we protect an Le b Lumpur () from the hot part of the furnace, also of that the steel refractory use .
- the seal plate (si) is used as the final seal and is not always required. However, since it is provided after the seal opening (g) jg, it can be made to be close to the steel broom (S), and the sealing effect is large.
- the seals are sealed well with a lapillance screen ( 53 ) and a temporary screen with a seal roll (52). It will be further sealed by the seal plate (S1). .
- the temperature of the first intermediate chamber (49a) between the pre-maturation (7) and the open-air heating furnace (8) is not so high, but at most 300 ° C. Before and after, no measures such as protection of ⁇ -roll are necessary for the winding.
- the first intermediate chamber cut S gas is reducing gas (4 9a) '(3 ⁇ 4 + N 2) Or even combustion gas. However, sufficient seals are required to separate each furnace independently.
- the open-fired heating furnace (8) is 2 no.
- the intermediate rooms ( 4 ) are provided between these buses.
- the intermediate room (49c) must have an atmosphere of an original atmosphere in order to prevent the incineration gas from the open fire furnace from entering the indirect heating furnace (9).
- the exhaust gas in the direct heating furnace (8) is completely burned and supplied to the preheating furnace (7).
- a afterburning room ( 54 ) is provided.
- the gas temperature at the outlet of the open flame heating (8) is 800 to 1200 C, which is below the self-burning temperature of the unburned portion _, and the afterburning chamber (54)
- the unburned components can be easily burned simply by supplying air.
- the afterburning chamber ( 54 ) allows the unburned components in the exhaust gas The exhaust gas temperature is raised and the preheating of the steel sheet is promoted without dissipating the gas into the atmosphere.
- the reducing ability is reduced. That is, the temperature "" of these atmosphere gases is close to the soaking temperature of the steel strip (700 to 900 ⁇ ), and the combustion gas temperature (140 to 160) in the reduction heating area. If the atmospheric gas invades, the gas temperature in the reduction heating area will drop, and the reduction ability will be significantly reduced.
- Fig. 25 shows the burner from the burner outlet when the burner axial distance N between the fuel gas discharge hole (3) and the air discharge hole (2) is 0.25D. axial distance and bars Na Thailand gas temperature in Le, 0 2 concentration and also checks each function. engagement with i on-strength Nodea is, according to this, cormorants yo of N child a (one) side near Ru case, the free O 2 remaining distance LQ axially that you only exists rather come large is that has been shown.
- Fig. 26 shows the relationship between the direction of the burner axis of the fuel gas hole and the air discharge hole and the axial remaining distance L 0 of the free O 2.
- N is less than 0.1 D.
- Lo rapidly increases, so that on the (1) side, 10D is the ⁇ ⁇ field.
- (6B) on the other hand, each relationship between the second 7-figure bar burner axis 3 ⁇ 4 away and 0 2 concentration I on-strength and gas temperature from the bar burner outlet in the case of a + 0. ID of N It was examined.
- N is if (+) side, 0 2 concentration problem is rather name, from bar burner exit distance 0. 5 D above However, an appropriate non-equilibrium region is formed.
- N is on the (+) side, a proper non-equilibrium region is formed, but if it exceeds +0.4 D, the mixing effect of air and fuel gas tends to be insufficient. . That is, in the burner of the present invention, the fuel gas is injected from the center during the rapid swirling flow of the air, so that the mixing of the air and the fuel gas is promoted. If the applied forces S and N are excessively large, such a mixing promoting effect cannot be sufficiently obtained, and the stable formation of the non-flat area cannot be expected. Therefore, N is limited to +0.4 D.
- the burner center axis distance N of the hole shall be in the range of-, -0.1 D to 0.4 D.
- Figure 28 shows the relationship between the distance N and the temperature Tb of the inner end wall of the banner.
- Tb is 1400 ⁇ , and it is generally possible to use a normal heat-resistant material up to such a temperature.
- the inner end wall of the perna tile heats up to more than 180.000, but in such a case, the material of the burner tile is high.
- the distance L from the air discharge hole (2) force to the burner tail outlet (5) is closely related to the formation range of the non-flat area. In other words, when the L force exceeds S3D, a non-equilibrium region is formed only in the portion immediately after the Banana tile outlet, which is not preferable. On the other hand, when L is less than 0.6 D, the flame becomes a petal-like flame immediately after the exit of the banana tail, and an appropriate non-equilibrium region is stably obtained on the central axis of the burner. Not. Therefore, it is preferable to set L in the range of 0.6 D to 3.0 D.
- the non-equilibrium region in the flame is formed as wide as possible, including the position of the steel broom passing plate located at a predetermined distance from the outlet of the wrench.
- Figure 29 shows the relationship between the distance L and the distance L R from the banana output loca to the end of the non-equilibrium region (the end on the anti-pana side, for example, point A in Figure 27 '). It is a thing.
- the non-planar region is formed only immediately after the exit of the burner tail, and is hardly formed on the front side.
- the area of formation of the non-planar area expands as the area becomes smaller, but in the area (X) where the L force is less than 0.6 D, the flame is released just after the banana tile exit and has a petal-like discharge. It becomes a flaming flame and an appropriate non- (7.0
- the equilibrium region is not formed stably. Above this and force ⁇ al, distance from the air discharge hole (2's burner Thailand Le outlet (5) or L is 0. 6 D ⁇ 3. 0 D this and is desired arbitrary to range landscaping of.
- the fuel gas discharge hole (3) should be connected to the connection of the fuel gas outlet with the outer periphery of the fuel nozzle.
- the fuel gas discharge hole (3) is formed in such a way that its flow direction is inclined with respect to the direction of the burner axis or the burner axis.
- a structure that gives the air discharge hole (2) an inclination angle (torsion angle) in the direction of the burner opening with respect to the radial direction of the burner tile may be used alone. Alternatively, they can be adopted in a combined form.
- At least the burner tile (1) is installed on the inner wall at the tip opening side from the combustion air discharge hole formation site, and the inner diameter of the burner is at the tip opening side.
- a structure with a divergence angle so as to expand the diameter of the air outlet (2) is provided inside the wall of the cylindrical burner tile. It is also possible to employ a structure in which a swirling flow of combustion air is provided along the circumferential direction and a plurality of combustion air discharge holes are provided to make the swirling flow different from the inside of the burner.
- the present invention can be applied to a continuous annealing line for a steel strip, a molten zinc plating line, and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Description
明 細 直火加熱炉を有する鋼帯の連続処理ライ ン 技 術 分 野 本発明は、 無酸化 ' 還元加熱が可能な直火 加熱炉を有する鋼帯の連続処理 ラ イ ンに関す る o
^ w: &. % 鋼 =の ¾続処理 ラ イ ン おける 加熱方式 と して、 ラ ジ ア ン 卜 チュ ーブを利用 した間 接加熱方式 と 直火カロ熱方式とが知 られてい る 。 この う ち 、 後者の直火加熱方式は、 間 接刀 Π熱方式に敦べ加熱能力に優れ、 しかも 冷間 E延 ¾をバ一 ン ア ウ ト でき る ため ク リ 一 二 ン グ設備を省略できる 等の利点を有 し ており 、 広 く 溶融豆 Ιδ メ ッ キ ラ イ ン ゃ電磁 鋼板違続 ^鈍 ラ イ ン等に用レ、ら れてい る 。
し力 し、 '従来の直火加熱方式では鋼帚の 漦化が著 し く 、 これに la した 口 一ル ピッ ク アップを生 じる と い う 大きな 問題があ る このよ う な従前の直火加熱方式に対 し、 所
