US8916682B2 - Lipid peptide and hydrogel - Google Patents
Lipid peptide and hydrogel Download PDFInfo
- Publication number
- US8916682B2 US8916682B2 US12/452,473 US45247308A US8916682B2 US 8916682 B2 US8916682 B2 US 8916682B2 US 45247308 A US45247308 A US 45247308A US 8916682 B2 US8916682 B2 US 8916682B2
- Authority
- US
- United States
- Prior art keywords
- gly
- group
- lys
- palmitoyl
- trp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 0 [1*]C(=O)NC([2*])C(=O)NC([3*])C(=O)NC([4*])C(=O)NC([5*])C(=O)O Chemical compound [1*]C(=O)NC([2*])C(=O)NC([3*])C(=O)NC([4*])C(=O)NC([5*])C(=O)O 0.000 description 5
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/04—Linear peptides containing only normal peptide links
- C07K7/06—Linear peptides containing only normal peptide links having 5 to 11 amino acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/04—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
- C07K5/10—Tetrapeptides
- C07K5/1002—Tetrapeptides with the first amino acid being neutral
- C07K5/1005—Tetrapeptides with the first amino acid being neutral and aliphatic
- C07K5/1008—Tetrapeptides with the first amino acid being neutral and aliphatic the side chain containing 0 or 1 carbon atoms, i.e. Gly, Ala
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/04—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
- C07K5/10—Tetrapeptides
- C07K5/1002—Tetrapeptides with the first amino acid being neutral
- C07K5/1005—Tetrapeptides with the first amino acid being neutral and aliphatic
- C07K5/101—Tetrapeptides with the first amino acid being neutral and aliphatic the side chain containing 2 to 4 carbon atoms, e.g. Val, Ile, Leu
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/04—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
- C07K5/10—Tetrapeptides
- C07K5/1002—Tetrapeptides with the first amino acid being neutral
- C07K5/1016—Tetrapeptides with the first amino acid being neutral and aromatic or cycloaliphatic
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/04—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
- C07K5/10—Tetrapeptides
- C07K5/1019—Tetrapeptides with the first amino acid being basic
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/04—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
- C07K5/10—Tetrapeptides
- C07K5/1024—Tetrapeptides with the first amino acid being heterocyclic
Definitions
- the present invention relates to a novel lipid peptide, a fiber formed by the self-assembly of the lipid peptide and a hydrogel composed of the lipid peptide or the fiber and an aqueous solution or an alcohol aqueous solution.
- the lipid peptide of the present invention can be particularly suitably utilized as a hydrogelator in the production of various gel form base materials such as cosmetics, gel form food such as agars, and pharmaceutical preparations.
- a hydrogel obtained from the lipid peptide is suited for various functional materials for articles of daily use such as cosmetics, (soft) contact lenses, paper diapers and aromatics; dry-land agricultural applications; chemical analysis applications such as chromatography; medicine/pharmacy applications; bio-chemistry field applications such as carriers of protein, cell culture-related base materials, and a bioreactor; and the like.
- the hydrogel contains water as the medium, so that it is useful as a gel having high biocompatibility and is used in various fields such as applications for articles of daily use such as paper diapers, cosmetics and aromatics.
- Examples of a related-art hydrogel include natural polymer gels such as agarose, and synthetic polymer gels in which between polymer chains is crosslinked through a chemical covalent bond such as an acrylamide gel.
- a novel gel formed from a non-covalent gel fiber (so-called “supramolecule polymer”) produced by self-assembly of a low molecular weight compound is progressed.
- This “self-assembly” refers to such a phenomenon that in a substance (molecule) group in a random state at first, molecules associate spontaneously by an intermolecular non-covalent interaction or the like under an appropriate external condition to grow to a macro functional assembly.
- the novel gel is attracting attention, because the control of the macroscopic structure or function thereof is theoretically possible by controlling an intermolecular interaction or a weak non-covalent bond of a molecule assembly according to a molecule design of a monomer.
- Hydrogelators for forming a non-covalent gel which have been repotted until now are broadly divided into the following three categories.
- This hydrogelator is created with an artificial lipid layer as a model and examples of the agent include surfactant-type gelling agents having a quaternary ammonium salt portion as a hydrophilic portion and having an alkyl long chain as a hydrophobic portion, and amphoteric surfactant-type gelling agents in which hydrophilic portions of two surfactant-type molecules are coupled.
- hydrogel formed by such gelling agents there is disclosed a molecule organizational hydrogel formed by adding an anion having a molecular mass of 90 or more to a dispersion aqueous solution of a cationic amphipathic compound having a branched alkyl group in the hydrophobic portion (Patent Document 1).
- hydrogelators examples include gelling agents utilizing an association between molecule-assemblies through a peptide secondary structure skeleton (such as ⁇ -helix structure and ⁇ -sheet structure).
- Non-patent Document 1 a gelling agent having an ⁇ -helix structure
- Non-patent Document 2 a gelling agent having ⁇ -sheet structure
- This type of hydrogelators is composed of a combination of intravital components (hydrophilic portion) such as DNA bases, peptide chains and sugar chains and alkyl chains (hydrophobic portion) and the like, and can be referred to as a gelling agent combining characteristics of the above two types of gelling agents.
- the DNA base, the peptide chain and the sugar chain assume not only a role of enhancing the hydrophilicity, but also a role of imparting an intermolecular interaction such as a hydrogen bond.
- Patent Document 2 a hydrogelator containing a glycoside amino acid derivative having a sugar structure site having an N-acetylated glycoside structure of a monosaccharide or disaccharide
- Patent Document 3 a fine hollow fiber formed having a self-assembling property from a peptide lipid represented by General Formula: RCO(NHCH 2 CO) m OH and a transition metal
- an amphipathic peptide having a structure of (hydrophobic portion-cysteine residue (forming a disulfide bond during the network formation)-glycerin residue (imparting flexibility)-phosphorylated serin residue-cell adhesive peptide) forms a ⁇ -sheet type fiber network with the hydrophobic portion as a nucleus (Non-patent Document 3).
