USRE40987E1 - Cyclosporin with improved activity profile - Google Patents

Cyclosporin with improved activity profile Download PDF

Info

Publication number
USRE40987E1
USRE40987E1 US12/123,601 US12360199A USRE40987E US RE40987 E1 USRE40987 E1 US RE40987E1 US 12360199 A US12360199 A US 12360199A US RE40987 E USRE40987 E US RE40987E
Authority
US
United States
Prior art keywords
cyclosporin
thr
val
solution
coome
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US12/123,601
Other languages
English (en)
Inventor
Roland M. Wenger
Manfred Mutter
Thomas Rückle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Debiopharm SA
Original Assignee
Debiopharm SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Debiopharm SA filed Critical Debiopharm SA
Application granted granted Critical
Publication of USRE40987E1 publication Critical patent/USRE40987E1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/64Cyclic peptides containing only normal peptide links
    • C07K7/645Cyclosporins; Related peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention relates to a novel cyclosporin (Cs), the pharmaceutical use thereof and to a pharmaceutical composition containing it.
  • Cyclosporins are a class of cyclic poly-N-methylated undecapeptides having several pharmacological activities; in particular, they are immunosuppressants, anti-inflammatories, anti-parasitic agents, drug resistance suppressors (anti-MDR) and anti-viral agents.
  • the first cyclosporin isolated from a fungal culture is cyclosporin A which is found in the natural state and which is represented by the following formula:
  • Cyclosporin A isolated 20 years ago from Tolypocladium inflatum has considerable immunosuppressive activity. It has revolutionised organ transplantation and is commonly used in the treatment of autoimmune diseases.
  • CsA Cyclosporin A
  • CsA results mainly in the selective suppression of the activation of T lymphocytes.
  • This immunosuppressive activity is explained by the fact that CsA binds to an intracellular proteic receptor cyclophilin A (CyP), forming a CyP-CsA complex which interacts with calcineurin (CaN) and thus inhibits its phosphatase activity.
  • CyP proteic receptor cyclophilin A
  • CaN calcineurin
  • the transcription of families of genes exhibiting precocious activation will be blocked (cf. O'Keefe, S. J; Tamura, J; Nature 1992, 357, 692-694).
  • the present invention provides the production of a novel cyclosporin with considerable HIV-1 (human immunodeficiency virus) inhibitory activity and not having the immunosuppressive activity of CsA.
  • the mode of infection of HIV type 1 is unique amongst the retroviruses because it requires the specific incorporation into its virion of the cellular protein CyP which interacts with the polyprotein Gag (cf. Eltaly Kara Franke, Bi-Xing Chem. Journal of Virology, September 1995, vol. 69 no. 9). It is well known that CyP binds to CsA and CaN in a ternary complex. However, the native function of CyP is to catalyse the isomerisation of peptidyl-prolyl bonds, a limiting and important step in the process allowing proteins to acquire a definitive three-dimensional structure. CyP also protects cells from thermal shocks or acts as a chaperone protein.
  • the product of the Gag gene of HIV-1 prohibits the formation of a ternary complex with CyP and CaN.
  • the HIV virus needs CyP in order to bind to the product of the Gag gene so as to form its own virions (cf. Franke, E. K; 1994 Nature 372, 359-362).
  • CsA there is direct competition with the polyprotein derived from the Gag gene of HIV-1 to bind the CyP. This CsA acts at two levels on the replication of the viral cycle. Firstly, at the level of translocation towards the core of the pre-integrated complex, then in the production of infectious viral particles.
  • Another patent WO 97/04005 uses the method of preparation of the patent EP 484 281 and the method developed by Seebach EP 194972 in order to produce derivatives in position 3 such as, for example, (D)-MeSer 3 -(4-OH)MeLeu 4 cyclosporin.
  • This substance has a better affinity for CyP but only has limited anti-HIV activity compared with the reference derivative MeIle 4 -Cs (NIM 811). The more hydrophilic nature of this substance prevents it penetrating the cells and the organism. This is reflected directly in the reduced anti-HIV activity of this substance (cf. Cristos Papageorgiou, J. J. Sanglier and RenéTraber—Bioorganic & Medicinal Chemistry Letters, Vol. 6, No. 1, pp. 23-26, 1996).
  • FIG. 1 shows the general structure of the novel cyclosporin according to the invention
  • FIGS. 2 and 3 show analysis spectra for NEtIle4-Cs
  • Table I shows affinity results of Cs derivatives for cyclophilin A in a competitive ELISA test
  • Table II shows the percentage protection during HIV infection of a CEM-SS cell line
  • TABLE III shows examples of cyclosporins with different groups R1, R2, R3 and R4.
  • the substances described in this invention have the dual advantage of retaining the same affinity for CyP as that observed with [(4-OH)MeLeu 4 ]-Cs or cyclosporin A whilst having anti-HIV activity which is identical to or greater than that of the reference derivatives (MeVal 4 -Cs or MeIle 4 -Cs) and appreciably greater than the anti-HIV activity of cyclosporin A or of (4-OH)MeLeu 4 -Cs.
  • the object of the invention is to provide a novel cyclosporin which does not have the immunosuppressive activity of CsA and has an improved profile of activity.
  • This new family of Cs is characterised by the formula (I): wherein:
  • the new cyclosporin molecule thus obtained offers the unexpected and surprising advantage of having much better stability towards metabolisation than all the other cyclosporins known hitherto.
  • This new molecule is much more resistant to the phenomena of oxidation and degradation which take place in the cell. Consequently, the “in vivo” life of this new N-alkyl as Cs is particularly prolonged.
  • this new N-alkyl aa 4 cyclosporin has high affinity for CyP and has anti-HIV activity which is equal to or greater than the best existing cyclosporins.
  • FIG. 1 represents the general structure of this novel cyclosporin.
  • the groups R1, R2, R3 and R4 will be largely described in Table III.
  • Table III Thus, by transforming these 4 key positions, it was possible to retain a very good affinity for cyclophilin and to prevent the formation of a ternary complex with CaN and, above all, to increase, in a particularly advantageous manner, its stability towards enzymatic oxidation and consequently its anti-HIV activity.