謂無酸化直火加熱方式な る方式が特公昭 5 8 — 4 4 1 3 3 号ゃ特公昭 5 9 — 2 9 6 5 1 号 等において冷延鋼帚の連続熱処理設備用 と し て提案されて いる 。 この方式は、 ス ト リ ップ 温度 ( M a X . 9 0 0 13 ) の上昇に応 じて各燃焼 制飼ゾーン の空気比を低減 してい く ( 1. 4 未 満— 0. 6 ) 等の方法で鋼帯の酸化を抑えつつ 加熱を行う とい う ものである 。
. しか し こ の方式は無酸化式 とは言う ものの 実際には弱酸化式であ り 、 空気比 1. 0 未満の 燃 ^生成ガス 中に も-酸化性ガスである co2 , H2 0が多量に含まれている ため、 加熱後の酸 化膜厚みは原板の 5 0 A未満力: >ら 5 0 0〜 1 0 0 0 A にも増大 して しま う 。 このため 、 この よ う な ^式を違続焼鈍設倔に適 する場合、 加熱 に続 く 均熱帝において、 雰固気中 の水素を 高嬝庋 ( 約 2 0 ^ m ) とする こ と に より酸 化膜を還元 した り 、 或いは直火加熱帚の出側 に強還元^な る 処理 Wを設け高漫^水素 ( 約 5 0 以上 ) で酸化膜の還元を行う 等の方法
を採ら ざ る を得ない 。
また最^の連続 ^鈍設備は、 製造 コ ス 卜 の 低减を 目的と して大型設備化する傾向にある が 、 こ のよ う な設備に おいては、 上記のよ う な直火加熱帚を 1 パ ス で構成 した場合炉高が 高 く な り 、 鋼帚のバ タ ツ キを生 じた り 炉圧制 御に困難を生 じたり す る問題があ り 、 このた め 2 ノ、。ス或いはそれ以上の複数パス とせざ る を得ない 。 し力 し、 この よう な複数パスの直 火力:熱帚では、 上記酸化膜によ り 加熱炉 内 ロ — ノレ で口 一ノレ ピッ ク ア ツ プを生 じて し まレヽ' 、 こ の結杲鋼帚の表面品質が著 し く 損われて し ま う 。 この よ う な炉内 ロ ー ル で ロ ー ル ピ ッ ク ア ッ プを防止するためには、 例えば、 特開昭 5 3 - 5 4 1 0 0 号において示さ れる よ うな 炉内 ロ ールを权容する 隔離室を設け、 こ の隔 離室内を保護雰囲気にする等 とい う よ う な煩 雑な手段を採ら なければな ら ない 。 ま た こ の よ うな π — ル保護方式を採る場合でも 、 匿火 加熱炉の よ う な高温条件下において口 ール隔
離室と 直火炉 内と を適切に シ ールする こ とは 非常に難 し く 、 この ため隔離室を十分な保護 雰圏気とする ためには 、 膨大な量の保護雰固 気ガ スを俟給する必要があ り 、 実用的ではな い 。
違続溶融 鉛 メ ツ キ ラ イ ンに おける熱処理 方式と して所言胃ゼ ン ジ マ ー方式が広 く 知られ てい る 。 こ の方式は違続燒鈍サイ ク ル の場合 約 4 0 0 〜 4 5 0 Cまで直火加熱 し、 それ以降を 強 S元雰 S気中で 7 5 0 程度ま で間接加熱 する と レ、 う も のである 。 し力 しこ の方式には 次のよ う な難点がある 。
(1)間接加熱時間が長 く 、 加熱効羣が惡い。
(2)強還元雰囹気すなわち 、 ¾濃度の高い ( ¾ H- N2 ) ガスが大量に必要であ り 、 ま た こ のため安全上に問題があ る 。
(3)均熱を必旻とする場合、 炉長が長 く な る こ のよ う なゼ ン ジ マ一方式に対 し、 所謂 0 F 炉で弱酸化 JD熱 した後、 後続の弱遺元炉で S 元間接加熱を行う 方式が開癸 され、 現在 E く
用い られている 。 しカゝ し、 こ の方式も 、
( 1 )間接加熱時間が長い 。
(2)弱酸化一弱還元過程では、 メ ツ キ密着性 に必要な鎘帚の表面活 ¾が十分得ら れな い
(3)炉長が長 く な る 。
とい 'う 問題を有 してい る 。
以上のよ うな,問題に加え、 従来の連続処理 ラ イ ン には次のよ う な問題があ る 。
第 1 の問題 : ϋ火加熱 ' を設けた鋼帚 ¾ 熱処理炉では 、 ます!:火加熱炉 において鋼帚' を 5 0 0〜 8 0 0 Όに^酸化または ¾元加熱後、 後続の雰 S気炉 において さ ら に 刀 (]熱 、 均熱 、 急冷等の熱処理を行ない、 大気中での酸化が 問題'とな らな い 1 5 0 Ό程度以下 ま で冷却後 大気中 に出す 。 上記雰固気炉 は、 十 5〜 1 5 m wc 程度の E Eに保持 して大気の侵入を防ぐ と と もに 、 炉内 には雰 ¾気力" ス ( 3〜 2 0 % 残り N2 ;)を充満 して ¾ お よび酸化防止を行 なってい る 。
こ う した雰 '気炉 に おいて 、 熱処理後大気 中 に鐫帯を導 き 出す部分の シ ー ル機構 と して シ ール 口 ール.方式及び水封方式が考え られて いる が、 それぞれ次の よ う な問題を有 してい な o
(1) シ 一 ノレ 口 一 ノレ方式
こ の方式は一対の シ ール 口 一ルを鋼帚出 側に配釐する も のであ るが 、 鋼 ^両 側部分 の上下 ロ ール間及び炉壁と ロ ール と の間に 不可避的な隙間を生 じ、 こ のため完全な シ —ル は不可能であ る 。
通常は 、 こ の隙間 から 少量の炉 内雰 通気 ^ スを吹き 出 して炉 内への大気の侵入を防 止 してい るが、 炉入側 !:火加熱炉の燃 熊変動に よって炉 内が急に 負 Eにな る場合 には 、 大気侵入の恐れがあ る 。
(2)水封方式
こ の方式は 、 雰 S気炉 出 口 を水封 タ ン ク でシ ール し、 こ の タ ン ク 中に鋼帝を逼過さ せ る よ う に した も ので ある が、 この方式で
は炉 内への水蒸気侵入の恐れがあ り 、 大気 侵入と 同様の問題が残る 。
第 2 の問題 ; 直火加熱炉に続いて間接加熱 炉を設けた連続処理ラ イ ン では、 間接加熱炉 の雰囲気ガスが直火加熱炉へ流れ込み、 さ ら に 直火加熱炉の燃 '廣棑ガス と上記雰囲気ガス との混合 した ものが予熱炉へと流れ、 最終的 に挵出 さ れてい る 。 この場合、 個々の帚域の 流量変動に伴 う 各帯域間の相互干渉によ り 炉 Eが漦 し く 変動 し、 管理 しき れないと い う問 ϋ-を力 力 えてい る 。 また、 予熱炉へ未燃分を 含んだま ま の燃烧拚ガスを導入 し、 鋼帚予熱 を行なった場合、 予熟炉出口 での排 ガス温度 が低 に なり 、 未燃分の完全燃燒を させに く く なる とい う 3
趕 も の る 。 本癸明は この よう な従来の銷帚 ¾続処理 ラ イ ン の欠点を除去 し、 改良された こ の種の ¾ 続処理 ラ イ ンを提供せん とする も のであ る 。
すなわち 、 本発明の 目 的は、 直火加熱炉を
有する鋼帝の ¾続処理 ラ イ ン において、 鋼帯 を ^酸化^ し く は S元状熊で加熱する こ とが でき る連続処理 ラ イ ンを提 ^する こ とにあ る また本発明の他の 目 的は 、 鋼帚を無酸化若 し く は還元状熊で しかも 高温状態に加熱 · 均 熱する こ とができ る连続処理 ラ イ ンを提供す. し と に の る 。
ま た本発明 の他の 目 的は、 直火加熱炉にお いて鋼帚を常時無酸化還元状熊で加熱する こ とができ る ¾続処 51 ラ イ ンを提供 る こ とに の O o
また本癸明の他の 目 的は、 鋼帝が少な く と も 直火刀 D熱炉を る 時点で無酸化状熊 となる よ う な连続処理 ラ イ ンを提供する こ と にあ る ま た本発明の他の 目 的は、 鐫帯を少な く と も炉内 口 一 ル と接蝕する 時点で無酸化抉熊と し、 これによ り ロ ー ル ピッ ク ア ッ プを 防止す る こ と ができ る違続処理 ラ イ ンを提供する こ こ の な 。
また本発明の他の 目 的は ¾続溶融亜鉛 メ ッ
キ ラ イ ン において'、 間接加熱時間を ^縮 化 し ま た メ ツ キ 密着倥に 必旻な鎩帝の表面活性が 十分得 ら れ、 しか も 全体の炉長を ^縮化する こ とがで き る 違続処理 ラ イ ン を提供す る こ と に の 。
ま た本癸明の他の 目 的は 、 直火加熱炉 と こ れに続 く 雰 g気炉 とを 有する连続処理 ラ イ ン におい て、 雰 ^気炉 内への大気侵入を適切に 防止する こ と がで き る違続処理 ラ イ ンを提供 す し し の o
ま た'、' ^癸 明の泡の 目 的は 、 予熱炉 、' 直火 刀 C1熱炉及び間接刀 D熱炉を順に 有する ¾続処理 ラ イ ン において 、 炉 円 ガス力 S他の炉へ移動す る こ と を 防止 し 、 炉内 ガ ス Eの変動に よ る''各 炉 間の相互干渉を 防止する こ と がで き る違続 処理 ラ イ ン を提侯する こ と にあ る 。
ま た:21癸明の 恺の 目 的は 、 予熱炉 、 直火加 熱炉 及び間接加熱炉を順に有す る ¾続 ^理ラ イ ン に おいて、 燃 ^排 ガ スを利用 した鋼帚の 予熱を ¾;羣的 に 行 う こ と ができ る ¾続処理 ラ
イ ン を提供する こ とにあ る。 発明の開示 以上の 目的を達成する ため本発明は次のよ う な構成 ¾r有する 。
すなわち 、 連続処理 ラ イ ン の直火加熱炉は 複数の還元型加熱バ ーナを有 してい る 。 こ の 刀 G熱 ノ '一ナ は、 その火炎 中に、 燃燒中間生成 物を有 し且つ遊離酸素を有 しない領域 、 すな わ 非平衡領埭を形成する こ とができ る 。 本 発明では この よう な 各還元型 JJ .熱バーナを、 火炎が鋼帝面に略直角で、 しかもそ の非平衡 镇续で衝突す.る よう 配置 し、 且つこ れら複数 の還元型加熱バ ーナを、 ラ イ ン 向での ( バ ーナ内径 ) ノ ( ノ 'ーナ ピッ チ ) 力 0. 3 以上と な る よ う な間隔で配置する 。
本癸明は厦火加熱炉を有する あ らゆ る態様 の连続処理 ラ イ ンを対象 とする こ とができ る 還元型加熱バ ー ナを有する上記直火 Tra熱炉 では 、 鋼帚の無酸化逢元加熱可能 温度 は
9 0 程 であ り 、 このため鋼^を よ り高 温で熱処理する場合には直火加熱炉 に^き 間
接加熱 炉が設け ら れる 。
¾ ^理 ラ イ ン が 、 連続境! ¾ ラ イ ン で あ る 場合 と しては 、
①直火加熱炉 、 間接加熱炉及び ロ ール?1令却を 主体 と した 冷却炉を順に備え 、 且つ最終処 理帝 の 出側に 調 ¾ E延機を 備えた も の 、
②上記①の ラ イ ン の直火加熱炉の上流側 に予 熱炉を僱えた も の 、
③上 記②の ラ イ ン の予熱炉の上流側に ク リ ー ニ ン グ設儋を備えた も の 、
④!:火: ϋ' 熱炉 、 間接 熱炉及び液体冷却を主 体 と した冷却炉を順に儋ぇ 、 且つ最終処理 帚の 岀 側に 調質 Ε延機を傭え た も の、
⑤上記④の ラ イ ン の 直火刀 D熟炉 の上 vt 側に予 熱炉を僱え た も の 、
⑥上記⑤の ラ イ ン の予熱炉の上流側に ク リ 一 ニ ン グ設僱を僱えたも の 、
等があ り 、 こ の よ う な ラ イ ン よ り 鐫否を酸化 膜に よ る 問題を生 じ さ せる こ と な く 効军的に 连統 ^鈍する こ と がで き る 。
连続処理 ラ イ ン は違続 溶融亜鈴 メ ツ キ ラ イ ン で あ る 場合 も あ り 、 こ の場合には 、 各設ィ還 の 配列は 、 直火酸化炉 — 直火還元炉 ( 還元型 加熱 バーナ を有する 直火加熱炉 ) 一間接加熱 方式の 均熱炉 ー溶融亜飴 メ ツ キ装置を順に 有 する ラ イ ン 、 或いは上記均熱炉を持たず 、 匼 火還元炉に続いて溶融亜錯 メ ッ キ装置を有す る ラ イ ン と する こ と がで き る 。
連続処理 ラ イ ン が直火刀!]熱炉 と こ れに 続 く 雰 気炉を 有する もの であ る場合、 前 記雰 g 気炉の 出. 口 シ ー ル ールの上流に シ ー ル チ ヤ ン バを設け、 かつ該雰 S気炉の炉 Eを検知す る 手段 と 、 炉圧低下 ^に前 記 シ ー ル チ ャ ン バ 内 に シ ー ルガス を吹 き 込む手段を設け る こ と がで き 、 こ れに よ り 雰苣気炉 内への外気の侵 入を防止する こ とがで き る 。
ま た ¾続処理 ラ イ ン が予熱炉 、 直火 G熱炉 及び間接刀 G熱炉 を順に有す る も のであ る場合 前記各炉間に 中間室を設け 、 さ ら に必旻に 、 じて前記直火 加熟炉 と予熱炉 と の間に、 上記
直火炉内の燃燒排 ガ スを完全燃' させて予熱 炉内に供給する ア フ タ ーバ一 ニ ン グ室を設け る こ と力 Sでき 、 こ れによつて 、 炉内 ガ スが他 の炉へ移動する こ とを阻止 し、 炉内ガス圧の 変動に よる各炉間の相互干渉を防止 し、 さ ら に燃 挵 ガス を利用 した鋼帝の予熱を効率的 に行 う こ と力 Sでき る 。
ま た、 以上の よ う な各種態様の連続処理 ラ ィ ン において、 前記還元型力 G熱パ-ーナは、 直 火加熱炉の全力 熱有 範固に亘つて設け る こ と力 Sでき る 。 し力 し、 上記バーナは一般に使 用 さ れてい る 非 S元型バ ーナ ( 拡散型 ノ ーナ) に敦べ熱容量が小さ く 、 こ れを全有効炉長に 亘つて配置す る場合、 その配置間隔を密に し て多数のバーナを用いなければ必要な熱量を ^保で きない 。
こ のため 、 上記 ¾元型加熱バ一ナは必要且 つ十分な範固 にのみ配置する よ う にする こ と が合理的であ り 、 このため次の よ うな構成と する こ と ができ る 。
すなわち 、 採 .弔 し得 る第 1 の 態様 は 、 鐄帚 が少な く と も 直火加熱炉を 出 る 蒔点で無酸化 状態と な る よ う な還元型 パー ナ の配置形態で あ り 、 そ の 内容は 、 直火加熱炉の有効炉長に 対 し、
T = C ( TOUT一 T^)ノ( TOUT一 TIn )〕 l 0 o 但 し、 TIN : 直火加熱炉入ロ鐄^温度 ( ¾)
τ■ : 非還元型加熱バ ーナ設置領续と 還元型加熱バーナ設置領域との 境界部における鐫帚板温 ( )
B(T): 鐫帚酸化速 S ( Αノ sec )
- 6126 Λ
〔 = 69200. e 、 τ 〕
F(T): 加熱速度 C K/sec )
〔 = dT/dt D
5 ) で求め ら れる T 以上の炉 出 側炉長部分に還 元型加熱 パ'ー ナを 上記 ビ ツ チ ( [: バ一 ナ内き ノバ 一ナ ピ ッ チ 〕 > 0. 3 ) で配置 し、 残有効 炉長 部分 には非還元型 加熱バ ー ナを配置す る のでの ό 。
^ 7Ζ R し な第 2 の態様は 、 鋼,帚を少な く と も 炉 内 口 一 ノレ と接触す る 時点で無酸化状 態 と し、 こ れに よ り o 一ノレ ピ ッ ク ア ッ プを防 止す る と と ¾に 、 U rn を無酸化状態で 直火-加 熱炉 から 送 り 出す こ と がで き る よ う に した還 元型刀 G熱パー ナの 配置形態で あ り 、 その内容 は 、 直火加熱炉各パ スの少な く と も 出側逼板 口 ー ル ϋ前の加熱領域を含むパ ス 出 側領埭に 遺 型 力 α熱バ ー ナ を配 ¾す る もの であ る 。
本癸明 では、 火炎中に非平衡領域 、 すな わ ち 燃燒中間生成物が存在 し且つ造離酸素が存 在 しない領埭が形成 さ れ得 る遺元型加熱バ ー ナ が所定の条件で用い ら れる 。 こ の よ う な加
熱バ ーナ では 、 火炎中ほほ'燃燒反応が完了 し C02 , H2 0 , Ν2 , Η2 , CO 等を含む領域 ( す なわち準平衡領域 ) が酸化倥であ るのに 対 し 中間イ オ ン 、 ラ ジ カ ル等を含む上記非平衡領 域は還元性を示 し、 こ の火炎を鋼帝に対 し略 直角に 、 しかも 非平胬領,域で鋼帚に衝突させ る こ とに-よ り鋼帝を酸化させる こ とな く 加熱 す.る こ と力 Sできる 。
第 3 図及び第 4 図はその よ う な還元型加熱 バーナ の一例を示すも ので、 円筒形のバ一ナ タ イ ル(1)の 内壁(6)に、 局方 向で間隔をおいて 複数の燃焼用 気吐出孔(2)を設け ると と もに バ ーナ 内方中心部に燃料ガ ス &出孔(3)を設け しかも燃 ^用 ^:気 β±出孔(2)及び.燃料ガス 5±岀 孔(3)を次の よ うな構.成 と したも のである 。 ィ) 空気 e±出孔(2)の空気侯給方向に前記バ ー ナ タ イ ル内局に関する接線に对 して 6 0 以下の角 ^ を付する 。
口) 燃料ガス f±岀孔(3)と空気吐出孔(2)のバ― -ナ軸方向距離 Nを、 燃料 ガス吐出孔が ^
気 ώ孔 よ り も バ ー ナ タ イ ノレ 出 口 ^ に あ ' 会 ご そ の逆を '、ニノ と した場 会 — 0.1 D ÷ G.4 D ( D -—ナ円口 径 ) に 設乏する 。
空気吐 孔(2)力 ^ ら バー ナ タ イ ル 出 口 (5)ま での を 0.6 D 3 D と る 。
こ の よ う に 構成 さ れた加熱バ一 ナ は 、 S気比 1. 0 以下で佞 さ れる こ と に よ り 、 火炎 〒 に. 所定の で非平胬領域が ¾成 さ れる 。 すな
: ち 、 こ C よ う 熱バー では 気 th i 孔 (2) ^ ら の燃 ≡≤気の旋回 と パ ーナ =夫か ら ニ さ / r る 燃 ガス と に よ り 急速燃 ' が笑 ¾ さ 、 バ ーナ コ外:^ の所 の ¾ gに!:つ て 、 燃 =? 間生成 ¾を多量に み且つ未反 の遊 H を含 ま い領续 、 す わち ^平街 領 を 成する 。 第 5 図は 、 この よ う 加 バーナ に よって さ lる 火炎 平^ 頁续 のイ オ ン核 プ コ ー プに よ る一 ijを示す も ので 、 プコ ー プに よ る ^定 ¾流値が ¾いの は イ ン ¾度が大 き く 、 し がって ' ψί 中間