- Non-patent Document 4 a case where a sugar lipid-type supramolecule hydrogel was produced using a chemical library.
- a crosslinker having an aldehyde group is necessary to be used.
- a related-art hydrogel has such problems that the preparation of the gel is cumbersome and that an unreacted crosslinker or unreacted substances during the copolymerization reaction remain.
- the gel formation may not be achieved.
- a reaction mixture forms a micelle to become an emulsified liquid.
- the low molecular weight molecules are self-assembled in a fiber shape and a hydrogel can be obtained, there is disclosed substantially no example in which the hydrogelation is achieved in a neutral range regarded as safe for the organism.
- the related-art hydrogel also has a problem that an anxiety is left with respect to the safety of a quaternary ammonium cation (for example, Patent Document 1) and the like for the organism environment.
- the agents have such a problem concerning the productivity that they are not suitable for the mass production and a problem that the gel forming ability depends on a temperature and pH.
- the hydrogelators have a semi-artificial low molecular weight molecule as the skeleton
- a reaction scheme FIG. 1
- sodium azide having high toxicity is used, or for self-assembling a hollow fiber described in Patent Document 3, it is essential to add a transition metal (ion), so that these examples leave a problem concerning biocompatibility and the environmental safety.
- various non-covalent hydrogels and hydrogelators for forming the gels which have been hitherto disclosed are those for which further improvements are required in terms of the gel forming ability (gel structure retaining ability), the safety for the organism environment and the like.
- lipid peptide particularly a lipid peptide useful as a hydrogelator having high hydrogelling ability capable of forming a hydrogel with an extremely small amount thereof over a wide liquid property range from acidic to alkaline, particularly even in a neutral range.
- lipid peptide represented by Formula (1) That is, according to a first aspect, a lipid peptide represented by Formula (1):
- R 1 represents an aliphatic group having 9 to 23 carbon atoms
- R 2 , R 3 , R 4 and R 5 independently represent a hydrogen atom, an alkyl group having 1 to 7 carbon atom(s) which may have a branched chain having 1 to 3 carbon atom(s), a phenylmethyl group, a phenylethyl group or a —(CH 2 ) n —X group, and at least one of R 2 , R 3 , R 4 and R 5 represents a —(CH 2 ) n —X group; n represents the number of 1 to 4; X represents an amino group, a guanidino group, a —CONH 2 group or a 5-membered ring, a 6-membered ring or a fused heterocyclic ring composed of a 5-membered ring and a 6-membered ring which may have 1 to 3 nitrogen atom(s); and m represents 1 or 2), and a pharmaceutically usable salt
- the lipid peptide and the pharmaceutically usable salt thereof according to the first aspect characterized in that R 1 represents a straight chain aliphatic group having 11 to 23 carbon atoms which may have 1 to 2 unsaturated bond(s).
- the lipid peptide and the pharmaceutically usable salt thereof according to the first aspect or the second aspect, characterized in that: R 2 , R 3 , R 4 and R 5 independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atom(s) which may have a branched chain having 1 or 2 carbon atom(s), a phenylmethyl group or a —(CH 2 ) n —X group, and one or two of R 2 , R 3 , R 4 and R 5 represent(s) a —(CH 2 ) n —X group; n represents the number of 1 to 4; X represents an amino group, a guanidino group, a —CONH 2 group or a 5-membered ring or a fused heterocyclic ring composed of a 5-membered ring and a 6-membered ring which may have 1 or 2 nitrogen atom(s).
- the lipid peptide and the pharmaceutically usable salt thereof according to the third aspect, characterized in that: R 2 , R 3 , R 4 and R 5 independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atom(s) which may have a branched chain having 1 or 2 carbon atom(s), a phenylmethyl group or a —(CH 2 ) n —X group, and one or two of R 2 , R 3 , R 4 and R 5 represent(s) a —(CH 2 ) n —X group; n represents the number of 1 to 4; X represents an amino group, a guanidino group, a —CONH 2 group, a pyrrolyl group, an imidazolyl group, a pyrazolyl group or an indolyl group.
- the lipid peptide and the pharmaceutically usable salt thereof according to the fourth aspect, characterized in that R 2 , R 3 , R 4 and R 5 independently represent a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a phenylmethyl group, an aminomethyl group, a 2-aminoethyl group, a 3-aminopropyl group, a 4-aminobutyl group, a carbamoylmethyl group, a 2-carbamoylethyl group, a 3-carbamoylpropyl group, a 2-guanidinoethyl group, a 3-guanidinopropyl group, a pyrrolylmethyl group, an imidazolylmethyl group, a pyrazo
- the lipid peptide and the pharmaceutically usable salt thereof according to the fifth aspect characterized in that R 2 , R 3 , R 4 and R 5 independently represent a hydrogen atom, a methyl group, an isopropyl group, an isobutyl group, a sec-butyl group, a phenylmethyl group, a 4-aminobutyl group, a carbamoylmethyl group, a 2-carbamoylethyl group, a 3-guanidinopropyl group, an imidazolylmethyl group or a 3-indolylmethyl group, and one or two of R 2 , R 3 , R 4 and R 5 represent(s) a 4-aminobutyl group, a carbamoylmethyl group, a 2-carbamoylethyl group, a 3-guanidinopropyl group, an imidazolylmethyl group or a 3-indolylmethyl group.
- the lipid peptide of the present invention can form a hydrogel by gelling an aqueous solution or an alcohol aqueous solution without using a crosslinker or the like required during the formation of a related-art hydrogel, so that no unreacted crosslinker remains.
- the lipid peptide of the present invention contains low molecular weight compounds, so that it can form a hydrogel without containing unreacted substances of functional molecules introduced into a related-art hydrogelator for developing functions.
- the lipid peptide of the present invention can form a hydrogel over a wide range of liquid properties from an acidic range to an alkaline range.