  • This novel cyclosporin is thus characterised principally by the presence, in position 4, of a residue with R>CH 3 and R ⁇ C 10 H 21 .
  • the substituent of nitrogen used will be, for example, ethyl, propyl, butyl or pentyl, but these examples are not limiting.
  • This novel cyclosporin is particularly active if the residue in position 4 is an N-ethylated amino acid (see drawings 2 and 3).
  • the invention also claims the pharmaceutical composition of the substance as described by formula (I). This may be combined with a pharmaceutically acceptable solution.
  • the pharmaceutical formulation thus produced makes it possible to increase the solubility in water or to keep the composition in the form of microemulsions in suspension in water.
  • the object of the present invention is also to provide a new medicinal product which may be used, for example, in the treatment and prevention of AIDS (acquired immunodeficiency syndrome).
  • AIDS immunodeficiency syndrome
  • the cyclosporin modified in position 4 by a residue Z, namely N-ethyl-valine will be used in particular for the production of a medicinal product intended for the treatment and prevention of AIDS.
  • the application for the prevention of AIDS is not limiting.
  • This substance may also be used, for example, for its anti-inflammatory properties.
  • CsA The process for the synthesis of CsA is described in: R. Wenger (Helv. Chim. Acta Vol. 67, p. 502-525 (1984)).
  • the process for opening protected cyclosporin A (OAc) is described in Peptides 1996.
  • the CsA molecule is treated with Meerwein's reagent (CH 3 ) 3 OBF 4 then cleaved by treatment with acid in methanol or hydrolysed by water in order to convert it to a linear peptide of 11 amino acid residues: H-MeLeu-Val-MeLeu-Ala-(D)Ala-MeLeu-MeLeu-MeVal-MeBmt(OAc)-Abu-Sar-OCH3.
  • the product is then used for the following synthesis routes without an additional purification step.
  • This substance is hydrolysed then activated and condensed with 1 corresponding amino acid in order to produce a new peptide with 11 residues, the starting product for the cyclisation and production of a novel cyclosporin with the desired properties.
  • the crude product (900 mg) is purified by chromatography [150 g of silica gel (0.4-0.63)], use of dichloromethane/methanol/triethylamine (17:3:0.05) as eluants) to eluate 700 mg (95%) of pure, deprotected undecapeptide (4).
  • the trimethyloxoformate is evaporated under vacuum and the remainder of the aqueous solution is diluted in 300 ml of water. This solution is then extracted 2 ⁇ with 100 ml of diethylether. The organic phase is then re-extracted 3 ⁇ with a 0.1 N aqueous solution of HCl. The combined aqueous phases are cooled to 0° C. then the pH is adjusted to 9 using (2N)NaOH. The solution then becomes cloudy. The aqueous suspension is extracted 4 ⁇ with 100 ml of diethylether. The combined organic phases are then dried with Na 2 SO 4 , filtered and the solvent is finally evaporated.
  • the results of Table 1 show the affinity of the derivatives of Cs for cyclophilin A in a competitive ELISA test described by Quesniaux in Eur. J. Immunology 1987, 17, 1359-1365.
  • Cs bound to BSA serum albumin
  • the concentration required to obtain 50% inhibition (IC 50 ) of the reference reaction in the absence of competitor is then calculated.
  • the results are expressed by the binding index BI which is the ratio of the IC 50 of the derivative and the IC 50 of CsA.
  • a binding index (BI) of 1.0 indicates that the compound tested binds as well as CsA.
  • a value lower than 1.0 indicates that the derivative binds better than CsA, and a value greater than 1.0 means that the derivative binds less well to CyP than CsA.
  • Cs is regarded as being immunosuppressive if its activity in the mixed lymphocyte reaction (MLR) is greater than 5%.
  • MLR mixed lymphocyte reaction
  • the reaction (MLR) is described by T. Meo in “Immunological Methods”, L. Lefkovits and B. Devis, Eds, Académie Prev. N.Y. pp: 227-239 (1979).
  • Spleen cells (0.5.10 6 ) originating from Balb/c mice (female, 8 to 10 weeks) are co-incubated for 5 days in the presence of treated spleen cells originating from CBA mice (females, 8 to 10 weeks). These cells were treated with mitomycin C or were irradiated at 2000 rads. The non-irradiated allogenic spleen cells exhibit a proliferative response in Balb/c cells which can be measured by incorporating a labelled precursor in the DNA. If the stimulator cells are irradiated (or treated with mitomycin C), the Balb/c cells no longer exhibit a proliferative response but retain their antigenicity.
  • the IC 50 calculated in the MLR test is compared with the IC 50 corresponding to CsA in a parallel experiment.
  • the IR index is thus found, this being the ratio of the IC 50 of the MLR test of the derivatives over the IC 50 of cyclosporin A.
  • a value of 1.0 for the IR means an activity similar to CsA.
  • a lower value means better activity and a value greater than 1.0 shows that the activity of the compound is lower than that of CsA.
  • Table II describes the percentage protection during infection with HIV of a CEM-SS cell line.
  • the protection of this line in the presence of a Cs derivative is compared with the infection of a line cultivated in the absence of Cs (reference control).
  • a mean value is established at a concentration of the derivative of 2 ⁇ 10 ⁇ 6 molar. This anti-HIV activity was measured by the NCI (National Cancer Institute) in Washington in the USA.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Virology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Genetics & Genomics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Oncology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Communicable Diseases (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • AIDS & HIV (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
US12/123,601 1998-07-01 1999-06-30 Cyclosporin with improved activity profile Expired - Lifetime USRE40987E1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH140598 1998-07-01
US09/720,923 US6927208B1 (en) 1998-07-01 1999-06-30 Cyclosporin with improved activity profile
PCT/IB1999/001232 WO2000001715A1 (fr) 1998-07-01 1999-06-30 Nouvelle cyclosporine ayant un profil d'activite ameliore