生成 ¾が多量に存在 して いる こ と を して いる 。 こ nに よ れ 、 バ一ナ 口 外万の 定 の ¾ sに!:つて ^平街領续が形成 さ れ、 そ の 外方はほぼ反 ^を ^了 した C02 , ¾ 0 , N2 等 を含む準31胬領埭と なってい る 。
第 6 図はこの:よ う な TIP熱バ ー ナの g元 ¾熱 性、 す わ ち 、 ^漦化で加熱 し得る限界 m ( 警通 ^の奪板に 関する 限界 ϋ度 ) を示す ものであ り 、 ^気比 0.8 5 0.9 5 の範 gにおレ、 て ϋ否を約 9 0 0 X: で加熱で き る こ が示 r z
また、 : 癸 ¾は のよ う 加熱バ ーナ以 外に、例え '所言 Ϊ ラ ジア ン ト カ ップバ一ナを還 元 ϋバ一ナ と して月い る こ とがで き る 。 こ の バーナは急 ¾ ^反 ^を行なわせるため、 ≡ 気と ' ガス とを予め ¾合 した ¾合気 を、 バ一ナ タ イ ル の半 ^凹^で急 ^ ^ させ、 バ ーナ タ イ ル 面を高温化 .して 、 敖射 熱を 主と して ¾ する もので、 n物^昃カ2 '高 温^の镇续で高い熱流 ^;が得 られる ^を ^
。 そ して こ の パ' 一 ナ て 、 気 比を 1.0 以下 て ¾ '^ さ せる こ と に よ り 、 火炎 〒に非平 ■>ヌ -^ S^ έ' Ρ ^ 。
ΐ し 、 こ の ラ ジ 了 ン ト バ一 ナ は燃 ' ^気 と 燃料 ガス の予 ¾合万式であ る ため燃 ' ^空 気の予 がで きな い こ と 、 及び この よ う に空 気の予熱がで き ない ため ^酸化刀 α熱は 7 5 0 匸 程度が限 ^であ り 、 よ り 高溫域での加熱を必 ¾ と する よ う な場合に は適 ^ で き なレ、 こ と等 の篛点が あ る 。 こ の 点、 第 3 図 に示 よ う な 熱バ ー 了 で 、 予熱^気を利月で き る こ と か ら S 0 0 程度 まで ^該化加熱が可能で あ り 、 また こ の よ う に予熱≤気を j ^す る こ と に よ り 火炎 が め ら れる ため 、 ラ ジ 了 ン ト バーナ に 敦ベ 〒間反 生 ¾に よる g元作 そ の も のも ¾杲的.に 向上 させる こ とがで き
。
Ξ?で 、 こ の つ な; S ¾ UG ノ —ナ を ラ イ ン 向で ( バ ナ P 径 ) z ( ノ、、—ナ ビ ツ チ ) が G. 3 以丄 と る よ う 間 PI的 に 13置す
る 。 上記 した よ う 熱バ一 ナ は、 その火炎 宁の非二街領^:によ り ^ ¾表面を^ 化 · g 元 ^態で 熱 し得る こ とは上述 した通 り であ る 。 しカゝ し、 癸明者等が検討 した と ころ に よれは"、 ^熟バ ーナをラ イ ン 方^で ま -ばら に 配置 したのではバ一ナ 間に存在する燃 ガス ( 準平衡 ガス ) によ り 鋼胥が酸化.されて し ま う こ とが ^った 。 そ こで: ^発明者等は 、 加熱 パーナの火炎に よって S元さ れ、 旦っ刀 G熱バ 一ナ間の '愿 ガスに よって 化 される鐄蒂が 全 と して s元牧態を維持す る ため の条件を
7JD熱バ ーァ の 径 と ラ イ ン 向での 加熱パ ― ナ ピッチ との関係で検討 した。 まず、 刀 E3熱 ーナの火炎におけ る ^平胬領续 と ] 1 E してい る ϋ の ¾元速 g A ( T ) と、 IJ 熱バ ーナ間の m化 ^ ^ガスに n Ξ してい る ϋ の 化速 s £ ( τ ) は下弍によ り求め得る こ とが つた こ の ■速^は^^:癸熱量 2 0 0 0 K ca^^ m3 以 の燃 ' 力''ス に適 で き るも のである 。
C
A (T ) = i 27000 e τ ' ( A/sec- )
, ヽ 一 f 6126 Λ , C ヽ
B ) = 69200 e ^"リ (Aノ sec ) 但 し、 T : 鐄苦 渥度 ( Κ )
そ して 、 加熱 バ一ナ の 内径を d 、 ラ イ ン方 向 での 加熱バ ー ナの ピッ チを P 、 r = d/p と す る と 、 ラ イ ン 方向で 間隔に配置さ れる 加熱 パ ー ナ に よって加熱 さ れる 鋼帯が、 還元状態 を維持する た めには 、 下式が成立する 必旻が の - > o
Γ · A (T) -( 1— r ) · B (τ) > ο (1) こ こ で 、 Α(Τ) 、 Β(Τ) は 温度の関 数で あ るが こ れに基づ き (1)式を解 く と 、 下記の'通 り Β (Τ) / ( A (T) -r B (T) ) は 0〜 1 0 0 0 匸 の温度範 S に おい てほぼ 0. 3 と な る 。
B (T)
7 ≥ = 0. 3
A (T)十 B (T) 1 図及び第 2 図は本癸 明 におけ る還元型 7JP熱バーす (a) の配置例を示すも ので、 第 1 図 は千鳥配列、 第 2 図 は並列配列の場合を示 してい る 。 そ していすれの場合に も 、 還元型 JG熱 ノ ーナ (a ) は 、 その バ一 ナ 円径 d と ラ イ
ン 方向におけるバ一 ナ ビツ チ P と の比 dノ ρ 力 0. 3 以上 とな る よ う 配置さ れる
本発明で用い られる還元型加熱 i d- その火炎が鋼帚に対 して略直角に 、 しかも そ の非平衡領域で蠲帯面に衝突する よ うに配置 さ れる 。 ¾来の直火加熱炉、 例え \f N 0 F等 に用いら れる 加熱バ ーナでは、 上記バ一ナの よ う な非平衡領域が、 他の領域と 明確に区別 される よ う な 形で形成 されない。 従って 、 目 視 しう る 火炎が鋼帚に!:接接 ¾す と 、 ¾1 ΪΤ 表面が ¾し く 酸化 さ れる 。 こ の為 、 一 B-j には 、 火炎が直接鋼帚に敏れない よ うに 、 火 炎が鋼 ^幅万向と平行に形成さ れる よ うに 置されてい る 。 こ れに対 し本発明で用い る還 元型加熱バ ーナは、 バーナ火炎の長手方向中 間に形成 される 非平胬領域に よ り鐫菅を加熱 する ために設け られる も のであ り 、 こ のため 火炎が鋼 面に対 し略!:角 に、 しかもその非 平衡領域で衝突する よ う バ ノ ·?τ B ¾: も のであ る 。
図面の簡単な説 明 第 1 図 及び第 2 図 はそ れぞれ本癸明 におけ る 加熱 一ナ の配 S例を 示す説明図 、
第 3 図及び第 4 図は: ^発明 ラ イ ン 中の直火 加熱炉で 用い ら れる 加熱 バー ナ の一例を示す もので 、 第 3 図は'縦新面図 、 第 4 図は 第 3 図 中 IV — IV 線に沿 う 断面図 、
第 5 図 は 第 3 図及び第 4 図 に 示す加熱バー ナ にお ける 非平衡領域形成範 Sの一測定例を 示 " τ ク ラ フ 、 - 第 6 図は 同 じ く 加熱バ ー ナ の還元加熱特性 を示す グ ラ フ 、
第 7 図は本発明 ラ イ ン の一実施例を 示す説
¾図 、 - 第 S 図 は:^癸明 ラ イ ン の他の 実旌例を示す 説明図 、
第 9 図は 第 8 図 に示す直火加熱炉 におけ る 酸化膜生成挙勣及び鋼 ^温度の搓移を示す グ ラ フ 、
第 1 0 図は:^癸 明 ラ イ ン の他の実施例を示 す ferr Ξ図 、
第 i i 図は第 i 0 図 に示す!:火 加熱炉に お ける 酸化膜生成挙動及び鋼帝溫度の推移を示 す グ ラ フ 、
第 1 2 図 〜第 1 4 図はそ れぞれ 癸 ^に よ る连続燒鈍 ラ ィ ン の実施例を示す説明 図 、 第 1 5 図 は第 1 4 図 中の ク リ 一 ニ ン グ_設倔 の詳細を示す説明 図 、
第 1 6 図 は第 1 3 図及び第 1 4 図の 予熱炉 にお け る 燃燒排 ガ スの空気比 と 無酸化予熱限 界温度 との関係 を示す グ ラ フ 、
1 7 図 〜第 1 9 図は そ れぞれ本発 明 に よ る ¾ ^燒鈍 ラ イ ン の実 ½例を示す説明 図 、 第 2 0 図 (A ) 及び (B ) は そ れぞれ 癸 ^に よ る ¾続式溶融 S鉛 メ ツ キ ラ イ ン の実施例を 示す説钥図 、
M 2 1 図は 第 2 0 囪 (A ) の メ ツ キ ラ イ と 從来方式に よ る メ ツ キ ラ イ ン の各 ^鈍サ イ ク ルの昇温 線を比該 して示すグ ラ フ 、
2 2 図は: S癸 ¾ ラ イ ン の ^の旲旌例を示 す説明図 、
第 2 3 図は本癸明 ラ イ ン の俛の旲 例を示 す説明 図 、
第 2 4 図 は第 2 3 図 中の中 間室の部分拡大
図、
第 2 5 図〜第 2 9 図は第 3 図及び第 4 図 に 示す加熱バ ーナの特性を示すグラ フ で、 第 25 図は燃料ガス吐出孔 と空気吐出'孔 とのバ -ナ 軸方向におけ る 距離 N を一 0. 2 5 D と した場合 のバ ーナ 出口 から の距離と ガス温度及び 02濃 度イ オ ン強度 との関係、 第 2 6 図は燃料ガ ス 吐出孔と空気吐出孔 の ノヾーナ軸方向 における 距離 N と遊離 02のバ ーナ軸方向残存距離 L0と の関係、 第 2 7—図は距離 Nを + 0· 1 D と した場 合のバ ーナ 出 口 から の距離 L と ガス温度 02 濃 度、 及びイ オ ン強度 との関係、 第 2 8 図は燃 料ガ ス吐出孔 と 気吐出孔の距離 N と パ ー ナ タ イ ル後壁温^ Tb との関係、 第 2 9 図は 気 吐出孔から ノぺ、ーナ 出 口 ま での跽齄 L と非平衡 領埭の末端ま での ^離 との関係を各示すも のである 。
発明を実施するための最良の形態
以上の よ うな配置条件の還元型加熱バ一ナ は、 直火加熱炉の全加熱有効範固 に亘つて設 ける こ とによ り 鋼帚を終始無酸化 · 還元状態 で加熱する こ とができ 、 これによ り 確実な無 酸化状態を得る こ とができ る 。 第 7 図はその —例を示すもので、 1 ノ、。ス タ イ プの連続直火 加熱炉(8)において、 その全加熱有効範囹、 す なわち 加熱を必要とする全領域に上記加熱バ ーナ (a ) を配置 している 。 すなわち、 加熱バ ―ナ (a ) は鋼 ^ ( S ) の両側に加熱炉長手方向 で間隔的に配置さ れている 。 ―
このよ う に還元型加熱ノヾー ナに よる 加熱は 直火加熱炉各パス の全加熱領域で行 う こ とに よ り 鋼帝を終始無酸化 態で加熱する こ とが 可能であ るが、 この種のバ一ナは一般に使用 されている非還元型バーナ ( 散型バーナ ) に敦べ熱容量が小さ く 、 これをパス全加熱領 埭に亘つて配置する場合、 その配置間隔を密 に して多数のバーナを用 いなければ必旻な熱 量を確保でき ない 。
こ のため本癸明では 、 上記還元型加熱バ ― ナを 、 所定の 目的を得る ため に必要且つ十分 な範囲 についてのみ配置 し、 残りの範囲につ いては、 非還元型バ ーナを配置する こ とがで さ ο
まず、 本発明では 、 少な く と も鋼帯が直火 加熱炉を 出る 時点 '無酸化状態である こ とを 目標とする 「 鋼帝の無酸化状態 」 と して設定 する こ と力 でき る 。 ·
そ して、 こ.の場合には 、 直火加熱炉の出側 の所定.範囲にのみ上記還元型加熱バ ー ナを配 置 し、 残り の炉長部分には従来の非還元型加 熱バ ーナを配置する基本的なバ ーナ配量形態 を採り 、 直火加熱炉入側に配置さ れた非還元 型加熱バ ーナに よ り 、 出 側に配置された還元 型加熱バ ーナの熱量不足を補い、 且つ非還元 型加熱バ ーナ によ り 鋼帝表面に形成された酸 化膜を 出側の還元型加熱バ ーナ によ り 還元 し 鋼帝を無酸化牧態で直火加熱炉から送 り 出す よう にする ものであ る 。
' すなわち 、 全有効炉長に亘つて複数の加 熱 バーナを配置 し、 これら 加熱バ ーナ の う ち 、 有効炉長に対し、
'丄、 OUT T
dT dT
A (T) B (T) = 0
F(T) F(T)
T ノ TIN
T = C ( TOUT - T*)/ (TOUT- TIN )〕 x 100 但 し、 TiN : 直火加熱炉入口鋼帚温 S ( K ) TOUT: 直火加熱炉出口鋼帯温度 ( ° )
Α(Τ):鋼帯還元速度 ( Zsec )
C = 127000 e -( )
B(T): 鋼帚酸化速度 ( A/sec ) し = 69200 e Tτ 〕
T * 非還元型加熱バーナ設量領域 と還.元 m加熱バ一ナ設置領域 との ·境界部における鋼帝板温 (°κ)
F(T) 加熱速度 ( /sec )
〔= dT/ dt 〕 で求め られる ?" ^以上の炉出側炉畏部分の加
熱 ナを、 上記還元型加熱 ナ と し、 残 炉長部分の加熱 ナを非還元型加熱 一ナ と する 。
以上の搆成は、 加熱 ナの火炎の還元領 域た る非平衡領域 ( 還元型加熱パー ナ ) 及び 酸化領域たる 準平衡領域 ( 非還元型加熱 ナ ) における 還元速度 A (T)及び酸化速^ B (T) を利用 し、 酸化膜厚が零となる よ う に、 還元 型加熱パーナの配置範囲を決める よう に した も のであ る 。
すなわち 、 直火炉 内で鋼帚酸化量は鋼帯の 上記両領域との接触時間に よって決ま る 。 一 方 、 本発明者ら が検討 した と こ ろ によれば、 上記非平衡領域の還元速 g A (T) 及び準平衡 領域の酸化速度 Β (Τ ) は下式により 求め得る こ とが判った 。 こ の各速度は低位発熱量 2000 Kca^ ZNm3 以上の燃 '麂 ガスに適用でき る もの の る 。
一 6433 0
A = 127000 e A sec )
/■ 6126
B (T)= 69 20.0 e一^ τ ) (Ι/ζξ, Ο )
(3o)
但 し、 T : 鋼帯溘度 ( Κ ) したがって、 炉長方向において非還元型加 熱バ ーナ設置領域 と還元型加熱バ ーナ設置領 域と の境界部における 鋼帯板温を Τ*と した場 合、 直火加熱炉 出 口 における 酸化膜厚は、
Τουτ dT τ dT τ* Α(τ)· τ) Β (Τ)
F(T) IN 但 し、 TIN : 直火加熱炉入口鋼帝温度 ( K)
TOUT : 直火加熱炉出口鋼帚温度 K ) - F(T) : 加熱速度(。K sec )
〔 = dT/d t 〕 で求め ら れる 。 したがって、 下記(1)式によ り この酸化膜厚が零 とな る よ う な境界部鋼 ^板 温 を求める こ とができ 、 鋼帚は加熱炉全有 効炉長範苣においてほぼ一定の割合で昇温す る と考え られる こ と から 、 上記境界部鋼帝板 温 により 下記(2)式によ り 、 全有効炉長に 対する酸化皮膜を零 とする ための還元領域、 すなわち還元型'加熱バ ーナを配置すベ き炉長
領域の必要割合 Γ が求め ら れる
' 丄' OUT
(1) 丁 =〔 ( TOUT 一 T*)ノ( T0UT— TIN )〕 x i o 0…… (2) 本発明では この よ う に して算定さ れた 7" に 基づき 、 還元型 加^バ―ナを 、 全有効炉長に 対 し r 以上.の 出 側炉長部分に配置し、 残 炉長部分に非還元型加熱バ ーナを配置する 。 . 第 8 図は こ のよ う な条件で規定さ れる ラ イ . ン のー実施例を示すもので、 (7)は予熱炉、 (8) は直火加熱炉 、 (9)は間接加熱炉、 (S ) は鋼帚 Cめ 。
II火加熱炉(8)の全有効炉長に配さ れる万口熱 'ーナは 1 〜 6 の 6 つの群に分けら れて いる。 そ して、 例えば、 上記条俘によ り 、 還 元加熱.領域が全炉長に対 し 2 4 以上必要な 場合には、 1 〜 # 6 の加熱バ ーナ群におい て * 5 、 ≠ 6 ( 全有効炉長の約 3 0 の範囲 ) に還元型加熱バ ーナを配 し、 残り の # 1〜 # 4
には非還元型加熱バ ー ナを配す る ものであ る なお、 上記複数の還元型加熱バー ナは、 上 述 した よ う な定め られた ピッ チで配置さ れる こ とは言 う までも ない 。
第 9 図はこ の よ う な設備における酸化膜生 成挙動及び鋼帯温度の推移の一例を示 してお り 、 非還元型加熱バ ーナが配置さ れた領域 ( 弱酸化加熱領域 ) において生成さ れた酸化膜 は、 続 く 還元型加熱バ ーナが配置 された領域 ( 還元力.口熱領域 ). において原板ベー ス の酸化 膜厚まで S元さ れ、 略無酸化状態で加熱炉か ら送 り 出 'されてい る こ とが判る 。
次に、 鋼帝酸化に基づ く ロ ール ピッ ク アツ プは、 直火加熱 !Fを構成する パ ス の岀 側通钣 。 ール II前で鋼^が無酸化状態であれば防止 で き る も のであ り 、 ま たこの結杲、 鋼 ^を無 酸化状態で II火加熱炉から送り 出すこ とがで したがって本発明では このよう な 「 鋼帝無 酸化状態 」 を 目標の状態と して設定する こと
がで き る 。 そ して こ の場合には、 直火加熱炉 各パス の少な く と も 出側通板 □ — ル直前の加 熱領域を含むパス出側領域に還元型加熱バ一 ナを 上記ピッ チ ( 〔 パーナ 内径ノバ一ナ ピッ チ 〕 ≥ 0. 3 ) で配置する 。 こ のよ う な構成で は 、 直火加熱炉を構成する 各パ ス について、 その入側加熱領域に熱容量の大きい非還元型 加熱バ ーナ を配置する こ とに よ り 熱量を十分 確保する と と も に 、 出.側加熱領域において、 入側加熱镇域で鋼帚表面に形成 された酸化膜 を還元 し得る還元.型加熱バ ーナを配量 し、 鋼 帚を無酸化状態で次のパ ス 、 ま たは均熱帝に 送り 出すも のである 。
