WO1980000114A1 - Voltage non-linear resistive ceramics - Google Patents

Voltage non-linear resistive ceramics Download PDF

Info

Publication number
WO1980000114A1
WO1980000114A1 PCT/JP1979/000152 JP7900152W WO8000114A1 WO 1980000114 A1 WO1980000114 A1 WO 1980000114A1 JP 7900152 W JP7900152 W JP 7900152W WO 8000114 A1 WO8000114 A1 WO 8000114A1
Authority
WO
WIPO (PCT)
Prior art keywords
atomic
added
voltage non
calcium
chromium
Prior art date
Application number
PCT/JP1979/000152
Other languages
English (en)
French (fr)
Inventor
T Sakaguchi
T Ishii
I Nagasawa
K Mukae
K Tsuda
Original Assignee
Fuji Electric Co Ltd
T Sakaguchi
T Ishii
I Nagasawa
K Mukae
Tsuda Kiichi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, T Sakaguchi, T Ishii, I Nagasawa, K Mukae, Tsuda Kiichi filed Critical Fuji Electric Co Ltd
Priority to DE792952884T priority Critical patent/DE2952884T1/de
Publication of WO1980000114A1 publication Critical patent/WO1980000114A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/105Varistor cores
    • H01C7/108Metal oxide
    • H01C7/112ZnO type

Definitions

  • the present invention has an excellent protection ability for superconducting power by adding zinc oxide as a main component, and as a sub-component, adding one or several kinds of elements in the form of an element or a compound, and firing the resultant.
  • porcelain obtained by adding zinc oxide as a main component and adding / as a sub-component / several or several elements in the form of an element or a compound, followed by sintering, Since it has a large nonlinear coefficient and a small leakage current, it is suitable for protection against overcurrent ⁇ of electrical equipment with small overcurrent capability such as semiconductor devices. Has become widely used.
  • An object of the present invention is to further reduce the leakage current of a conventional voltage non-linear resistance ceramic mainly composed of zinc oxide, and in addition to praseodymium, cobalt, potassium and chromium as subcomponents. It is characterized in that at least one of magnesium and calcium is added in the form of an element or a compound.
  • At least one of atomic% of calcium (Ca) is added in the form of element or compound and calcined.
  • Ca atomic% of calcium
  • each component is added in the form of a compound, it is common to use an oxide.
  • carbonates and fluorides can be used as long as they are oxides in the firing process.
  • the auxiliary component may be added in the form of an element, and may be converted into an oxide during the firing process.
  • the optimum value of D changes depending on the additive. Sintering below C is not preferable because the density of the sintered body is reduced and the electrical characteristics are also degraded, while sintering above ° C is not preferable because the non-linearity decreases. Therefore, it is preferably 100 to 1,00. Temperature range. BEST MODE FOR CARRYING OUT THE INVENTION
  • Naha is the non-linear coefficient I From the relation
  • V. mA indicates the operation start electric power E
  • V 4 [ JAZ im A determines the steepness of the electric E-current characteristic in a large current region. Generally, it is desirable that both are smaller. Furthermore, since the I L is the also determine the power consumption during steady electric E, it is desirable as small as possible.
  • Samples shown in Table / ⁇ / ⁇ / 3 ⁇ 4 /? Is commonly obtained by adding Pr, C 0 , K and Cr as atomic%, 2.0 atomic%, 0.2 atomic% and 0.1 atomic% to ZnO, respectively.
  • the sample / 3 ⁇ 4 / shows the conventional porcelain with no addition of CaO and MgO, and the sample / 3 ⁇ 4 ⁇ 2 ⁇ ⁇ / added only CaO as Ca and added it in the range of (? J "to ⁇ at.%). Showing porcelain, and sample ⁇ // ⁇
  • ⁇ / Is indicative respectively porcelain is added in a range of only M g O of Mg and Shitehi click-atomic%.
  • the leakage current I L is smaller than that of the sample- ⁇ ]. That is, the porcelain having a leakage current II of less than "A” is obtained by converting CaO or MgO individually into elements. It can be seen that it is obtained when the atomic% is added.
  • Table 2 shows the electrical characteristics of i 0 to ⁇ S. From Table 2 ', it can be seen that the decrease in the leakage current I is more remarkable than when CaO or MgO is added alone. Chapter ⁇ 2 Table
  • Table J shows the electrical characteristics of. Table J also confirms that the reduction of the leakage current II is effectively achieved. That is, Pr% 2% atomic%, Co% i: atomic%, K / ⁇
  • the electrical characteristics of the sample are as shown in Table.
  • zinc oxide is used as a main component, and as a sub-component, magnesium oxide is used as a component of praseodymium, copartite, potassium, and chromium.
  • magnesium oxide is used as a component of praseodymium, copartite, potassium, and chromium.
  • At least one of sium and calcium is converted to an element, and praseodymium is ⁇ 2 to 0 atomic%, cobalt is ⁇ to ⁇ , potassium is // to %%, Chromium is added in the range of fin to atomic% (however, does not exceed the amount of lithium added), and magnesium is added in the range of HI / ⁇ Atom% and Calcium beam /.
  • the obtained porcelain can further reduce the leakage current of the ZnO porcelain, which has excellent limiting current E and non-linear coefficient compared to the conventional SiC varistor, and can be used with high steady-state power E. ⁇ ) j j)
  • the overvoltage protection capability can be further increased.
  • the non-linear resistance porcelain according to the present invention can be used at a high steady-state voltage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Description