- the lipid peptide of the present invention having a gel forming ability even in a neutral range is useful as a hydrogelator in the above applications.
- the lipid peptide of the present invention can form a hydrogel only with a small adding amount of 0.03 to 1% by mass, and applies low load to the environment and the organism when the lipid peptide is taken therein.
- the lipid peptide of the present invention can form a hydrogel even when a dispersion medium of the lipid peptide contains up to around 50% by volume of an alcohol solvent such as ethanol, so that it can be preferably used in hydrogel applications requiring sterilizing property.
- the lipid peptide of the present invention is an artificial low molecular weight compound composed of only lipid and a peptide and using no animal-derived material (such as collagen, gelatin and matrigel) which is recently leading to a problem of BSE infection or the like, so that the hydrogel obtained therefrom causes no problem of the infection or the like.
- a lipid peptide can be produced only by an amidation reaction of lipid and a peptide without using a reagent having a high reactivity, however, also having toxicity such as sodium azide, so that it can be preferably used as a gelling agent having high safety.
- the lipid peptide of the present invention can also be used as besides the above applications, a protection from a cell damage and a Langmuir monolayer.
- the fiber of the present invention when the lipid peptide is self-assembled, a peptide moiety (amino acid) becomes positioned in the outermost side (that is, the fiber surface), so that when the fiber is taken into an organism, the fiber is unlikely to cause a rejection against organism cells and is excellent in cell-adhesiveness. Therefore, the fiber can be preferably used in a medical time-release carrier and an absorbent, a scaffolding for the regeneration medicine and the like.
- the fiber is useful as: besides the above applications, a stabilizer, dispersant and humectant in the food industry, agroforestry, cosmetics field and fiber industry; nano-parts in which metals or conductive materials are doped in the electronics and information field; and materials for a filter and conductive materials.
- the hydrogel of the present invention can stably retain a gel structure over a wide range of liquid properties from an acidic range to an alkaline range, particularly even under a neutral condition, so that the hydrogel of the present invention is preferred in applications of materials for the biochemistry such as a cell culture and of medical materials.
- the hydrogel of the present invention can be obtained by adding a smaller amount of a lipid peptide than that for a related-art hydrogel as described above, so that it may be said that the hydrogel of the present invention is a hydrogel having high safety both in the organism and in the environment.
- the hydrogel of the present invention can stably retain a gel structure even when the dispersion medium of the hydrogel contains up to around 50% by volume of an alcohol solvent such as ethanol, so that the hydrogel of the present invention can be preferably used in applications requiring sterilizing properties.
- hydrogel obtained from a lipid peptide which is a low molecular weight compound when used in an external environment, for example in the soil, the hydrogel is easily degraded by soil bacteria or the like, or when the hydrogel is used in an organism, the hydrogel is easily degraded by metabolic enzyme, so that it applies low load to the environment and the organism.
- the lipid peptide of the present invention has a structure represented by Formula (1):
- lipid moiety an alkylcarbonyl group having a long chain with high lipophilicity and a peptide moiety (tetrapeptide or pentapeptide).
- R 1 contained in the lipid moiety represents an aliphatic group having 9 to 23 carbon atoms, preferably a straight chain aliphatic group having 11 to 23 carbon atoms which may have one or two unsaturated bond(s).
- Particularly preferred specific examples of the structure of the lipid moiety composed of R 1 and a carbonyl group adjacent thereto include a lauroyl group, a dodecylcarbonyl group, a myristoyl group, a tetradecylcarbonyl group, a palmitoyl group, a margaroyl group, an oleoyl group, an elaidoyl group, a linoleoyl group, a stearoyl group, a vaccenoyl group, an octadecylcarbonyl group, an arachidoyl group, an eicosylcarbonyl group, a behenoyl group, an erucanoyl group, a docosylcarbonyl group, a lignoceroyl group and a nervonoyl group and among them, more preferred are a lauroyl group, a myristoyl group, a palmitoyl group
- R 2 , R 3 , R 4 and R 5 contained in the peptide moiety independently represent a hydrogen atom, an alkyl group having 1 to 7 carbon atom(s) which may have a branched chain having 1 to 3 carbon atom(s), a phenylmethyl group, a phenylethyl group or a —(CH 2 ) n —X group, and at least one, preferably one or two of R 2 , R 3 , R 4 and R 5 represent(s) a —(CH 2 ) n —X group; and m represents 1 or 2.
- n represents the number Of 1 to 4;
- X represents an amino group, a guanidino group, a —CONH 2 group or a 5-membered ring, a 6-membered ring or a fused heterocyclic ring composed of a 5-membered ring and a 6-membered ring which may have 1 to 3 nitrogen atom(s).
- the alkyl group having 1 to 7 carbon atom(s) which may have a branched chain having 1 to 3 carbon atom(s) is preferably an alkyl group having 1 to 4 carbon atom(s) which may have a branched chain having 1 or 2 carbon atom(s).
- alkyl group having 1 to 4 carbon atom(s) which may have a branched chain having 1 or 2 carbon atom(s) include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group or a tert-butyl group, and among them, preferred are a methyl group, an isopropyl group, an isobutyl group or a sec-butyl group.
- X represents preferably an amino group, a guanidino group, a —CONH 2 group, a pyrrolyl group, an imidazolyl group, a pyrazolyl group or an indolyl group.
- the —(CH 2 ) n —X group represents preferably an aminomethyl group, a 2-aminoethyl group, a 3-aminopropyl group, a 4-aminobutyl group, a carbamoylmethyl group, a 2-carbamoylethyl group, a 3-carbamoylpropyl group, a 2-guanidino group, a 3-guanidinopropyl group, a pyrrolylmethyl group, an imidazolylmethyl group, a pyrazolylmethyl group or a 3-indolylmethyl group, more preferably a 4-aminobutyl group, a carbamoylmethyl group, a 2-carbamoylethyl group, a 3-guanidinopropyl group, an imidazolylmethyl group or a 3-indolylmethyl group.