第 1 0 図 はその一実旌例を示すも ので、 2 パ ス タ イ プの逭火加熱炉に違用 した例である 図において ( I ) は第 1 。ス 、 (D ) は第 2 0 ス (10a)〜(10d)は炉内の通板 π — ルである 。 この よ うな構成において、 各ハ。スの出側通板 口 一 ル(10b)及び(10d) ¾前の加熱領域には 、 上述し た還元型の刀 D熱.バーナ (a ) ラ イ ン :^向で
数備えた加熱バ ーナ群 (11)が配置されている 。 一方: 残加熱領域には従来一般に用い ら れて いる 非還元型の加熱バ ーナ によ る加熱バ ーナ 群(12)が配置されてい る 。
なお、 第 1 0 図 に示 した加熱バ ーナ群は、 ノ ズル ミ ッ ク ス型の短炎を形成 しう るノ ー ナ を使用 しており 、 その準平衡領域の部分が、 鋼帝に衝突 しう る よ う に配置を してい る 。
また、 本実施例では、 第 1 ノ、。 ス ( I ) の出側 及び第 2 パス ( II ) の入側に 、 通板ロ ー ル(lob) 及'び(10c )を直火炉から の直接赣射か ら連蔽す る ための遮蔽板(13)が突設されている 。
こ のよ うな!:火加熱炉では、 鋼帝 (s ) は各 パス の 入側及び中間領埭におけ る加熱バ一ナ 群 CL2)に よる 加熱によ り 一定^庋酸化される が パス 出側逼板ロ ー ル(10b)及び(10d)直前の加熱 バ ーナ群(L1Jに よる還元加熱によ りその酸化膜 が還元 され、 通板 ロ ー ル(I0b) , (10c ) , ( 10d) を 焦 酸化状態で逼.過 し、 加えて加熱炉岀側から続 く 間接加熱炉に無酸化状態で送 り 出 さ れる 。
第 1 1 図 はこ の よ う な直火加^炉におけ る 第 1 c ス ( 1 ) での酸化膜厚及び鐫帯温度の推 移の一例を示 して おり 、 非還元型加熱パー ナ が配置された領域 ( 弱酸化加熱領域 ) におい て生成 された酸化膜は、 続 く 還元型加熱 ナが配置さ れた出側領域 ( 還元加熱領域 ) に おいて原板ベー ス の酸化膜厚まで還元さ れ略 無酸化状態で続 く 第 2 ス (D ) に送り 出 され てレゝ る こ とが判る 。
本癸明は直火加熱炉を有するあ らゅ る態様 の连続処理 ラ イ ンをそ'の対象 とする こ とがで き 、 こ れら のいずれの態様にも以上述べた総 ての構成を適用する こ とがで き る 。
遺元型加熱 ナを有する 上記直火加熱炉 では 、 鋼帚の無酸化 · S元加熱可能な温度は
9 0 0 C程度であ り 、 このため鋼帯をよ り 高 温で熱処理する場合には 、 第 8 図に示すよ う に 直火加熱炉 (8)に続き 、 間接加熱炉 (9)を設け る こ とができ る 。
本癸明が対象.とする違続処理ラ ィ ン には、
違続焼鈍 ラ イ ン を連続溶融亜鉛 メ ツキ ラ イ ン とい う 二つの基本的な態様 ( 他の態様を除外 する も のではない力 s ) が考え られる。
まず、 上記基本的態様の 1 つであ'る連続焼 鈍 ラ イ ン について説明する 。
違続焼鈍 ラ イ ン の例と して 、
①直火加熱炉 間接加熱炉及び 口 ー ル冷却を 主体と した冷却炉を順に倔え、 且つ最終処 理帚の 出側に調質圧延機を備えた違続ラ ィ ン
②上記②の ラ イ ンの直火加熱炉の上流側に予 熱炉を備えた连続ラ ィ ン
③上記②の ラ イ ンの予熱炉の上流側に ク リ 一 ニ ング設僱を備えた ¾続ラ ィ ン
とい う 態様をあげ る こ とができ る 。
以上のよう な構成では、 鋼帚は!:火加熱炉 で S元型加熱バーナによ り遺元加熱され、 無 酸化状態で間接加熱炉に送り 出 される 。 直火 加熱炉では 加熱と と もに鋼帚表面に付着 した 圧延油が燃焼 ^去される 。 続 く 間接加熱炉で
(3T) は還元性雰囲気で均熱 されるが、 鋼帝は との 間接加熱炉にほ と んど無酸化の状態で送 り込 まれる ため 、 その雰囲気は 、 無酸化状態を保 持す る程度の弱還元佺 ( ¾ : 3〜 1 0 % ) で足 り る 。 続 く 冷却炉では冷却 ロ ールが設けら れ 口 一ル 却を主体と した冷却がなさ れ 。 冷 却炉の後面には通常過時効処理炉が設けられ てお り 、 鋼帝は こ の過時効処理炉後面の最終 冷却帯を出た後、 調 S圧延機によ り £延がな される 。 この よ う な設備では 、 直火加熱炉を 設け しかも こ の加熱炉におけ る無酸化加熱が 可能 となる結杲、 続 く 間接加熱炉 ( 均熱 .帚 ) における Η2濃度を極 く 低 く 抑える こ とができ しかも ロ ール冷却によ り過時効温度ま で鋼帚 を急冷できる ため過時効処理のための再加熱 を必要とせず、 これら のため、 従来方式の違 続燒鈍炉に敦べエ ネル ギーを大幅に節減 した 操業が可能と なる 。 ま た、 無酸化加熱の採^ と水 ¾ ロ ール による? 却方式のため 、 鋼帚酸 化が防止され、 酸^設備を全 く 不要な ら しめ
る 。 さ らに熱負荷応答性に優れた直火加熱方 式と 冷却サイ ク ル の調整が容易な水冷 ロ ー ル 方式を採る ため、 材料や所望材質に合せて熱 サイ ク ルを的確且つ応答性良 く 変える こ とが でき 、 連続燒鈍の サイ ク ル フ リ 一化、 すなわ ち炉温、 板厚 、 板幅等に関.係な く 処理する操 業を実質的に可能な ら /、しめる 。
ま た、 上記②の ラ イ ンでは上記直火加熱炉 の前面に予熱炉が設けら れ、 鋼帚は この予熱 炉において、 直火加熱炉等から 導入される拂 ガス により 予熱さ.れた後、 直火加熱炉に導か れる 。 連続加熱燒鈍では加熱時間が短いため 加熱の時間的効果が少な く 、 バッ チ 鈍に敦 ベ加熱温度を相対的に高 めに設定 して操業を 行っており 、 特に本願癸明のよ う な還元 ]!火 加熱炉を傭えた設備では 、 高速 鈍を目 的と した操業が行われる ため 加熱温度をよ り 高目 に設定する傾向が強い 。 したがって、 この よ うな鋼帚の違続'凑鈍処理において鐧帝の予熱 を行う こ とに より 、 直火加熱炉での加熱のた
めの負荷を薆減 し、 適切な高温、 高速燒鈍が 可能と なる 。 また予熱によ り 鋼帯表面'があ る 程度酸化 されて も 、 こ れを還元でき る 直火加 熱炉を備えてい るため、 予熱炉において 2 5 0 〜5 0 0 Όの高温予熱を行い鋼帯表面に付着 し た圧延油を燃焼除去する こ とがで き、 直火加 熱炉での圧延油除去と合せバー ン ォ フ性が良 好なも の とな る 。
また直火加熱方式では加熱.速 Sが大きいた め .間接加熱方式に よる 場合に敦べ加熱温^ ( 加熱最終温度 ) が高 目 に な る傾向があ り 、 そ れだけ余分な エ ネ ル ギーを必旻とするが、 予 熱; Fを設. 'けて鋼帚の予熱を行 う こ とに よ り 、 昇温の勾!^を低 く し、 加熱温 ^を必要以上に 上げな く て済むとい う利点が得られる 。
さ らに、 上記③の ラ イ ン では 、 上記予熱炉 の前面に さ ら に鋼 表面の ク リ ーニ ン グ設僱 が設け られ、 この ク リ ーニ ン グ設備では主と して鋼帝表面に付着した鉄粉が除去される 。 冷間 延を経た.鋼帯表面には通常圧延淮ゃ鉄
(HO) 粉 ( 圧延屑等 ) が付着 している 。 こ の う ち 圧延油は上述 した よ う に直火加熱炉ゃ予熱; で燃烧除去 されるが、 鉄粉は除去されす、 炉 内に堆積 した り 、 炉内雰囹気.ガス と共に炉内 で循環 して ロ ールと鋼帚の間に挾ま り 、 製品 表面に押瘀を生 じさせた り する 。 こ の設備で はこの よ うな鉄粉が前記 ク リ 一 二 ン グ設備で 除去される。 ま た高 S i , P , Mn , T i , C r 等 の鋼帝を違続燒鈍する場合、 これらは還元さ れに く い酸化膜を生 じる ため予熱及び直火加 熱 ( 還元加熱前の加熱 ) での酸化を簦減する こ とを 目的と して燃燒用ガスの空気比を下げ る ことがある 。 この よ う に した場合、 予熱炉 や直火加熱炉における 鐫帚表面の圧延^のバ ー ン オ フ特性が若干低下するが、 上記 ク リ 一 ニ ン グ設僱によ り このバー ン オフ性の低下が 補われ、 適切な圧延油除去作用が得られる 。
第 1 2 図は上記①の ラ イ ン に対応する実施 例を示すもので、 入側から順に!:火加熱炉 (8) 間接加熱炉(9)、 .冷却炉 、 過時効処理炉 as) 、
(40 最終冷却炉(16)が設け ら れ、 こ の最終冷却炉(16) の出側に 出側ルーパ(17)を介在 させてテ ン バ ミ ル (18)が配設 されてい る 。
直火加熱炉(8)に続 く 間接加熱炉(9)は ラ ジ 了 ン 卜 チューブによる 間接加熱方式であ り 、 基 本的には従来の間接加熱炉 と 同様である 。'但 し、 この連続焼'鈍 ラ イ ン では 直火加熱炉(8)が 還元能力を有 し鋼帚は無酸化状態で間接加熱 炉(9)に送られて く るため 、 こ の間接加熱炉で は鋼帚を酸化させない程度の雰圉気、 すな わ ち 、 ¾ :. 3 〜 1 0 % 、 通常好ま し く は 4 〜 6 ^ 巷度の雰固気で足 り る 。
続 く 泠却炉(14)では 、 複数の冷却ロ ー ル (L9) ( 通常水冷 ロ ー ル ) が配設さ れ、 該冷却 π — ル (19)の鋼赍 ( S ) に対する接触長を可変とする こ と によ り 、 冷却終点温度を調整 し得 る よ う に してい る 。
なお テ ンパ一 ミ ル (18)はそ の ワ ー ク ロ ー ノレに 硬質 ク ロ ム ロ ー ルを用い る ことが好ま しい 。 こ のよ う な ロ ール と 'しては特願昭 6 0— 4 1 0 0 9
号、 特願昭 6 0— 4 1 0 1 1号に示 される よ う な 口 ールが特に好ま しい 。 この 口 ールは鋼帯ェ ッ ジ による 柙 し疵を生 じに く く 、 このため 口 ール疵による鋼帚表面の疵の発生が適切に防 止でき 、 且つ鋼帯への粗 Sのプ リ ン ト 率 も保 持でき、 こ れに よ り鋼帯幅サイ ク ルフ リ ーの 違続焼鈍を可能な ら しめ る 。 すなわち 、 .従来 では上記の よ う なエ ッ ジマー クや ロ ール瘕に よる鋼帝への影響を回避する ため、 処理する 鋼帚は順次幅狭となる よ ぅ接統 していた も の であるが、 上記 したよ う な柙癣を生 じない硬 質 ク ロ ム ロ ールを ^いる こ と に よ り 、 そのよ う な制約から 解放 される こ とにな り 、 鋼^を 広狭に関係な く接続する ¾続燒鈍操業が可能 とな る 。
第 1 3.図は上記②の ラ イ ン に対応する実施 例を示すも ので、 直火加熱炉(8)の前面に予熱 (20) C 2 パス ) が設けら れている 。 こ の予熱 炉(20) には I火加熱炉(8)ま たは間接加熱炉 (9)か ら その燃燒棑ガスが導入され、 鋼帝 ( S ) の予
熱が行われる よ う になつてい る 。 なお、 本発 明者等の検討に よれば、 鋼帯の酸化は予熱温 度と 使用する 燃焼排 ガスが生成する 際の空気 比と に支配さ れ、 予熱温度に応 じ燃焼時の空 気比が異る 燃焼排 ガ スを使用する こ とに よ り 鋼帯をほ と んど酸化さ せる こ と な く 予熱でき る こ と 、 具体的には 、 第 1 6 図に示すよ う に, 鋼帚を 2 8 0 Ό未満の範囲で予熱する場合に は 、 1. 0 以上の空気比で生成 した燃燒排 ガ 'ス を用い、 鋼帚を 2 8 0 Ό以上に予熱する場合 には 1. 0未満の空気比で生成 した燃燒 τガス を用い るこ と に より 、 鋼帯を予熱温度にかか わ らず、 ほ とんど無酸化の状態で、 しかも効 ¾的に予熱する こ とができ る こと が判った。
この よう に予熱炉(20)では、 燃烧 ガスの空 気比の規制によ り 焦酸化予熱が可能であ るが 後続の!:火加熱炉(8)で酸化膜の還元作周が得 ら れるため 、 予熱炉(7)におけ る ある程度の酸 化が許容され、 この結杲、 第 1 6 図の鎖線 ) に示さ れる'よ うに約 5 0 C程^予熱許容温度
を高め る こと ができ 、 こ れに よ り 空気比 1, o 程度でも 4 0 0 程度の予熱が可能とな り予 熱炉(7)に鋼帯表面圧延油の燃铙除丟作^をな さ しめる こ と力 でき る 。
第 1 4 図は上記③の ラ イ ン に対応する 実施 例を示すもので 、 予熱炉(20)の前面に入側ル一 パ (21)を介 して麸粉除去を主目 的 と して ク リ 一 ユン グ設備(23を設けたものである 。 この ク リ 一 二 ン グ設備 (22)は鉄粉除去を主目 的と したも のである ため簡易な設傭で足 り る 。 第 1 5 図 は この よ うな ク リ 一 二 ン グ設備の一例を示す も ので、 (23)は アル力 リ 槽、 (24)はス ク ラ バ ( ブ ラ シ ロ ー ノレ ) 、 (25)は そのノ ッ ク ア ップロ ー ノレ (26)は温水 ス プ レ ーノ ズル 、 (27)は温水 リ ン ス櫝 (28)は ドラ イ ヤであ り、 この程'度の ク リ 一ニ ン グ設僱に より鉄粉に十分に除去する こ と がで さ る 。
また ¾続燒鈍 ラ イ ン の場合 泡の例と して、 ② II火加熱炉、 間接加熱炉及び液侔冷却を主 体 と した ^却炉を順に備え、 且つ最終処理
帯の出側に調質圧延機を備えた連続 ラ イ ン
(D上記④の ラ ィ ン の.直火加熱炉の上流側に予 熱炉を備えた連続ラ イ ン ⑤上記⑤の ラ イ ン の予熱炉の上流側に ク リ 一 ニ ン グ設倔を備えた違続 ラ イ ン
とい う 態様をあげ る こ と がで きる 。
こ の よう な構成では、 鋼帯は直火加熱炉で 上記①〜②の ラ イ ン と 同'様に無酸化還元加熱 され、 間接加熱炉に送 り込 まれて還元性雰囲 気で均熱される 。 鋼帯は この間接加熱炉に とんど無酸化の状態で送り 込まれ、 しかも続 く 中間酸洗に よ り液体冷却で生 じた新たな酸 化皮膜も 除去でき る ため、 その雰固気は、 無 酸化状態を保持する程 gの弱還元性 ( H2 : 2
〜 5 1ο ) で足り る 。 銃 く 冷却炉では液体冷却 で- を主体と した急冷が行われ、 鋼 ^は ほぼ常 ^ ま たは湯等に より 過時効 ま たは襞旲 .し温 Sま で冷却 される 。 次いで鋼帚は 中間酸疣設備に よ り急冷によって生 じた酸化膜が除去され、 しかる後、 過'時効処理炉で過時効ま たは. 戻
し処理され、 さ ら に最終冷却帚を出た鋼帯は 調質圧延機によ り 圧延がな され る 。
こ のよ う な連続焼鈍設備は、 無酸化加熱が 可能な直火加熱炉を用いる こ と によ り 、 加熱 均熱後の急冷を湯ま たは水冷却等の液体冷却 を行う 方式であ りながら 、 表面品質の優れた 鋼帚を得る こ とができ る 。 すなわち 、 加熱均 熱後の冷却を水冷によって行う場合鋼帝表面 の酸化膜の生成は不可避的な ものである 。 従 来の直火加熱炉と液体冷却方式との組み合せ では 、 直火加熱炉の後続に還元炉を設けたと しても 、 酸化膜の残存は不可避的であ る上、 液体冷却によ り さ ら に酸化膜が生成するため、 後続に漦 ¾設倔等の酸化膜除去設儋を設けて も 酸化膜が残存 し、 製品の表面品質を確保す る こ とが難 しかったものであ る 。 このよ う な 傾向'は特に強固な酸化膜を生成する 高 S i, Mn, P , C r , T i 材等で著しい。 こ の点本発明の違 続ラ イ ンでは、 還元加熱可能な!:火加熱炉か ら無酸化状態で間接加熱炉ー冷却炉に鋼帚が
送 り 出 さ れるため、 冷却炉に続 く 中間羧洗設 備で 急冷に よって生 じた酸化膜を除去する 'だけで足り 、 酸洗に よ り酸化膜除去を確実に 行 う こ とがで き る 。 ま た特に、 この ラ イ ンで は、 最終酸^設備ではな く 過時効処理炉 前面 に中間酸沆設備を設けているが、 こ れに よつ ても 上記酸化膜の除去効果が高めら れている 。 すなわち、 酸洗では酸化膜除去効杲を高める ため、 強酸を使 う こ とが好ま しいが、 強酸を. 用いた場合、 鋼帚表面処理性に有害な Fe (OH) 2 が生成する と い う 問題がある 。 そ して酸洗を 最終側、 すなわち過時効処理炉の後面で行う — 場合には、 生成 した Fe (OH )2 がそのま ま 鋼帝 表面に残存 して し まい、 これが鋼帝化成処理 栏に種々 の ト ラ ブルを生 じさせて しま う 。 こ の点、 中間酸 ¾、 すなわち過時効処理炉前面 に酸洗設僱を設けた本 ラ イ ンでは、 酸 ¾に よ り Fe ( OH )2 が生成 しても 続 く 過時効処理炉で こ れが炉 内の還元性雰 e気ガスで還元される ため F e (OH )2 が 残存する心配はな く 、 このた
め、 実質的に強酸に よる 酸洗が可能 とな る も のであ る。 ま た還元直火で高温 鈍 した場合 鋼帯表面にわすかではあ るが力 一 ボ 付着が み ら れる 場合がある力 、 この よ う なカ ー ボ ン も 中間酸洗によ り 適切に除去で き る 。
• また、 上記⑤の ラ イ ンでは上記②の ラ イ ン と 同様に 熱炉で鋼帯の予熱が、 さ ら に⑥の ラ イ ン では、 上記③の ラ イ ン と 同様に ク リ ー ニ ン グ設備に よ る処理がそれぞれな される 。
上記予熱により 鋼帝表面がある程度酸化さ れても 、 これを還元でき る直火加熱炉を僱え 且つ中間漦洗も備えてい る ため、 予熱炉にお いて 2 5 0〜 6 0 0での高温予熱を行う こ とがで さ る 。