/
明 細 書 発明の名称
電 E非直線抵抗磁器 技 術 分 野
この発明は、 酸化亜鉛を主成分と し、 これに副成分と して / 種あるいは数種の元素を、 元素の形または化合物の形で添加し、 焼成して ¾る過電王保護能力の優れた電 E非直線抵抗磁器に関 する。
. 冃 示 技 術 '
従来よ ]?、 酸化亜鉛を主成分とし、 これに副成分と して /種 ある は数種の元素を、 元素の形または化合物の形で添加し、 焼成して得られた磁器は、 電 ε非直線係数が大き くまた漏れ電 流も小さ くて半導体素子のよ うな過電流耐量の小さい電気機器 の過電 εに対する保護に適することから、 s i c よ 成るパ リス タ- ¾どに代って広く用いられるよ うになつた。
特に、 副成分として、 プラ セオジム、 コ バ ル ト 、 カ リ ウ ムお よびク ロ ムを元素または化合物の形で酸化亜鉛に添加し、 焼成 したものは、 大電流領域における電 E非直線性も優れ、 過電圧 保護用と して好適る特性を有することが確認されている。 しか しながら、 この種の磁器においても、 漏れ電流が比較的大きい ため、 高い定常電 Eでの使用が困難であ j?、 過電 E保護能力も 充分満足し得るものではなかった。
- 発明の開示
本発明は、 従来の酸化亜鉛を主成分とする電圧非直線抵抗磁 器の漏れ電流をさらに低減することを目的と し、 副成分として プラセオジム、 コバル ト 、 カ リ ウ ムおよびク ロ ムのほかにマグ ネ シゥ ムおよびカルシウ ムの少 く とも一方を元素または化合 物の形で添加することを特徵とする。
従って、 本発明の電 E非直線抵抗磁器においては、 酸化亜鉛
(ZnO)を主成分とし、 これに副成分としてそれぞれ元素の量に 換算してひ ·2〜 ク原子 <¾のブラセ才ジム (Pr )、 ひ 〜 0原子 %のコパル ト (Co)、 ひ /〜ひ 原子 の力 リ ゥ ム (K)、 ひ S〜O.S 原子%でカ リ ウ ム (K)の添加量を超えない分量のク ロ ム (Cr)の ほかに 0.0 /〜 り原子%のマ グネシゥ ム (Mg)および Λ /〜
原子%のカルシ ウ ム (Ca)の少く とも一方が元.素または化合物 の形で添加し.焼成する。 なお、 各成分を化合物の形で添加する 場合、 それぞれ酸化物を利用するのが一般的である。 この場合、 焼成過程で酸化物に ¾るものであれば、 炭酸塩や弗化物を用い ' ることもできる。 また、 副成分を元素の形で添加し、 焼成過程 で酸化物にしてもよい。 焼成温度は、 添加物によ D最適値が変 るが、 / 。 C以下で焼結すると焼結体の密度が低下すると共 に電気的特性も劣化するので好ま しく く、 一方 り °C以上 で焼成すると電 £非直線性が低下し実用に供せ く ¾るので、 好適には 1 00〜 1, 00。 の温度範囲に選定される。 発明を実施するための最良の形態
本発明をよ ]?詳細に説述するため、 以下多数の実施例を挙げ て説明する。
まず、 ΖιιΟに ΡΓόΟ" , Co304 , K2Co5 , Cr203 と必要に応じて MgO および CaOとをそれぞれ所定の量添加して十分に混合した後 ク 'OOOX^で数時間仮焼し、 さらに十分粉砕した後直径 / 、 厚さ J龍の円板に成形し、 /,·2り で〜 /,^ °Cで空気中で /時 間焼成した。 このよ うにして出来上った磁器を厚さ ·2 mmに研磨 し、 研磨した両面に電極を焼付けて電 -電流特性を測定した。 電気的特性としては、 / mA , / mA, A流した時の磁器の端 子間電 E Vi mA, ν1 [}ιηΑ,ν4(] Aを測定し、 それから α , Υ^ΑΖ ιηΑ を求め、 またひ? X Vi mAの電王における漏れ電流 ILを求めた。
¾お、 なは電王非直線係数で I
Figure imgf000005_0001
の関係式から得られる
( ここで I :電流、 V : 印加電£、 C :定数:)。 また、 V. mA は動作開始電 Eを示し、 V4[JAZimAは大電流領域における電 E -電流特性の峻度を判断するもので、 一般に双方とも小さい方 が望ま しい。 さらに、 IL は定常電 E時の消費電力を定めるも のであるから、 できるだけ少ないことが望まれる。