- lipid peptide compound As a particularly preferred lipid peptide compound, there can be mentioned the compounds formed from the following lipid moieties and peptide moieties (amino acid-assembled portion).
- the abbreviated names of the amino acids are represented as follows: histidine (His); glycine (Gly); phenylalanine (Phe); valine (Val); isoleucine (Ile); alanine (Ala); arginine (Arg); asparagine (Asn); glutamine (Gln); leucine (Leu); lysine (Lys); and tryptophan (Trp).
- the peptide moieties include Gly-Gly-Gly-His (SEQ ID NO: 1), Gly-Gly-His-Gly (SEQ ID NO: 2), Gly-His-Gly-Gly (SEQ ID NO: 3), His-Gly-Gly-Gly (SEQ ID NO: 4), Gly-Gly-Gly-Lys (SEQ ID NO: 5), Gly-Gly-Lys-Gly (SEQ ID NO: 6), Gly-Lys-Gly-Gly (SEQ ID NO: 7), Lys-Gly-Gly-Gly (SEQ ID NO: 8), Gly-Gly-Gly-Trp (SEQ ID NO: 9), Gly-Gly-Trp-Gly (SEQ ID NO: 10), Gly-Trp-Gly-Gly (SEQ ID NO: 11), Trp-Gly-Gly-Gly-Gly (SEQ ID NO: 1), Trp-Gly-Gly-G
- examples of a more preferred lipid peptide compound include N-lauroyl-Gly-Gly-Gly-His, N-lauroyl-Gly-Gly-His -Gly, N-lauroyl-Gly-His-Gly-Gly, N-lauroyl-His-Gly-Gly-Gly, N-lauroyl-His-Gly-Gly-Gly, N-lauroyl-Gly-Gly-Gly-Lys, N-lauroyl-Gly-Gly-Lys-Gly, N-lauroyl-Gly-Lys-Gly-Gly, N-lauroyl-Lys-Gly-Gly, N-lauroyl-Gly-Gly-Gly-Trp, N-lauroyl-Gly-Gly-Trp-Gly, N-lauroyl-Gly-Trp-Gly, N-lauroyl-Gly-T
- the lipid peptide of the present invention When the lipid peptide of the present invention is charged into an aqueous solution or an alcohol aqueous solution, the peptide moiety in Formula (1) forms an intermolecular non-covalent bond through a hydrogen bond and on the other hand, the lipid moiety in Formula (1) is self-assembled so as to be hydrophobically packed to form a cylindrical secondary assembly, that is, a fiber.
- FIG. 1 there is shown one example of the conceptual diagram of the self-assembly and gelation of the lipid peptide.
- Molecules of the lipid peptide (a) are assembled with the lipid moiety as its center, which is a hydrophobic portion (b), to form a fiber (c) by the self-assembly.
- the fiber When the fiber is formed in an aqueous solution or an alcohol aqueous solution, the fiber forms a three-dimensional network structure (for example, refer to (d) in FIG. 1 ) and further, a non-covalent bond is formed between the hydrophilic portion (peptide moiety) in the fiber surface and an aqueous solvent, and the fiber swells, so that the whole aqueous solution or alcohol aqueous solution is gelled to form a hydrogel.
- a three-dimensional network structure for example, refer to (d) in FIG. 1
- a non-covalent bond is formed between the hydrophilic portion (peptide moiety) in the fiber surface and an aqueous solvent, and the fiber swells, so that the whole aqueous solution or alcohol aqueous solution is gelled to form a hydrogel.
- the lipid peptide of the present invention is an amphoteric compound having a carboxyl group at a C terminal and an amino group derived from a side chain —(CH 2 ) n —X group in the peptide moiety. It is considered that the ion state of the lipid peptide is in equilibrium among such four states as a state in which only a carboxyl group is anionized, a state in which only an amino group is cationized, a state in which the lipid peptide is ampho-ionized and a state in which both substituents are not ionized.
- lipid peptide molecule a terminal amino group derived from a —(CH 2 ) n —X group in the peptide moiety is positively charged to be cationized in an acidic range; a terminal carboxyl group at a C terminal of the peptide moiety is negatively charged to be anionized in a basic range; and the lipid peptide molecule is ampho-ionized in a neutral range.
- the affinity of the peptide moiety with water is enhanced and the lipid peptide is self-assembled so that a long chain portion which is the hydrophobic portion is distanced from the contact with water to form a nanofiber.
- a network structure forming a crosslinkage structure. It is considered that by the formation of this network structure; the nanofiber becomes possible to incorporate a larger amount of water, so that excellent hydrogel forming ability is developed.
- the lipid peptide of the present invention can form a stable hydrogel even in a neutral range.
- the lipid peptide of the present invention is a low molecular weight compound, both the lipid peptide and the hydrogel obtained therefrom of the present invention are degradable in the environment and the organism and a lipid peptide and a hydrogel having high biocompatibility can be obtained.
- the lipid peptide and the hydrogel obtained therefrom of the present invention can be used in materials for various fields such as cell culture base materials, preservation materials for organism molecules such as cells and proteins, base materials for external use, materials for medical use, materials for biochemistry, cosmetics materials, food materials, contact lenses, paper diapers, artificial actuators, and materials for dry-land agriculture.
- a bioreactor carrier such as enzymes
- the lipid peptide and the hydrogel obtained therefrom of the present invention can be widely utilized in studies, medicines, analyses and various industries.
- the hydrogel of the present invention is a gel formed from a low molecular weight compound (lipid peptide)
- various functions such as capability of forming a gel that performs a sol-gel conversion by responding to an external stimulation, can be easily imparted to the hydrogel by a design of the compound, without modifying a polymer chain or effecting a copolymerization reaction.
- the lipid peptide was synthesized according to the following procedure of an Fmoc solid phase peptide synthesis method.
- As the resin mainly used was an amino acid-Barlos Resin. The synthesis was performed under a synthesis scale of 0.3 mmol.