なお、 直火加熱炉では、 S元型バ一ナが設 け られた ゾ一 ン は鋼帝表面を還元加熱する た め常時燃襞状態を保持しなければな らす、 こ のため鋼帝板厚等の違いに よ る加熱炉の熱負 荷調整は性の加熱ゾー ン の加熱バーナを消火 する等の方法'を採 る必要があ るが'、 予熱炉を
設け これに補助燃焼機能を も たせ る こ とに よ り 、 特に薄物材の加熱等において微妙な熱負 荷調整が可能 とな る 。
, 第 1 7 図は上記④の ラ イ ン に対応する実施 例を示すも ので 、 入側から順に直火加熱炉(8) 間接加熱炉(9)、 冷却炉(14)、 中間酸洗設備 (29)、 過時効処理炉(15)、 最終冷却炉 が設けら れ、 この最終冷却炉(16)の 出側に 出側ル一パ(L7)を介 在させてテ ンバ ミ ル (18)が配設されている 。
直火加熱炉(8)に続 く 間接加熱炉(9)は ラ ジア ン ト チューブによる 間接加熱方式であ り 、 基 ^的には従来の間接加熱炉と 同様である 。 但 し、 こ の连続焼鈍ラ イ ン では ]!火加熱炉(8)が 還元能力を有 し鋼帚は無酸化状態で間接加熱 炉(9)に送られて行き、 且つ後続に中間酸沆を 傭えてい るため この均熱帚では鋼 を酸化さ せない程度の雰 S気、 すなわち、 H2 : 2〜 5 °h . 通常好ま し く は 3 〜 4 程度の雰固気で 足 り る 。
続 く 冷却炉(14)では鋼帯 (S ) は水中に浸漬さ
れる こ とに より急冷される 。 水中では鋼帯に ノ ズルから ス プ レ ー力 Sなさ れ、 蒸気膜が除去 さ れる 。
中間酸洗設備(29)は酸洗櫝(30)、 リ ン ス槽 (31 ) . ド ラ イ ヤ (32)等から 構成されでお り 、 例えば H C 5 % , 4 0〜 6 0 C X 1. 5 秒 程度の酸^処 理及び 8 0— 水に よる リ ン ス処理が行われる 過時効処理炉(15)では弱還元性雰 S気で鋼帯 ( S ) の過時効処理または境戻 し処理が行われ る 。
なお、 テ ンノ、。 - ミ ル(18)は上記①の ラ イ ンで 述べたもの と 同様のものを用いる こ と が好ま しい 。 - 第 1 8 図は上記⑤の ラ イ ン に対^する実旄 例を示すも ので、 ¾火加熱炉(8)の前面に予熱 炉(20)を設け たものであ る 。 こ の予熱炉 (20)の内 容については上記②の ラ イ ン で述べたこ と と 同 で の 。 。
第 1 9 図 は上記⑤の ラ イ ン に対応する実施 例であ り、 予熱萨 (20)の前面に入側ルーパ (21)を
(5 U 介 して鉄粉除丟を主 目 的と した ク リ 一 二 ン グ 設備(22)を設けたも の である 。 こ の ク リ ーニ ン グ設備 (22)の 内容については上記③の ラ イ ン で 述べた こ と と 同様であ る 。
なお、 以上の①〜⑤の ラ イ ン におけ る調質 圧延機と しては、 テ ン ノヽ0 — ミ ルのほかテ ン シ ヨ ン レ ベラ 一を用い る こ と力 Sでき 、 或いは テ ン ハ0— ミ ノレ と テ ン シ ョ ン レ べ ラ ー とを併設す る こ と も でき る 。
また冷却に続いて亜鉛 メ ツ キ等メ ツ キ装置 を設け る こ と も可能であ る 。
また、 本発明を連続 '境鈍 ラ イ ン に適用 した 場合には 、 その ラ イ ン では次のよ う な熱サイ ク ルを採用する こ とができ る 。 すなわち 、 鋼 帚は!:火加熱炉で加熱後、 間接 7JQ熱式の加熱 • 均熱炉で 5 秒以上所定の温度域に保持され る 。 鋼帚は加熱 ^後半で再結晶温度を超えた 時点で結晶粒の核が癸生 し粒成長が開始され るが、 上記均熱時間は このよ う な '結晶粒が所 定の粒径 まで成長するのに要する最小時間で
( ) の る o
さ ら に、 こ のよ う に して加熱均熱 された鋼 帚は必要に応 じて所定の温度まで保持された 後、 急冷炉において 4 0 Cノ秒以上の冷却速 度で急冷される 。 製品の時効性を改善するた めには 、 加熱均熱炉で固溶 した 〔C〕 を急冷に 続 く 過時効炉に おいてでき る だけ短時間に析 出させる 必要があ り 、 上記冷却速 は これを 実現させるため過飽和状態に固溶 した 〔C〕 の 状態を作り 出すために必要であ る 。 すな わち 冷却速度は速い ほ う 'が固溶 〔C〕 の過 ^和度は 高 く 、 過時効処理の時間は少な く て済むので 最少の冷却速度が規制さ れる 。
そ して、 こ の よう な一 ¾の熱処理を経た鋼 帚は必要に応 じ過時効処理一最終冷却等を経 て製品 と される 。
以下に示す(1)〜(7)は、 予熱炉 一!:火加熱炉 一間接加熱炉ー ガ スジ エ ツ ト 冷却炉ー ロ ー ル 冷却炉一過時効処理炉 —最終冷却炉を有する 連^焼 #ϊ ラ イ ン に おけ る具体的な熱サイ ク ル
の一例を示 してい る 。
(1)予熱炉 : 直火予熱炉から 出 る 1 20 0〜 1 40 0 匸の高温燃焼排 ガスを周いて冷却 鋼帯を - 2 5 0〜 3 3 0 Όに予熱する 。
(2)直火加熱炉 :
予熱後の冷延鋼帯を直火加熱バ ー ナを用いて 4 3 0〜 8 0 0 Ό ま で還元 カロ熱する 。
(3)間接加熱炉 :
直火加熱炉での加熱には 9 0 0 と い う 上限.があ る ため、 どれ以上 の加熱が必 ¾があ る場合は加熱を 行 う 。 一方 、 鋼帯が加熱上限に達 した後は弱還元性雰圉気中で 5 〜 1 2 0 秒程度均熱を行 う 。
(4)ガスジ エ ツ 卜 ? 却炉 :
均熱帝の鋼帝を後続の口 ー ル 泠却 帯に よる急速 ¾却開始温度 ( 5 .5 0 〜 7 5 0 ) まで緩速冷却する 。
(5) α — ル冷却炉 :
(50.) 鋼帯を 水冷 口 一 ル に接触 さ せて
2 5 0〜 4 0 0 Ό まで 以上の 高速で急冷 し焼入 を行 う 。
(6)過時効処理炉 :
4 0 0匸〜 1 5 0 TC の範囲 で 3 0 秒以 上保持 して過時効処理を行 う 。
(7)最終 冷却炉 :
過時効処理後の鋼 Wを 1 5 0 以 下 まで冷却 して 大気中に 出す 。 次 に、 本癸明 の连続処理 ラ イ ン の も う 1 つ の基本的態様 であ る ¾続 溶融亘錯 メ ツ キ ラ イ ンに ついて説 明す る 。 - 第 2 0 図 (A) は違続溶融至翁 メ ツ キ ラ イ ン の一例を示すも ので、 (33 ) は!:火漦化炉 、 (34) は直火還元炉 、 (35 )は 間接加熱方式の均熱 !F で あ り 、 この均熱炉 (35) の後には溶融 S メ ツ キ装 4が IS置され る 。 上記直火還元炉 (34) に は上述 した よ う な還元型 加熱バー ナが所定 の ピ ッ チで配置さ れてい る 。
ま た、 第 2 0 図 ( B ) は連続溶融亜鉛 メ ツ キ
(お) ラ イ ン の他の例を示すもので、 この場合には 均熱炉は設け ら れず、 直火還元炉 (34)の後に 溶融亜鉛 メ ツ キ装置が設け ら れる 。 こ のよ う な ラ イ ン構成は、 直火酸化炉 (33 )及び直火還 元炉 (34)で鋼帝 ( S ) の加熱 . 均熱を十分な し 得る場合に採用さ れる 。
以上の よう な各メ ツ キ ラ イ ン では 、 鋼帯 ) は まず直火酸化炉 ( ) において直火加熱 され る と と も に、 表面付着油分が燃焼除去さ れる こ の加熱に よ り 鋼帝は酸化 される 。 鋼帚 (S ) は引 き続き II火還元炉 (34 )で直火還元加熱さ れ、 その表面に生成 した酸化膜が還元除去さ れる 。 鋼帚は直火還元炉 (34)での加熱によ り 表面の酸化膜が強還元 され、 直火黎化炉 (33) での酸化と と もに強酸化一強還元が実現 され る 。
この よう な加熱後、 第 2 0 図 (B ) に示すラ イ ン では鋼 m ( s ) は直ちに a ポ ッ 卜に浸漬 されメ ツ キがな さ れる 。
ま た第 2 0 図 (A に示すラ イ ンでは 、 鋼帯
( S ) は上記直火酸化炉 (33) 及び直火還元炉 (34) で所定温度ま で加熱さ れた後、 無漦化状態で 均熱炉 (35 )に送 ら れる 。 この均熱炉 (3S )は間 接加熱方式であるが、 直火還元炉 (34) から送 られて く る鋼帯 ( S ) が無酸化状態であ る ため 原理的に還元 ガス は必要と さ れす、 雰囲気ガ ス は不活性ガスで十分である 。 但 し実際には 炉体 リ ー ク等があ る ため、 これを補 う程 ^の H2を若干存在させる ことが好ま しい 。 但 し、 その場合でも ¾ 濃度は 5 % 以下程度で足り る この よ う な均熱後、 鋼 ^ ( S ) は至鉛 ポッ 卜 に 浸漬 されメ ツ キがな さ れる 。
第 2 1 図 は第 2 0 図 (A ) に示す ラ イ ン と従 荣方式の ラ イ ン—( ゼン ジ マ 一方式及び N 0 F 方式 ) の各燒鈍サイ ク ルの昇温齒線を比敦 し て示 したものであ り 、 第 2 0 図 (A ) のラ イ ン では、 加熱をすベて II火と してい る ため、 従 来 ^式に敦べ加熱効率が非常に高 く なってお り 、 こ のため短時間で所定温 ^まで加熱する こ とができる 。 そ して、 こ の結杲炉長を大 き
く 短縮できる ものである 。
また本発明では 、 上述 したよ うな直火加熱 炉の基本的な構成に加え、 次のよ う な構成を 採る こ とができ る 。
①直火加熱炉 と これに続 く 雰 S気炉 とを有す る ラ イ ン構成において、 雰园気炉 内への大 気侵入を適切に防止する こ と を 目 的と し、 雰囲気炉の 出 口 シ ール 口 ー ルの上流にシ ー ルチ ヤンバを設け 、 かつ該雰囲気炉の炉圧 を検知する手段と、 炉圧低下時に前記シ ー ノレ チ ャ ン バ内に シ ール ガ スを吹き込む手段 を.設け る 。
②予熱炉、 直 加熱炉及び間接加熱炉を順に 有する鋼帝の连続処理 ライ ンにおいて、 炉 内 ガスが他の炉へ移動するのを防止 し、 炉 内 ガス圧の変動に よる各炉間の相互干渉を 防止する こ とを 目 的 と し、 前記各炉間に炉 内 ガス の移動を阻止する 中間室を設ける 。
③予熱炉 、 直火加熱炉及び間接加熱炉を順に 有する鋼帯の連統処理 ラ イ ン において、 上
記②で述べた 目 的に 加え、 燃焼排 ガスを利 用 した鋼帯の予熱を効率的に行う こ と がで きる よ う にする こ と を 目 的と し、 こ のため 上記②の構成に加え、 直火,加熱炉 と予熱炉 との間 に、 上記直火炉内の燃烧排ガスを完 全燃境させて予熱炉内に供給するァ フ タ 一 バ ー ニ ング室を設け る 。
第 2 2 図は、 ③で述べた ラ イ ンのー実施例を 示すもので、 ラ イ ンは鋼帚入側から順に予熱 炉(7)、 直火加熱炉(8)及び雰 S気炉 (36 )を有'し ている。 こ の雰 S気炉 (36) は均熱、 冷却、 さ ら に必要に応 じて過時効処理の各処理帚を有 してレ、る 。
前記雰囹気炉 ( 36 )の鐫帯岀 口 にはシ ール 口 - ル (37)が設け ら れ、 こ の シ ー ノレ — ル ( ) の上流側にシ ールチャ ンノ (38)が設け ら れて い る 。 こ の シ ール チャ ンバ (38) には シ 一ル ガ ス吹込装置 (39)が設'け られ、 さ らにチ ャンバ 内に は雰囲気炉の 内圧測定内の炉内 £計(40) が設.置されている 。
こ のよ う な ラ イ ン によれば、 鋼帯 ( s ) は 予 熱炉(7)を経た後、 直火加熱炉 (8)において 5 0 0 〜 8 0 0匸 に無酸化ま たは還元加熱 さ れ、 後続 の雰 S気炉 (36) において さ らに高温への加熱 および均熱 、 急冷、 過時効処理を受けた後、 大気中での酸化が問題 となら ない約 1 5 0 TC 以下 まで冷却 され、 その後'シ ール ロ ール (37 ) を経て炉外へ取 り 出さ れる 。
前記直火加熱炉(8)においては、 燃料ガス( ) と燃焼空気 (42)に よってバ ー ナ に高温然燒ガ ス が供給さ れる 。 こ の燃燒ガ スは 直接鋼帚(S) に衝突 して鋼帝 ( S ) を所定温度まで加熱後、 ψ排 ガス (43 ) とな り 、 予熱炉 (7)において鋼帯 を 2 0 0〜 4 5 0 Cに予熱後、 炉 E制御ダンバ(44), 挵気 フ ァ ン (45) を轻て烜突から ^出 さ れる 。
前記] I火加熱炉(8)と雰固気炉 (36)の間は 、 燃燒棑ガスが雰囲気炉へ侵入する のを防止す る ために通路が絞られてい るが、 鋼 ^ ( S ) が 支障な く 通過でき る ためには相当な大き さの · ^が必要であ り ( 1 0 0 腿 X 2 0 0 0 漏 ) 、 こ こ
ί ) は ガス シ ール と しての機能はない 。 したがつ て、 直火加熱炉(8)の炉圧変動はそのま ま雰圉 気炉 ( 36)の炉圧変動 と な る 。
こ のため、 雰囲気炉 (36)から 直火加熱炉(8) へ雰囲気ガス (46)が流れて く る部分には炉圧 計 (48)を置いて 、 こ こ の圧力が十 5〜 1 5 麵 wc とな る よ う炉圧制御ダンノ、。 (44)で制御 してい こ の よ うな炉内圧は、 定常時には一定圧力 の保持が可能であ るが、 直火加熱炉(8)の燃燒 条件変更時 . たと えば複数ゾー ン 中 1 ゾ_一ン 消火時には、 炉 £制御ダンバ ( )の閉動作が 間に合わす、 時間 ( 5 〜 1 0 秒程度 ) 雰!! 気炉 ( 36) 内が負圧にな る こ と があ る 。 この場 合鋼帚 (S ) が雰固気炉 (36 )から 出 る部分には シ ー ル ロ ール (37 )を設けてあ るが、 こ の部分 には大きな 隙間があ り 、 大気が侵入 しやすい( 本発明では この大気侵入を防ぐため、 シ一 ル。 ー ル (37)の上流 にシ ー ルチヤ ン バ (38)を 設け .、 こ の シ ール チヤンバ (38) と雰囲気炉(3S)
C6I) 間には铰 りを設けて、 雰囲気炉 (36 )の圧力低 下 ( た とえば設定 E力よ り 5 '舰 wc低 ) を炉 £ 計 (40 )で検知 し、 そ の間 シ ー ルチ ャ ンバ (38 ) 内に吹込装置 (39)力ゝら シ ール ガ スを吹き こむ もので ある 。 この シ ーノレガスは、 N2単独でも また ¾を 3 〜 2 0 %混入 した雰 S気ガスでも よ い 0
前記 シ ー ル チヤ ン バ (38)内 には定常時にも 少量の N ま たは雰囲気 ガ スを吹き込み続ける 必要がある ため、 遮断芳 (47 ) には小.径バィ パ ス管を設けるか、 ま たは別途 '配管をシ ー ルチ ャンバにつなぎ込む方が良い 。
シ ー ル ガスの吹込量は、 絞 り の寸法にも よ る力 S 、 3 0 0 〜 6 0 0 m -も あれは"十分で、 吹 込時間は 1 0〜 2 0秒 庋である 。
ま た、 第 2 3 図は上記②及び②の ラ イ ン構 成の実施例を示すも のであ る 。
こ の違続 ラ イ ン では、 入側設儷に続いて予 熱炉(7)、 直火加熱炉 (8)、 間接加熱炉(9)、 ガス ジ エ ツ ト 冷却炉 (58 s)が順に設け られ,、 こ の冷
却炉 ( )の後には 、 ロ ール冷却等によ る冷却' 炉 、 過時効炉及び出 側設備がこの順に設け ら れている 。 そ して、 予熱炉 と直火加熱炉 (8) と の間には第 1 の中間室(4 )が、 直火加熟炉 (8)の上部折返部には第 2 の 中間室(4¾)が、 直 火加熱炉 (8)と 間接加熱炉 (9)と の間には第 3 CD 中間室(49c )が各 々設け ら れてい る 。
第 2 4 図に中間室(49a)(49b)(49 c) の構造を詳 細に説明する 。 図において、 (49)は 中間室、 (50)はこ の中間室内で鋼帚 (S ) を支持する 口 ー ル 、 (S1)は鋼帝 (S ) を介 し、 小隙間を空け て対向する シ ー ル板、 (52)は鋼帝 (S ) を挾ん で対向する シ ール ロ ール、 (5 3)は鋼帚 ( S ) を 介 して対向する ラ ビ リ ン ス · シ ール であ り 、 シ ー ル板 (51 ) 、 シ ー ル α — ル (52)及びラ ビ リ ン ス · シ ール (53) は 口 一ノレ (50 )力 ら達ざ る J5向にこ.の順で設け られている 。 シール ロ ー ル (52) の 口 ー ルギャ ッ プは数職程度まで近づ け る こ とが可能であ る。 シ ー ル ロ ー ル (52 )は 内部水冷でも 、 水冷な しでも 良い。 水冷を行
(ら 3) わない場合は耐熱鋼又は セ ラ ミ ッ ク製のも の を使用する 。 ラ ビ リ ン ス · シ ー ル (5 3)は シ一 ル ロ ー ル ( )を炉内の高温部から の熱放射か ら保護する ためのも のであ り 、 耐火物製のも のを使用する 。 シ ー ル板 (si ) は最終的な シ一 ル と して闱い る も のであ り 、 必ず しも 必須で はない 。,但し 、. シ ー ル口 一ル ( ) jg後に設け る ので、 鋼帚 (S ) に相当近づける こ とができ 従ってシ ール効杲は大きい 。 シ ー ル板 (S1) と ラ ビ リ ン ス ' シ ール (S3 ) との間の距離は' 5 0 〜 1 0 り 腿程度 とする 。 こ れら の シ ー ル お いては 、 ます、 ラ ピ リ ン ス · シ ー ノレ (53 )で耝 く シ ー ル さ れ 、 シ ー ル ロ ー ル (52) で 一 応 の シ 一ノレ力 され、 シ ール板 (S1 )で更にシ ールさ れ る こ と にな る 。.