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/720,923 Reissue US6927208B1 (en) 1998-07-01 1999-06-30 Cyclosporin with improved activity profile

Publications (1)

Publication Number Publication Date
USRE40987E1 true USRE40987E1 (en) 2009-11-17

Family

ID=4209677

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/123,601 Expired - Lifetime USRE40987E1 (en) 1998-07-01 1999-06-30 Cyclosporin with improved activity profile
US09/720,923 Ceased US6927208B1 (en) 1998-07-01 1999-06-30 Cyclosporin with improved activity profile

Family Applications After (1)

Application Number Title Priority Date Filing Date
US09/720,923 Ceased US6927208B1 (en) 1998-07-01 1999-06-30 Cyclosporin with improved activity profile

Country Status (14)

Country Link
US (2) USRE40987E1 (pt)
EP (1) EP1091975B1 (pt)
JP (1) JP4350898B2 (pt)
CN (1) CN1218958C (pt)
AT (1) ATE312843T1 (pt)
AU (1) AU759480B2 (pt)
BR (1) BR9911724A (pt)
CA (1) CA2335903C (pt)
DE (1) DE69928938T2 (pt)
DK (1) DK1091975T3 (pt)
ES (1) ES2255275T3 (pt)
MX (1) MXPA00013019A (pt)
PT (1) PT1091975E (pt)
WO (1) WO2000001715A1 (pt)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130267460A1 (en) * 2010-09-16 2013-10-10 The Johns Hopkins University Methods of Inhibiting Alphavirus Replication and Treating Alphavirus Infection
US20160051625A1 (en) * 2009-01-30 2016-02-25 Enanta Pharmaceuticals, Inc. Cyclosporin analogues for preventing or treating hepatitis c infection