- His-Barlos Resin manufactured by Watanabe Chemical Industries, Ltd.
- PD-10 column was washed with 5 mL of DCM three times, and next with 5 mL of DMF three times.
- the content of the column was stirred using a vibrator for 30 minutes and then was washed with 5 mL of DMF five times, next with 5 mL of DCM three times and further with 5 mL of DMF three times.
- reaction mixture was washed with 5 mL of DMF five times, next with 5 mL of DCM five times and further with 5 mL of methanol five times and then the resin was vacuum-dried over one night.
- Gly-Alko Resin manufactured by Watanabe Chemical Industries, Ltd.
- the content of the column was stirred using a vibrator for 45 minutes and then was washed with 5 mL of DMF five times, next with 5 mL of DCM three times and further with 5 mL of DMF three times.
- reaction mixture was washed with 5 mL of DMF five times, next with 5 mL, of DCM five times and further with 5 mL of methanol five times and then the resin was vacuum-dried over one night.
- Lipid peptides synthesized in Examples 10, 12, 13 and 15 to 17 were charged into sample tubes, and pure water (prepared by converting water into an ultrapure water using Milli-Q system (manufactured by Nihon Millipore K.K.)) was added to each sample tube, so that the concentration of the lipid peptide in the aqueous solution becomes 0.5 or 0.1% by mass, followed by heating the content of the sample tube to 90° C. or more to dissolve the lipid peptide and then leaving the resultant solution to cool down.
- pure water prepared by converting water into an ultrapure water using Milli-Q system (manufactured by Nihon Millipore K.K.)
- Milli-Q system manufactured by Nihon Millipore K.K.
- the lipid peptides synthesized in Examples 10, 12, 13 and 15 to 17 in pure water were gelled only at a concentration of 0.1% by mass.
- the solutions of the lipid peptides synthesized in Examples 10 to 17 were gelled at a concentration of 0.5% by mass.
- the solutions of the lipid peptides synthesized in Examples 10 to 16 were gelled at a concentration of 0.5% by mass.
- the solutions of the lipid peptides synthesized in Examples 10 to 12, 15 and 16 were gelled at a concentration of 0.5% by mass.
- a lipid peptide (N-palmitoyl-Gly-Gly-Gly-His) synthesized in Example 1 was charged into sample tubes and five types of 50 mM metal ion aqueous solutions (NaCl aqueous solution, MgCl 2 aqueous solution, CaCl 2 aqueous solution, NiCl 2 aqueous solution, FeCl 3 aqueous solution) were added to each sample tube so that the concentration of the lipid peptide in the aqueous solution becomes 0.2% by mass, followed by heating the content of the sample tube to 60° C. or more to dissolve the lipid peptide and leaving the resultant solution to cool down.
- NaCl aqueous solution MgCl 2 aqueous solution, CaCl 2 aqueous solution, NiCl 2 aqueous solution, FeCl 3 aqueous solution
- the lipid peptide and the hydrogel obtained therefrom according to the present invention can stably retain a gel structure over a wide liquid property ranging from an acidic range to an alkaline range, particularly even under a neutral condition, and have extremely high biocompatibility, so that the lipid peptide and the hydrogel are suitable for the applications of various functional materials.
- the lipid peptide and the hydrogel are preferred in applications such as cleaning agents (for medicine, living, industry and the like), soiling and gelling agents (cosmetics and other applications for articles of daily use), a gelling agent for a dye stabilizing application, and food additives (for acidic food, alkaline food, neutral food, and the like).
- the lipid peptide and the hydrogel can be applied in a neutral range, as materials for biology and biochemistry such as cell culture basic materials and skin basic materials, and in an acidic range, as basic materials of pharmaceutical preparations such as gastric acid adjusters, enteric coated preparations and biodegradable anti-metabolic agents by the feeling of fullness, as stabilizers and additives during the production of acidic milk beverages containing pectin, etc., or in applications for improving an alkaline soil, or the like.
- a neutral range as materials for biology and biochemistry such as cell culture basic materials and skin basic materials
- an acidic range as basic materials of pharmaceutical preparations such as gastric acid adjusters, enteric coated preparations and biodegradable anti-metabolic agents by the feeling of fullness, as stabilizers and additives during the production of acidic milk beverages containing pectin, etc., or in applications for improving an alkaline soil, or the like.
- the lipid peptide and the hydro gel can be used as stabilizers and additives, during the production of alkaline beverages and milk beverages, as applications for catalytic reactions using various alkaline enzymes (alkaline protease, alkaline cerase, alkaline amylase, alkaline xylase, alkaline pectate lyase and the like), in industrial applications of alkalophilic bacteria, as gelling agents used in alkaline batteries and the like, as acidic soil ameliorant applications, as basic materials, reaction additives and accelerators in various industrial applications such as bioreactors, cleaning agents and soaps, cosmetics, drug discoveries, and analytic investigations.