第 2 3 図 において、 予熟 (7)と ¾火加熱炉 (8)と の間の第 1 の中間室(49a)の温度はそれほ ど高 く な く 、 高 く と も 3 0 0 匸 前後であ り 、 α —ル保護等の対策は卷に不要であ る 。 第 1 の 中間室(49a )'の雰 S気は還元性ガス ( ¾ + N2 )
であっても 、 ま た燃焼棑 ガスであっても差 し ' つかえない。 しか し、 各炉を独立分離 さ せる 為には十分な シ ールが必要であ る 。
第 2 3 図の例では、 直火加熱炉 (8)と して 2 ノ、。ス のも のを示-してお り 、 この各バス間にも 中間室(4 )を設けている 。 こ の第 2 の中 間室 (49b)と、 第 3 の中間室(49 c )では、 ロ ール保護 上、 還元雰固気 ( + N2 ) とするのが好ま しく 、 特に、 第 3 の中間室(49c)は間接加熱炉(9)への 直火炉燃燒排ガ ス の侵入を防止するために逢 元雰園気でなけ ればな らない 。
直火加熱炉(8)と 予熱炉 (7)との間には 、 直火 加熱炉 (8)内の燃烧排ガスを.完全燃燒させて予 熱炉(7)内に供''給する ア フ タ ーバーニ ン グ室(54) が設け られて る。 直火加熱 (8)の出 口の拚 ガス温度は 、 8 0 0〜 1 2 0 0 C で、 未燃分の 自 癸火温度以 _ にあ り 、 ア フ タ ーバーニン.グ室 (54) において空気を供給する だけで容易に未 燃分を燃燒 させ る こ とができ る 。 ア フ タ ーバ 一 二ン グ室 (54) によって、 排 ガス中の未燃分
を大気放散させ る こ とな く 、 排 ガス温度が高 め ら れ、 鋼板の予熱が促進 される 。 ア フ タ ー バ— ニ ン グ室 (54 ) 出側には 、 予熱炉(7)へ行 く . 側と、 排出側へ行く 側の 2 系統が設けら れ、 弁 (55) (56) の調節に より 、 適量の排 ガスが予 熱室(7)へ導かれる 。
第 3 の中間室( e )の雰囲気 ガス と間接加熱 炉(9)の雰囲気ガスが直火加熱炉(8)の還元加熱 領域に流れ込むと 、 その還元能力が低下する こ とになる 。 すなわち 、 こ れらの雰囲気ガ ス の温度""は鋼帯の均熱温度 ( 7 0 0〜 9 0 0 Ό ) に 近 く 、 還元加熱領域の燃焼 ガ ス温度 ( 1 4 0 0 〜 1 6 0 0匸 ) よ り も低 く 、 仮に、 雰园気ガス が侵入する と 、 還元加熱領埭の ガス温度が侄 下 して、 還元能力を著 し く 低下させて しま う 。 このため、 第 2 のァ フ タ ーパ'一ニ ン グ室 (ア) を設け、 第 3 の中間室(49c)と、 間接加熱炉 (9) の雰囲気ガスを第 2 の ァフ タ 一バ ー ニ ン グ室 (57)へ導 く う にすれば、 かかる 問題は解決 れる o
なお、 上記第 3 図及び第 4 図に示す加熱 バ — ナ の構成を具体的に説明する 。
図において、 (59 )はバ一 ナ タ イ ル内 ¾壁(4) に突設 された燃料ガス ノ ズルであ り 、 本実-施 例ではこの燃料ガス ノ ズル (59 )の周方向に間 隔をおいて燃料ガ ス吐出孔(3)が形成さ れてい このよ う な加熱バーナ において、 その空気 吐 出孔(2)に空気供給角 e を持たせる のは、 バ ーナ タ ィ ル内で燃焼用空気に旋回流を生 じさ せる ためで、 この旅回流により バーナ 内側に 負圧領域が形成さ れ、 この負圧に よってガス が再循環す る こ と に より 燃焼が促進 さ れ、 も つて適切な非平衡領域を形成せ しめる こ とが で き る 。 こ の空気供給角' ^ は最大 6 0 、 好 ま し く は 2 0〜4 0 とする こ と によ り空気流の旋 回性が安定して得ら れる 。
'燃料ガス吐出孔(3)と空気吐 出孔(2)のバ一ナ 軸方向距齄 N は、 これ力 (—) 側にある場合、 ガス温^が高 'く 、 しかも 燃烷 中間生成物も広
範囲に高い分布状態にあ るが、 反面遊離 02 ( 未反応 02 )が軸方向に長 く 分布する傾向にあ る 。 非平衡領域を適切に形成せしめる には、 こ の遊離 02 のバ ーナ軸方向残存距離を最小に する必要があ り 、 その限界を求める と 一 0. 1 D と な る 。
第 2 5 図は、 燃料ガス吐出孔(3)と 空気吐出 孔(2)のバ ーナ軸方向距離 Nを一 0. 2 5 D と した 場合の、 バ ーナ出 口からのバ ーナ軸方向距離 とバ ーナ タ イ ル内のガ ス温度、 02 濃度及びィ オ ン強度と の各関.係を調べた も のであ り 、 こ れによれば、 Nがこ の よ う な (一) 側にあ る場 合、 遊離 02 の軸方向にお け る残存距離 L Qが大 き く 存在する ことが示 されてい る 。
第 2 6 図は燃料ガス孔 と空気吐出孔のバ一 ナ軸方向 と、 遊離 02の軸方向残存距離 L0 との関係を示すも ので、 これによれば Nが 一 0. 1 Dよ り も (一) 側に大き く な る と 、 Loが急 激に大き く なつてお り、 このため (一) 側では 一 0· 1 Dが ^¾界となる。
(6B) 一方、 第 2 7 ·図は Nを + 0. I Dと した場合の バ ーナ 出口から のバ ーナ軸方向 ¾離と 02濃度 ィ オ ン 強度及び ガス温度との各関係を調べた も のである 。
こ の第 2 6 図及び第 2 7 図によれば、 Nが (+) 側であれば、 02濃度にも 問題がな く 、 バ ーナ 出 口から の距離が 0. 5 D以上のところに適 正な非平衡領域が形成さ れている 。
Nが (+) 側にあれば適正な非平衡領域が形 成されるが、 + 0. 4 D を超え る と、 空気 と燃 料ガスとの混合作用が十分でな く なる傾向が あ る 。 すな'わち、 本発明のバ一ナでは、 空気 の急旋回流中に中心部か ら燃料ガスを噴射す る こ とによ り 、 空気 と燃料ガス との混合を促 進させる よう に してい る力 S 、 Nを過度に大き くする と 、 このよ う な混合促進作用が十分に 得られな く な り、 非平街領域の安定的な形成 は望めな く な る 。 このため Nは + 0. 4 D を限 度とする 。
以上の.こ とから燃料ガス吐出孔と空気吐出
孔のバーナ中心軸距離 Nに関 しては'、 - 0. 1 D 〜 0. 4 D の範囲 とする。
ま た、 N を大き く してい く とバ ーナ タ イ ノレ の内端壁の温度が上昇する 。 第 2 8 図は距離 N とバ ーナ タ ィ ル内端壁の温度 Tb との関係を 示すものであ る 。 N力 S + 2 5 D では Tb が 1400 Όであ り 、 一般には 、 この程度の温度まで通 常の耐熱材を使用する こ とが可能であ る 。 ま た N力 ^十 0. 4 Dではパーナ タ イ ルの 内端壁は 1 8 0 0 以上まで昇温する.が、 このよ うな場 合には、 バーナ タ イ ルの材質と して高耐熱性 材料を用いる c
空気吐出孔(2)力ゝ ら バ一ナ タ イ ル出 口(5)まで の距離 L は非平街領域の形成範囲 と密接な関 係を有 してい る 。 すなわち L力: S 3 Dを超える と非平衡領域がバ ーナ タ イ ル出 口直後の部分 に しか形成されず好ま し く ない。 一方、 Lが 0. 6 D未満の場合は火炎がバ ーナ タ イ ル 出口 直後で花びら 状の火炎と な り バ一ナ中心軸上 に適正な非平'衡領域が安定 して得ら れない 。
従って 0. 6 D 〜 3. 0 D の 範囲に Lを 定める こ と が好ま しい。
薄鋼板を連続加熱する場合、 バ ーナ タ イ ル 出口(5)と鋼板との距離を一定以上 ( 通常、 100 霍程度以上 ) と ら ない と、 通板中に、 鋼板力 S バ ーナ に接触す る恐れがある 。 したがって、 火炎中の非平衡領域は、 パーナ 出口側から 所 定の距離に位置する 鋼帚通板位置を含むな る ベ く 広い範囲に形成させる ことが好ま しい こ とになる 。 第 2 9 図は距離 L とバ ーナ 出 ロカ ら非平衡領域の末端 ( 反パーナ側の末端、 例 えば第 2 7 図'中の A点 ) までの距離 LR との関 係について調べたものであ る 。 これに よれば、 Lが 3 D を超える と非平胬領域の形成はバ ー ナ タ イ ル出口 直後のみ とな り 、 それより も前 方側にはほとんど形成されない 。 が小さ く なる に したがい非平胬領域の形成範囲は拡大 するが、 L力 0. 6 D 未満の領域 (X) では、 火 炎はバ ーナ タ イ ル出 口 直後で、 花びら 状の放 射状の火炎 と'な り 、 バ 一ナ軸心上に適正な非
(7.0
平衡領域が安定して形成されない 。 以上のこ と力ゝら、 空気吐出孔(2しからバーナ タ イ ル出口 (5)ま での距離 Lは 0. 6 D〜 3. 0 D の 範 园 とする こ とが望ま しい 。
なお、 以でのよう な加熱バ ーナの構造にお いて、 燃烧用空気吐出孔(2)から 吐出 される空 気の旋回流が強過ぎ る とバ ーナ出側の燃焼ガ ス のノ ーナ径方向での温度分布が不均一にな り 、 こ の結果、 安定 した広範 Sの非平衡領域 が形成されに く く な る よう な場合があ る 。 こ のよう な場合には 、 空気旋回流を緩和 して温 度分布の均一化を図 るため、 燃料ガ ス吐出孔 (3)を、 その噴射方向が燃料ノ ズル外周に関す る接鎳に対 して非直角で、 しかも これによる 燃料ガ ス流が燃 ' 用空気吐出孔(2)か ら の空気 流と逆向 きの旋回流、 すなわち空気旋回流 と 逆向きから衝突する よ う な旋回流 とな る よう 形成する構造、 或いは、 燃料ガ ス吐出孔(3)を その賓射方向がパーナ軸線方向ま たはバーナ 軸線方向に対'して傾斜 した方向 とな る よ う に
する構造、 さ ら には空気吐出孔(2)にバ ーナ タ ィ ル径方向に対しバ ーナ開 口方向への傾斜角 ( ね じれ角 ) を付与する よ う な構造等を単独 ま たは、 それぞれを組み合せた形で採用する こ とができ る 。
またバ一ナによる加熱面積を拡大する ため バ ーナ タ イ ル(1)の少な く と も燃焼用空気吐出 孔形成部位より先端開 口側の内壁に、 バ ーナ 内口径が先端開口側に拡径する よ う な広がり 角を付 した構造、 さ ら には空気吐出孔(2)の形 成を容易にす るため、 筒状バ ーナ タ イ ルの壁 体内に、 バ ーナ周方向に沿った燃铙用空気の 旋回流 ¾を設け、 該旋回流路をバ ーナ 内部 と 違通させる複数の燃燒用空気吐出孔を設けた 構造等も採用する こ とができ る 。 産業上の利用可能性 本発明は鋼帯の連続焼鈍ラ イ ン 、 溶融亜鉛 メ ツ キ ラ イ ン等に適用でき る 。
Claims
( 3) 肓 求 の 範 囲
(1) 直火加熱炉を有する鋼帯の連続処理 ラ ィ ンであり、
直火加熱炉は 、 火炎中に、 燃焼中間生成 物を有 し且つ遊離酸素を有 しない非平衡領 域を形成する こ とがで き る複数の還元型加 熱パー ナを備え
各還元型加熱バ ーナを、 火炎が鋼帯面に 略直角で、 しかも その非平衡領域において 鋼帯に衝突する よう 配置し、
これら 複数の還元型加熱バ ー ナを、 ラ イ ン方向での ( バ—ナ内径 ) Z ( ノ '一ナ ピッ チ ) 力 S 0. 3 以上と なる よ う な間隔で配置 し たこ とを特徴とする直火加熱炉を有す る鋼 帯の連続処理 ラ ィ ン 0
(2) ク レ ー ム(1)において、 還元型加熱バーナ 、 直火力 D熱炉の全加熱有効範囲に亘 り上 記 ピッチで配置されている連続処理ラ ィ ン
了 = 〔 (TOUT -T*)ノ (TOUT - TIN) 〕 100 但し、 τΙΝ : 直火力ロ熱炉入口鋼蒂温度(°K) TOUT : 直火加熱炉出口鋼帯温度( °K) Α(Τ) : 鋼帯還元速度 (Αノ sec)
〔= 127000 e T つ
- : 非 ¾¾ 加熱バーナ設量領域と 逢元型加熱バーナ設置領域との 境界部における鋼帚板温( °K)
Β(Τ) : 鋼帚酸化速度 ( z sec)
^ 6126、
C = 69200 e T ]
F(T) : 加熱速度 (°K sec)
〔 = dTノ dt〕 で求め られ る Γ 以上の炉 出側炉長都分に 還元型加熟バー ナを上記 ピ ッチで配置 し、 残有効炉長部分には非還元型 加熱パ ーナを
配置 した連続処理 ラ ィ ン 。
(4) ク レ ー ム に おいて、 直火加熱炉各 パ ス の少な く と も 出側通板 口 ー ル直前の 加熱領 域を含むパ ス 出側領域に、 還元型加熱バ - ナが上記 ピ ッ チで配置されている 連続処理 ラ イ ン 。
(5) 直火加熱炉及びこ れに続 く 間接加熱炉を 有する 鋼帯の連続処理 ラ イ ンで あ り 、
直火加熱炉は、 火炎中 に、 燃焼中 間生成 物を有 し且つ遊離酸素を有 しな い非平衡領 域を 形成す る こ と がで.き る 複数の加熱バ ー ナを備え、
各 加熱バ ー ナを、 火炎が鋼帯面に略直角 で しかも その非平衡領域において鋼帯に衝 突する よ う配置 し、
これ ら複数の加熱バ ー ナを、 ラ イ ン 方向 での ' 一 ナ内径 ) ノ ーナ ピッ チ が
0. 3 以上 と な る よ う な 間隔で配置 した こ と を特徵 と する直火加熱炉を有する 鋼帝の連 続処理 ラ イ ン 。
(6) ク レ ー ム(5)にお いて、 逢元型加熱バ ー が、 直火加熱炉 の全加熱有効範目 に亘 り 上 記 ピ ッ チで配置されてい る連続処理 ラ イ ン (7) ク レ ー ム (5)に おいて、 直火加熱炉の有効 炉長に 対 し、
= C (Τουτ -Τ*)ノ (TOUT - TIN) 〕 100 伹し、 i IN 11火加熱炉入コ鋼 温度( ° )
T OUT i火 JD熱炉 ίϋ□ mm ( ° ) A(T) ϋ S 7ϋ ϋ ;Έ ( A / sec )
6433-
C = 127000 e 、 τ J
: ^¾ Ui3熟バーナ設量 H或と : it ^ UD熱ノベ一ナ設置領域との 境界 5における鋼^板^ ( °K)
Β(Τ) : 化-:!度 (A/ sec)
612立
Γ = 69200 e 、 Τ ノ 〕
Τ) : 7U熱迗度 (°K/ sec)
〔 = dT Z dt 〕
で求められる r <¾以上の炉 出側炉長部分に 還元型加熱バ ーナを上記 ピッ チで配置 し、 残有効炉長部分には非還元型加熱バ ーナを 配置 した違続処理 ラ イ ン 。
(8) ク レ ー ム(5)において、 直火加熱炉各パス の少な く と も 出側通板口 ー ル直前の加熱領 域を含むパ ス 出側領域に、 還元型加熱バ一 ナが上記 ピッ チで配置されている連続処理 ラ イ ン 。
(9) 直火酸化炉、 直火還元炉、 間接加熱炉及 び溶融亜鉛メ ツ キ装置を順に有する鋼帯の 連続処理ラ ィ ンであ り、
直火還元炉は、 火炎中に、 燃焼中間生成 物を有 し且つ遊離酸素を有 しない非平衡領 域を形成する と とがで き る複数の還元型加 熱バーナを備え、
各還元型加熱バー ナを、 火炎が鋼帯面に 略直角で、 しかも その非平衡領域において 鋼带に衝突する よ う配置 し、
これら複数の還元型加熱バ一ナを ラ イ ン 方向での ( ノ、、ー ナ内径 ) Z ( バーナ ピッ チ ) が 0. 3以上と なる よ う な間隔で配置 し たこ とを特徵とする直火加熱炉を有する鋼 帯の違続処理 ラ イ ン 。
αα ク レ ーム(9)にお いて、 還元型加熱バ ー ナ が、 直火還元炉の全加熱有効範囲 に亘 り 上 記 ピッ チで配置されてい る違続処理 ラ イ ン tti) ク レ ー ム 0λにおいて、 直火還元炉の有効 炉畏に対 し、
TIN Β(τ)· fy- o.
r = 〔 (TOUT -T*) Z (T0UT - TIN) 〕 x loo 但し、 τΙΝ : 直火還元炉入口鋼帚.温度(°K)
TOUT : 11火還元炉岀ロ鋼帚温度( °K) Α(Τ) : 鋼帚!:元返度 (A/ sec)
C = 127000 e T
: 非!:^加熟バ一ナ設置領域と 逢元型加熱ノ <一ナ設置領续との 境界部における鋼帚板 g (°K)
Β(Τ) : 鋼帚酸化速度 (AX sec)
^ 6126
C = 69200 e T 3
F(T) : 加熱逐度 (°K/ sec)
C = dT / dt
で:^め ら れ る τ 以上の炉 出側炉長 IB分に、 ¾元型加熱バ ー ナを上記 ピ ッ チで 置 し、 残有効炉長部分には非 S无型加熱バ ー ナを 配置 した ¾続処理 ラ イ ン 。
ク レ ー ム(9)において、 直火還元炉各ハ。 ス の少な く と も Ξ側通板 口 ー ル直前の加熱領 续を含むパ ス 出側領域に、 還元型 7JD熱バ一 ナが上記 ピ ッ チで配置 され てい る连続処理 ラ イ ン 。 .