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK1091975T3 (da) 1998-07-01 2006-04-18 Debiopharm Sa Ny cyclosporin med forbedret aktivitetsprofil
DK1150999T3 (da) 1999-02-05 2006-10-30 Debiopharm Sa Cyclosporinderivater og fremgangsmåde til fremstilling deraf
IL158385A0 (en) 2001-04-20 2004-05-12 Debiopharm Sa Modified cyclosporin which can be used as a pro-drug and use thereof
AU2004222306A1 (en) * 2003-03-17 2004-09-30 Albany Molecular Research, Inc. Novel cyclosporins
GB0320638D0 (en) * 2003-09-03 2003-10-01 Novartis Ag Organic compounds
US20060035821A1 (en) * 2004-08-16 2006-02-16 Hunt Kevin W Cyclosporin analogs for the treatment of immunoregulatory disorders and respiratory diseases
US7378391B2 (en) * 2004-09-29 2008-05-27 Amr Technology, Inc. Cyclosporin alkyne analogues and their pharmaceutical uses
EP1804823A4 (en) * 2004-09-29 2010-06-09 Amr Technology Inc NEW CYCLOSPORIN ANALOGUE AND ITS PHARMACEUTICAL APPLICATIONS
JP4892486B2 (ja) * 2004-10-01 2012-03-07 デビオファーム ソシエテ アノニム C型肝炎感染の治療のための[d−meala]3−[etval]4−シクロスポリンの使用、及び当該[d−meala]3−[etval]4−シクロスポリンを含む医薬組成物
US7196161B2 (en) 2004-10-01 2007-03-27 Scynexis Inc. 3-ether and 3-thioether substituted cyclosporin derivatives for the treatment and prevention of hepatitis C infection
KR101309409B1 (ko) * 2004-10-01 2013-09-23 싸이넥시스, 인크. C형 간염 바이러스 감염의 치료 및 예방을 위한 3-에테르및 3-티오에테르 치환된 시클로스포린 유도체
US7361636B2 (en) * 2004-10-06 2008-04-22 Amr Technology, Inc. Cyclosporin alkynes and their utility as pharmaceutical agents
PT1853296E (pt) * 2005-01-10 2012-09-26 Debiopharm Sa Utilização de um undecapeptídeo cíclico para a preparação de um medicamento para administração em situações de miocardia isquêmica
AU2006299426B2 (en) 2005-09-30 2012-07-26 Scynexis, Inc. Methods and pharmaceutical compositions for the treatment and prevention of hepatitis C infection
JP5322647B2 (ja) * 2005-09-30 2013-10-23 スシネキス インク ウイルス感染の治療及び予防のためのシクロスポリンaのアリールアルキル及びヘテロアリールアルキル誘導体
CA2623898C (en) * 2005-10-26 2013-12-24 Astellas Pharma Inc. New cyclic peptide compounds
US7696165B2 (en) * 2006-03-28 2010-04-13 Albany Molecular Research, Inc. Use of cyclosporin alkyne analogues for preventing or treating viral-induced disorders
US7696166B2 (en) * 2006-03-28 2010-04-13 Albany Molecular Research, Inc. Use of cyclosporin alkyne/alkene analogues for preventing or treating viral-induced disorders
ATE502633T1 (de) 2006-05-19 2011-04-15 Scynexis Inc Cyclosporins zur behandlung und vorbeugung von augenerkrankungen
EP2027761A1 (fr) * 2006-06-02 2009-02-25 Claude Annie Perrichon Gestion des electrons actifs
CN101108178B (zh) * 2006-07-20 2010-09-15 复旦大学 一种亲环素a抑制剂在制备抗艾滋病药物中的应用
SG175621A1 (en) * 2006-10-12 2011-11-28 Novartis Ag Use of modified cyclosporins
WO2008069917A2 (en) 2006-11-20 2008-06-12 Scynexis, Inc. Novel cyclic peptides
CN105056207A (zh) 2007-01-04 2015-11-18 德比奥法姆国际股份有限公司 用于治疗Ullrich先天性肌营养不良的非免疫抑制性环孢霉素
US20080255038A1 (en) * 2007-04-11 2008-10-16 Samuel Earl Hopkins Pharmaceutical compositions
CN101687012A (zh) * 2007-05-02 2010-03-31 安斯泰来制药有限公司 新的环肽化合物
AU2008304313B2 (en) 2007-09-26 2013-01-10 Oregon Health & Science University Cyclic undecapeptides and derivatives as multiple sclerosis therapies
WO2009098533A1 (en) * 2008-02-08 2009-08-13 Debiopharm Sa Non -immunosuppressive cyclosporin for the treatment of muscular dystrophy
WO2010002428A2 (en) * 2008-06-06 2010-01-07 Scynexis, Inc. Novel macrocyclic peptides
US20090306033A1 (en) * 2008-06-06 2009-12-10 Keqiang Li Novel cyclic peptides
DE102008060549A1 (de) 2008-12-04 2010-06-10 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Wirkstoff-Peptid-Konstrukt zur extrazellulären Anreicherung
AU2009334790B2 (en) * 2008-12-31 2016-09-08 Scynexis, Inc. Derivatives of cyclosporin A
US8685917B2 (en) * 2009-07-09 2014-04-01 Enanta Pharmaceuticals, Inc. Cyclosporin analogues
CA2779244A1 (en) 2009-10-30 2011-05-05 Boehringer Ingelheim International Gmbh Dosage regimens for hcv combination therapy comprising bi201335, interferon alpha and ribavirin
US20130029904A1 (en) * 2009-12-18 2013-01-31 Boehringer Ingelheim International Gmbh Hcv combination therapy
WO2011076784A2 (en) 2009-12-21 2011-06-30 Institut National De La Sante Et De La Recherche Medicale (Inserm) New inhibitors of cyclophilins and uses thereof
CN107007815A (zh) 2010-07-16 2017-08-04 美国科技环球有限公司 新颖的环孢霉素a衍生物在病毒感染的治疗和预防中的应用
CN103153330B (zh) 2010-08-12 2017-08-18 美国科技环球有限公司 新的环孢霉素衍生物在病毒感染的治疗和预防中的应用
US9890198B2 (en) 2010-12-03 2018-02-13 S&T Global Inc. Cyclosporin derivatives and uses thereof
JO3337B1 (ar) * 2010-12-13 2019-03-13 Debiopharm Sa تركيبات صيدلية تشمل أليسبوريفير
AU2011342284C1 (en) 2010-12-15 2017-07-13 Contravir Pharmaceuticals, Inc. Cyclosporine analogue molecules modified at amino acid 1 and 3
ES2527510T1 (es) 2011-10-21 2015-01-26 Abbvie Inc. Métodos para el tratamiento del VHC que comprenden al menos dos agentes antivirales de acción directa, ribavirina pero no interferón
US8466159B2 (en) 2011-10-21 2013-06-18 Abbvie Inc. Methods for treating HCV
US8492386B2 (en) 2011-10-21 2013-07-23 Abbvie Inc. Methods for treating HCV
DE112012003457T5 (de) 2011-10-21 2015-03-12 Abbvie Inc. Kombinationsbehandlung (z.B. mit ABT-072 oder ABT-333 von DAAs zur Verwendung in der Behandlung von HCV)
AR090964A1 (es) 2012-05-09 2014-12-17 Novartis Ag Proceso para la elaboracion de undecapeptidos ciclicos
EP2705856A1 (en) 2012-09-07 2014-03-12 Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. Compounds for the treatment of neurodegenerative disorders
WO2014085623A1 (en) 2012-11-28 2014-06-05 Enanta Pharmaceuticals, Inc. Novel [n-me-4-hydroxyleucine]-9-cyclosporin analogues
JP2016538317A (ja) 2013-08-26 2016-12-08 エナンタ ファーマシューティカルズ インコーポレイテッド C型肝炎を防止または治療するための新規シクロスポリン類似体
CN104744570A (zh) * 2013-12-31 2015-07-01 深圳先进技术研究院 一种环孢菌素的合成方法
US9669095B2 (en) 2014-11-03 2017-06-06 Enanta Pharmaceuticals, Inc. Cyclosporin analogues for preventing or treating hepatitis C infection
WO2017189978A1 (en) 2016-04-28 2017-11-02 Emory University Alkyne containing nucleotide and nucleoside therapeutic compositions and uses related thereto
US20230149504A1 (en) 2020-04-06 2023-05-18 Debiopharm International Sa Alisporivir for use in human viral infections