- alkaline enzymes alkaline protease, alkaline cerase, alkaline amylase, alkaline xylase, alkaline pectate lyase and the like
- FIG. 1 is a schematic view showing a conceptual diagram of self-assembly and gelation following thereto of a lipid peptide.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Peptides Or Proteins (AREA)
- Biological Depolymerization Polymers (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007-177538 | 2007-07-05 | ||
JP2007177538 | 2007-07-05 | ||
PCT/JP2008/062212 WO2009005151A1 (ja) | 2007-07-05 | 2008-07-04 | 新規脂質ペプチド並びにヒドロゲル |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/062212 A-371-Of-International WO2009005151A1 (ja) | 2007-07-05 | 2008-07-04 | 新規脂質ペプチド並びにヒドロゲル |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/685,565 Division US8816049B2 (en) | 2007-07-05 | 2012-11-26 | Lipid peptide and hydrogel |
Publications (2)
Publication Number | Publication Date |
---|---|
US20100291210A1 US20100291210A1 (en) | 2010-11-18 |
US8916682B2 true US8916682B2 (en) | 2014-12-23 |
Family
ID=40226189
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/452,473 Active 2030-01-03 US8916682B2 (en) | 2007-07-05 | 2008-07-04 | Lipid peptide and hydrogel |
US13/685,565 Active US8816049B2 (en) | 2007-07-05 | 2012-11-26 | Lipid peptide and hydrogel |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/685,565 Active US8816049B2 (en) | 2007-07-05 | 2012-11-26 | Lipid peptide and hydrogel |
Country Status (7)
Country | Link |
---|---|
US (2) | US8916682B2 (ja) |
EP (2) | EP2172475B1 (ja) |
JP (1) | JP5441693B2 (ja) |
KR (1) | KR101557796B1 (ja) |
CN (1) | CN101809028B (ja) |
TW (1) | TWI491617B (ja) |
WO (1) | WO2009005151A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150250692A1 (en) * | 2012-10-03 | 2015-09-10 | Nissan Chemical Industries, Ltd. | Hydrogel-forming material |
US10092496B2 (en) * | 2013-12-25 | 2018-10-09 | Nissan Chemical Industries, Ltd. | Stick-shaped base material containing lipid peptide compound |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101736169B1 (ko) * | 2009-03-16 | 2017-05-16 | 닛산 가가쿠 고교 가부시키 가이샤 | 저분자 겔화제로 이루어진 스프레이용 기재 |
WO2010147158A1 (ja) * | 2009-06-19 | 2010-12-23 | 日産化学工業株式会社 | 低分子ゲル化剤により化合物が内包されたゲル |
CN102596986B (zh) * | 2009-09-07 | 2015-08-05 | 日产化学工业株式会社 | 脂质肽化合物的制造方法 |
WO2011052613A1 (ja) * | 2009-10-26 | 2011-05-05 | 日産化学工業株式会社 | 化粧料及び皮膚外用剤、並びに医療用機器 |
US9687591B2 (en) | 2010-03-31 | 2017-06-27 | Agency For Science, Technology And Research | Building stratified biomimetic tissues and organs using crosslinked ultrashort peptide hydrogel membranes |
US8999916B2 (en) | 2010-03-31 | 2015-04-07 | Agency For Science, Technology And Research | Crosslinked peptide hydrogels |
SG184345A1 (en) * | 2010-03-31 | 2012-11-29 | Agency Science Tech & Res | Amphiphilic linear peptide/peptoid and hydrogel comprising the same |
WO2012063947A1 (ja) | 2010-11-12 | 2012-05-18 | 日産化学工業株式会社 | 脂質ペプチド型ゲル化剤と高分子化合物とを含有するゲルシート |
KR101951916B1 (ko) | 2011-03-31 | 2019-02-25 | 닛산 가가쿠 가부시키가이샤 | 화장료의 제조방법, 화장료용 겔의 조제방법 및 화장료 원료에 배합되는 고분자 증점제의 사용량을 경감하는 방법 |
US9328137B2 (en) | 2011-04-22 | 2016-05-03 | Nissan Chemical Industries, Ltd. | Hydrogel-forming material |
KR20140084170A (ko) * | 2011-10-14 | 2014-07-04 | 닛산 가가쿠 고교 가부시키 가이샤 | 겔상의 고체 전해질을 구비한 금속-공기전지 |
JP6041813B2 (ja) * | 2011-12-21 | 2016-12-14 | 日産化学工業株式会社 | 水系リチウムイオン二次電池 |
EP2865442B1 (en) | 2012-06-25 | 2017-12-06 | Nissan Chemical Industries, Ltd. | Liquid dispersion and formation method for hydrogels |
CN104822371B (zh) | 2012-10-03 | 2019-03-19 | 日产化学工业株式会社 | 水凝胶形成用材料、预混料及水凝胶形成方法 |
EP3020388B1 (en) * | 2013-07-09 | 2018-12-05 | Nissan Chemical Corporation | Dispersion liquid and method for forming hydrogel |
US20180021250A1 (en) | 2015-01-28 | 2018-01-25 | Kyushu University | Transdermally absorbable base material containing lipid peptide compound |
BR112017028075A2 (ja) * | 2015-06-24 | 2018-09-04 | Nissan Chemical Industries, Ltd. | A stick-like substrate containing a lipid peptide type compound |
CN106540339B (zh) * | 2016-11-03 | 2019-04-09 | 东南大学 | 一种脂肽自组装凝胶及其制备方法和应用 |
JP2022123151A (ja) * | 2019-05-10 | 2022-08-24 | 国立大学法人九州大学 | 脂質ペプチド型ゲル化剤とポリアルキレンオキシドとを含有する高分子複合材料 |
KR20220009367A (ko) * | 2019-05-15 | 2022-01-24 | 세키스이가가쿠 고교가부시키가이샤 | 세포배양용 스캐폴드 재료에 의해 형성된 수지막, 세포배양용 담체 및 세포배양용 용기 |
CN110204593A (zh) * | 2019-05-17 | 2019-09-06 | 高邮市宇航化工机械厂 | 一种生物制药用多肽化合物的制备工艺 |
CN112587477A (zh) * | 2020-12-24 | 2021-04-02 | 中科院过程工程研究所南京绿色制造产业创新研究院 | 一种棕榈酰肽水凝胶及其制备方法和用途 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60214768A (ja) | 1984-04-07 | 1985-10-28 | Fujisawa Pharmaceut Co Ltd | オリゴペプチド化合物 |
US6027711A (en) * | 1995-06-07 | 2000-02-22 | Rhomed Incorporated | Structurally determined metallo-constructs and applications |
US6090763A (en) * | 1994-02-28 | 2000-07-18 | Stewart; Howard Franklin | Hydrogel soap |
