WO1984003250A1 - Film de poly(fluorure de vinylidene), ses utilisations et procede de fabrication - Google Patents

Film de poly(fluorure de vinylidene), ses utilisations et procede de fabrication Download PDF

Info

Publication number
WO1984003250A1
WO1984003250A1 PCT/US1984/000232 US8400232W WO8403250A1 WO 1984003250 A1 WO1984003250 A1 WO 1984003250A1 US 8400232 W US8400232 W US 8400232W WO 8403250 A1 WO8403250 A1 WO 8403250A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
vinylidene fluoride
phase
poly
pvf
Prior art date
Application number
PCT/US1984/000232
Other languages
English (en)
Inventor
Michael Alan Marcus
Original Assignee
Eastman Kodak Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Kodak Co filed Critical Eastman Kodak Co
Publication of WO1984003250A1 publication Critical patent/WO1984003250A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/443Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds
    • H01B3/445Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds from vinylfluorides or other fluoroethylenic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/18Organic dielectrics of synthetic material, e.g. derivatives of cellulose
    • H01G4/186Organic dielectrics of synthetic material, e.g. derivatives of cellulose halogenated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • PVF 2 polyvinylidene fluoride
  • Another related invention pertains to a method for producing such a film.
  • a further related invention pertains to the use of such a film as the dielectric component in electrical capacitors.
  • the beta-phase material is produced by first cooling the PVF ⁇ film as it is extruded from a melt, and thereafter stretching it at temperatures significantly below its melt point, e.g. at temperatures between 60° and 1Q0°C. Such stretching of the film at a cooled temperature serves to convert the alpha-phase crystals (which is the phase of the extruded and cooled film) to beta-phase crystals.
  • beta-phase PVF « films in capacitors difficulties have been encountered in maintaining
  • OMPI 5 ipo structural integrity during use.
  • beta-phase PVF « film unlike alpha-phase PVFn film, has a relatively high piezoelectric constant (e.g., greater than 10 meters/volt) upon being "poled”; i.e. subjected to a high electric field for a prolonged period of time (e.g. one hour) at a certain temperature, for example, room temperature.
  • a relatively high piezoelectric constant e.g., greater than 10 meters/volt
  • alpha-phase PVF 2 films have far less piezoelectric activity and, hence, would not be as subject to such structural defects, such films have not been considered to be useful in capacitors because of their relatively low dielectric constant (typically less than a value of 10).
  • a predominantly alpha-phase PVF 2 film which, while retaining its desirably low piezoelectric activity, exhibits a relatively high dielectric constant.
  • such a film is produced by stretching an extruded PVF 2 film, while still molten, to reduce the film thickness to less than about l/50th of its extruded thickness.
  • the resulting predominantly alpha-phase film has a significantly increased dielectric constant (having a value of at least 12) and a low piezoelectric activity
  • Fig. 1 is a plot of an infrared absorbance spectrograph of a PVF 2 film made in accordance with the invention
  • Fig. 2 is a schematic illustration, partially in section, of apparatus used to manufacture the P F 2 film
  • Fig. 3 is a graph illustrating the relation ⁇ ship, in one example, of the surface speed of the chill wheel to the dielectric constant of the PVF 2 film;
  • Fig. 4 is a fragmentary sectional view of one- half of a capacitor in which the PVF 2 film is used, such view being taken along a radius of the capacitor;
  • Fig. 5 is a schematic view of a camera utiliz ⁇ ing the invention.
  • stretching PVF 2 film suf ⁇ ficiently while it is still in the molten state so as to prevent formation of the beta-phase causes the film to have dielectric constants ranging from 12 to about 16 and higher.
  • Proper stretching causes the film to have final thicknesses no greater than 5 microns, and as thin as 1 micron, and still be free of pinholes and voids.
  • the crystalline structure of the finished film is examined, it is found to be predominantly alpha-phase.
  • "predominantly alpha-phase" means at
  • OMPI least 75% (by weight) of the crystalline portion of the film is alpha-phase in crystalline structure.
  • the film of the invention is described as useful to form a dry capacitor wherein no dielectric liquid is included to remove air pockets.
  • useful forms of the capacitor of this invention include those wherein the film of this invention is combined with such a dielec ⁇ tric liquid to form a wet capacitor.
  • the film is useful beyond its use in a capacitor, for exam ⁇ ple as tubing insulation, diaphragms for instruments or pumps, and protective surfaces for materials exposed to weather or corrosion.
  • infrared absorption spectroscopy is used, as is described in U.S. Patent No. 4,298,719, col. 5, lines 23-42. Specifically, the absorption spectroscopy curve is examined for the curve values at 510 and 530 cm "1 , where 510 is character- istic of beta-phase and 530 of alpha-phase. The amount of absorbancy D is measured as the area under the curve for the peak in question.
  • the proportion of the alph -phase crystals present, by crystalline weight, compared to the total crystalline weight (alpha-phase plus beta-phase) is determined by the equation
  • a Mw of 10 5 is useful.
  • Heaters not shown, preferably supply auxiliary heat to extruder 10.
  • Molten polymer is delivered from the extruder to a conventional die 50 having a rectang ⁇ ular opening 60 with a fixed length and a variable width "w.”
  • the hot polymer melt M flows out of die 50 across a distance "Y" to a conventional, rapidly rotating sur ⁇ face such as chill wheel or roller 70 operated at RPM's and temperatures hereinafter described.
  • the film is carried off to edge slitters 80 and take-up roller 90 that operates at RPM's sufficient to maintain tension on the film and avoid wrinkling.
  • an air jet 100 or a vacuum holddown (not shown) is added to temporarily "pin" the polymer film to chill wheel 70.
  • Temperature control means such as a coolant, can be added to wheel 70, to maintain the temperature of the surface of the wheel below the melt temperature (160-185°C) of the PVF 2 .
  • the temperature must be no cooler than that which will ensure the stretching occurs while the film is molten, as is well known.
  • the exact critical temperature will depend upon the size of wheel 70, and the speed of its operation. Most preferably, such surface temperature is maintained at a value between about 40°C and about 120°C.
  • Fig. 3 is a plot of the RPM's needed for a 20 cm diameter wheel 70 to produce dielectric constants K of at least 12 when the melt M is extruded at a lineal speed of about 34.5 cm/min from a die opening width w ⁇ 254 y.
  • This particular apparatus should be operated with wheel 70 rotated at a minimum of about 57 RPM, a value which, when converted to 43 cm/sec peripheral speed, is at least about 105 times that of the lineal speed of melt M.
  • the ratio of surface speed of the chill wheel and the lineal speed of extru ⁇ ded melt should be at least about 45 for best results.
  • the high dielectric constants, and the relative lack of piezoelectric activity when poled, of the film of the invention are achieved by stretching the film, or equivalently, reducing its thickness, by a particular amount.
  • the film is stretched or reduced in thick- ness by a stretch ratio of at least about 50, during or before the chilling of the film below its molten point.
  • the film as extruded from the die has an initial thickness of 254 microns, it should have a final thickness after stretching that is no greater than about 5 microns (1/51 reduction) to insure that the high dielectric constants and low piezoelectric constants are achieved.
  • a final thickness greater than 5 microns also provides such constants, if the initial extruded thick ⁇ ness is also larger than the final thickness by a factor of 50.
  • an initial thickness of 500 microns when reduced to 10 microns by the procedure of this inven ⁇ tion, can be expected to have a dielectric constant of at least 12 and a piezoelectric constant no greater than about 4 X 10 " 1 Z meters/volt when poled as described above.
  • a variety of flow distances Y is useful within the invention. The most critical aspect of distance Y is that it not be so large as to allow the melt M to solidify before reaching wheel 70, or so as to prevent adherence of the film to wheel 70. Useful values of Y range from about 0.1 to about 5 cm. Most preferably, distance Y does not exceed about 2.5 cm.
  • die opening width w is selected to minimize the thickness of melt M that is extruded, thereby reducing the final thickness of the film that is achieved.
  • Useful values of width w range from 25 to about 1000 ⁇ m, with 250 ⁇ m being preferred.
  • final film thicknesses greater than 5 ⁇ m are also useful, if the film is to be used in a photoflash capacitor as in the preferred embodiment, the final thickness should be ⁇ 5 ⁇ m, using a stretch ratio >.50.
  • OMPI - IPO at from about 30 to about 80 revolutions per minute, depending upon the diameter of the wheel.
  • the film is formed with the aforesaid properties by extruding melt M onto a plastic support, such as poly(ethylene terephthalate), not shown.
  • a plastic support such as poly(ethylene terephthalate)
  • This support with the PVF 2 still molten there ⁇ on is partially wrapped around wheel 70 so that both the support and the PVF 2 are stretched by the rapid rota ⁇ tion of the wheel.
  • Yet another alternative manufacturing technique comprises the coextrusion of such a plastic support along with the PVF 2 , so that both are driven (not shown) by wheel 70, while still molten, and thereby stretched. It is readily apparent from the preceding description that the manufacturing process is improved in that only uniaxial stretching is required. Thus, the additional equipment that would be needed to obtain biaxial stretching is not necessary.
  • a capacitor 200 is prepared from sheets of the afore-described PVF 2 film, by applying conductive, metallic electrode layers 212 and 212' on two such PVF 2 sheets 214 and 214' so that the edges 216 and 216', respectively, of the two sheets are left uncoated with metal. Any conventional pro ⁇ cedure can be used to apply the metallic layers.
  • the insulative thickness of the sheets that is, the thickness measured without including the metallic layers, is preferably no greater than about 5 microns.
  • the metallic layers have any suitable resistivity, for example, 1 to 4 ohms/square, with thicknesses preferably from 500 to 2000A.
  • the thus-coated sheets (identified as composites A and B) are then wrapped in interleaved relation around a core 220 of any desired shape, one composite stacked on the other, so that edges 216 and 216' are at opposite ends of the core.
  • Soft conductive metal pieces 221, 221', such as flame sprayed metal, are applied at the edges 222 and 224 of the wrappings so as to separately electrically interconnect all of the layers 212 at one end, and all the layers 212' at the other.
  • Such a camera 300 comprises flash apparatus that includes an electronic flash tube 318 which is wired to a high voltage power supply 326 via a control circuit 324. Power supply 326 also supplies power to the lens motor drive circuit 330 that is controlled by an optional automatic focus detector 328. The drive circuit in turn operates the positioning of lens 342 via motor 332 so that the image "I" is properly focused on film 344. All these components are generally described in U.S. Patent No. 4,291,958, issued September 29, 1981, by Lee Frank et al.
  • the firing means for the flash apparatus includes the flash control circuit 324 and of course power supply 326.
  • Control circuit 324 in turn includes two capacitors--one which is a triggering capacitor (not
  • the firing capacitor that supplies the energy to actually fire tube 318.
  • the capacitor of this inven ⁇ tion is particularly useful as the firing capacitor. The capacitor is fired and the tube flashed when the camera shutter release button (not shown) is actuated, if the camera needs additional light for the exposure in question. Examples
  • Thickness measurements were made by three different techniques as follows:
  • the films were placed between a flat gauge block and the head of a miniature linear variable differential transformer (Daytronic).
  • Model DC20A LVDT The LVDT developed an output voltage proportional to distance from a reference position.
  • the transducer output was amplified with a Daytronic Model 300D transducer amplifier indicator followed by a C3140 operational amplifier with a gain of 20.
  • Voltage through the LVDT was measured with the film samples both in place and out of position. The difference between readings yielded a voltage proportional to the sample thickness.
  • a calibration curve was made using conven- tional 6, 9 and 16 ⁇ thick biaxially stretched PVF 2 film obtained from Kureha Chemical Industry Co., Ltd., Japan, and 12.5 ⁇ and 25.4 ⁇ polyethylene tere- phthalate shim stock. All measurements were made at least 4 times and the average value determined.
  • an IR interference technique was used. Constructive interference between the direct ray and the ray which is internally reflected once off each film surface occurs in transmission when 1) m ⁇ ⁇ 2nt
  • FTIR Fourier Transform Infrared Spectra
  • Voltage breakdown strengths were determined by ramping a high voltage power supply through the examples deposited with 800A thick aluminum electrodes, while monitoring the current flow. Breakdown was defined to be the voltage at which the current surged from less than 1 ⁇ amp to greater than 10 ⁇ amps. The values listed in Table IV are average values for 10 samples. Charge density C/V was of course calculated from the equation
  • Example 1 was found to have a piezoelectric con ⁇ stant of 1.2 X 10 " 12 meters/volt, Ex. 3 was 1.9 X 10 ⁇ 12 , Ex. 5 was 2.1 X 10 '12 , Ex. 6 was 2.6 X 10 ' 12 and Ex. 8 was 3 X 10 " 12 meters/volt. Examples 2, 4 and 7 not tested are presumed to have a value less than that of Ex. 8, inasmuch as Ex.
  • Example 1 and Example 5 were each repeated, except that the RPM of the chill wheel was reduced to only 17 and 21.3, respectively. This produced an average final thickness of the PVF 2 film that was 8.8 microns and 7.3 microns, respectively, a reduction in thickness of only 1/28.4 and 1/41.8, respectively. This was found to produce dielectric con ⁇ stants of only 10.3 and 9.4, respectively, demonstrating that the stretch ratio needs to be at least about 50 to obtain Applicant's results.
  • Example 9 Use of a Plastic Support
  • the procedure of Example 5 was repeated, except that the die opening was 1016 ⁇ m and a layer of unoriented polyester support having a thickness of about 152 ⁇ m and traveling at a speed of about 30 m/min was brought into contact by a nip roller with the PVF 2 film right after the PVF 2 film contacted the chill wheel.
  • the PVF 2 film was sandwiched between the chill wheel and the polyester support.
  • the surface of the chill wheel also had a lineal speed of about 30 m/min, and the temperature of the chill wheel was 60°C.
  • the extruder had a screw length/diameter ratio of about 35/1, the width of the die was about 46 cm and the diameter of the chill wheel was about 35 cm.
  • the resulting stretched PVF 2 film had a thickness of 17.8 ⁇ m, which was about l/57th that of the original thickness of 1016 ⁇ m.
  • This film was found to have greater than 90% by weight alpha-phase crystalline structure, a dielectric constant of 12.8 at 1000 hz, a dissipation factor of 0.011 and a breakdown strength of in excess of 2.0 MV/cm.
  • a Comparative Example No. 3 the process of
  • Example 9 was repeated, except that the chill wheel was refrigerated with chilled water so as to have a surface temperature of 10°C.
  • the resulting PVF 2 film had the same properties as that of Example 9, except that greater than 75% of the crystalline structure (by weight) was beta-phase and the dissipation factor was increased to 0.018 (at 1000 hz). This demonstrated the importance of stretching the PVF 2 while still molten, since the use of a chill wheel at 10°C cooled the film, before stretching, sufficiently below the melt condition as to produce predominantly beta-phase, an undesired result.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

Nouveau film de poly(fluorure de vinylidène) et processus de fabrication. Ce film possède des constantes diélectriques supérieures qui n'étaient disponibles avant la présente invention que dans un film de poly(fluorure de vinylidène) de phase béta. Un tel film est particulièrement utile pour servir de composant diélectrique dans des condensateurs de blessures (Fig. 4). Le procédé préférentiel de la présente invention (M, 70, Y, w) comprend l'allongement du film de poly(fluorure de vinylidène), pendant qu'il est en condition fondue, à un degré permettant de réduire l'épaisseur du film à une valeur ne dépassant pas environ le 1/50 de l'épaisseur originale.
PCT/US1984/000232 1983-02-24 1984-02-21 Film de poly(fluorure de vinylidene), ses utilisations et procede de fabrication WO1984003250A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US46883183A 1983-02-24 1983-02-24
US57746684A 1984-02-06 1984-02-06

Publications (1)

Publication Number Publication Date
WO1984003250A1 true WO1984003250A1 (fr) 1984-08-30

Family

ID=27042565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1984/000232 WO1984003250A1 (fr) 1983-02-24 1984-02-21 Film de poly(fluorure de vinylidene), ses utilisations et procede de fabrication

Country Status (2)

Country Link
EP (1) EP0136345A4 (fr)
WO (1) WO1984003250A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2583914A1 (fr) * 1985-06-21 1986-12-26 Thomson Csf Materiaux dielectriques a base de polymeres et a permittivite dielectrique elevee
GB2266833B (en) * 1992-05-15 1995-12-20 British American Tobacco Co Improvements relating to tobacco reconstitution
WO2023184177A1 (fr) * 2022-03-29 2023-10-05 宁德新能源科技有限公司 Ensemble électrode, son procédé de préparation, dispositif électrochimique et dispositif électronique

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3878274A (en) * 1971-07-20 1975-04-15 Kureha Chemical Ind Co Ltd Process for production of polyvinylidene fluorine resin film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1949855B2 (de) * 1968-10-04 1980-06-26 Kureha Kagaku Kogyo K.K. Verfahren zur Herstellung von elektrischen Wickelkondensatoren
JPS5962115A (ja) * 1982-10-01 1984-04-09 Kureha Chem Ind Co Ltd 誘電体フイルム

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3878274A (en) * 1971-07-20 1975-04-15 Kureha Chemical Ind Co Ltd Process for production of polyvinylidene fluorine resin film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2583914A1 (fr) * 1985-06-21 1986-12-26 Thomson Csf Materiaux dielectriques a base de polymeres et a permittivite dielectrique elevee
EP0206926A1 (fr) * 1985-06-21 1986-12-30 Thomson-Csf Matériaux diélectriques à base de polymères et à permittivité diélectrique élevée
US4708989A (en) * 1985-06-21 1987-11-24 Thomson-Csf Polymer based dielectric material with high dielectric permittivity
GB2266833B (en) * 1992-05-15 1995-12-20 British American Tobacco Co Improvements relating to tobacco reconstitution
WO2023184177A1 (fr) * 2022-03-29 2023-10-05 宁德新能源科技有限公司 Ensemble électrode, son procédé de préparation, dispositif électrochimique et dispositif électronique

Also Published As

Publication number Publication date
EP0136345A1 (fr) 1985-04-10
EP0136345A4 (fr) 1987-01-10

Similar Documents

Publication Publication Date Title
US11440292B2 (en) Polypropylene film, metal layer laminated film, and film capacitor
GB2027039A (en) Doubly oriented polyvinylidene flouride
WO1984003250A1 (fr) Film de poly(fluorure de vinylidene), ses utilisations et procede de fabrication
EP0105750B1 (fr) Film diélectrique et son procédé de fabrication
JP2932550B2 (ja) コンデンサ用二軸延伸プラスチックフイルムおよびそれを用いたコンデンサ
US4711808A (en) Beta phase PVF2 film formed by casting it onto a specially prepared insulating support
JPS626977B2 (fr)
US4287249A (en) Textured surface polypropylene film
CA1234884A (fr) Pellicule en fluorure de polyvinylidene pour condensateurs bobines
KR20170122200A (ko) 적층 필름 및 그 제조 방법
JPS62259304A (ja) コンデンサ−誘電体用ポリエステルフイルム
JP2001048998A (ja) 二軸配向ポリプロピレンフィルム
JPH0796264B2 (ja) 熱可塑性樹脂フィルムロール
JPH03207651A (ja) 二軸配向ポリエステルフイルム
JPH09300453A (ja) ポリエステルフィルムおよびそれからなる製品
JPH0642441B2 (ja) コンデンサー
CN117238681A (zh) Bopp粗化膜及制备方法、金属化薄膜和油浸式电容器
JP7245026B2 (ja) 樹脂フィルム、金属層一体型樹脂フィルム、及び、フィルムコンデンサ
JP2734030B2 (ja) 二軸配向熱可塑性樹脂フィルム
JP2576465B2 (ja) コンデンサ用フイルムの製造方法
JPH09131844A (ja) コンデンサ用二軸配向ポリエステルフイルム
JP2001118430A (ja) 油浸電気絶縁用二軸配向ポリプロピレンフィルム
JP2975881B2 (ja) 二軸配向熱可塑性樹脂フィルム
JP2586005B2 (ja) 油含浸型コンデンサ−
JPS63251221A (ja) ポリエステルフィルム

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): JP

AL Designated countries for regional patents

Designated state(s): BE DE FR GB NL

WWE Wipo information: entry into national phase

Ref document number: 1984901251

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1984901251

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1984901251

Country of ref document: EP