第 /表に示す試料^ /〜/ ¾ / ?は、 共通的に酸化亜鉛 ZnO に対し Pr , C0 , Kおよび Cr と してそれぞれ ひ 原子%、 2. 0原子%、 0.2原子%および 0..f 原子%を添加したもので,あ J9、 試料/ ¾ /は CaOおよび MgO を全く添加し ¾い従来の磁器 を示し、 また試料/ ¾ ·2〜^ / は CaOのみを Ca としてひ (? J" 〜^ 原子%の範囲で添加した磁器を示し、 そして試料^ / / Ψ
〜 / は MgOのみを Mg と してひ ク 〜 原子%の範囲 で添加した磁器をそれぞれ示すものである。
第 '表から、 漏れ電流 IL が試料- ^ のそれよ ]?小さ くなる のは、 すなわち、 漏れ電流 II が "A未満の磁器は、 CaO または MgO をそれぞれ単独で元素で換算してひ / 〜 り 原子 %添加した場合に得られることが判る。 表
Figure imgf000006_0001
OMPI
ん WIPO s
次いで、 CaOおよび MgO の双方をそれぞれ元素で換算して ク. J "〜 ^ 原子 <¾の範囲で変化させて添加した場合の試料
: i 0 〜 Ί Sの電気的特性を第《2表に示す。 第 ·2表から'、 漏 洩電流 I の減少は、 CaO または MgO を単独で添加した場合 に比べて著しいことが判る。 第 《2 表
Figure imgf000007_0001
O PI
Figure imgf000008_0001
ZSlOO/6 i/10d
Figure imgf000009_0001
さらに、 MgOおよび CaOの双方をそれぞれ元素で換算して ひ /原子%添加すると共に、 他の副成分 Pr , C。 , Kおよび K と Cr とを相互にそれぞれ変化させ.て添加した場合の試料 /
7 〜 ? ?の電気的特性を第 J表に示す。 第 J表からも 、 漏 洩電流 II の低減が効果的に達成されることが確認される。 す なわち、 Pr ひ ·2〜 り原子%、 Co ひ 〜 i: 原子%、 K /〜
O PI
{ぉ WIPO 原子%ぉよび Cr ひク 〜ひ 原子% (但し、 Kの添加量を 超え い)の範囲で、 Mg , Ca の添加によ 漏洩電流 IL
^ 0 Κ以下とすることができる。
第 j 表
Figure imgf000010_0001
OMPI
/ WIPO
Figure imgf000011_0001
¾お、 前記試料 ·2 〜 ヌノ と比較するため、 例えば副成分 として Pr , Co のみを添加したものおよび Pr , Coに Mg また は Ca を添加レた'試料 / 0 0〜M / 0 2を作成した。 これらの
.試料の電気的特性は、 第 表に示す通 である。 第^表から明 らかなよ うに、 Mg , Ca を添加しても、 K , Cr を添加し い 場合には、 漏洩電流 I を十分低減させることができないこと が確認された。
O PI / 0 第 表
Figure imgf000012_0001
前述したところから明らかるよ うに、 本発明によれば、 酸化 亜鉛を主成分とし、 これに副成分と し.てプラ セオジム、 コパル ト 、 カ リ ウ ム、 ク ロ ムのほ力 にマ グネ シ ウ ムおよ びカ ルシ ウ ム の少な く とも一方を元素に換算してプラ セオジムは ひ 《2 〜 0 原子%、 コバル トはひ 〜 原子 、 カ リ ウ ムはひ / 〜 原子%、 ク ロ ムは ひり 〜 原子% (但し力 リ ウ ムの添加量 を超えない)、 マグネ シウ ムは ひ /〜 原子%およびカル シゥ ムはり. / 〜 原子%の範囲でそれぞれ添加することに よ 得られた磁器は、 従来の S i C バリ スタに比べて制限電 E および非直線係数の優れた ZnO磁器の漏洩電流をさらに低減 することができ、 しかも高い定常電 Eでの使用が可能と Ϊ) よ j)一層過電圧保護能力の増大を図ることができる。 産業上の利用可能性
以上のよ うに、 本発明に係る電 非直線抵抗磁器は、 高い定 常電圧での使用が可能とな 、 大電流領域における電 非直線
/AT WIPO //
性に優れ、 しかも十分な過電 E保護能力を有することから、 例 えば避雷器用の抵抗体と して好適に応用することができる。
Ο ΊΡΙ
WIPO