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4108985A (en) 1975-11-04 1978-08-22 Sandoz Ltd. Dihydrocyclosporin c
US4210581A (en) 1975-11-04 1980-07-01 Sandoz Ltd. Organic compounds
US4220641A (en) 1977-05-10 1980-09-02 Sandoz Ltd. Organic compounds
US4288431A (en) 1978-10-18 1981-09-08 Sandoz Ltd. Cyclosporin derivatives, their production and pharmaceutical compositions containing them
US4396542A (en) 1980-02-14 1983-08-02 Sandoz Ltd. Method for the total synthesis of cyclosporins, novel cyclosporins and novel intermediates and methods for their production
US4441644A (en) * 1980-12-18 1984-04-10 Karl M. Reich Maschinenfabrik Gmbh Buffer system for fastener driving devices
EP0056782B1 (en) 1981-01-09 1984-08-01 Sandoz Ag Novel cyclosporins
EP0034567B1 (en) 1980-02-14 1984-11-07 Sandoz Ag A method for the total synthesis of cyclosporins and novel cyclosporins
WO1986002080A1 (en) 1984-10-04 1986-04-10 Sandoz Ag Monoclonal antibodies to cyclosporings
US4814323A (en) 1986-03-25 1989-03-21 Andrieu J M Process for the treatment and the prevention of AIDS and other disorders induced by the LAV/HTLV III virus
GB2222770A (en) 1988-09-16 1990-03-21 Sandoz Ltd Cyclosporin emulsion compositions
EP0484281A2 (en) 1990-11-02 1992-05-06 Sandoz Ltd. Cyclosporins
EP0194972B1 (en) 1985-03-11 1992-07-29 Sandoz Ag Novel cyclosporins
US5525590A (en) 1987-06-17 1996-06-11 Sandoz Ltd. Cyclosporins and their use as pharmaceuticals
WO1997004005A2 (de) 1995-07-17 1997-02-06 C-Chem Ag Cyclosporin-derivate mit anti-hiv-wirkung
WO1997018828A1 (en) 1995-11-20 1997-05-29 Guilford Pharmaceuticals Inc. Inhibitors of cyclophilin rotamase activity
US5639724A (en) 1984-07-24 1997-06-17 Sandoz Ltd. Cyclosporin galenic forms
WO1998028328A1 (fr) 1996-12-24 1998-07-02 Rhone-Poulenc Rorer S.A. Derive de cyclosporine, sa preparation et les compositions pharmaceutiques qui le contiennent
WO1998028330A1 (fr) 1996-12-24 1998-07-02 Rhone-Poulenc Rorer S.A. Nouveaux derives de cyclosporine, leur preparation et les compositions pharmaceutiques qui les contiennent
WO1998028329A1 (fr) 1996-12-24 1998-07-02 Rhone-Poulenc Rorer S.A. Derives de cyclosporine, leur preparation et les compositions pharmaceutiques qui les contiennent
WO2000001715A1 (fr) 1998-07-01 2000-01-13 Debiopharm S.A. Nouvelle cyclosporine ayant un profil d'activite ameliore
WO2005021028A1 (en) 2003-09-03 2005-03-10 Novartis Ag Use of modified cyclosporins for the treatment of hcv disorders
US7439277B2 (en) 2005-05-19 2008-10-21 Fina Technology, Inc. In-situ preparation of hydroperoxide functionalized rubber

Patent Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4210581A (en) 1975-11-04 1980-07-01 Sandoz Ltd. Organic compounds
US4108985A (en) 1975-11-04 1978-08-22 Sandoz Ltd. Dihydrocyclosporin c
US4220641A (en) 1977-05-10 1980-09-02 Sandoz Ltd. Organic compounds
US4288431A (en) 1978-10-18 1981-09-08 Sandoz Ltd. Cyclosporin derivatives, their production and pharmaceutical compositions containing them
US4554351A (en) 1980-02-14 1985-11-19 Sandoz Ltd. Method for the total synthesis of cyclosporins, novel cyclosporins and novel intermediates and methods for their production
US4396542A (en) 1980-02-14 1983-08-02 Sandoz Ltd. Method for the total synthesis of cyclosporins, novel cyclosporins and novel intermediates and methods for their production
EP0034567B1 (en) 1980-02-14 1984-11-07 Sandoz Ag A method for the total synthesis of cyclosporins and novel cyclosporins
US4441644A (en) * 1980-12-18 1984-04-10 Karl M. Reich Maschinenfabrik Gmbh Buffer system for fastener driving devices
EP0056782B1 (en) 1981-01-09 1984-08-01 Sandoz Ag Novel cyclosporins
US5639724A (en) 1984-07-24 1997-06-17 Sandoz Ltd. Cyclosporin galenic forms
WO1986002080A1 (en) 1984-10-04 1986-04-10 Sandoz Ag Monoclonal antibodies to cyclosporings
EP0194972B1 (en) 1985-03-11 1992-07-29 Sandoz Ag Novel cyclosporins
US4814323A (en) 1986-03-25 1989-03-21 Andrieu J M Process for the treatment and the prevention of AIDS and other disorders induced by the LAV/HTLV III virus
US5525590A (en) 1987-06-17 1996-06-11 Sandoz Ltd. Cyclosporins and their use as pharmaceuticals
GB2222770A (en) 1988-09-16 1990-03-21 Sandoz Ltd Cyclosporin emulsion compositions
EP0484281A2 (en) 1990-11-02 1992-05-06 Sandoz Ltd. Cyclosporins
US6255100B1 (en) 1990-11-02 2001-07-03 Novartis Ag Cyclosporin fermentation process
US5981479A (en) 1990-11-02 1999-11-09 Novartis Ag Cyclosporins
US5767069A (en) 1990-11-02 1998-06-16 Novartis Ag Cyclosporins
US5948884A (en) 1995-07-17 1999-09-07 C-Chem Ag Cyclosporin derivatives with anti-HIV effect
WO1997004005A2 (de) 1995-07-17 1997-02-06 C-Chem Ag Cyclosporin-derivate mit anti-hiv-wirkung
WO1997018828A1 (en) 1995-11-20 1997-05-29 Guilford Pharmaceuticals Inc. Inhibitors of cyclophilin rotamase activity
US6444643B1 (en) 1995-11-20 2002-09-03 Guilford Pharmaceuticals Inc. Methods of using inhibitors of cyclophilin rotamase activity to affect neurological activity
WO1998028330A1 (fr) 1996-12-24 1998-07-02 Rhone-Poulenc Rorer S.A. Nouveaux derives de cyclosporine, leur preparation et les compositions pharmaceutiques qui les contiennent
WO1998028329A1 (fr) 1996-12-24 1998-07-02 Rhone-Poulenc Rorer S.A. Derives de cyclosporine, leur preparation et les compositions pharmaceutiques qui les contiennent
WO1998028328A1 (fr) 1996-12-24 1998-07-02 Rhone-Poulenc Rorer S.A. Derive de cyclosporine, sa preparation et les compositions pharmaceutiques qui le contiennent
WO2000001715A1 (fr) 1998-07-01 2000-01-13 Debiopharm S.A. Nouvelle cyclosporine ayant un profil d'activite ameliore
US6927208B1 (en) 1998-07-01 2005-08-09 Debiopharm S.A. Cyclosporin with improved activity profile
WO2005021028A1 (en) 2003-09-03 2005-03-10 Novartis Ag Use of modified cyclosporins for the treatment of hcv disorders
US7439277B2 (en) 2005-05-19 2008-10-21 Fina Technology, Inc. In-situ preparation of hydroperoxide functionalized rubber

Non-Patent Citations (64)

* Cited by examiner, † Cited by third party
Title
Amendment filed in U.S. Appl. No. 11/406,800 on Nov. 26, 2007, 5 pages.
Amendment filed Jun. 4, 2008 in U.S. Appl. No. 11/406,800, 10 pages.
Application No. PCT/IB2004/003205, filed Apr. 12, 2006, as U.S. Appl. No. 11/406,800, 31 pages.
Balogh-nair, V., et al., "Synthesis activity and toxicity of novel macrocyclic ligands against HIV-1 in Jurkat CEM-SS cell lines," Cellular and Molecular Biology, 1995, pp. S9-S14, vol. 41 (Suppl. 1).
Bartz, S. R., et al., Inhibitition of human immunodeficiency virus replication by nonimmunosuppressinve analogs of cyclosporin A, Proc. Natl. Acad. Sci. USA, vol. 92, pp. 5381-5385, Jun. 1995.
Baumann, G., et al., "Cyclosporine and its Analogue SDZ IMM 125 Mediate Very Similar Effects on T-Cell Activation-A Comparative Analysis In Vitro," Transplantation Proceedings, Aug. 1992, pp. 43-48, vol. 24, No. 4, Suppl. 2.
Baumann, G., et al., "Molecular Mechanisms of Immunosuppression," Journal of Autoimmunity, (1992) 5 (Supplement A), pp. 67-72.
Billich, A., et al., "Mode of Action of SDZ NIM 811, a Nonimmunosuppressive Cyclosporin A Analog with Activity against Human Immunodeficiency Virus (HIV) Type 1: Interference with HIV Protein-Cyclophilin A Interactions," Journal of Virology, Apr. 1995, pp. 2451-2461, vol. 69, No. 4.
Borel, J. F., et al., "Immunopharmacological Properties of Cyclosporine (Sandimmune(R)) and (Val2)-Dihydrocyclosporine and Their Prospect in Chronic Inflammation," advances in Inflammation Research, 1986, pp. 277-291, vol. 11.
Borel, J. F., et al., "In Vivo Pharmacological Effects of Ciclosporin and Some Analogues," Advances in Pharmacology, 1996, pp. 115-246, vol. 35.
Borel, J. F., et al., "The Cyclosporins," Transplantation Proceedings, Feb. 1989, pp. 810-815, vol. 21, No. 1.
Cebrat, M., et al., "Immunosuppressive Activity of Hymenistatin I," Peptides, 1996, pp. 191-196, vol. 17, No. 2.
Dorfman, T., et al., "Active-Site Residues of Cyclophillin A Are Crucial for Its Incorporation into Human Immunodeficiency Virus Type 1 Virions," Journal of Virology, Sep. 1997, pp. 7110-7113, vol. 71, No. 9.
Fesik, S. W. et al., "NMR Studies of (U-13C)Cyclosporin A Bound to Cyclophillin: Bound Conformation and Portions of Cyclosporin Involved in Binding," Biochemistry, 1991, pp. 6574-6583, vol. 30, No. 26.
Final Office Action for U.S. Appl. No. 11/406,800 mailed on Feb. 28, 2008, 14 pages.
Fliri, H. G., et al., "Cyclosporine: Synthetic Studies. Structure-Activity Relationships, Biosysthesis and Mode of Action," Biochemistry of Peptide Antibiotics, Walter de Gruyter: New York, 1990, pp. 245-287, Chapter 10.
Fliri, H., et al., "Cyclosporins: Structure-Activity Relationships," Anals of the New York Academy of Sciences, Nov. 30, 1993, pp. 47-53, vol. 696.
Franke, E. K, et al., "Inhibition of HIV-1 Replication by Cyclosporin A or Related Compound Correlates with the Ability to Disrupt the Gag-Cyclophillin A Interaction," Virology, 1996, pp. 279-282, vol. 222, Article No. 0421.
Franke, E. K., et al., "Cyclophillin Binding to the Human Immunodeficiency Virus Type 1 Gag Polyprotein is Mimicked by an Anti-Cyclosporine Antibody," Journal of Virology, Sep. 1995, pp. 5821-5823, vol. 69, No. 9.
Franke, E.K., et al., "Specific Incorporation of cyclophillin A into HIV-1 virions," Nature, Nov. 24, 1994, pp. 359-362, vol. 372.
Hansson, M. J., et al., "The Nonimmunosuppressive Cyclosporin Analogs NIM811 and UNIL025 Display Nanomolar Potencies on Permeability Transition in Brain-Derived Mitochondria," Journal of Bioenergetics and Biomembranes, Aug. 2004, pp. 407-413, vol. 36, No. 4.
Heguy, A., "Inhibition of the HIV REV Transactivator: A New Target for Therapeutic Intervention," Frontiers in Bioscience, Jun. 1, 1997, pp. 283-297, vol. 2.
Holmes, K. K., et al., "Report of the NIH Aids Research Program Evaluation Natural History, Epidemiology, and Prevention Research Area Review Panel Findings and Recommendations of the Office of AIDS Research Advisory Council," Jun. 7, 1996, pp. 1-40.
Hubler, F., et al., "Synthetic routes to NetXaa4-cyclosporin A derivates as potential anti-HIV 1 drugs," Institute of Organic Chemistry, University of Lausanne, Tetrahedron Letters, 2000, pp. 7193-7196, vol. 41.
Inoue, K., et al., "Combined interferon alpha2b and cyclosporin A in the treatment of chronic hepatitis C controlled trial," Journal of Gastroenterology, 2003; pp. 567-572, vol. 38.
Inque, K., et al., "Interferon Combined With Cyclosporine Treatment as an Effective Countemeasure Against Hepatitis C Virus Recurrence in Liver Transplant Patients With End-Stage Hepatitis C Virus Related Disease," Transplantation Proceedings, 2005, pp. 1233-1234, vol. 37.
Ko, S. Y., et al., "Solid-Phase Total Synthesis of Cyclosporine Analogues," Helvetica Chimica Acta-1997, pp. 695-705, vol. 80.
Kobel, H., et al., "Directed Biosynthesis of Cyclosporins," European Journal of Applied Microbiology and Biotechnology, 1982, pp. 237-240, vol. 14.
Levine, A., et al., "Report of the NIH AIDS Research Program Evaluation Working Group of the Office of Aids Research Advisory Council," pp. 1-57, Mar. 13, 1996-Final.
Meo, T., "The MLR Test in the Mouse," Immunological Methods, 1979, pp. 227-239.
Mlynar, E., et al., "The non-immunosuppressive cyclosporin A analogue SDZ NIM 811 inhibits cyclophilin A incorporation into virions and virus replication in human immunodeficency virus type 1-infected primary and growth-arrested T-cells," Journal of General Virology, 1997, pp. 825-835, vol. 78.
Nakagawa, M., et al., "Specific inhibition of hepatitis C virus replication by cyclosporin A," Biochemical and Biophysical Research Communications, 2004, pp. 42-47, vol. 313.
Nicolli, A., et al., "Interactions of Cyclophillin with the Mitochondrial Inner Membrane and Regulation of the Premeability Transition Pore, a Cyclosporin A-sensitive Channel," The Journal of Biological Chemistry, Jan. 26, 1996, pp. 2185-2192, vol. 271, No. 4.
Notice of Allowance and Examiner's Amendment for U.S. Appl. No. 11/406,800 mailed on Aug. 29, 2008, 24 pages.
Office Action for U.S. Appl. No. 11/406,800 mailed on Sep. 25, 2007, 10 pages.
O'Keefe, S. J., et al., "FK-506 and CsA-sensitive activation of the interleukin-2 promoter by calcineurin," Nature, Jun. 25, 1992, pp. 692-694, vol. 357.
Papageorgiou, C. et al. , "Anti-HIV-1 Activity of a Hydrophilic Cyclosporin Derivative with Improved Binding Affinity To Cyclophillin A," Bioorganic & Medicinal Chemistry Letters, 1996, pp. 23-26, vol. 6, No. 1.
Papageorgiou, C., et al., "Calcineurin Has A Very Tight-Binding Pocket For The Side Chain of Residue 4 Of Cyclosporin," Bioorganic & Medicinal Chemistry Letters, 1994, pp. 267-272, vol. 4, No. 2.
Papageorgiou, C., et al., "Improved Binding Affinity for Cyclophilin A by a Cyclosporin Derivitative Singly Modified at Its Effector Domain," J. Med. Chem. 1994, pp. 3674-3676, vol. 37.
Payne, T. G., et al., "Interpretation of Peptide Drug-Receptor Interactions Using Intrinsic Binding Energers Cyclosporin As An Example," QSAR in Design of Bioactive Compounds, J. R. Prous Science Publishers, S.A., pp. 347-359, 1992.
Preliminary Amendment to Replace Specification in Compliance with 37 CFR 1.52, 1.121 (b)(3), 1.125, filed May 31, 2006 in U.S. Appl. No. 11/406,800, 64 pages.
Preliminary Amendment, filed Apr. 12, 2006 in U.S. Appl. No. 11/406,800, 6 pages.
Quesniaux, V. F. J., et al., "Cyclophilin binds to the region of cyclosporine involved in its immunosuppressive activity," Eur. J. Immunol., 1987, pp. 1359-1365, vol. 17.
Quesniaux, V. F. J., et al., "Cyclosporine-Cyclophilin Interaction," Transplanation Proceedings, Apr. 1988, pp. 58-62, vol. XX, No. 2, Suppl. 2.
Quesniaux, V. F. J., et al., "Fine Specificity and Cross-Reactivity of Monoclonal Antibodies to Cyclosporine," Molecular Immunology, 1987, pp. 1159-1168, vol. 24, No. 11.
Rauffer, N., et al., "Structure-Activity Relationships For The Interaction Between Cyclosporin A Derivates and the Fab Fragment of a Monoclonal Antibody," Molecular Immunology, 1994, 913-922, vol. 31, No. 12.
Rosenwirth, B., et al., "Inhibition of Human Immunodeficiency Virus Type 1 Repliby SDZ NIM 811, a Nonimmunosuppresive Cyclosporine Analog," Antimicrobial Agents and Chemotherapy, Aug. 1994, pp. 1763-1772, vol. 38, No. 8.
Seebach, D., et al., "Modification of Cyclosporin A (CS)'): Generation of an Enolate at the Sarosine Residue and Reactions with Electrophiles ," Helevtica Chimica Acta, 1993, pp. 1564-1590, vol. 76.
Sigal, N. H., et al., "Is Cyclophilin Involved in the Immunosuppressive and Nephrotoxic Mechanism of Action of Cyclosporin A?, " Journal of Experimental Medicine, Mar. 1991, pp. 619-628, vol. 173.
Steinkasserer, A., et al., "Mode of Action of SDZ NIM 811, a Nonimmunosuppressive Cyclosporin A Analog with Activity against Human Immunodeficiency Virus Type 1 (HIV-1): Interference with Early and Late Events in HIV-1 Replication, Journal of Virology, " Feb. 1995, pp. 814-824, vol. 69, No. 2.
Thali, M., et al., "Functional association of cyclophillin A with HIV-1-virions, " Nature, Nov. 24, 1994, pp. 363-365, vol. 372.
Traber, R., et al., "[Melie]Cyclosporin, a novel natural cyclosporin with anti-HIV activity: structural elucidation biosynthesis and biological properties," Antiviral Chemistry & Chemotherapy, 1994, pp. 331-339, vol. 5, No. 5.
Watashi, K., et al., "Cyclosporin A Suppresses Replication of Hepatitis C Virus Genome in Cultured Hepatocytes," Hepatology, 2003, pp. 1282-1288, vol. 38. No. 5.
Wenger, R. M. et al., "Cyclosporine: Intrinsic Binding Energies to Interpret Structure-Activity Relationships," Quatitative Structure-Activity Relationships in Drug Design (QSAR), 1989, pp. 301-305.
Wenger, R. M., "Cyclosporine and Analogues-Isolation and Synthesis-Mechanism of Action and Structural Requirements for Pharmological Activity," Progress in the Chemistry of Organic Natural Products, 1986, pp. 123-168, vol. 50.
Wenger, R. M., "Structures of Cyclosporine and Its Metabolities," Transplantation Proceedings, Jun. 1990, pp. 1104-1108, vol. 22, No. 3.
Wenger, R. M., "Synthesis of Cyclosporine and Analogues: Structural Requirements for Immunosuppressive Activity," Angew. Chem. Int. Ed. Engl., Feb. 1985, pp. 77-85, vol. 24, No. 2.
Wenger, R. M., "Synthesis of Cyclosporine, Total Synthesis of 'Cyclosporin A' and 'Cyclosporin H', Two Fungal Methabolites Isolated from the Species," Tolypocladium Inflatum GAMS, Helvetica Chimica Acta, 1984, pp. 502-525, vol. 67, Fasc. 2, Nr. 60.
Wenger, R. M., et al., "Cyclosporine: Chemistry, Structure-Activity Relationships and Mode of Action," Progress in Clinical Biochemistry and Medicine, 1986, pp. 157-191, vol. 3.
Wenger, R., "Synthesis of Cyclosporine and Analogues: Structure, Activity, Relationships of New Cycloporine Derivates, " Transplantation Proceedings, Dec. 1983, pp. 2230-2241, vol. XV, No. 4, Suppl. 1.
Wenger, R.M., "The Chemistry of Cyclosporine," Peptides, 1996, pp. 173-178.
Wenger, R.M., et al., "Structure of Cyclosporine and Its Metabolities: Total Synthesis of Cyclosporine Metabolities Formed by Oxidation at Positions 4 and 9 of Cyclospine. Preparation of Leucine-4-cyclosporine, gamma-Hydroxy)-N-methyl-leucine-9-cyclosporine and Leucine-4-(gamma-hydroxy)N-methyl-leucine-9-cyclosporine," Chimia, 1992, pp. 314-322, vol. 46.
Xia, W.L., et al., "Inhibitory effect of cyclosporine A on hepatitis B virus replication in vitro and its possible mechanisms," Hepatobiliary & Pancreatic Diseases International, Feb. 15, 2005, pp. 18-22, vol. 4, No. 1.
Zenke, G., et al., "Molecular Mechanisms of Immunosuppression by Cyclosporins," Anals of the New York Academy of Sciences, 1993, pp. 330-335, vol. 685.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160051625A1 (en) * 2009-01-30 2016-02-25 Enanta Pharmaceuticals, Inc. Cyclosporin analogues for preventing or treating hepatitis c infection
US9603895B2 (en) * 2009-01-30 2017-03-28 Enanta Pharmaceuticals, Inc. Cyclosporin analogues for preventing or treating hepatitis C infection
US20130267460A1 (en) * 2010-09-16 2013-10-10 The Johns Hopkins University Methods of Inhibiting Alphavirus Replication and Treating Alphavirus Infection

Also Published As

Publication number Publication date
ATE312843T1 (de) 2005-12-15
MXPA00013019A (es) 2003-07-14
BR9911724A (pt) 2001-03-20
ES2255275T3 (es) 2006-06-16
EP1091975A1 (fr) 2001-04-18
DE69928938D1 (de) 2006-01-19
CA2335903C (fr) 2009-11-10
CN1218958C (zh) 2005-09-14
CN1308635A (zh) 2001-08-15
DK1091975T3 (da) 2006-04-18
EP1091975B1 (fr) 2005-12-14
CA2335903A1 (fr) 2000-01-13
JP2002519434A (ja) 2002-07-02
AU4385699A (en) 2000-01-24
PT1091975E (pt) 2006-05-31
DE69928938T2 (de) 2006-08-17
US6927208B1 (en) 2005-08-09
WO2000001715A1 (fr) 2000-01-13
AU759480B2 (en) 2003-04-17
JP4350898B2 (ja) 2009-10-21

Similar Documents

Publication Publication Date Title
USRE40987E1 (en) Cyclosporin with improved activity profile
US6809077B2 (en) Cyclosporin analogs for the treatment of autoimmune diseases
US6979671B2 (en) Cyclosporins for the treatment of immune disorders
US7012064B2 (en) Cyclosporins for the treatment of immune disorders
US7468419B2 (en) Cyclosporin derivatives for the treatment of immune disorders
US7012065B2 (en) Cyclosporins for the treatment of immune disorders
US6255100B1 (en) Cyclosporin fermentation process
JP4477777B2 (ja) 新規シクロスポリン
NZ554514A (en) 3-ether and 3-thioether substituted cyclosporin derivatives for the treatment and prevention of hepatitis C infection
WO1999010373A1 (en) Non-immunosuppressive cyclosporins and their use in the prevention and treatment of hiv infection
CA2847486C (en) Template-fixed beta-hairpin peptidomimetics with cxcr4 antagonizing activity
WO2008069917A2 (en) Novel cyclic peptides
KR101443171B1 (ko) 프로테아제 저해 활성을 가지는 주형-고정된 β-헤어핀 구조의 펩티드모방체
KR20110045032A (ko) 비면역억제성 사이클로스포린 유사체 분자
US20040110666A1 (en) Cyclosporins for the treatment of immune disorders
US6995139B2 (en) Cyclic undecapeptide pro-drugs and uses thereof
US6270957B1 (en) Non-Imuunosuppressive cyclosporins and their use in the prevention and treatment of HIV infection
WO1993017039A1 (en) Iso-cyclosporin salts
RU2085589C1 (ru) Циклоспорины

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12