(91 )
i:火酸化炉、 直火還元炉及びこ れに続 く 溶融亜鉛メ ツ キ装置を有する鋼帯の連続処 理ラ イ ン であり 、
直火還元炉は、 火炎中に、 燃焼中間生成 物を有 し且つ遊離酸素を有 しない非平衡領 ¾を形成する こ とができる 複数の還元型加 熱バ ーナを備え、
各還元型加熱バ ーナを、 火炎が鋼帯面に 略直角で、 しかも その非平衡領域において 鋼帯に衝突するよ う配置 し、
これら複数の還元型加熱バ一ナを、 ラ イ ン方向での 、ーナ内径 / ベ-一ナ ピッ チ ) 力 S 0.3 以上となる よ う な間隔で配置し たこ とを特徵とする直火加熱炉を有する鋼 帯の連続処理ラ ィ ン。
ク レ ー ム 3にお いて、 還元型加熱ノ 一ナ が、 直火還元炉の全加熱有効範囲 に亘 り 上 記 ピ ッ チで配置されてい る違続処理 ラ ィ ン ク レ ー ム C13において、 直火還元炉の有効 炉長に対 し、
■1 OUT
dT
A(T)
F(T) Β (Τ) = 0
T IN r = 〔 (TOUT -Τ*) / (ΤΟΫΤ— τΙΝ)〕 χ ιοο 但し、 i IN : ¾火還元炉入口鋼帚温度 ;(°K)
τ τ
ィ 6433
C = 127000 e で ]
T : 非還 型加熱バーナ設置領续と 逢元 加熱バーナ設 ft領¾との 境界部における鋼胥板温 ( °κ)
B(T) : 鋼帚酸化速度 (AZ sec)
6126
[ = 69200 e T J J
F(T) : 加熱運度 (°KX sec
〔 = dT Z d t 〕
で求め ら れ る T 以上の炉 出側炉長 分に、 還元型加熱バ ー ナを上記 ピ ッ チで配置 し、 残有効炉長 B分には非 S元型加熱 バ ー ナを 配置 した 続処 ¾ ラ イ ン。
ク レ ー ム ^に おいて、 直火還元炉各ハ。 ス の少な く と も 岀 側通板 ロ ー ル ϋ前の加熱領 ¾を含むハ° ス 側領域に、 逢元型加熱バ — ナが上記 ピ ッ チで配置 されてい る ¾続処理 ラ イ ン 。
cm
(L7) 直火加熱炉及びこれに続 く 雰囲気炉を有 する連続処理ラ イ ンであ り、
前記雰囲気炉の 出口 シ ー ル口 — ル の上流 にシ ー ルチャンノ を設け、 且つ該雰囲気炉 の炉圧を検知する手段と、 炉圧低下時に前 記シ 一ノレチヤ ンバ内にシ ー ルガスを吹き込 む手段を設け、
前記直火加熱炉は、 火炎中に、 燃焼中間 生成物を有 し且つ遊離酸素を有 しない非平 '衡領域を形成する こ とがで きる複数の還元 型加熱バ ーナを備え、 ,
各還元型加熱バ ーナを、 火炎が鋼帯面に 略直角で、 しかもその非平衡領域において 鋼帯に衝突する よ う 配置 し、
これら複数の還元型加熱バ ーナを、 ラ イ ン方向での ( ノ ーナ内径 ) Z ( バーナ ピッ チ ) 力 0. 3 以上と なる よ う な間隔で配置し たこ と を特徵と する直火加熱炉-を有する鋼 帯の違続処理ラ ィ ン。
8) ク レ ー ム α?)にお いて、 s元型加熱バ ーナ が、 直火加熱炉 の全加熱有効範固 に亘 り 上 記 ピ ッ一一チで配置されてい る ¾続処理 ラ イ ン
(TOUT一 T*) Z (TOUT - TIN) x 100
ο
A(T) ,ΤΖ^ί^. (A , sec )
)
C = 127000 e 、
: ¾元 ¾7IG熱バーナ設置領或と ¾7 73D¾バーナ設量領域との 境界 ¾における鋼 钣 (°K)
B(T) : IPJ 漦化這度 (A / sec )
126
[ = 69200 ε
(T) : 刀[' ( °Κ / sec)
Γ = dT Ζ d t
(S6)
で求め ら れ る r 以上の炉 出側炉長部分に、 還元型加熱バ ーナを上記 ピ ッ チで配置 し、 残有効炉長部分には非還元型加熱バ ー ナを 配置 した連続処理 ラ イ ン 。
m ク レ ー ム tt に おいて、 直火加熱炉各パ ス の少な く と も 出側通板 口 ー ル直前の加熱領
■ 域を,含むパ ス 出側領域に、 還元型加熱バ ー ナが上記 ピ ッ チで配置 されてい る違続処理 ラ イ 'ン 。 ·
予熱炉、 直火加熱炉及び間接加熱炉を順 に有する鋼帯の連続処理 ラ イ ンであ り、 前記各炉間に炉内 ガ ス の移動を阻止する 中間室を設け、
前記直火加熱炉は、 火炎中に、 燃焼中間 生成物を有 し且つ遊離酸素を有 しない非平 衡領域を形成する こ とがで き る複数の還元 型加熱バーナを備え、
各還元型加熱バ―ナを、 火炎が鋼帯面に 略直角で、 しかもその非平衡領域において 鋼帯に衝突する よ う 配置 し、
こ れら 複数の還元型加熱バーナを、 ラ イ ン方向での ( ノぺ、ーナ内径 ) ノ ( バ ーナ ビッ' チ ) 力 s 0. 3 以上となる よ う な間隔で配置し たこ とを特徵とする直火加熱炉を有する鋼 帯の連続処理ラ ィ ン。
ク レ ー ム <2ΐにお いて、 ¾元型加熱バ ー ナ が、 直火加熟炉 の全加熱有効範 § に!: り 上 記 ピ ッ チで配置されてい る連続処理 ラ イ ' ク レ ー ム において、 直火加熱炉の有効 炉畏に対 し、 F
/、
■ OUT
r = 〔 (TOUT -Τ*) / (Τ0υτ -TIN) 〕 χ ιοο 但し、 τ ιΝ : :火加熱炉入口鋼 〔 ° ) OUT 1:火; UD熱炉出コ鋼 ^温 S ( °κ A(T) H 元透度 ( A / sec )
•64-33·
[ = 127000 e 、 T j で : 非 加熱バーナ設量領まと 加熱ノベーナ設置镁域との 境界 ¾における鋼^根 ¾ ( °κ)
B(T) : 鋼 ^酸化透 (A/ sec)
6126
C - 69200 e 、 〕
: 刀 Q熱速 S (°K/ sec)
C = dT / dV〕
で求め ら れる T 以上の炉出側炉長部分に 還元型加熱バ ーナを上記 ピッ チで配置 し、 残有効炉長部分には非還元型加熱バ ーナを 配置 した違続処理 ラ イ ン 。
ク レ ー ム において、 直火加熱炉各パ ス の少な く と も 出側通板 口 ー ル直前の加熱領 域を含むハ° ス 出側領域に、 逢元型加熱バ ー ナが上記 ピッ チで配置きれている ¾続処理 ラ イ ン 。
予熱炉、 直火加熱炉及び間接加熱炉を順 に有する鋼帯の連続処理ラ イ ンであ り、 前記各炉間に炉内 ガ ス の移動を阻止する 中間室を設け、 ' 前記直火加熱炉 と予熱炉 との間に、 上記 直火加熱炉内の燃焼排ガスを完全燃焼させ て予熱炉内に供給する ア フ タ ー ノぺ' 一 二 ン グ 室を設け、
前記直火加熱炉は、 火炎中に、 燃焼中間 生成物を有 し且つ遊離酸素を有 しない非平 衡領域を形成する こ とがで き る複数の還元 型加熱バ―ナを備え、
各還元型加熱バ ーナを、 火炎が鋼帯面に 略直角で、 しかも その非平衡領域において 鋼帯に衝突する よ う配置 し、
これ ら複数の還元型加熱バーナ を、 ラ イ ン方向での ( バーナ内径 ) z ( バ ーナ ピッ チ ) 力 S 0. 3 以上となる よ う な間隔で配置 し たこ とを特徵とする直火加熱炉を有する鋼 帯.の連続処理 ラ イ ン 。
ク レ ー ム ^にお いて、 還元型加熱バ ー ナ が、 直火加熱炉 の全加熱有効範目 に!: り 上 記 ピ ッ チで配置されてい る ¾続処¾ ラ イ ン ク レ ー ム ^において、 直火加熱炉の有効 炉畏に対 し、
7 = 〔 (TOUT -T*) / (T0UT— TIN) 〕 x 100
IIし、 TIN : IE火刀 ϋ熱炉入:□鋼 度(°Κ)
OUT : II火 熱炉; ϋコ鋼 ^温度 K) Α(Τ) : 鋼^ g元逗11 (A sec)
C = 127000 e 、 T ノ 〕
、
: 非- ^lTID熱バーナ設量領续と 熱バーナ設量領域との 境界^における鋼 板 ( °κ)
B(T) : 鋼 酸化迗 (A sec)
,6126
〔 = 69200 e
(T) : Η3熱 ¾ S (°K / sec)
〔 = dTノ d t 〕
で求めら れる τ 以上の炉 出側'炉長部分に 還元型加熱バ ーナ.を上記 ピッ チで配置 し、 残有効炉長部分には非還元型加熱バ ーナを 配置 した違続処理 ラ イ ン 。
ク レ ー ム ^において、 直火加熱炉各パ ス の少な く とも 出側通板 ロ ール.直前の加熱領 域を含むパ ス 出側領域に、 還元型加熱バ一 ナが上記 ピッ チで配置されている ¾続処理 ラ イ ン 。
< 直火加熱炉、 間接加熱炉及び σ — ル冷却 を主体 と した冷却炉を順に有 し、 最終処理 帯の出側に、 調質圧延機が配置された鋼帯 の連続処理 ラ イ ンであ り 、
前記直火加熱炉は、 火炎中に、 燃焼中間 生成物を有 し且つ遊離酸素を有 しない非平 衡領域を形成する こ とがで きる複数の還元 型加熱バー ナを備え、
各還元型加熱バ ーナを、 火炎が鋼帯面に 略直角で、 しかも その非平衡領域において 鋼帯に衝突する よ う配置 し、.
これら複数の還元型加熱バ ーナを、 ラ イ ン方向での '—ナ内径 ) ノ 一ナ ピッ チ ) 力 S 0. 3 以上とな る よ う な間隔で配置し たこ とを特徵とする直火加熱炉を有する鋼 帯の連続処理 ラ イ ン。
(30) ク レ ー ム(29)にお いて、 還元型加熱 ノ が、 直火加熱炉 の全加熱有効範 Sに!: り 上 記 ピ ッ チで配置されてい る連続処理 ラ イ ン D ク レ ー ム(29)において、 直火加熱炉の有効
= 〔 (TOUT一 T*) ノ (Τ0υτ -TIN) 〕 x 100 伹し、 T IN : IE火 un熟炉入コ鋼 温度 iQ ' OUT : II火刀 G熱炉出コ鋼
ACT) ^ Ώ ' ,ΤΖ^ΙΈ. AZ sec)
_ ^ ο4· ヽ
C = 127000 e T 〕
T : 非!:元 加熱バーァ設置領域と 加熱 ぺ'一ナ設量領¾との 境界部における鐫 ¾ (°Κ)
B'(T) : 鋼 漦化-:!度 (AX sec)
^6125
〔 = 69200 e T ]
F(T) : JD熱速 (°K/ sec)
〔 = dT / dt
で求めら れる r 以上の炉 出側炉長部分に 還元型加熱バ ーナを上記 ピッ チで配置 し、 残有効炉長部分には非還元型加熱バ ーナを 配置 した違統処理 ラ イ ン 。
ク レ ー ム (29)において、 直火加熱炉各パ ス の少な く とも 出側通板 口 ー ル直前の加熱領 壞を含むパ ス 出側領域に、 還元型加熱バ一 ナが上記 ピッ チで配置されている違続処理 ラ イ ン 。
(Q6)
予熱炉、 直火加熱炉、 間接加熱炉及び口 ー ル冷却を主体と した冷刦炉を順に有 し、 最終処-理帯の出側に、 調質圧延機が配置さ れた鋼帯の連続処理.ラ イ ンであ り、
前記直火加熱炉は、 火炎中に、 燃焼中間 生成物を有 し且つ遊離酸素を有 しない非平 衡領域を形成する こ とがで きる複数の還元 型加熱バーナを備え、
各還元型加熱バーナを、 火炎が鋼帯面に 略 ®角で、 しかも その非平衡領域において 鋼帯に衝突するよ う配置 し.、
これら 複数の還元型加熱バー ナを、 ラ イ ン方向での ( ノ ーナ内径 ) / ( パー ナ ピッ チ ) 力 S 0. 3 以上と なる よ う な間隔で配置 し たこ とを特徵とする 直火加熱炉を有する鋼 帯の連続処理 ラ イ ン 。
ク レ ー ム にお いて、 還元型加熱バ ーナ が、 直火加熱炉 の全加熱有効範 S に!: り 上 記 ピ ッ チで配置されてい る ¾続処理 ラ イ ン ^ ク レ ー ム ^ において、 直火加熱炉の有効 炉長に対 し、
T = 〔 (TOUT一 T*) Z (TQUT一 TIN) 〕 x 100 ilし、 T IN IE火加熱炉入コ鋼 ¾度 ( ° ) Γ OUT 1:火 zra熱炉 aコ鋼 ^温度 ( ° ) A(T) ■m 元速^: (A / sec )
C = 127000 e - ' j
T ? F ¾ 7 加熱ノ <一ナ設量領 と
¾元 熱バーナ 領: ¾との 境界郁における鋼^ 1钣 ϋ ( ° )
B(T) 鋼 化 H (A / sec)
,6126、
C = 69200 e J j
(T) 刀口熱 ¾ , (°Kノ sec)
〔 = dTノ d t 〕
で求めら れる τ <¾以上の炉出側炉長部分に 還元型加熱バ ーナを上記 ピッ チで配置 し、 残有効炉長部分には非還元型加熱バ ーナを 配置 した違続処理 ラ イ ン 。
ク レ ー ム $3において、 直火加熱炉各パ ス の少な く と も 出側通板 口 ー ル直前の加熱領 域を含むパ ス出側領域に、 還元型加熱バ一 ナが上記 ピッ チで配置されている違続処理 ラ イ ン 。
' .
$7) 鋼帯表面の ク リ ーニン グ設備、 予熱炉、 直火加熱炉、 間接加熱炉及び ロ ール冷却を 主体と した冷却炉を順に有 し、 最終処琴帯 の出側に、 調質圧延機が配置された鋼帯の 連続処理 ラ イ ン であ り、
前記直火加熱炉は、 火炎中に、 燃焼中間 生成物を有 し且つ遊離酸素を有 しない非平 衡領域を形成する こ とができ る複数の還元 型加熱ノヾーナを備え、
各還元型加熱バ ーナを、 火炎が鋼帯面に 略直角で、 しか も その非平衡領域において 鋼帯に衝突するよ う配置 し、
. これら複数の還元型加熱バ ーナを、 ラ イ ン方向での ( バーナ内径 ) Ζ ( ノ、 'ーナ ピッ "チ ) カ 0. 3 以上となる よ 'う な間隔で配置 し たこ とを特徵とする直火加熱炉を有す る鋼 帝の連続処理 ラ イ ン 。
(Ιοσ) ' $ ク レ ー ム ^にお いて、 還元型加熱バ ー ナ が、 直火加熱炉 の全加熱有効範囲 に亘 り 上 記 ピ ッ チで配量されてい る ¾続処理 ラ ィ ン 9) ク レ ー ム ^において、 直火加熱炉の有効 炉長に対 し、
= 〔 (TOUT -Τ*) / (T0UT— ΤιΝ) 〕 x 100 但し、 T IN : 火刀!]熱炉入口鋼^ ( °K) TOUT : 火^熱炉 Sコ鋼 ^温 S ( ΒΚ)
Α(Τ) : 鎘 ^還元速度 (A/ sec)
一 (2 2ΐλ ' 〔.= 127000 e 、 Τ ノ 〕 ·
T : ^¾ ^加熱バーナ設 4領域と
¾¾ JG熱バーナ設量領 との 境界 ¾における鋼 ^¾ K)
B (T) : 鋼 黎化透度 (A/ sec)
,6126、 〔 = 69200 e 、 T ノ 〕
F(T) : 7JC1熱透度 (。: sec)
〔 = dT Z dt 〕
( ι σり
で求め ら れ る r 以上の炉 出側炉長部分に 還元型加熱バ ー ナを上記 ピ ッ チで配置 し、 残有効炉長部分には非還元型加熱バ ー ナを 配置 した違続処理 ラ イ ン 。
(40) ク レ ー ム ^において、 直火加熱炉各パ ス の少な く と も 出側通板 σ — ル直前の加熱領 域を含むパ ス 出側領域に、 還元型加熱バ ー ナが上記 ピッ チで配置されてい る連続処理 ラ イ ン 。
(ιε ) 、 直火加熱炉、 間接加熱炉、 液体冷却を主 体と した冷却炉、 中間酸洗設備及び過時効 処理炉を順に有 し、 最終処理帯の出側に、 調質圧延機が配置された鋼帯の連続処理ラ ィ ンであり、
前記直火加熱炉は、 火炎中に、 燃焼中間 生成物を有 し且つ遊離酸素を有 しない非平 衡領域を形成する こ とがで きる複数の還元 型加熱バ ーナを備え、
各還元型加熱バ ーナを、 火炎が鋼帯面に 略直角で、 しかも その非平衡領域におい..て 鋼帯に衝突するよ う配置し、
これら複数の還元型加熱バ一ナを、 ラ イ ン方向での ( ノ —ナ内径 ) z ( パーナ ピッ チ ) 力 S 0. 3 以上となるよ うな間隔で配置 し たこ とを特徵とする 直火加熱炉を有する鋼 帯の連統処理 ラ イ ン 。
03)
^ ク レ ーム ^)にお いて、 還元型加熱パ ーナ . が、 直火加熱炉 の全加熱有効範固 に!: り 上 記 ピ ッ チで配置されてい る ¾続処理 ラ ィ ン ^ ク レ ー ム に おいて、 直火加熱炉の有効 炉長に対 し、
'1 OUT ■T
A(T) dT dT
F(T) Β (Τ) = 0
T F(T)
Τ IN
= 〔 (TOUT -Τ*) / (ΤΟΥΤ - TIN) 〕 Χ 100
(Iし IN 1火加熱炉入□鋼 ^温 S ( °K) ΟϋΤ n火刀 α熱炉出口鋼^ ( °κ ) (Τ) 元透度 A / sec
〔 == 127000 e ^ : 〕
Τ 非¾^[万卩熱ノヾーナ設置領域と
i 元 1加熱バ一ナ設置領续との 境界部における鋼胥板 ^ ( °K)
Β (Τ) 鋼 化 度 (A / sec)
^ 6126 \ 〔 = 69200 e で ノ 〕
F(T) 万口熱透度 (°Z/ sec)
( = dT Z d t 〕
で求め ら れ る r 以上の炉 出側炉長部分に、 還元型加熱バ ー ナを上記 ピ ッ チで 15置 し、 残有効炉長部分には非還元型加熟バ ー ナを 配置 した ¾銃処理 ラ イ ン 。
ク レ ー ム ^において、 直火加熱炉各パ ス の少な く と も 岀側通板 口 ール直前の加熱領 域を含むぺ ス 岀側領域に、 還元型加熱バ ー ナが上記 ピ ッ チで配置されてい る ¾統処理 ラ イ ン 。
予熱炉、 直火加熱炉、 間接加熱炉、 液体 冷却を主体と した冷却炉、 中間酸洗設備及 び過時効処理炉を順に有 し、 最終処理帯の 出側に、 調質圧延機が配置された鋼帯の連 続処理ラ イ ン であ り 、
前記直火加熱炉は、 火炎中に、 燃焼中間 生成物を有 し且つ遊離酸素を有 しない非平 衡領域を形成する こ とがで き る複数の還元 型加熱バ―ナを備え、
各還元型加熱バ ーナを、 火炎が鋼帯面に 略直角で、 しかもその非平衡領域において 鋼帯に衝突する よ う配置し、
これら複数の還元型加熱バー ナを、 ラ イ ン方向での ( バ一ナ内径 ) ノ ( ノ -ーナ ピッ チ ) が 0. 3 以上となる 'よ う な間隔で配置 し たこ とを特徵とする直火加熱炉を有する鋼 帯の連続処理 ラ イ ン 。 -.