Claims

/ 2
請 求 の 範 囲
/· 酸化亜鉛を主成分とし、 これに副成分と してプラセオジム、 コバル ト 、 カ リ ウ ム、 ク ロ ムのほ力 にマ グネ シ ウ ムおよび カルシウ ムの少な く とも一方を元素または化合物の形で、 それぞれ元素に換算してブラセオジムは 《2 〜 原子%、 コバル トは Λ 〜 原子 <¾、 カ リ ゥ ムは ひ / 〜 ひ 原子
- %、 ク ロ ムは ひ り 〜 ひ 原子% (但しカ リ ウ ムの添加量 を超えない)、 マグネ シ ウ ムは . ク ズ 〜 2 0原子%、 カル シ ゥ ムは 0. 0 f 〜 L ク原子%の範囲で添加し、 焼成して成 ることを特徴とする電 EE非直線抵抗磁器。
ΟΜΡΙ
/ WIPO
PCT/JP1979/000152 1978-06-14 1979-06-14 Voltage non-linear resistive ceramics WO1980000114A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE792952884T DE2952884T1 (de) 1978-06-14 1979-06-14 Voltage non-linear resistive ceramics

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP78/71827 1978-06-14
JP7182778A JPS54163395A (en) 1978-06-14 1978-06-14 Voltage nonlinear resistive porcelain

Publications (1)

Publication Number Publication Date
WO1980000114A1 true WO1980000114A1 (en) 1980-01-24

Family

ID=13471763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1979/000152 WO1980000114A1 (en) 1978-06-14 1979-06-14 Voltage non-linear resistive ceramics

Country Status (4)

Country Link
US (1) US4386022A (ja)
JP (1) JPS54163395A (ja)
DE (1) DE2952884T1 (ja)
WO (1) WO1980000114A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU616441B2 (en) * 1987-11-12 1991-10-31 Kabushiki Kaisha Meidensha Material for resistor body and non-linear resistor made thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4477793A (en) * 1982-06-30 1984-10-16 Fuji Electric Co., Ltd. Zinc oxide non-linear resistor
JPS5935402A (ja) * 1982-08-24 1984-02-27 太陽誘電株式会社 電圧依存非直線抵抗特性を有する半導体磁器物質
JPS5965406A (ja) * 1982-10-07 1984-04-13 株式会社富士電機総合研究所 電圧非直線抵抗体
US4473812A (en) * 1982-11-04 1984-09-25 Fuji Electric Co., Ltd. Voltage-dependent nonlinear resistor
JPS6182282U (ja) * 1984-11-01 1986-05-31
JPS61216305A (ja) * 1985-03-20 1986-09-26 富士電機株式会社 電圧非直線抵抗体
JPS62140367U (ja) * 1986-02-25 1987-09-04
JPS63120401A (ja) * 1986-11-08 1988-05-24 マルコン電子株式会社 電圧非直線抵抗体
US5140296A (en) * 1990-01-31 1992-08-18 Fuji Electronic Corporation, Ltd. Voltage-dependent nonlinear resistor
JP3622774B2 (ja) * 1994-04-18 2005-02-23 株式会社村田製作所 電圧非直線抵抗体の製造方法
US5854586A (en) * 1997-09-17 1998-12-29 Lockheed Martin Energy Research Corporation Rare earth doped zinc oxide varistors

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5240039B2 (ja) * 1973-01-06 1977-10-08
JPS5240749B2 (ja) * 1973-03-12 1977-10-14

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1043666A (en) * 1973-01-08 1978-12-05 Champion Spark Plug Company Method for producing a semi-conductor body comprising silicon carbide, silica and alumina
JPS5062214A (ja) * 1973-10-04 1975-05-28
US4038217A (en) * 1974-07-25 1977-07-26 Fuji Electric Company Ltd. Ceramics having non-linear voltage characteristics and method of producing the same
US4101454A (en) * 1975-01-10 1978-07-18 Texas Instruments Incorporated Ceramic semiconductors
DE2518901C3 (de) * 1975-04-28 1979-02-22 Siemens Ag, 1000 Berlin Und 8000 Muenchen Heißleiter für hohe Temperaturen
JPS524094A (en) * 1975-06-30 1977-01-12 Fuji Electric Co Ltd Voltage non-linearity resistance porcelain
NL181156C (nl) * 1975-09-25 1987-06-16 Gen Electric Werkwijze voor de vervaardiging van een metaaloxide varistor.
US4094061A (en) * 1975-11-12 1978-06-13 Westinghouse Electric Corp. Method of producing homogeneous sintered ZnO non-linear resistors
JPS5260985A (en) * 1975-11-14 1977-05-19 Otowa Electric Voltageenonnlinearrresistive element
AU497337B2 (en) * 1976-11-19 1978-12-07 Matsushita Electric Industrial Co., Ltd. Voltage-dependent resistor
US4162631A (en) * 1977-12-05 1979-07-31 Ford Motor Company Rare earth or yttrium, transition metal oxide thermistors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5240039B2 (ja) * 1973-01-06 1977-10-08
JPS5240749B2 (ja) * 1973-03-12 1977-10-14

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU616441B2 (en) * 1987-11-12 1991-10-31 Kabushiki Kaisha Meidensha Material for resistor body and non-linear resistor made thereof

Also Published As

Publication number Publication date
JPS54163395A (en) 1979-12-25
DE2952884T1 (de) 1980-12-18
JPS5742962B2 (ja) 1982-09-11
DE2952884C2 (ja) 1988-04-14
US4386022A (en) 1983-05-31

Similar Documents

Publication Publication Date Title
JP5099011B2 (ja) チタン酸バリウム系半導体磁器組成物とそれを用いたptc素子
JP3822798B2 (ja) 電圧非直線抵抗体及び磁器組成物
WO2010067867A1 (ja) 半導体セラミック及び正特性サーミスタ
WO1980000114A1 (en) Voltage non-linear resistive ceramics
JPS6257245B2 (ja)
JPS6121184B2 (ja)
JPS5918160A (ja) 誘電体磁器組成物
JP2017143090A (ja) 半導体磁器組成物およびptcサーミスタ
JP2017034140A (ja) 半導体磁器組成物およびptcサーミスタ
JP2016184694A (ja) 半導体磁器組成物およびptcサーミスタ
JPH0584641B2 (ja)
JPH0664931B2 (ja) 誘電体磁器組成物
JP2689439B2 (ja) 粒界絶縁型半導体磁器素体
JPH0629140B2 (ja) 圧電素子材料及びその製造方法
JP3223462B2 (ja) 還元再酸化型バリスタの製造方法
JPS60232607A (ja) 多層コンデサの誘電体用セラミツク組成物
JP2540048B2 (ja) 電圧非直線性抵抗体磁器組成物
JPS5920906A (ja) 誘電体磁器組成物
JPH0769725A (ja) セラミック製発熱素子
JPH08213206A (ja) 正特性サーミスタおよびその製造方法
JPH1112033A (ja) チタン酸バリウム鉛系半導体磁器組成物
JPH0446918B2 (ja)
JPS6214924B2 (ja)
JPH034505B2 (ja)
JPH0613203A (ja) 半導体セラミック素子の製造方法

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): DE US

Kind code of ref document: A1

Designated state(s): DE US

RET De translation (de og part 6b)

Ref country code: DE

Ref document number: 2052884

Date of ref document: 19801218

Format of ref document f/p: P