JP2002085957A (ja) | 2000-09-18 | 2002-03-26 | Honda Motor Co Ltd | ハイドロゲル |
US20020197281A1 (en) | 2001-05-21 | 2002-12-26 | Miri Seiberg | Composition cantaining a peptide and a pigment and the use thereof in darkening the skin |
US20030138388A1 (en) * | 2001-05-21 | 2003-07-24 | Miri Seiberg | Peptides and the use thereof in darkening the skin |
JP2003327949A (ja) | 2002-05-13 | 2003-11-19 | Japan Science & Technology Corp | グリコシドアミノ酸誘導体から成るヒドロゲル化剤およびヒドロゲル |
JP2004250797A (ja) | 2003-02-18 | 2004-09-09 | Japan Science & Technology Agency | 微細中空繊維 |
US20050129633A1 (en) | 2003-12-12 | 2005-06-16 | Lin Connie B. | Vanillin polymers for use in darkening the skin |
WO2005105029A1 (es) | 2004-04-28 | 2005-11-10 | Lipotec, S.A. | Uso de péptidos xikvav en preparación de composiciones cosméticas para mejorar la firmeza de la piel mediante el aumento de la adhesión celular |
US20070099840A1 (en) | 2005-09-07 | 2007-05-03 | The University Of Manchester | Hydrogel compositions |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2180027B1 (en) * | 2007-07-05 | 2011-10-26 | Nissan Chemical Industries, Ltd. | Novel lipid-tripeptide based hydrogel-forming agent and hydrogel |
-
2008
- 2008-07-04 US US12/452,473 patent/US8916682B2/en active Active
- 2008-07-04 EP EP08790893.5A patent/EP2172475B1/en active Active
- 2008-07-04 EP EP12184024.3A patent/EP2559697B1/en active Active
- 2008-07-04 CN CN200880023439.9A patent/CN101809028B/zh active Active
- 2008-07-04 WO PCT/JP2008/062212 patent/WO2009005151A1/ja active Application Filing
- 2008-07-04 JP JP2009521681A patent/JP5441693B2/ja not_active Expired - Fee Related
- 2008-07-04 KR KR1020107002123A patent/KR101557796B1/ko active IP Right Grant
- 2008-07-07 TW TW097125582A patent/TWI491617B/zh active
-
2012
- 2012-11-26 US US13/685,565 patent/US8816049B2/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60214768A (ja) | 1984-04-07 | 1985-10-28 | Fujisawa Pharmaceut Co Ltd | オリゴペプチド化合物 |
US6090763A (en) * | 1994-02-28 | 2000-07-18 | Stewart; Howard Franklin | Hydrogel soap |
US6027711A (en) * | 1995-06-07 | 2000-02-22 | Rhomed Incorporated | Structurally determined metallo-constructs and applications |
JP2002085957A (ja) | 2000-09-18 | 2002-03-26 | Honda Motor Co Ltd | ハイドロゲル |
WO2003099841A2 (en) | 2001-05-21 | 2003-12-04 | Johnson & Johnson Consumer Companies, Inc. | Peptides and the use thereof in darkening the skin |
US20020197281A1 (en) | 2001-05-21 | 2002-12-26 | Miri Seiberg | Composition cantaining a peptide and a pigment and the use thereof in darkening the skin |
US20030138388A1 (en) * | 2001-05-21 | 2003-07-24 | Miri Seiberg | Peptides and the use thereof in darkening the skin |
JP2003327949A (ja) | 2002-05-13 | 2003-11-19 | Japan Science & Technology Corp | グリコシドアミノ酸誘導体から成るヒドロゲル化剤およびヒドロゲル |
JP2004250797A (ja) | 2003-02-18 | 2004-09-09 | Japan Science & Technology Agency | 微細中空繊維 |
US20050129633A1 (en) | 2003-12-12 | 2005-06-16 | Lin Connie B. | Vanillin polymers for use in darkening the skin |
WO2005105029A1 (es) | 2004-04-28 | 2005-11-10 | Lipotec, S.A. | Uso de péptidos xikvav en preparación de composiciones cosméticas para mejorar la firmeza de la piel mediante el aumento de la adhesión celular |
EP1741421A1 (en) | 2004-04-28 | 2007-01-10 | Lipotec, S.A. | Use of xikvav peptides in the preparation of cosmetic compositions which are intended to improve the firmness of the skin by increasing cell adhesion |
US20070099840A1 (en) | 2005-09-07 | 2007-05-03 | The University Of Manchester | Hydrogel compositions |
Non-Patent Citations (22)
Title |
---|
Aggeli et al., "Self-Assembling Peptide Polyelectrolyte beta-Sheet Complexes Form Nematic Hydrogels," Agnew. Chem. Int. Ed., vol. 42, 2003, pp. 5603-5606. |
Aggeli et al., "Self-Assembling Peptide Polyelectrolyte β-Sheet Complexes Form Nematic Hydrogels," Agnew. Chem. Int. Ed., vol. 42, 2003, pp. 5603-5606. |
Aug. 12, 2013 Office Action issued in U.S. Appl. No. 13/685,565. |
European Search Report issued in European Patent Application No. 08790893.5 dated Aug. 13, 2010. |
Gilead and Gazit, Self Organization of short peptide fragments: From Amyloid Fibrils to Nanoscale Supramolecular Assemblies, Supramolecular Chemistry, vol. 17 (1-2), p. 87-92, 2005. * |
Hartgerink et al., "Self-Assembly and Mineralization of Peptide-Amphiphle Nanofibers," Science, vol. 294, Nov. 23, 2001, pp. 1684-1688. |
Huo et al., "Metal Complexation with Langmuir Monolayers of Histidyl Peptide Lipids," Chemistry-A European Journal, 2001, pp. 4796-4804, vol. 7, No. 22. |
Huo et al., "Metal Complexation with Langmuir Monolayers of Histidyl Peptide Lipids," Chemistry—A European Journal, 2001, pp. 4796-4804, vol. 7, No. 22. |