(lob) ク レ ー ム ^にお いて、 還元型加熱ノ ーナ が、 直火加熟炉 の全加熱有効範 に亘り 上 記 ピ ッ チで配置されてい る違繞処涅 ラ ィ 、ノ ク レ ー ム ^ において、 直火加熱炉の有効 炉長に対 し、 o
= 〔 (TOUT - Τ*) Ζ (ΤΟΫΤ— Τ Ν) 〕 χ 100 但し、 τ ΙΝ : :火加熱炉入口 w m. ( °κ)
OUT : :火刀 D熱炉 ·ίϋコ鋼帚^度( °K) Α(Τ) : 鋼^ ¾元逼度 (i/ sec)
_ o 4 o ^
C = 127000 e T ノ 〕
: 非!:^刀 D熱バーナ設量領 と
¾元 加熱バーナ設量領续との 境界吾 βにおける鋼^板 g (°K)
Β(Τ) : 鐫帝黎化逼 (AX sec) 〔= 69200 e 、 T ノ 〕
F(T) : m m ( ノ sec)_
C = dT X dt〕
で求めら れる Γ 以上の炉 出側炉長部分に 還元型加熱バ ーナを上記 ピッ チで配置 し、 残有効炉長部分には非還元型加熱バ ーナを 配置 した違続処理 ラ イ ン 。 - ク レ ー ム において、 直火加熱炉各パ ス の少な く と も 出側通板 口 ー ル直前の加熱領 域を含むパ ス 出側領域に、 還元型加熱バ ー ナが上記 ピッ チで配置されている連続処理 ラ イ ン 。
鋼帯表面の ク リ 一 二ン グ設備、 予熱炉、 直火加熱炉、 間接加熱炉、 液体冷却を主体 と した冷却炉、 中間酸洗設備及び過時効処 理炉を順に有 し、 最終処理帯の 出側に、 調 質圧延機が配置された鋼帯の連続処理ラ ィ ンであり 、
前記直火加熱炉は、 火炎中に、 燃焼中 間 生成物を有 し且つ遊離酸素を有 しない非平 衡領域を形成する こ とがで き る複数の還元 型加熱 'ーナを-備え、
各還元型加熱バ ーナを、 火炎が鋼帯面に- 略直角で、 しかも その非平衡領域において 鋼帯に衝突する よ う配置 し、
これら複数の還元型加熱バーナを、 ラ イ ン方向での ( ノぺ 'ーナ内径 ) Z ( バ一ナ ピッ チ ) が 0. 3 以上となるよ う な間隔で配置 し たこ とを特徵とする直火加熱炉を有する鋼 帯の連続処理 ラ イ ン。
(50) ク レ ム ^にお いて、 還元型加熱バ ー ナ が、 it火加熱炉 の全加熱有効範圏 に!: り 上 記 ピ ッ チで配置されてい る違続処理 ラ イ ン
(51) ク レ ー ム )において、 直火加熱炉の有効 炉長に対 し、
• J- OUT •Τ 、'
dT
A(T) dT
F(T) B (T) = 0
F(T)
T IN
T = 〔 (TOUT一 T*) / (Τ0υτ - TIN) ] x 100 is.し、 T IN : ϋ火加熱炉入口鋼 ^温度( °K)
T OUT ; IE火 IID熱炉 S口鋼 ^温度 ( °K)
A(T) : 帚還元透度 ( A / sec )
^ o4c3 \
[. = 127000 e 、 T ノ 〕
7Γ
T 非 ¾元 ϋ刀 I:熟バーナ設 S領域と 還^加熱バーナ¾»領 との 境界 Bにおける鋼^板溫 ( ° )
B (T) 鋼^酸化 (A / sec)
6125ヽ
C = 69200 e τ ' 〕
F(T) m . (° / sec)
r = dT x c t 3 '
で求め ら れ る. Γ ¾ 以上の炉 出側炉長部分に
還元型加熱バ ーナを上記 ピ ッ チで配置 し、.
残有効炉長部分には 非 a元型加熱バ ー ナを ir 配置 した ¾続処涅 ラ イ ン 。 - ク レ ー ム ^において、 直火加熱炉各パ ス
の少な く と も 出側 S板 σ —ル!:前の加熱領
域を含むパ ス .出側領域に、 還元型加熱バ一
ナが上記 ピ ッ チで配置されてい る違続処理
ラ イ ン 。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR8606772A BR8606772A (pt) | 1985-07-18 | 1986-07-10 | Linha de tratamento continuo para fitas de aco com um forno de aquecimento por chama direta |
DE8686904373T DE3677959D1 (de) | 1985-07-18 | 1986-07-10 | Anlage zur kontinuierlichen behandlung von bandstahl mit einem direkt beheizten ofen. |
AT86904373T ATE61416T1 (de) | 1985-07-18 | 1986-07-10 | Anlage zur kontinuierlichen behandlung von bandstahl mit einem direkt beheizten ofen. |
Applications Claiming Priority (18)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60/156898 | 1985-07-18 | ||
JP15689885A JPS6220828A (ja) | 1985-07-18 | 1985-07-18 | 連続焼鈍炉 |
JP19261185A JPS6254033A (ja) | 1985-08-31 | 1985-08-31 | 鋼帯の連続焼鈍設備 |
JP60/192604 | 1985-08-31 | ||
JP19260585A JPS6254032A (ja) | 1985-08-31 | 1985-08-31 | 鋼帯の連続焼鈍炉 |
JP60/192612 | 1985-08-31 | ||
JP60/192605 | 1985-08-31 | ||
JP60/192613 | 1985-08-31 | ||
JP60/192611 | 1985-08-31 | ||
JP19260885A JPS6254069A (ja) | 1985-08-31 | 1985-08-31 | 連続溶融亜鉛メツキ法 |
JP19260385A JPS6254030A (ja) | 1985-08-31 | 1985-08-31 | 鋼帯の連続焼鈍設備における直火式加熱炉 |
JP60/192603 | 1985-08-31 | ||
JP19261285A JPS6254034A (ja) | 1985-08-31 | 1985-08-31 | 鋼帯の連続焼鈍設備 |
JP19260185A JPS6254028A (ja) | 1985-08-31 | 1985-08-31 | 鋼帯の連続焼鈍設備における直火式加熱炉 |
JP60/192608 | 1985-08-31 | ||
JP19260485A JPS6254031A (ja) | 1985-08-31 | 1985-08-31 | 鋼帯の連続焼鈍設備における直火加熱炉 |
JP19261385A JPS6254035A (ja) | 1985-08-31 | 1985-08-31 | 鋼帯の連続熱処理方法 |
JP60/192601 | 1985-08-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1987000555A1 true WO1987000555A1 (en) | 1987-01-29 |
Family
ID=27577490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1986/000352 WO1987000555A1 (en) | 1985-07-18 | 1986-07-10 | Continuous strip steel processing line having direct firing furnace |
Country Status (5)
Country | Link |
---|---|
US (1) | US4760995A (ja) |
EP (1) | EP0233944B1 (ja) |
AU (1) | AU598981B2 (ja) |
BR (1) | BR8606772A (ja) |
WO (1) | WO1987000555A1 (ja) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2656553B1 (fr) * | 1990-01-03 | 1994-12-30 | Stein Heurtey | Installation de traitement thermique avant laminage de brames minces produites par coulee continue. |
FR2688802B1 (fr) * | 1992-03-19 | 1994-09-30 | Stein Heurtey | Procede de traitement thermique de bandes metalliques. |
AT405055B (de) * | 1997-06-10 | 1999-05-25 | Ebner Peter Dipl Ing | Turmofen zur wärmebehandlung von metallbändern |
US6341955B1 (en) * | 1998-10-23 | 2002-01-29 | Kawasaki Steel Corporation | Sealing apparatus in continuous heat-treatment furnace and sealing method |
FR2916764B1 (fr) * | 2007-05-30 | 2009-08-21 | Gaz De France Sa | Procede et installation de chauffage d'une bande metallique, notamment en vue d'un recuit |
JP4977878B2 (ja) * | 2009-10-27 | 2012-07-18 | Jfeスチール株式会社 | 連続焼鈍炉のガスジェット冷却装置 |
TR201807600T4 (tr) * | 2009-12-15 | 2018-06-21 | Primetals Tech France Sas | Sürekli geçiş halindeki bir çelik şerit için ön ısıtma tertibatı. |
AT520134B1 (de) * | 2017-07-13 | 2020-03-15 | Andritz Tech & Asset Man Gmbh | Verfahren zur reduktion von stickoxiden in bandbehandlungsöfen |
AT520131A2 (de) * | 2017-07-13 | 2019-01-15 | Andritz Tech & Asset Man Gmbh | Verfahren zur reduktion von stickoxiden in bandbehandlungsöfen |
CN114836614B (zh) * | 2022-04-29 | 2022-12-09 | 江苏兴缘高温线缆有限公司 | 一种镀铜丝加工用退火装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5844133B2 (ja) | 1978-12-29 | 1983-10-01 | 新日本製鐵株式会社 | 冷延鋼帯の連続焼鈍方法 |
JPS6041011A (ja) | 1983-05-19 | 1985-03-04 | エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン | 光ケ−ブル素子、光ケ−ブルおよびその製造方法 |
JPS6041009A (ja) | 1983-06-06 | 1985-03-04 | アンプ・インコ−ポレ−テツド | 二支持面を有する光フアイバコネクタおよび光フアイバ伝送部材終端方法 |
JP2965184B2 (ja) | 1991-12-09 | 1999-10-18 | 三菱レイヨン株式会社 | エアージェット |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2848205A (en) * | 1956-09-24 | 1958-08-19 | Selas Corp Of America | Strip heating apparatus |
FR1356359A (fr) * | 1963-02-12 | 1964-03-27 | Utilisation Ration Gaz | Cellule de chauffe perfectionnée |
US3492378A (en) * | 1968-05-13 | 1970-01-27 | Bethlehem Steel Corp | Method of operation of a continuous strip heating furnace |
US3827854A (en) * | 1973-10-26 | 1974-08-06 | W Gildersleeve | Automatic metal protecting apparatus and method |
JPS5227606A (en) * | 1975-08-27 | 1977-03-02 | Itsuki Ban | Magnetic recording reproducer using a cassette which reciprocates and reproduces automatically |
JPS5299909A (en) * | 1976-02-17 | 1977-08-22 | Nippon Kokan Kk <Nkk> | Process and apparatus for annealing continuously strips |
JPS5924166B2 (ja) * | 1977-10-20 | 1984-06-07 | 新日本製鐵株式会社 | ストリツプの連続加熱に於ける板温制御方法 |
JPS5621830A (en) * | 1979-07-31 | 1981-02-28 | Oji Yuka Gouseishi Kk | Film being excellent in printing property |
DE3170723D1 (en) * | 1981-08-25 | 1985-07-04 | Nippon Steel Corp | Dual-purpose plant for producing cold rolled steel sheet and hot-dip galvanized steel sheet |
JPS6077929A (ja) * | 1983-10-04 | 1985-05-02 | Nippon Kokan Kk <Nkk> | 鋼帯の直火還元加熱法 |
JPS6077931A (ja) * | 1983-10-05 | 1985-05-02 | Nippon Kokan Kk <Nkk> | 鋼帯の無酸化加熱法 |
-
1986
- 1986-07-10 EP EP86904373A patent/EP0233944B1/en not_active Expired
- 1986-07-10 BR BR8606772A patent/BR8606772A/pt not_active IP Right Cessation
- 1986-07-10 WO PCT/JP1986/000352 patent/WO1987000555A1/ja active IP Right Grant
- 1986-07-10 US US07/027,224 patent/US4760995A/en not_active Expired - Lifetime
- 1986-07-10 AU AU61432/86A patent/AU598981B2/en not_active Ceased
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5844133B2 (ja) | 1978-12-29 | 1983-10-01 | 新日本製鐵株式会社 | 冷延鋼帯の連続焼鈍方法 |
JPS6041011A (ja) | 1983-05-19 | 1985-03-04 | エヌ・ベ−・フイリツプス・フル−イランペンフアブリケン | 光ケ−ブル素子、光ケ−ブルおよびその製造方法 |
JPS6041009A (ja) | 1983-06-06 | 1985-03-04 | アンプ・インコ−ポレ−テツド | 二支持面を有する光フアイバコネクタおよび光フアイバ伝送部材終端方法 |
JP2965184B2 (ja) | 1991-12-09 | 1999-10-18 | 三菱レイヨン株式会社 | エアージェット |
Also Published As
Publication number | Publication date |
---|---|
EP0233944A1 (en) | 1987-09-02 |
AU598981B2 (en) | 1990-07-05 |
US4760995A (en) | 1988-08-02 |
EP0233944A4 (en) | 1988-05-31 |
EP0233944B1 (en) | 1991-03-06 |
BR8606772A (pt) | 1987-10-13 |
AU6143286A (en) | 1987-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2955279C (en) | Method for heating steel sheets and device for carrying out the method | |
WO1987000555A1 (en) | Continuous strip steel processing line having direct firing furnace | |
WO1996017215A1 (fr) | Procede de chauffage non oxidant et appareil afferent | |
US20140342297A1 (en) | Nozzle Device for a Furnace for Heat Treating a Steel Flat Product and Furnace Equipped with such a Nozzle Device | |
US20140203482A1 (en) | Apparatus and Method for the Treatment of a Flat Steel Product, Taking Place in Throughput | |
US4242154A (en) | Preheat and cleaning system | |
CA1255897A (en) | Continuously treating line for steel bands having a heating furnace by directly flaming | |
CN109055675B (zh) | 一种不锈钢工件的氧化着色和退火工艺 | |
ES2161660T3 (es) | Perfeccionamientos introducidos en el precalentamiento de cintas metalicas particularmente en lineas de galvanizacion o de recocido. | |
US5192485A (en) | Continuous annealing line having carburizing/nitriding furnace | |
JP4718381B2 (ja) | 溶融亜鉛めっき設備 | |
JPS6254034A (ja) | 鋼帯の連続焼鈍設備 | |
JP2807134B2 (ja) | ガスジェットチャンバのシール装置 | |
JPH0149774B2 (ja) | ||
JP4110584B2 (ja) | 金属帯の連続熱処理装置 | |
CA1103569A (en) | Preheat and cleaning system | |
JPH0368933B2 (ja) | ||
JP2006307296A (ja) | 金属帯の連続熱処理方法および横型連続熱処理炉 | |
JPH0553848B2 (ja) | ||
JPH0230720A (ja) | 鋼板の加熱方法 | |
JPH0146567B2 (ja) | ||
JPH1112658A (ja) | 連続焼鈍設備における鋼板の予熱方法 | |
JPH0368931B2 (ja) | ||
JPH0781167B2 (ja) | 鋼帯の直火式連続焼鈍方法及び装置 | |
JPH06306486A (ja) | 鋼帯の熱処理装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU BR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT DE FR GB IT |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1986904373 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1986904373 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1986904373 Country of ref document: EP |