Infante et al., "Synthesis and surface activity properties of hydrophobic/hydrophilic peptides," Int. J. Peptide Protein Res., vol. 43, 1994, pp. 173-179. |
Infante et. al. Synthesis and surface activity properties of hydrophobic/hydrophilic peptides. Inr. J. Peptide Protein Rev. 43, 1994, 173-179. * |
International Search Report issued in corresponding International Application No. PCT/JP2008/062212, mailed Oct. 7, 2008. (with English-language translation). |
Jan. 30, 2014 Office Action issued in U.S. Appl. No. 13/685,565. |
Lowik and Hest , Peptide Based Amphiphiles, Chem. Soc. Rev. vol. 33, pp. 234-245, 2004. * |
Matsumoto et al., "The Supramolecular-Hydrogel toward ‘The Smart Biomaterials,’" DOJIN News, No. 118, 2006, pp. 1-16. (with English-language abstract). |
Matsumoto et al., "The Supramolecular-Hydrogel toward 'The Smart Biomaterials,'" DOJIN News, No. 118, 2006, pp. 1-16. (with English-language abstract). |
Nastruzzi et al., "Liposomes as carriers for DNA-PNA hybrids," Journal of Controlled Release, vol. 68, 2000, pp. 237-249. |
Nguyen-Le et al., "Phramacological hetereogeneity of neurotensin receptors: an in vitro study," Cn. J. Physiol. Phramacol., 1997, vol. 75, No. 6, pp. 547-551. |
Ohashi et al., "Application of Arginine-Rich RNA-Binding Peptides to Gene Delivery," Peptide Science, 2000, pp. 241-242. |
Ozols et al., "Identification of the NH2-terminal Blocking Group of NADH-Cytochrome b5 Reductase as Myristic Acid and the Complete Amino Acid Sequence of the Membrane-binding Domain," The Journal of Biological Chemistry, vol. 259, No. 21, Nov. 10, 1984, pp. 13349-13354. |
Petka et al., "Reversible Hydrogels from Self-Assembling Artificial Proteins," Science, vol. 281, Jul. 17, 1998, pp. 389-392. |
Van Bommel et al., "Responsive Cyclohexane-Based Low-Molecular-Weight Hydrogelators with Modular Architecture," Angew. Chem. Int. Ed., vol. 43, 2004, pp. 1663-1667. |
Written Opinion of the International Searching Authority issued in corresponding International Application No. PCT/JP2008/062212, mailed Oct. 7, 2008. (with English-language translation). |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150250692A1 (en) * | 2012-10-03 | 2015-09-10 | Nissan Chemical Industries, Ltd. | Hydrogel-forming material |
US9597270B2 (en) * | 2012-10-03 | 2017-03-21 | Nissan Chemical Industries, Ltd. | Hydrogel-forming material |
US10092496B2 (en) * | 2013-12-25 | 2018-10-09 | Nissan Chemical Industries, Ltd. | Stick-shaped base material containing lipid peptide compound |
Also Published As
Publication number | Publication date |
---|---|
EP2559697A1 (en) | 2013-02-20 |
TW200916483A (en) | 2009-04-16 |
TWI491617B (zh) | 2015-07-11 |
EP2172475A1 (en) | 2010-04-07 |
US20130144037A1 (en) | 2013-06-06 |
KR20100058454A (ko) | 2010-06-03 |
CN101809028A (zh) | 2010-08-18 |
CN101809028B (zh) | 2015-11-25 |
KR101557796B1 (ko) | 2015-10-06 |
EP2559697B1 (en) | 2014-03-26 |
JPWO2009005151A1 (ja) | 2010-08-26 |
WO2009005151A1 (ja) | 2009-01-08 |
EP2172475B1 (en) | 2015-06-03 |
EP2172475A4 (en) | 2010-09-15 |
US8816049B2 (en) | 2014-08-26 |
US20100291210A1 (en) | 2010-11-18 |
JP5441693B2 (ja) | 2014-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8916682B2 (en) | Lipid peptide and hydrogel | |
US8716248B2 (en) | Lipid tripeptide-based hydrogelator and hydrogel | |
US9265833B2 (en) | Lipid dipeptide and gel | |
US8486999B2 (en) | Long-chain oxyaminopolyol based gelator and gel | |
US20180016304A1 (en) | Self-assembling ultrashort aliphatic depsipeptides for biomedical applications | |
WO2017093897A1 (en) | Aromatic-cationic peptides conjugated to antioxidants and their use in treating complex regional pain syndrome |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: KYUSHU UNIVERSITY, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MIYACHI, NOBUHIDE;IWAMA, TAKEHISA;GOTOH, MASAHIRO;AND OTHERS;REEL/FRAME:024331/0724 Effective date: 20100422 Owner name: NISSAN CHEMICAL INDUSTRIES, LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MIYACHI, NOBUHIDE;IWAMA, TAKEHISA;GOTOH, MASAHIRO;AND OTHERS;REEL/FRAME:024331/0724 Effective date: 20100422 |
|
AS | Assignment |
Owner name: NISSAN CHEMICAL INDUSTRIES, LTD., JAPAN Free format text: RECORD TO CORRECT ASSIGNOR ADDRESS ON AN ASSIGMENT DOCUMENT PREVIOUSLY RECORDED ON MAY 5, 2010, REEL 024331 FRAME 0724;ASSIGNORS:MIYACHI, NOBUHIDE;IWAMA, TAKEHISA;GOTOH, MASAHIRO;AND OTHERS;REEL/FRAME:024398/0755 Effective date: 20100422 Owner name: KYUSHU UNIVERSITY, JAPAN Free format text: RECORD TO CORRECT ASSIGNOR ADDRESS ON AN ASSIGMENT DOCUMENT PREVIOUSLY RECORDED ON MAY 5, 2010, REEL 024331 FRAME 0724;ASSIGNORS:MIYACHI, NOBUHIDE;IWAMA, TAKEHISA;GOTOH, MASAHIRO;AND OTHERS;REEL/FRAME:024398/0755 Effective date: 20100422 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551) Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |