US7732634B2 - Hydrogenation processes - Google Patents
Hydrogenation processes Download PDFInfo
- Publication number
- US7732634B2 US7732634B2 US10/534,075 US53407503A US7732634B2 US 7732634 B2 US7732634 B2 US 7732634B2 US 53407503 A US53407503 A US 53407503A US 7732634 B2 US7732634 B2 US 7732634B2
- Authority
- US
- United States
- Prior art keywords
- acid
- catalyst
- hydrogen
- groups
- tri
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
- 238000005984 hydrogenation reaction Methods 0.000 title claims abstract description 104
- 239000003054 catalyst Substances 0.000 claims abstract description 142
- 229910052751 metal Inorganic materials 0.000 claims abstract description 141
- 239000002184 metal Substances 0.000 claims abstract description 141
- 238000000034 method Methods 0.000 claims abstract description 129
- 230000008569 process Effects 0.000 claims abstract description 101
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 88
- 239000001257 hydrogen Substances 0.000 claims abstract description 87
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 80
- 150000001875 compounds Chemical class 0.000 claims abstract description 48
- -1 aliphatic amines Chemical class 0.000 claims description 239
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 127
- 239000000463 material Substances 0.000 claims description 98
- 239000000203 mixture Substances 0.000 claims description 83
- 238000000354 decomposition reaction Methods 0.000 claims description 57
- 239000006185 dispersion Substances 0.000 claims description 56
- 229910052707 ruthenium Inorganic materials 0.000 claims description 51
- 125000003118 aryl group Chemical group 0.000 claims description 48
- 239000000377 silicon dioxide Substances 0.000 claims description 47
- 239000002253 acid Substances 0.000 claims description 45
- 125000000217 alkyl group Chemical group 0.000 claims description 41
- 238000011282 treatment Methods 0.000 claims description 41
- 150000002148 esters Chemical class 0.000 claims description 27
- 238000001354 calcination Methods 0.000 claims description 25
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 23
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 21
- 150000007513 acids Chemical class 0.000 claims description 21
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 claims description 21
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 20
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 claims description 20
- 229960004418 trolamine Drugs 0.000 claims description 20
- UJMDYLWCYJJYMO-UHFFFAOYSA-N benzene-1,2,3-tricarboxylic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1C(O)=O UJMDYLWCYJJYMO-UHFFFAOYSA-N 0.000 claims description 18
- 239000013335 mesoporous material Substances 0.000 claims description 18
- CYIDZMCFTVVTJO-UHFFFAOYSA-N pyromellitic acid Chemical compound OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C=C1C(O)=O CYIDZMCFTVVTJO-UHFFFAOYSA-N 0.000 claims description 18
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 claims description 18
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 17
- 230000004580 weight loss Effects 0.000 claims description 17
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 16
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 claims description 14
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 claims description 14
- 150000001413 amino acids Chemical class 0.000 claims description 13
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 claims description 13
- 125000004432 carbon atom Chemical group C* 0.000 claims description 12
- 229910052759 nickel Inorganic materials 0.000 claims description 11
- 125000001931 aliphatic group Chemical group 0.000 claims description 10
- 229910052763 palladium Inorganic materials 0.000 claims description 9
- 125000002768 hydroxyalkyl group Chemical group 0.000 claims description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims description 8
- 229910052697 platinum Inorganic materials 0.000 claims description 8
- 125000000623 heterocyclic group Chemical group 0.000 claims description 7
- 230000007704 transition Effects 0.000 claims description 7
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 claims description 6
- 229910017052 cobalt Inorganic materials 0.000 claims description 6
- 239000010941 cobalt Substances 0.000 claims description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 6
- 150000002431 hydrogen Chemical class 0.000 claims description 6
- 238000002329 infrared spectrum Methods 0.000 claims description 6
- 229940087646 methanolamine Drugs 0.000 claims description 6
- 229910052703 rhodium Inorganic materials 0.000 claims description 6
- 239000010948 rhodium Substances 0.000 claims description 6
- 150000008064 anhydrides Chemical class 0.000 claims description 5
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 5
- 125000006615 aromatic heterocyclic group Chemical group 0.000 claims description 4
- BFIAIMMAHAIVFT-UHFFFAOYSA-N 1-[bis(2-hydroxybutyl)amino]butan-2-ol Chemical compound CCC(O)CN(CC(O)CC)CC(O)CC BFIAIMMAHAIVFT-UHFFFAOYSA-N 0.000 claims description 3
- 125000004066 1-hydroxyethyl group Chemical group [H]OC([H])([*])C([H])([H])[H] 0.000 claims description 3
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 claims description 3
- BLFRQYKZFKYQLO-UHFFFAOYSA-N 4-aminobutan-1-ol Chemical compound NCCCCO BLFRQYKZFKYQLO-UHFFFAOYSA-N 0.000 claims description 3
- 125000002853 C1-C4 hydroxyalkyl group Chemical group 0.000 claims description 3
- WUGQZFFCHPXWKQ-UHFFFAOYSA-N Propanolamine Chemical compound NCCCO WUGQZFFCHPXWKQ-UHFFFAOYSA-N 0.000 claims description 3
- ITBPIKUGMIZTJR-UHFFFAOYSA-N [bis(hydroxymethyl)amino]methanol Chemical compound OCN(CO)CO ITBPIKUGMIZTJR-UHFFFAOYSA-N 0.000 claims description 3
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 claims description 3
- XMYQHJDBLRZMLW-UHFFFAOYSA-N methanolamine Chemical compound NCO XMYQHJDBLRZMLW-UHFFFAOYSA-N 0.000 claims description 3
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 2
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 claims 4
- VLDPXPPHXDGHEW-UHFFFAOYSA-N 1-chloro-2-dichlorophosphoryloxybenzene Chemical compound ClC1=CC=CC=C1OP(Cl)(Cl)=O VLDPXPPHXDGHEW-UHFFFAOYSA-N 0.000 claims 1
- 150000002894 organic compounds Chemical class 0.000 abstract description 54
- 150000002739 metals Chemical class 0.000 abstract description 35
- 150000001412 amines Chemical class 0.000 abstract description 10
- 239000007789 gas Substances 0.000 abstract description 9
- 239000011148 porous material Substances 0.000 description 44
- 229920000642 polymer Polymers 0.000 description 40
- 239000000523 sample Substances 0.000 description 40
- 238000006243 chemical reaction Methods 0.000 description 30
- 239000000047 product Substances 0.000 description 30
- HBGGXOJOCNVPFY-UHFFFAOYSA-N diisononyl phthalate Chemical compound CC(C)CCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCC(C)C HBGGXOJOCNVPFY-UHFFFAOYSA-N 0.000 description 29
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 24
- 239000000243 solution Substances 0.000 description 23
- 150000001491 aromatic compounds Chemical class 0.000 description 22
- 239000002904 solvent Substances 0.000 description 19
- 230000015572 biosynthetic process Effects 0.000 description 18
- 238000005259 measurement Methods 0.000 description 18
- 125000005591 trimellitate group Chemical group 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 18
- 238000002360 preparation method Methods 0.000 description 17
- CMCJNODIWQEOAI-UHFFFAOYSA-N bis(2-butoxyethyl)phthalate Chemical compound CCCCOCCOC(=O)C1=CC=CC=C1C(=O)OCCOCCCC CMCJNODIWQEOAI-UHFFFAOYSA-N 0.000 description 16
- 229910052681 coesite Inorganic materials 0.000 description 16
- 229910052906 cristobalite Inorganic materials 0.000 description 16
- 238000005470 impregnation Methods 0.000 description 16
- 229910052682 stishovite Inorganic materials 0.000 description 16
- 229910052905 tridymite Inorganic materials 0.000 description 16
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 15
- 238000000197 pyrolysis Methods 0.000 description 15
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 14
- 229920001577 copolymer Polymers 0.000 description 14
- 230000009467 reduction Effects 0.000 description 14
- 125000003277 amino group Chemical group 0.000 description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 229940024606 amino acid Drugs 0.000 description 10
- 235000001014 amino acid Nutrition 0.000 description 10
- 150000002500 ions Chemical class 0.000 description 10
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 10
- 150000003839 salts Chemical class 0.000 description 10
- 238000001179 sorption measurement Methods 0.000 description 10
- 150000001298 alcohols Chemical class 0.000 description 9
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 description 9
- 239000003085 diluting agent Substances 0.000 description 9
- 238000009826 distribution Methods 0.000 description 9
- 238000001035 drying Methods 0.000 description 9
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 8
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 8
- WOZVHXUHUFLZGK-UHFFFAOYSA-N dimethyl terephthalate Chemical compound COC(=O)C1=CC=C(C(=O)OC)C=C1 WOZVHXUHUFLZGK-UHFFFAOYSA-N 0.000 description 8
- 239000011159 matrix material Substances 0.000 description 8
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 8
- 150000001735 carboxylic acids Chemical class 0.000 description 7
- 229910052593 corundum Inorganic materials 0.000 description 7
- 230000006378 damage Effects 0.000 description 7
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical class OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 229910001845 yogo sapphire Inorganic materials 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- ZVFDTKUVRCTHQE-UHFFFAOYSA-N Diisodecyl phthalate Chemical compound CC(C)CCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC(C)C ZVFDTKUVRCTHQE-UHFFFAOYSA-N 0.000 description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 6
- FLKPEMZONWLCSK-UHFFFAOYSA-N diethyl phthalate Chemical compound CCOC(=O)C1=CC=CC=C1C(=O)OCC FLKPEMZONWLCSK-UHFFFAOYSA-N 0.000 description 6
- 125000004185 ester group Chemical group 0.000 description 6
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 6
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N methyl pentane Natural products CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 125000002560 nitrile group Chemical group 0.000 description 6
- 238000001757 thermogravimetry curve Methods 0.000 description 6
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 230000004913 activation Effects 0.000 description 5
- QYQADNCHXSEGJT-UHFFFAOYSA-N cyclohexane-1,1-dicarboxylate;hydron Chemical compound OC(=O)C1(C(O)=O)CCCCC1 QYQADNCHXSEGJT-UHFFFAOYSA-N 0.000 description 5
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 5
- MGWAVDBGNNKXQV-UHFFFAOYSA-N diisobutyl phthalate Chemical compound CC(C)COC(=O)C1=CC=CC=C1C(=O)OCC(C)C MGWAVDBGNNKXQV-UHFFFAOYSA-N 0.000 description 5
- YCZJVRCZIPDYHH-UHFFFAOYSA-N ditridecyl benzene-1,2-dicarboxylate Chemical compound CCCCCCCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCCCCCCC YCZJVRCZIPDYHH-UHFFFAOYSA-N 0.000 description 5
- 125000005843 halogen group Chemical group 0.000 description 5
- UWNADWZGEHDQAB-UHFFFAOYSA-N i-Pr2C2H4i-Pr2 Natural products CC(C)CCC(C)C UWNADWZGEHDQAB-UHFFFAOYSA-N 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 239000002808 molecular sieve Substances 0.000 description 5
- 239000000178 monomer Substances 0.000 description 5
- YLPJWCDYYXQCIP-UHFFFAOYSA-N nitroso nitrate;ruthenium Chemical compound [Ru].[O-][N+](=O)ON=O YLPJWCDYYXQCIP-UHFFFAOYSA-N 0.000 description 5
- 239000002243 precursor Substances 0.000 description 5
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 5
- 239000007858 starting material Substances 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 239000004475 Arginine Substances 0.000 description 4
- NIQCNGHVCWTJSM-UHFFFAOYSA-N Dimethyl phthalate Chemical compound COC(=O)C1=CC=CC=C1C(=O)OC NIQCNGHVCWTJSM-UHFFFAOYSA-N 0.000 description 4
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 4
- 150000001299 aldehydes Chemical class 0.000 description 4
- 125000004183 alkoxy alkyl group Chemical group 0.000 description 4
- 125000002947 alkylene group Chemical group 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 4
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 4
- RLGQACBPNDBWTB-UHFFFAOYSA-N cetyltrimethylammonium ion Chemical compound CCCCCCCCCCCCCCCC[N+](C)(C)C RLGQACBPNDBWTB-UHFFFAOYSA-N 0.000 description 4
- 239000007795 chemical reaction product Substances 0.000 description 4
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 150000001993 dienes Chemical group 0.000 description 4
- DROMNWUQASBTFM-UHFFFAOYSA-N dinonyl benzene-1,2-dicarboxylate Chemical compound CCCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCCC DROMNWUQASBTFM-UHFFFAOYSA-N 0.000 description 4
- 239000003446 ligand Substances 0.000 description 4
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- FDPIMTJIUBPUKL-UHFFFAOYSA-N pentan-3-one Chemical compound CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 description 4
- 229920001470 polyketone Polymers 0.000 description 4
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 4
- 239000012266 salt solution Substances 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 230000003068 static effect Effects 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 4
- 238000002411 thermogravimetry Methods 0.000 description 4
- 229910052723 transition metal Inorganic materials 0.000 description 4
- 150000003624 transition metals Chemical class 0.000 description 4
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical class OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 238000004566 IR spectroscopy Methods 0.000 description 3
- ODKSFYDXXFIFQN-BYPYZUCNSA-N L-arginine Chemical compound OC(=O)[C@@H](N)CCCN=C(N)N ODKSFYDXXFIFQN-BYPYZUCNSA-N 0.000 description 3
- 229930064664 L-arginine Natural products 0.000 description 3
- 235000014852 L-arginine Nutrition 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 3
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 3
- 125000000278 alkyl amino alkyl group Chemical group 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 3
- HORIEOQXBKUKGQ-UHFFFAOYSA-N bis(7-methyloctyl) cyclohexane-1,2-dicarboxylate Chemical compound CC(C)CCCCCCOC(=O)C1CCCCC1C(=O)OCCCCCCC(C)C HORIEOQXBKUKGQ-UHFFFAOYSA-N 0.000 description 3
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N butyric aldehyde Natural products CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 3
- 150000001733 carboxylic acid esters Chemical class 0.000 description 3
- 125000002843 carboxylic acid group Chemical group 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 125000000753 cycloalkyl group Chemical group 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 239000000543 intermediate Substances 0.000 description 3
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 3
- QQVIHTHCMHWDBS-UHFFFAOYSA-L isophthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC(C([O-])=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-L 0.000 description 3
- 150000002576 ketones Chemical class 0.000 description 3
- 239000000395 magnesium oxide Substances 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 3
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 3
- 150000002823 nitrates Chemical class 0.000 description 3
- 150000002826 nitrites Chemical class 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- PNPIRSNMYIHTPS-UHFFFAOYSA-N nitroso nitrate Chemical class [O-][N+](=O)ON=O PNPIRSNMYIHTPS-UHFFFAOYSA-N 0.000 description 3
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- JQCXWCOOWVGKMT-UHFFFAOYSA-N phthalic acid diheptyl ester Natural products CCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCC JQCXWCOOWVGKMT-UHFFFAOYSA-N 0.000 description 3
- 239000004014 plasticizer Substances 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- 229910010271 silicon carbide Inorganic materials 0.000 description 3
- 125000001424 substituent group Chemical group 0.000 description 3
- 239000010457 zeolite Substances 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 description 2
- 0 *=S.C1=CC=CC=C1.CC#CC.CC#N.CC(=O)O.CC(C)=C(C)C.CC=NC.C[N+](=O)[O-].[H]C(C)=O Chemical compound *=S.C1=CC=CC=C1.CC#CC.CC#N.CC(=O)O.CC(C)=C(C)C.CC=NC.C[N+](=O)[O-].[H]C(C)=O 0.000 description 2
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- JQCSUVJDBHJKNG-UHFFFAOYSA-N 1-methoxy-ethyl Chemical group C[CH]OC JQCSUVJDBHJKNG-UHFFFAOYSA-N 0.000 description 2
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 2
- ILVKYQKHSCWQAW-UHFFFAOYSA-N 1-o-heptyl 2-o-undecyl benzene-1,2-dicarboxylate Chemical compound CCCCCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCC ILVKYQKHSCWQAW-UHFFFAOYSA-N 0.000 description 2
- OJVAMHKKJGICOG-UHFFFAOYSA-N 2,5-hexanedione Chemical compound CC(=O)CCC(C)=O OJVAMHKKJGICOG-UHFFFAOYSA-N 0.000 description 2
- QQZOPKMRPOGIEB-UHFFFAOYSA-N 2-Oxohexane Chemical compound CCCCC(C)=O QQZOPKMRPOGIEB-UHFFFAOYSA-N 0.000 description 2
- 125000004200 2-methoxyethyl group Chemical group [H]C([H])([H])OC([H])([H])C([H])([H])* 0.000 description 2
- 125000003229 2-methylhexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- JWAZRIHNYRIHIV-UHFFFAOYSA-N 2-naphthol Chemical compound C1=CC=CC2=CC(O)=CC=C21 JWAZRIHNYRIHIV-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- ALYNCZNDIQEVRV-UHFFFAOYSA-N 4-aminobenzoic acid Chemical compound NC1=CC=C(C(O)=O)C=C1 ALYNCZNDIQEVRV-UHFFFAOYSA-N 0.000 description 2
- QHPQWRBYOIRBIT-UHFFFAOYSA-N 4-tert-butylphenol Chemical compound CC(C)(C)C1=CC=C(O)C=C1 QHPQWRBYOIRBIT-UHFFFAOYSA-N 0.000 description 2
- GPZYYYGYCRFPBU-UHFFFAOYSA-N 6-Hydroxyflavone Chemical compound C=1C(=O)C2=CC(O)=CC=C2OC=1C1=CC=CC=C1 GPZYYYGYCRFPBU-UHFFFAOYSA-N 0.000 description 2
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 2
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 2
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 2
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- 238000004438 BET method Methods 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- 239000004803 Di-2ethylhexylphthalate Substances 0.000 description 2
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Chemical compound CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N Glycolaldehyde Chemical compound OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 2
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 2
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 2
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 102220500397 Neutral and basic amino acid transport protein rBAT_M41T_mutation Human genes 0.000 description 2
- JCXJVPUVTGWSNB-UHFFFAOYSA-N Nitrogen dioxide Chemical class O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 2
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 2
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 2
- NBBJYMSMWIIQGU-UHFFFAOYSA-N Propionic aldehyde Chemical compound CCC=O NBBJYMSMWIIQGU-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- 235000021355 Stearic acid Nutrition 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- KRADHMIOFJQKEZ-UHFFFAOYSA-N Tri-2-ethylhexyl trimellitate Chemical compound CCCCC(CC)COC(=O)C1=CC=C(C(=O)OCC(CC)CCCC)C(C(=O)OCC(CC)CCCC)=C1 KRADHMIOFJQKEZ-UHFFFAOYSA-N 0.000 description 2
- MZVQCMJNVPIDEA-UHFFFAOYSA-N [CH2]CN(CC)CC Chemical group [CH2]CN(CC)CC MZVQCMJNVPIDEA-UHFFFAOYSA-N 0.000 description 2
- CKUAXEQHGKSLHN-UHFFFAOYSA-N [C].[N] Chemical compound [C].[N] CKUAXEQHGKSLHN-UHFFFAOYSA-N 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- 125000003158 alcohol group Chemical group 0.000 description 2
- 125000003172 aldehyde group Chemical group 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 239000004411 aluminium Substances 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910000323 aluminium silicate Inorganic materials 0.000 description 2
- 150000001414 amino alcohols Chemical class 0.000 description 2
- RWZYAGGXGHYGMB-UHFFFAOYSA-N anthranilic acid Chemical compound NC1=CC=CC=C1C(O)=O RWZYAGGXGHYGMB-UHFFFAOYSA-N 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- 235000009697 arginine Nutrition 0.000 description 2
- WOSOOWIGVAKGOC-UHFFFAOYSA-N azanylidyneoxidanium;ruthenium(2+);trinitrate Chemical compound [Ru+2].[O+]#N.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O WOSOOWIGVAKGOC-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 2
- 230000002902 bimodal effect Effects 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- SAOKZLXYCUGLFA-UHFFFAOYSA-N bis(2-ethylhexyl) adipate Chemical compound CCCCC(CC)COC(=O)CCCCC(=O)OCC(CC)CCCC SAOKZLXYCUGLFA-UHFFFAOYSA-N 0.000 description 2
- MTYUOIVEVPTXFX-UHFFFAOYSA-N bis(2-propylheptyl) benzene-1,2-dicarboxylate Chemical compound CCCCCC(CCC)COC(=O)C1=CC=CC=C1C(=O)OCC(CCC)CCCCC MTYUOIVEVPTXFX-UHFFFAOYSA-N 0.000 description 2
- RKELNIPLHQEBJO-UHFFFAOYSA-N bis(5-methylhexyl) benzene-1,2-dicarboxylate Chemical compound CC(C)CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCC(C)C RKELNIPLHQEBJO-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- QARVLSVVCXYDNA-UHFFFAOYSA-N bromobenzene Chemical compound BrC1=CC=CC=C1 QARVLSVVCXYDNA-UHFFFAOYSA-N 0.000 description 2
- IAQRGUVFOMOMEM-UHFFFAOYSA-N but-2-ene Chemical compound CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 2
- FUSUHKVFWTUUBE-UHFFFAOYSA-N buten-2-one Chemical compound CC(=O)C=C FUSUHKVFWTUUBE-UHFFFAOYSA-N 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000001244 carboxylic acid anhydrides Chemical class 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003610 charcoal Substances 0.000 description 2
- 150000004696 coordination complex Chemical class 0.000 description 2
- 239000002178 crystalline material Substances 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 125000004985 dialkyl amino alkyl group Chemical group 0.000 description 2
- 125000006202 diisopropylaminoethyl group Chemical group [H]C([H])([H])C([H])(N(C([H])([H])C([H])([H])*)C([H])(C([H])([H])[H])C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- FBSAITBEAPNWJG-UHFFFAOYSA-N dimethyl phthalate Natural products CC(=O)OC1=CC=CC=C1OC(C)=O FBSAITBEAPNWJG-UHFFFAOYSA-N 0.000 description 2
- 125000006222 dimethylaminomethyl group Chemical group [H]C([H])([H])N(C([H])([H])[H])C([H])([H])* 0.000 description 2
- 229960001826 dimethylphthalate Drugs 0.000 description 2
- LRCFXGAMWKDGLA-UHFFFAOYSA-N dioxosilane;hydrate Chemical compound O.O=[Si]=O LRCFXGAMWKDGLA-UHFFFAOYSA-N 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- MQHNKCZKNAJROC-UHFFFAOYSA-N dipropyl phthalate Chemical compound CCCOC(=O)C1=CC=CC=C1C(=O)OCCC MQHNKCZKNAJROC-UHFFFAOYSA-N 0.000 description 2
- 239000004815 dispersion polymer Substances 0.000 description 2
- QQVHEQUEHCEAKS-UHFFFAOYSA-N diundecyl benzene-1,2-dicarboxylate Chemical compound CCCCCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCCCCC QQVHEQUEHCEAKS-UHFFFAOYSA-N 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- ZQPPMHVWECSIRJ-MDZDMXLPSA-N elaidic acid Chemical compound CCCCCCCC\C=C\CCCCCCCC(O)=O ZQPPMHVWECSIRJ-MDZDMXLPSA-N 0.000 description 2
- 125000005745 ethoxymethyl group Chemical group [H]C([H])([H])C([H])([H])OC([H])([H])* 0.000 description 2
- 125000006534 ethyl amino methyl group Chemical group [H]N(C([H])([H])*)C([H])([H])C([H])([H])[H] 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 2
- 238000001030 gas--liquid chromatography Methods 0.000 description 2
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N glyoxal Chemical compound O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002391 heterocyclic compounds Chemical class 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- JARKCYVAAOWBJS-UHFFFAOYSA-N hexanal Chemical compound CCCCCC=O JARKCYVAAOWBJS-UHFFFAOYSA-N 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 125000004491 isohexyl group Chemical group C(CCC(C)C)* 0.000 description 2
- 150000002527 isonitriles Chemical class 0.000 description 2
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 2
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 2
- HJOVHMDZYOCNQW-UHFFFAOYSA-N isophorone Chemical compound CC1=CC(=O)CC(C)(C)C1 HJOVHMDZYOCNQW-UHFFFAOYSA-N 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 238000004949 mass spectrometry Methods 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 239000002923 metal particle Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Natural products C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 125000004184 methoxymethyl group Chemical group [H]C([H])([H])OC([H])([H])* 0.000 description 2
- 125000006533 methyl amino methyl group Chemical group [H]N(C([H])([H])[H])C([H])([H])* 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- 125000002950 monocyclic group Chemical group 0.000 description 2
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 2
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- AOPCKOPZYFFEDA-UHFFFAOYSA-N nickel(2+);dinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O AOPCKOPZYFFEDA-UHFFFAOYSA-N 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- LYRFLYHAGKPMFH-UHFFFAOYSA-N octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(N)=O LYRFLYHAGKPMFH-UHFFFAOYSA-N 0.000 description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 2
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 2
- 239000006259 organic additive Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- ZRSNZINYAWTAHE-UHFFFAOYSA-N p-methoxybenzaldehyde Chemical compound COC1=CC=C(C=O)C=C1 ZRSNZINYAWTAHE-UHFFFAOYSA-N 0.000 description 2
- LPNBBFKOUUSUDB-UHFFFAOYSA-N p-toluic acid Chemical compound CC1=CC=C(C(O)=O)C=C1 LPNBBFKOUUSUDB-UHFFFAOYSA-N 0.000 description 2
- XNLICIUVMPYHGG-UHFFFAOYSA-N pentan-2-one Chemical compound CCCC(C)=O XNLICIUVMPYHGG-UHFFFAOYSA-N 0.000 description 2
- DTUQWGWMVIHBKE-UHFFFAOYSA-N phenylacetaldehyde Chemical compound O=CCC1=CC=CC=C1 DTUQWGWMVIHBKE-UHFFFAOYSA-N 0.000 description 2
- 125000005498 phthalate group Chemical class 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 2
- WLJVNTCWHIRURA-UHFFFAOYSA-N pimelic acid Chemical compound OC(=O)CCCCCC(O)=O WLJVNTCWHIRURA-UHFFFAOYSA-N 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- 229920001195 polyisoprene Polymers 0.000 description 2
- 238000002459 porosimetry Methods 0.000 description 2
- 150000003141 primary amines Chemical class 0.000 description 2
- 229960002429 proline Drugs 0.000 description 2
- 235000013930 proline Nutrition 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000002407 reforming Methods 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 229960004029 silicic acid Drugs 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229960001866 silicon dioxide Drugs 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000008117 stearic acid Substances 0.000 description 2
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical compound OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 description 2
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- 238000004448 titration Methods 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- MJHNUUNSCNRGJE-UHFFFAOYSA-N trimethyl benzene-1,2,4-tricarboxylate Chemical compound COC(=O)C1=CC=C(C(=O)OC)C(C(=O)OC)=C1 MJHNUUNSCNRGJE-UHFFFAOYSA-N 0.000 description 2
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 2
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- STSRVFAXSLNLLI-ONEGZZNKSA-N (2e)-penta-2,4-dienenitrile Chemical compound C=C\C=C\C#N STSRVFAXSLNLLI-ONEGZZNKSA-N 0.000 description 1
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 1
- 125000004178 (C1-C4) alkyl group Chemical class 0.000 description 1
- 125000004209 (C1-C8) alkyl group Chemical class 0.000 description 1
- 125000006734 (C2-C20) alkoxyalkyl group Chemical group 0.000 description 1
- 125000006552 (C3-C8) cycloalkyl group Chemical group 0.000 description 1
- AFVDZBIIBXWASR-AATRIKPKSA-N (E)-1,3,5-hexatriene Chemical compound C=C\C=C\C=C AFVDZBIIBXWASR-AATRIKPKSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- ULPMRIXXHGUZFA-UHFFFAOYSA-N (R)-4-Methyl-3-hexanone Natural products CCC(C)C(=O)CC ULPMRIXXHGUZFA-UHFFFAOYSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- NYPYHUZRZVSYKL-UHFFFAOYSA-N -3,5-Diiodotyrosine Natural products OC(=O)C(N)CC1=CC(I)=C(O)C(I)=C1 NYPYHUZRZVSYKL-UHFFFAOYSA-N 0.000 description 1
- LKKHEZBRRGJBGH-UHFFFAOYSA-N 1,1-dinitroethane Chemical compound [O-][N+](=O)C(C)[N+]([O-])=O LKKHEZBRRGJBGH-UHFFFAOYSA-N 0.000 description 1
- ZEJZEEQJSOINEV-UHFFFAOYSA-N 1,2-Benzenedicarboxylic acid-heptyl nonyl ester Chemical compound CCCCC(CCC)COC(=O)C1=CC=CC=C1C(=O)OCCC(CC)CC ZEJZEEQJSOINEV-UHFFFAOYSA-N 0.000 description 1
- 125000005918 1,2-dimethylbutyl group Chemical group 0.000 description 1
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical class NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 description 1
- OZXIZRZFGJZWBF-UHFFFAOYSA-N 1,3,5-trimethyl-2-(2,4,6-trimethylphenoxy)benzene Chemical compound CC1=CC(C)=CC(C)=C1OC1=C(C)C=C(C)C=C1C OZXIZRZFGJZWBF-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- GDXHBFHOEYVPED-UHFFFAOYSA-N 1-(2-butoxyethoxy)butane Chemical compound CCCCOCCOCCCC GDXHBFHOEYVPED-UHFFFAOYSA-N 0.000 description 1
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- MNCMBBIFTVWHIP-UHFFFAOYSA-N 1-anthracen-9-yl-2,2,2-trifluoroethanone Chemical group C1=CC=C2C(C(=O)C(F)(F)F)=C(C=CC=C3)C3=CC2=C1 MNCMBBIFTVWHIP-UHFFFAOYSA-N 0.000 description 1
- GYSCBCSGKXNZRH-UHFFFAOYSA-N 1-benzothiophene-2-carboxamide Chemical compound C1=CC=C2SC(C(=O)N)=CC2=C1 GYSCBCSGKXNZRH-UHFFFAOYSA-N 0.000 description 1
- FTGLKPMFTLNUBN-UHFFFAOYSA-N 1-chloro-2-iodo-3-methylbenzene Chemical compound CC1=CC=CC(Cl)=C1I FTGLKPMFTLNUBN-UHFFFAOYSA-N 0.000 description 1
- 125000006218 1-ethylbutyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000006219 1-ethylpentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 1
- 125000001637 1-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C(*)=C([H])C([H])=C([H])C2=C1[H] 0.000 description 1
- RUFPHBVGCFYCNW-UHFFFAOYSA-N 1-naphthylamine Chemical compound C1=CC=C2C(N)=CC=CC2=C1 RUFPHBVGCFYCNW-UHFFFAOYSA-N 0.000 description 1
- JSZOAYXJRCEYSX-UHFFFAOYSA-N 1-nitropropane Chemical compound CCC[N+]([O-])=O JSZOAYXJRCEYSX-UHFFFAOYSA-N 0.000 description 1
- JOHNPRHIYSPRSW-SVBPBHIXSA-N 1-o-dodecyl 2-o-[(2r,3s)-3-ethyl-2-propylhexyl] benzene-1,2-dicarboxylate Chemical compound CCCCCCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OC[C@H](CCC)[C@@H](CC)CCC JOHNPRHIYSPRSW-SVBPBHIXSA-N 0.000 description 1
- ACBFJMAXNZVRRX-UHFFFAOYSA-N 1-o-nonyl 2-o-undecyl benzene-1,2-dicarboxylate Chemical compound CCCCCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCCC ACBFJMAXNZVRRX-UHFFFAOYSA-N 0.000 description 1
- BKUSIKGSPSFQAC-RRKCRQDMSA-N 2'-deoxyinosine-5'-diphosphate Chemical compound O1[C@H](CO[P@@](O)(=O)OP(O)(O)=O)[C@@H](O)C[C@@H]1N1C(NC=NC2=O)=C2N=C1 BKUSIKGSPSFQAC-RRKCRQDMSA-N 0.000 description 1
- 125000004338 2,2,3-trimethylbutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000003562 2,2-dimethylpentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- FKBDSZNRJFOVHK-UHFFFAOYSA-N 2,5-bis(ethoxycarbonyl)terephthalic acid Chemical compound CCOC(=O)C1=CC(C(O)=O)=C(C(=O)OCC)C=C1C(O)=O FKBDSZNRJFOVHK-UHFFFAOYSA-N 0.000 description 1
- QUNAYECDJMFUKV-UHFFFAOYSA-N 2,5-bis(methoxycarbonyl)terephthalic acid Chemical compound COC(=O)C1=CC(C(O)=O)=C(C(=O)OC)C=C1C(O)=O QUNAYECDJMFUKV-UHFFFAOYSA-N 0.000 description 1
- YOYAIZYFCNQIRF-UHFFFAOYSA-N 2,6-dichlorobenzonitrile Chemical compound ClC1=CC=CC(Cl)=C1C#N YOYAIZYFCNQIRF-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- NHWQMJMIYICNBP-UHFFFAOYSA-N 2-chlorobenzonitrile Chemical compound ClC1=CC=CC=C1C#N NHWQMJMIYICNBP-UHFFFAOYSA-N 0.000 description 1
- 125000006176 2-ethylbutyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(C([H])([H])*)C([H])([H])C([H])([H])[H] 0.000 description 1
- LGYNIFWIKSEESD-UHFFFAOYSA-N 2-ethylhexanal Chemical compound CCCCC(CC)C=O LGYNIFWIKSEESD-UHFFFAOYSA-N 0.000 description 1
- 125000002941 2-furyl group Chemical group O1C([*])=C([H])C([H])=C1[H] 0.000 description 1
- 125000004493 2-methylbut-1-yl group Chemical group CC(C*)CC 0.000 description 1
- 125000005916 2-methylpentyl group Chemical group 0.000 description 1
- IIVWHGMLFGNMOW-UHFFFAOYSA-N 2-methylpropane Chemical compound C[C](C)C IIVWHGMLFGNMOW-UHFFFAOYSA-N 0.000 description 1
- 125000001622 2-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C(*)C([H])=C([H])C2=C1[H] 0.000 description 1
- WLJVXDMOQOGPHL-PPJXEINESA-N 2-phenylacetic acid Chemical compound O[14C](=O)CC1=CC=CC=C1 WLJVXDMOQOGPHL-PPJXEINESA-N 0.000 description 1
- 125000003890 2-phenylbutyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])(C([H])([H])*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000006479 2-pyridyl methyl group Chemical group [H]C1=C([H])C([H])=C([H])C(=N1)C([H])([H])* 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- 125000004336 3,3-dimethylpentyl group Chemical group [H]C([H])([H])C([H])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- DXGXPTTXBYDQJV-UHFFFAOYSA-N 3,5-bis(2-methylpropoxycarbonyl)benzoic acid Chemical compound CC(C)COC(=O)C1=CC(C(O)=O)=CC(C(=O)OCC(C)C)=C1 DXGXPTTXBYDQJV-UHFFFAOYSA-N 0.000 description 1
- BJCWHZASYHGWAS-UHFFFAOYSA-N 3,5-bis(butoxycarbonyl)benzoic acid Chemical compound CCCCOC(=O)C1=CC(C(O)=O)=CC(C(=O)OCCCC)=C1 BJCWHZASYHGWAS-UHFFFAOYSA-N 0.000 description 1
- PJEIUXOPQIXGDX-UHFFFAOYSA-N 3,5-bis(cyclohexyloxycarbonyl)benzoic acid Chemical compound C=1C(C(=O)O)=CC(C(=O)OC2CCCCC2)=CC=1C(=O)OC1CCCCC1 PJEIUXOPQIXGDX-UHFFFAOYSA-N 0.000 description 1
- LSAMDQGVGARQCB-UHFFFAOYSA-N 3,5-bis(decoxycarbonyl)benzoic acid Chemical compound CCCCCCCCCCOC(=O)C1=CC(C(O)=O)=CC(C(=O)OCCCCCCCCCC)=C1 LSAMDQGVGARQCB-UHFFFAOYSA-N 0.000 description 1
- GAVXMTRMXPWCCV-UHFFFAOYSA-N 3,5-bis(ethoxycarbonyl)benzoic acid Chemical compound CCOC(=O)C1=CC(C(O)=O)=CC(C(=O)OCC)=C1 GAVXMTRMXPWCCV-UHFFFAOYSA-N 0.000 description 1
- AAVSQJOTYXSHQX-UHFFFAOYSA-N 3,5-bis(icosoxycarbonyl)benzoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCOC(=O)C1=CC(C(O)=O)=CC(C(=O)OCCCCCCCCCCCCCCCCCCCC)=C1 AAVSQJOTYXSHQX-UHFFFAOYSA-N 0.000 description 1
- OGZWRRQXMPHWIZ-UHFFFAOYSA-N 3,5-bis(methoxycarbonyl)benzoic acid Chemical compound COC(=O)C1=CC(C(O)=O)=CC(C(=O)OC)=C1 OGZWRRQXMPHWIZ-UHFFFAOYSA-N 0.000 description 1
- LDUKFWOZTSLKEL-UHFFFAOYSA-N 3,5-bis(nonoxycarbonyl)benzoic acid Chemical compound CCCCCCCCCOC(=O)C1=CC(C(O)=O)=CC(C(=O)OCCCCCCCCC)=C1 LDUKFWOZTSLKEL-UHFFFAOYSA-N 0.000 description 1
- AZMXCIFQIXTUTJ-UHFFFAOYSA-N 3,5-bis(octadecoxycarbonyl)benzoic acid Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)C1=CC(C(O)=O)=CC(C(=O)OCCCCCCCCCCCCCCCCCC)=C1 AZMXCIFQIXTUTJ-UHFFFAOYSA-N 0.000 description 1
- BWRIBZFHHOXMLO-UHFFFAOYSA-N 3,5-bis(octoxycarbonyl)benzoic acid Chemical compound CCCCCCCCOC(=O)C1=CC(C(O)=O)=CC(C(=O)OCCCCCCCC)=C1 BWRIBZFHHOXMLO-UHFFFAOYSA-N 0.000 description 1
- DXMQTVBVWCRIHL-UHFFFAOYSA-N 3,5-bis(propoxycarbonyl)benzoic acid Chemical compound CCCOC(=O)C1=CC(C(O)=O)=CC(C(=O)OCCC)=C1 DXMQTVBVWCRIHL-UHFFFAOYSA-N 0.000 description 1
- LZXSYRRGZCJKQR-UHFFFAOYSA-N 3,5-bis(undecoxycarbonyl)benzoic acid Chemical compound CCCCCCCCCCCOC(=O)C1=CC(C(O)=O)=CC(C(=O)OCCCCCCCCCCC)=C1 LZXSYRRGZCJKQR-UHFFFAOYSA-N 0.000 description 1
- CXXMTQDRVWJHJR-UHFFFAOYSA-N 3,5-bis[(2-methylpropan-2-yl)oxycarbonyl]benzoic acid Chemical compound CC(C)(C)OC(=O)C1=CC(C(O)=O)=CC(C(=O)OC(C)(C)C)=C1 CXXMTQDRVWJHJR-UHFFFAOYSA-N 0.000 description 1
- COESHZUDRKCEPA-ZETCQYMHSA-N 3,5-dibromo-L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC(Br)=C(O)C(Br)=C1 COESHZUDRKCEPA-ZETCQYMHSA-N 0.000 description 1
- NYPYHUZRZVSYKL-ZETCQYMHSA-N 3,5-diiodo-L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC(I)=C(O)C(I)=C1 NYPYHUZRZVSYKL-ZETCQYMHSA-N 0.000 description 1
- XTUTVIVPNAEURZ-UHFFFAOYSA-N 3-cyclohexyloxycarbonylbenzoic acid Chemical compound OC(=O)C1=CC=CC(C(=O)OC2CCCCC2)=C1 XTUTVIVPNAEURZ-UHFFFAOYSA-N 0.000 description 1
- 125000004337 3-ethylpentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(C([H])([H])C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003682 3-furyl group Chemical group O1C([H])=C([*])C([H])=C1[H] 0.000 description 1
- PFCHFHIRKBAQGU-UHFFFAOYSA-N 3-hexanone Chemical compound CCCC(=O)CC PFCHFHIRKBAQGU-UHFFFAOYSA-N 0.000 description 1
- WMZNGTSLFSJHMZ-UHFFFAOYSA-N 3-methoxycarbonylbenzoic acid Chemical compound COC(=O)C1=CC=CC(C(O)=O)=C1 WMZNGTSLFSJHMZ-UHFFFAOYSA-N 0.000 description 1
- 125000003542 3-methylbutan-2-yl group Chemical group [H]C([H])([H])C([H])(*)C([H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000003469 3-methylhexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000005917 3-methylpentyl group Chemical group 0.000 description 1
- 125000006201 3-phenylpropyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- JVQIKJMSUIMUDI-UHFFFAOYSA-N 3-pyrroline Chemical compound C1NCC=C1 JVQIKJMSUIMUDI-UHFFFAOYSA-N 0.000 description 1
- 125000001397 3-pyrrolyl group Chemical group [H]N1C([H])=C([*])C([H])=C1[H] 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical class C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- DBATVPMIFJTVOQ-UHFFFAOYSA-N 4-(1-phenylpentoxycarbonyl)benzoic acid Chemical compound C=1C=CC=CC=1C(CCCC)OC(=O)C1=CC=C(C(O)=O)C=C1 DBATVPMIFJTVOQ-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- SIXWIUJQBBANGK-UHFFFAOYSA-N 4-(4-fluorophenyl)-1h-pyrazol-5-amine Chemical compound N1N=CC(C=2C=CC(F)=CC=2)=C1N SIXWIUJQBBANGK-UHFFFAOYSA-N 0.000 description 1
- XRHGYUZYPHTUJZ-UHFFFAOYSA-N 4-chlorobenzoic acid Chemical compound OC(=O)C1=CC=C(Cl)C=C1 XRHGYUZYPHTUJZ-UHFFFAOYSA-N 0.000 description 1
- HOWDMRUDRZPKOK-UHFFFAOYSA-N 4-cyclohexyloxycarbonylbenzoic acid Chemical compound C1=CC(C(=O)O)=CC=C1C(=O)OC1CCCCC1 HOWDMRUDRZPKOK-UHFFFAOYSA-N 0.000 description 1
- 125000004860 4-ethylphenyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 229940090248 4-hydroxybenzoic acid Drugs 0.000 description 1
- REIDAMBAPLIATC-UHFFFAOYSA-M 4-methoxycarbonylbenzoate Chemical compound COC(=O)C1=CC=C(C([O-])=O)C=C1 REIDAMBAPLIATC-UHFFFAOYSA-M 0.000 description 1
- 125000000590 4-methylphenyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C([H])([H])[H] 0.000 description 1
- OTLNPYWUJOZPPA-UHFFFAOYSA-N 4-nitrobenzoic acid Chemical compound OC(=O)C1=CC=C([N+]([O-])=O)C=C1 OTLNPYWUJOZPPA-UHFFFAOYSA-N 0.000 description 1
- AVQMUUYVCOQXEM-UHFFFAOYSA-N 4-pentan-2-yloxycarbonylbenzoic acid Chemical compound CCCC(C)OC(=O)C1=CC=C(C(O)=O)C=C1 AVQMUUYVCOQXEM-UHFFFAOYSA-N 0.000 description 1
- AWQSAIIDOMEEOD-UHFFFAOYSA-N 5,5-Dimethyl-4-(3-oxobutyl)dihydro-2(3H)-furanone Chemical compound CC(=O)CCC1CC(=O)OC1(C)C AWQSAIIDOMEEOD-UHFFFAOYSA-N 0.000 description 1
- YETXTQIGFZSGGJ-UHFFFAOYSA-N 5-cyclohexyloxycarbonylbenzene-1,3-dicarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(=O)OC2CCCCC2)=C1 YETXTQIGFZSGGJ-UHFFFAOYSA-N 0.000 description 1
- STBOKQUWWUFPAZ-UHFFFAOYSA-N 5-methoxycarbonylbenzene-1,3-dicarboxylic acid Chemical compound COC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 STBOKQUWWUFPAZ-UHFFFAOYSA-N 0.000 description 1
- QDTDKYHPHANITQ-UHFFFAOYSA-N 7-methyloctan-1-ol Chemical compound CC(C)CCCCCCO QDTDKYHPHANITQ-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- BWHOZHOGCMHOBV-UHFFFAOYSA-N Benzalacetone Natural products CC(=O)C=CC1=CC=CC=C1 BWHOZHOGCMHOBV-UHFFFAOYSA-N 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OPIPYWVEELRSGZ-UHFFFAOYSA-N CC(C)CCCCCCCCOC(=O)C1=CC(C(O)=O)=CC(C(=O)OCCCCCCCCC(C)C)=C1 Chemical compound CC(C)CCCCCCCCOC(=O)C1=CC(C(O)=O)=CC(C(=O)OCCCCCCCCC(C)C)=C1 OPIPYWVEELRSGZ-UHFFFAOYSA-N 0.000 description 1
- QTNWILSHHDTMNF-UHFFFAOYSA-N CCCCC(CC)OC(=O)C1=CC=C(C(O)=O)C=C1 Chemical compound CCCCC(CC)OC(=O)C1=CC=C(C(O)=O)C=C1 QTNWILSHHDTMNF-UHFFFAOYSA-N 0.000 description 1
- RENMDAKOXSCIGH-UHFFFAOYSA-N Chloroacetonitrile Chemical compound ClCC#N RENMDAKOXSCIGH-UHFFFAOYSA-N 0.000 description 1
- LEVWYRKDKASIDU-QWWZWVQMSA-N D-cystine Chemical compound OC(=O)[C@H](N)CSSC[C@@H](N)C(O)=O LEVWYRKDKASIDU-QWWZWVQMSA-N 0.000 description 1
- XUIIKFGFIJCVMT-GFCCVEGCSA-N D-thyroxine Chemical compound IC1=CC(C[C@@H](N)C(O)=O)=CC(I)=C1OC1=CC(I)=C(O)C(I)=C1 XUIIKFGFIJCVMT-GFCCVEGCSA-N 0.000 description 1
- GHVNFZFCNZKVNT-UHFFFAOYSA-N Decanoic acid Natural products CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- PGIBJVOPLXHHGS-UHFFFAOYSA-N Di-n-decyl phthalate Chemical compound CCCCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCCCC PGIBJVOPLXHHGS-UHFFFAOYSA-N 0.000 description 1
- QSJXEFYPDANLFS-UHFFFAOYSA-N Diacetyl Chemical compound CC(=O)C(C)=O QSJXEFYPDANLFS-UHFFFAOYSA-N 0.000 description 1
- LQLQDKBJAIILIQ-UHFFFAOYSA-N Dibutyl terephthalate Chemical compound CCCCOC(=O)C1=CC=C(C(=O)OCCCC)C=C1 LQLQDKBJAIILIQ-UHFFFAOYSA-N 0.000 description 1
- VOWAEIGWURALJQ-UHFFFAOYSA-N Dicyclohexyl phthalate Chemical compound C=1C=CC=C(C(=O)OC2CCCCC2)C=1C(=O)OC1CCCCC1 VOWAEIGWURALJQ-UHFFFAOYSA-N 0.000 description 1
- UDSFAEKRVUSQDD-UHFFFAOYSA-N Dimethyl adipate Chemical compound COC(=O)CCCCC(=O)OC UDSFAEKRVUSQDD-UHFFFAOYSA-N 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- LELOWRISYMNNSU-UHFFFAOYSA-N Hydrocyanic acid Natural products N#C LELOWRISYMNNSU-UHFFFAOYSA-N 0.000 description 1
- LCWXJXMHJVIJFK-UHFFFAOYSA-N Hydroxylysine Natural products NCC(O)CC(N)CC(O)=O LCWXJXMHJVIJFK-UHFFFAOYSA-N 0.000 description 1
- PMMYEEVYMWASQN-DMTCNVIQSA-N Hydroxyproline Chemical compound O[C@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-DMTCNVIQSA-N 0.000 description 1
- 239000004439 Isononyl alcohol Substances 0.000 description 1
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N Lactic Acid Natural products CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 1
- HRUJAEJKCNCOGW-UHFFFAOYSA-N Mono-(2-ethylhexyl) terephthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=C(C(O)=O)C=C1 HRUJAEJKCNCOGW-UHFFFAOYSA-N 0.000 description 1
- FNJSWIPFHMKRAT-UHFFFAOYSA-N Monomethyl phthalate Chemical compound COC(=O)C1=CC=CC=C1C(O)=O FNJSWIPFHMKRAT-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical class CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920002396 Polyurea Polymers 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 238000001237 Raman spectrum Methods 0.000 description 1
- 239000012327 Ruthenium complex Substances 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 239000006035 Tryptophane Substances 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- KPCZJLGGXRGYIE-UHFFFAOYSA-N [C]1=CC=CN=C1 Chemical group [C]1=CC=CN=C1 KPCZJLGGXRGYIE-UHFFFAOYSA-N 0.000 description 1
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- MYDAKBBSKFKUKP-UHFFFAOYSA-N acetonitrile;phenol Chemical compound CC#N.OC1=CC=CC=C1 MYDAKBBSKFKUKP-UHFFFAOYSA-N 0.000 description 1
- WETWJCDKMRHUPV-UHFFFAOYSA-N acetyl chloride Chemical compound CC(Cl)=O WETWJCDKMRHUPV-UHFFFAOYSA-N 0.000 description 1
- 239000012346 acetyl chloride Substances 0.000 description 1
- 125000005595 acetylacetonate group Chemical class 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- BTGRAWJCKBQKAO-UHFFFAOYSA-N adiponitrile Chemical compound N#CCCCCC#N BTGRAWJCKBQKAO-UHFFFAOYSA-N 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 150000001345 alkine derivatives Chemical class 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 description 1
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 125000004103 aminoalkyl group Chemical group 0.000 description 1
- 229960004050 aminobenzoic acid Drugs 0.000 description 1
- 229960002684 aminocaproic acid Drugs 0.000 description 1
- 125000005219 aminonitrile group Chemical group 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- 125000002078 anthracen-1-yl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C([*])=C([H])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 description 1
- 125000000748 anthracen-2-yl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C([H])=C([*])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 150000003974 aralkylamines Chemical class 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 150000001508 asparagines Chemical class 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 229960004365 benzoic acid Drugs 0.000 description 1
- CHIHQLCVLOXUJW-UHFFFAOYSA-N benzoic anhydride Chemical compound C=1C=CC=CC=1C(=O)OC(=O)C1=CC=CC=C1 CHIHQLCVLOXUJW-UHFFFAOYSA-N 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- AQIHMSVIAGNIDM-UHFFFAOYSA-N benzoyl bromide Chemical compound BrC(=O)C1=CC=CC=C1 AQIHMSVIAGNIDM-UHFFFAOYSA-N 0.000 description 1
- PASDCCFISLVPSO-UHFFFAOYSA-N benzoyl chloride Chemical compound ClC(=O)C1=CC=CC=C1 PASDCCFISLVPSO-UHFFFAOYSA-N 0.000 description 1
- KCXMKQUNVWSEMD-UHFFFAOYSA-N benzyl chloride Chemical class ClCC1=CC=CC=C1 KCXMKQUNVWSEMD-UHFFFAOYSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- GWYFCOCPABKNJV-UHFFFAOYSA-N beta-methyl-butyric acid Natural products CC(C)CC(O)=O GWYFCOCPABKNJV-UHFFFAOYSA-N 0.000 description 1
- SGWHIVHMTJJAGX-UHFFFAOYSA-N bis(10-methylundecyl) benzene-1,2-dicarboxylate Chemical compound CC(C)CCCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCCCC(C)C SGWHIVHMTJJAGX-UHFFFAOYSA-N 0.000 description 1
- WXZOXVVKILCOPG-UHFFFAOYSA-N bis(2-ethylhexyl) benzene-1,3-dicarboxylate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC(C(=O)OCC(CC)CCCC)=C1 WXZOXVVKILCOPG-UHFFFAOYSA-N 0.000 description 1
- LKUXNJPSPNDDLI-UHFFFAOYSA-N bis(2-methylpropyl) benzene-1,3-dicarboxylate Chemical compound CC(C)COC(=O)C1=CC=CC(C(=O)OCC(C)C)=C1 LKUXNJPSPNDDLI-UHFFFAOYSA-N 0.000 description 1
- LQKWPGAPADIOSS-UHFFFAOYSA-N bis(2-methylpropyl) benzene-1,4-dicarboxylate Chemical compound CC(C)COC(=O)C1=CC=C(C(=O)OCC(C)C)C=C1 LQKWPGAPADIOSS-UHFFFAOYSA-N 0.000 description 1
- JANBFCARANRIKJ-UHFFFAOYSA-N bis(3-methylbutyl) benzene-1,2-dicarboxylate Chemical compound CC(C)CCOC(=O)C1=CC=CC=C1C(=O)OCCC(C)C JANBFCARANRIKJ-UHFFFAOYSA-N 0.000 description 1
- FTQQZEVRNWXZBS-UHFFFAOYSA-N bis(3-methylbutyl) cyclohexane-1,2-dicarboxylate Chemical compound CC(C)CCOC(=O)C1CCCCC1C(=O)OCCC(C)C FTQQZEVRNWXZBS-UHFFFAOYSA-N 0.000 description 1
- NSRZVPYAJXTHBK-UHFFFAOYSA-N bis(5-methylhexyl) cyclohexane-1,2-dicarboxylate Chemical compound CC(C)CCCCOC(=O)C1CCCCC1C(=O)OCCCCC(C)C NSRZVPYAJXTHBK-UHFFFAOYSA-N 0.000 description 1
- IMIOEHJVRZOQBJ-UHFFFAOYSA-N bis(6-methylheptyl) benzene-1,3-dicarboxylate Chemical compound CC(C)CCCCCOC(=O)C1=CC=CC(C(=O)OCCCCCC(C)C)=C1 IMIOEHJVRZOQBJ-UHFFFAOYSA-N 0.000 description 1
- KFROBPVFLIZCHZ-UHFFFAOYSA-N bis(6-methylheptyl) benzene-1,4-dicarboxylate Chemical compound CC(C)CCCCCOC(=O)C1=CC=C(C(=O)OCCCCCC(C)C)C=C1 KFROBPVFLIZCHZ-UHFFFAOYSA-N 0.000 description 1
- PEIIRIVDOVFUIW-UHFFFAOYSA-N bis(7-methyloctyl) benzene-1,4-dicarboxylate Chemical compound CC(C)CCCCCCOC(=O)C1=CC=C(C(=O)OCCCCCCC(C)C)C=C1 PEIIRIVDOVFUIW-UHFFFAOYSA-N 0.000 description 1
- CRPXFUDVZZLWAP-UHFFFAOYSA-N bis(8-methylnonyl) benzene-1,3-dicarboxylate Chemical compound CC(C)CCCCCCCOC(=O)C1=CC=CC(C(=O)OCCCCCCCC(C)C)=C1 CRPXFUDVZZLWAP-UHFFFAOYSA-N 0.000 description 1
- DUQLDVZUQAAAMU-UHFFFAOYSA-N bis(8-methylnonyl) benzene-1,4-dicarboxylate Chemical compound CC(C)CCCCCCCOC(=O)C1=CC=C(C(=O)OCCCCCCCC(C)C)C=C1 DUQLDVZUQAAAMU-UHFFFAOYSA-N 0.000 description 1
- WZEFLOBFCQPVHR-UHFFFAOYSA-N bis(8-methylnonyl) cyclohexane-1,2-dicarboxylate Chemical compound CC(C)CCCCCCCOC(=O)C1CCCCC1C(=O)OCCCCCCCC(C)C WZEFLOBFCQPVHR-UHFFFAOYSA-N 0.000 description 1
- LGBAGUMSAPUZPU-UHFFFAOYSA-N bis(9-methyldecyl) benzene-1,2-dicarboxylate Chemical compound CC(C)CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCCC(C)C LGBAGUMSAPUZPU-UHFFFAOYSA-N 0.000 description 1
- YNFGSTYDHDXDFN-UHFFFAOYSA-N bis(9-methyldecyl) benzene-1,3-dicarboxylate Chemical compound CC(C)CCCCCCCCOC(=O)C1=CC=CC(C(=O)OCCCCCCCCC(C)C)=C1 YNFGSTYDHDXDFN-UHFFFAOYSA-N 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 150000001649 bromium compounds Chemical class 0.000 description 1
- IRLQAJPIHBZROB-UHFFFAOYSA-N buta-2,3-dienenitrile Chemical compound C=C=CC#N IRLQAJPIHBZROB-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 1
- XUPYJHCZDLZNFP-UHFFFAOYSA-N butyl butanoate Chemical compound CCCCOC(=O)CCC XUPYJHCZDLZNFP-UHFFFAOYSA-N 0.000 description 1
- 229930188620 butyrolactone Natural products 0.000 description 1
- KVNRLNFWIYMESJ-UHFFFAOYSA-N butyronitrile Chemical compound CCCC#N KVNRLNFWIYMESJ-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 239000012018 catalyst precursor Substances 0.000 description 1
- 229920006317 cationic polymer Polymers 0.000 description 1
- WOWHHFRSBJGXCM-UHFFFAOYSA-M cetyltrimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+](C)(C)C WOWHHFRSBJGXCM-UHFFFAOYSA-M 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000013626 chemical specie Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 125000001309 chloro group Chemical class Cl* 0.000 description 1
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- JGDFBJMWFLXCLJ-UHFFFAOYSA-N copper chromite Chemical compound [Cu]=O.[Cu]=O.O=[Cr]O[Cr]=O JGDFBJMWFLXCLJ-UHFFFAOYSA-N 0.000 description 1
- MLUCVPSAIODCQM-NSCUHMNNSA-N crotonaldehyde Chemical compound C\C=C\C=O MLUCVPSAIODCQM-NSCUHMNNSA-N 0.000 description 1
- MLUCVPSAIODCQM-UHFFFAOYSA-N crotonaldehyde Natural products CC=CC=O MLUCVPSAIODCQM-UHFFFAOYSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- QSAWQNUELGIYBC-UHFFFAOYSA-N cyclohexane-1,2-dicarboxylic acid Chemical class OC(=O)C1CCCCC1C(O)=O QSAWQNUELGIYBC-UHFFFAOYSA-N 0.000 description 1
- 150000001934 cyclohexanes Chemical class 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 229960003067 cystine Drugs 0.000 description 1
- 230000009615 deamination Effects 0.000 description 1
- 238000006481 deamination reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005695 dehalogenation reaction Methods 0.000 description 1
- YSMODUONRAFBET-UHFFFAOYSA-N delta-DL-hydroxylysine Natural products NCC(O)CCC(N)C(O)=O YSMODUONRAFBET-UHFFFAOYSA-N 0.000 description 1
- JJMDCOVWQOJGCB-UHFFFAOYSA-N delta-aminovaleric acid Natural products [NH3+]CCCCC([O-])=O JJMDCOVWQOJGCB-UHFFFAOYSA-N 0.000 description 1
- 125000004663 dialkyl amino group Chemical group 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- WMKGGPCROCCUDY-PHEQNACWSA-N dibenzylideneacetone Chemical compound C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1 WMKGGPCROCCUDY-PHEQNACWSA-N 0.000 description 1
- GOPWOUQJIMLDDM-UHFFFAOYSA-N dibutyl benzene-1,3-dicarboxylate Chemical compound CCCCOC(=O)C1=CC=CC(C(=O)OCCCC)=C1 GOPWOUQJIMLDDM-UHFFFAOYSA-N 0.000 description 1
- 229960002380 dibutyl phthalate Drugs 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- BHKQNOFDIBYEPH-UHFFFAOYSA-N dicyclohexyl benzene-1,3-dicarboxylate Chemical compound C=1C=CC(C(=O)OC2CCCCC2)=CC=1C(=O)OC1CCCCC1 BHKQNOFDIBYEPH-UHFFFAOYSA-N 0.000 description 1
- SAZCDOMDAJRNDD-UHFFFAOYSA-N dicyclohexyl benzene-1,4-dicarboxylate Chemical compound C=1C=C(C(=O)OC2CCCCC2)C=CC=1C(=O)OC1CCCCC1 SAZCDOMDAJRNDD-UHFFFAOYSA-N 0.000 description 1
- XEHITPCNDNWPQW-UHFFFAOYSA-N didecyl benzene-1,3-dicarboxylate Chemical compound CCCCCCCCCCOC(=O)C1=CC=CC(C(=O)OCCCCCCCCCC)=C1 XEHITPCNDNWPQW-UHFFFAOYSA-N 0.000 description 1
- DMBIJVJFFGTDMC-UHFFFAOYSA-N didecyl benzene-1,4-dicarboxylate Chemical compound CCCCCCCCCCOC(=O)C1=CC=C(C(=O)OCCCCCCCCCC)C=C1 DMBIJVJFFGTDMC-UHFFFAOYSA-N 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- JLVWYWVLMFVCDI-UHFFFAOYSA-N diethyl benzene-1,3-dicarboxylate Chemical compound CCOC(=O)C1=CC=CC(C(=O)OCC)=C1 JLVWYWVLMFVCDI-UHFFFAOYSA-N 0.000 description 1
- ONIHPYYWNBVMID-UHFFFAOYSA-N diethyl benzene-1,4-dicarboxylate Chemical compound CCOC(=O)C1=CC=C(C(=O)OCC)C=C1 ONIHPYYWNBVMID-UHFFFAOYSA-N 0.000 description 1
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- JVJDKGTXHBCLLJ-UHFFFAOYSA-N diicosyl benzene-1,2-dicarboxylate Chemical compound CCCCCCCCCCCCCCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCCCCCCCCCCCCCC JVJDKGTXHBCLLJ-UHFFFAOYSA-N 0.000 description 1
- SGIDRYGLHWBXOJ-UHFFFAOYSA-N diicosyl benzene-1,3-dicarboxylate Chemical compound CCCCCCCCCCCCCCCCCCCCOC(=O)C1=CC=CC(C(=O)OCCCCCCCCCCCCCCCCCCCC)=C1 SGIDRYGLHWBXOJ-UHFFFAOYSA-N 0.000 description 1
- MCAOJYILUVDUEH-UHFFFAOYSA-N diicosyl benzene-1,4-dicarboxylate Chemical compound CCCCCCCCCCCCCCCCCCCCOC(=O)C1=CC=C(C(=O)OCCCCCCCCCCCCCCCCCCCC)C=C1 MCAOJYILUVDUEH-UHFFFAOYSA-N 0.000 description 1
- 229960000415 diiodotyrosine Drugs 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- VNGOYPQMJFJDLV-UHFFFAOYSA-N dimethyl benzene-1,3-dicarboxylate Chemical compound COC(=O)C1=CC=CC(C(=O)OC)=C1 VNGOYPQMJFJDLV-UHFFFAOYSA-N 0.000 description 1
- LNGAGQAGYITKCW-UHFFFAOYSA-N dimethyl cyclohexane-1,4-dicarboxylate Chemical compound COC(=O)C1CCC(C(=O)OC)CC1 LNGAGQAGYITKCW-UHFFFAOYSA-N 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- XNMQEEKYCVKGBD-UHFFFAOYSA-N dimethylacetylene Natural products CC#CC XNMQEEKYCVKGBD-UHFFFAOYSA-N 0.000 description 1
- 239000012972 dimethylethanolamine Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 1
- BSAROWVOYXDGFG-UHFFFAOYSA-N dinonyl benzene-1,3-dicarboxylate Chemical compound CCCCCCCCCOC(=O)C1=CC=CC(C(=O)OCCCCCCCCC)=C1 BSAROWVOYXDGFG-UHFFFAOYSA-N 0.000 description 1
- UBXIPPSTBVKKIK-UHFFFAOYSA-N dinonyl benzene-1,4-dicarboxylate Chemical compound CCCCCCCCCOC(=O)C1=CC=C(C(=O)OCCCCCCCCC)C=C1 UBXIPPSTBVKKIK-UHFFFAOYSA-N 0.000 description 1
- MQKMBXOZOISLIV-UHFFFAOYSA-N dioctadecyl benzene-1,2-dicarboxylate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCCCCCCCCCCCC MQKMBXOZOISLIV-UHFFFAOYSA-N 0.000 description 1
- CWGYFAJBWIOPJN-UHFFFAOYSA-N dioctadecyl benzene-1,3-dicarboxylate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)C1=CC=CC(C(=O)OCCCCCCCCCCCCCCCCCC)=C1 CWGYFAJBWIOPJN-UHFFFAOYSA-N 0.000 description 1
- VSSBWJOYPQVXKX-UHFFFAOYSA-N dioctadecyl benzene-1,4-dicarboxylate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)C1=CC=C(C(=O)OCCCCCCCCCCCCCCCCCC)C=C1 VSSBWJOYPQVXKX-UHFFFAOYSA-N 0.000 description 1
- LERGDXJITDVDBZ-UHFFFAOYSA-N dioctyl benzene-1,3-dicarboxylate Chemical compound CCCCCCCCOC(=O)C1=CC=CC(C(=O)OCCCCCCCC)=C1 LERGDXJITDVDBZ-UHFFFAOYSA-N 0.000 description 1
- OEIWPNWSDYFMIL-UHFFFAOYSA-N dioctyl benzene-1,4-dicarboxylate Chemical compound CCCCCCCCOC(=O)C1=CC=C(C(=O)OCCCCCCCC)C=C1 OEIWPNWSDYFMIL-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- FZNKCFJDFGDMKU-UHFFFAOYSA-N dipropyl benzene-1,3-dicarboxylate Chemical compound CCCOC(=O)C1=CC=CC(C(=O)OCCC)=C1 FZNKCFJDFGDMKU-UHFFFAOYSA-N 0.000 description 1
- GXJPKIGCMGAHTL-UHFFFAOYSA-N dipropyl benzene-1,4-dicarboxylate Chemical compound CCCOC(=O)C1=CC=C(C(=O)OCCC)C=C1 GXJPKIGCMGAHTL-UHFFFAOYSA-N 0.000 description 1
- RYCNBIYTZSGSPI-UHFFFAOYSA-N ditert-butyl benzene-1,2-dicarboxylate Chemical compound CC(C)(C)OC(=O)C1=CC=CC=C1C(=O)OC(C)(C)C RYCNBIYTZSGSPI-UHFFFAOYSA-N 0.000 description 1
- JCBDRGVENJADNA-UHFFFAOYSA-N ditert-butyl benzene-1,3-dicarboxylate Chemical compound CC(C)(C)OC(=O)C1=CC=CC(C(=O)OC(C)(C)C)=C1 JCBDRGVENJADNA-UHFFFAOYSA-N 0.000 description 1
- JAIQCFIFVNAAAY-UHFFFAOYSA-N ditert-butyl benzene-1,4-dicarboxylate Chemical compound CC(C)(C)OC(=O)C1=CC=C(C(=O)OC(C)(C)C)C=C1 JAIQCFIFVNAAAY-UHFFFAOYSA-N 0.000 description 1
- VWGDGKCVAVATJB-UHFFFAOYSA-N ditridecyl benzene-1,4-dicarboxylate Chemical compound CCCCCCCCCCCCCOC(=O)C1=CC=C(C(=O)OCCCCCCCCCCCCC)C=C1 VWGDGKCVAVATJB-UHFFFAOYSA-N 0.000 description 1
- BZDYMMRVECIVTL-UHFFFAOYSA-N diundecyl benzene-1,3-dicarboxylate Chemical compound CCCCCCCCCCCOC(=O)C1=CC=CC(C(=O)OCCCCCCCCCCC)=C1 BZDYMMRVECIVTL-UHFFFAOYSA-N 0.000 description 1
- HAIZPPHHIDRTAT-UHFFFAOYSA-N diundecyl benzene-1,4-dicarboxylate Chemical compound CCCCCCCCCCCOC(=O)C1=CC=C(C(=O)OCCCCCCCCCCC)C=C1 HAIZPPHHIDRTAT-UHFFFAOYSA-N 0.000 description 1
- PMMYEEVYMWASQN-UHFFFAOYSA-N dl-hydroxyproline Natural products OC1C[NH2+]C(C([O-])=O)C1 PMMYEEVYMWASQN-UHFFFAOYSA-N 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 238000002524 electron diffraction data Methods 0.000 description 1
- YSMODUONRAFBET-UHNVWZDZSA-N erythro-5-hydroxy-L-lysine Chemical compound NC[C@H](O)CC[C@H](N)C(O)=O YSMODUONRAFBET-UHNVWZDZSA-N 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 150000002168 ethanoic acid esters Chemical class 0.000 description 1
- FPIQZBQZKBKLEI-UHFFFAOYSA-N ethyl 1-[[2-chloroethyl(nitroso)carbamoyl]amino]cyclohexane-1-carboxylate Chemical compound ClCCN(N=O)C(=O)NC1(C(=O)OCC)CCCCC1 FPIQZBQZKBKLEI-UHFFFAOYSA-N 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229960003692 gamma aminobutyric acid Drugs 0.000 description 1
- 229940083124 ganglion-blocking antiadrenergic secondary and tertiary amines Drugs 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- ZTOMUSMDRMJOTH-UHFFFAOYSA-N glutaronitrile Chemical compound N#CCCCC#N ZTOMUSMDRMJOTH-UHFFFAOYSA-N 0.000 description 1
- 229940015043 glyoxal Drugs 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- FXHGMKSSBGDXIY-UHFFFAOYSA-N heptanal Chemical compound CCCCCCC=O FXHGMKSSBGDXIY-UHFFFAOYSA-N 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- BSVZXPLUMFUWHW-UHFFFAOYSA-N hex-3-enedinitrile Chemical compound N#CCC=CCC#N BSVZXPLUMFUWHW-UHFFFAOYSA-N 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 238000007327 hydrogenolysis reaction Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- QJHBJHUKURJDLG-UHFFFAOYSA-N hydroxy-L-lysine Natural products NCCCCC(NO)C(O)=O QJHBJHUKURJDLG-UHFFFAOYSA-N 0.000 description 1
- 229960002591 hydroxyproline Drugs 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 238000002188 infrared transmission spectroscopy Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 229910003480 inorganic solid Inorganic materials 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 1
- KQNPFQTWMSNSAP-UHFFFAOYSA-N isobutyric acid Chemical compound CC(C)C(O)=O KQNPFQTWMSNSAP-UHFFFAOYSA-N 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- LAQPNDIUHRHNCV-UHFFFAOYSA-N isophthalonitrile Chemical compound N#CC1=CC=CC(C#N)=C1 LAQPNDIUHRHNCV-UHFFFAOYSA-N 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 150000004658 ketimines Chemical class 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 229960003136 leucine Drugs 0.000 description 1
- KQQKGWQCNNTQJW-UHFFFAOYSA-N linolenic acid Natural products CC=CCCC=CCC=CCCCCCCCC(O)=O KQQKGWQCNNTQJW-UHFFFAOYSA-N 0.000 description 1
- 229960004488 linolenic acid Drugs 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 229960003646 lysine Drugs 0.000 description 1
- 125000000040 m-tolyl group Chemical group [H]C1=C([H])C(*)=C([H])C(=C1[H])C([H])([H])[H] 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000001819 mass spectrum Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- SHOJXDKTYKFBRD-UHFFFAOYSA-N mesityl oxide Natural products CC(C)=CC(C)=O SHOJXDKTYKFBRD-UHFFFAOYSA-N 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- HZVOZRGWRWCICA-UHFFFAOYSA-N methanediyl Chemical compound [CH2] HZVOZRGWRWCICA-UHFFFAOYSA-N 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 229960004452 methionine Drugs 0.000 description 1
- 239000012229 microporous material Substances 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- PMDKYLLIOLFQPO-UHFFFAOYSA-N monocyclohexyl phthalate Chemical compound OC(=O)C1=CC=CC=C1C(=O)OC1CCCCC1 PMDKYLLIOLFQPO-UHFFFAOYSA-N 0.000 description 1
- DUWWHGPELOTTOE-UHFFFAOYSA-N n-(5-chloro-2,4-dimethoxyphenyl)-3-oxobutanamide Chemical compound COC1=CC(OC)=C(NC(=O)CC(C)=O)C=C1Cl DUWWHGPELOTTOE-UHFFFAOYSA-N 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- TXTHKGMZDDTZFD-UHFFFAOYSA-N n-cyclohexylaniline Chemical class C1CCCCC1NC1=CC=CC=C1 TXTHKGMZDDTZFD-UHFFFAOYSA-N 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000001683 neutron diffraction Methods 0.000 description 1
- 238000006396 nitration reaction Methods 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 125000004971 nitroalkyl group Chemical group 0.000 description 1
- MCSAJNNLRCFZED-UHFFFAOYSA-N nitroethane Chemical compound CC[N+]([O-])=O MCSAJNNLRCFZED-UHFFFAOYSA-N 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 125000003261 o-tolyl group Chemical group [H]C1=C([H])C(*)=C(C([H])=C1[H])C([H])([H])[H] 0.000 description 1
- IRUCBBFNLDIMIK-UHFFFAOYSA-N oct-4-ene Chemical compound CCCC=CCCC IRUCBBFNLDIMIK-UHFFFAOYSA-N 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- WTBAHSZERDXKKZ-UHFFFAOYSA-N octadecanoyl chloride Chemical compound CCCCCCCCCCCCCCCCCC(Cl)=O WTBAHSZERDXKKZ-UHFFFAOYSA-N 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 150000002923 oximes Chemical class 0.000 description 1
- FXLOVSHXALFLKQ-UHFFFAOYSA-N p-tolualdehyde Chemical compound CC1=CC=C(C=O)C=C1 FXLOVSHXALFLKQ-UHFFFAOYSA-N 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 238000005453 pelletization Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- HGBOYTHUEUWSSQ-UHFFFAOYSA-N pentanal Chemical compound CCCCC=O HGBOYTHUEUWSSQ-UHFFFAOYSA-N 0.000 description 1
- 238000005504 petroleum refining Methods 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229940100595 phenylacetaldehyde Drugs 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 229960005190 phenylalanine Drugs 0.000 description 1
- DYFXGORUJGZJCA-UHFFFAOYSA-N phenylmethanediamine Chemical class NC(N)C1=CC=CC=C1 DYFXGORUJGZJCA-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 150000003021 phthalic acid derivatives Chemical class 0.000 description 1
- IUGYQRQAERSCNH-UHFFFAOYSA-N pivalic acid Chemical compound CC(C)(C)C(O)=O IUGYQRQAERSCNH-UHFFFAOYSA-N 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 238000010935 polish filtration Methods 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920000015 polydiacetylene Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920000346 polystyrene-polyisoprene block-polystyrene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- QLNJFJADRCOGBJ-UHFFFAOYSA-N propionamide Chemical compound CCC(N)=O QLNJFJADRCOGBJ-UHFFFAOYSA-N 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- WYVAMUWZEOHJOQ-UHFFFAOYSA-N propionic anhydride Chemical compound CCC(=O)OC(=O)CC WYVAMUWZEOHJOQ-UHFFFAOYSA-N 0.000 description 1
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 1
- KRIOVPPHQSLHCZ-UHFFFAOYSA-N propiophenone Chemical compound CCC(=O)C1=CC=CC=C1 KRIOVPPHQSLHCZ-UHFFFAOYSA-N 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 125000003373 pyrazinyl group Chemical group 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 150000004060 quinone imines Chemical class 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 150000003303 ruthenium Chemical class 0.000 description 1
- SMQUZDBALVYZAC-UHFFFAOYSA-N salicylaldehyde Chemical compound OC1=CC=CC=C1C=O SMQUZDBALVYZAC-UHFFFAOYSA-N 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 125000003548 sec-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 229960001153 serine Drugs 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910001388 sodium aluminate Inorganic materials 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229940037312 stearamide Drugs 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 229920000468 styrene butadiene styrene block copolymer Polymers 0.000 description 1
- 229920003047 styrene-styrene-butadiene-styrene Polymers 0.000 description 1
- IAHFWCOBPZCAEA-UHFFFAOYSA-N succinonitrile Chemical compound N#CCCC#N IAHFWCOBPZCAEA-UHFFFAOYSA-N 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- KUCOHFSKRZZVRO-UHFFFAOYSA-N terephthalaldehyde Chemical compound O=CC1=CC=C(C=O)C=C1 KUCOHFSKRZZVRO-UHFFFAOYSA-N 0.000 description 1
- MHSKRLJMQQNJNC-UHFFFAOYSA-N terephthalamide Chemical compound NC(=O)C1=CC=C(C(N)=O)C=C1 MHSKRLJMQQNJNC-UHFFFAOYSA-N 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- 125000001973 tert-pentyl group Chemical group [H]C([H])([H])C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- REPPSPNSOPYUCD-UHFFFAOYSA-N tetrabutyl benzene-1,2,4,5-tetracarboxylate Chemical compound CCCCOC(=O)C1=CC(C(=O)OCCCC)=C(C(=O)OCCCC)C=C1C(=O)OCCCC REPPSPNSOPYUCD-UHFFFAOYSA-N 0.000 description 1
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 1
- FRBIXZIRQKZWGN-UHFFFAOYSA-N tetraethyl benzene-1,2,4,5-tetracarboxylate Chemical compound CCOC(=O)C1=CC(C(=O)OCC)=C(C(=O)OCC)C=C1C(=O)OCC FRBIXZIRQKZWGN-UHFFFAOYSA-N 0.000 description 1
- UWHCKJMYHZGTIT-UHFFFAOYSA-N tetraethylene glycol Chemical class OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- GNCDUZFXTFAOBE-UHFFFAOYSA-N tetrakis(2-ethylhexyl) benzene-1,2,4,5-tetracarboxylate Chemical compound CCCCC(CC)COC(=O)C1=CC(C(=O)OCC(CC)CCCC)=C(C(=O)OCC(CC)CCCC)C=C1C(=O)OCC(CC)CCCC GNCDUZFXTFAOBE-UHFFFAOYSA-N 0.000 description 1
- APSPVJKFJYTCTN-UHFFFAOYSA-N tetramethylazanium;silicate Chemical compound C[N+](C)(C)C.C[N+](C)(C)C.C[N+](C)(C)C.C[N+](C)(C)C.[O-][Si]([O-])([O-])[O-] APSPVJKFJYTCTN-UHFFFAOYSA-N 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229960002898 threonine Drugs 0.000 description 1
- 229940034208 thyroxine Drugs 0.000 description 1
- XUIIKFGFIJCVMT-UHFFFAOYSA-N thyroxine-binding globulin Natural products IC1=CC(CC([NH3+])C([O-])=O)=CC(I)=C1OC1=CC(I)=C(O)C(I)=C1 XUIIKFGFIJCVMT-UHFFFAOYSA-N 0.000 description 1
- 150000003613 toluenes Chemical class 0.000 description 1
- FGMPLJWBKKVCDB-UHFFFAOYSA-N trans-L-hydroxy-proline Natural products ON1CCCC1C(O)=O FGMPLJWBKKVCDB-UHFFFAOYSA-N 0.000 description 1
- BWHOZHOGCMHOBV-BQYQJAHWSA-N trans-benzylideneacetone Chemical compound CC(=O)\C=C\C1=CC=CC=C1 BWHOZHOGCMHOBV-BQYQJAHWSA-N 0.000 description 1
- DQFBYFPFKXHELB-VAWYXSNFSA-N trans-chalcone Chemical compound C=1C=CC=CC=1C(=O)\C=C\C1=CC=CC=C1 DQFBYFPFKXHELB-VAWYXSNFSA-N 0.000 description 1
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 1
- RJIFVNWOLLIBJV-UHFFFAOYSA-N tributyl benzene-1,2,4-tricarboxylate Chemical compound CCCCOC(=O)C1=CC=C(C(=O)OCCCC)C(C(=O)OCCCC)=C1 RJIFVNWOLLIBJV-UHFFFAOYSA-N 0.000 description 1
- NJPOTNJJCSJJPJ-UHFFFAOYSA-N tributyl benzene-1,3,5-tricarboxylate Chemical compound CCCCOC(=O)C1=CC(C(=O)OCCCC)=CC(C(=O)OCCCC)=C1 NJPOTNJJCSJJPJ-UHFFFAOYSA-N 0.000 description 1
- VHUXYHABEMANLP-UHFFFAOYSA-N tricyclohexyl benzene-1,3,5-tricarboxylate Chemical compound C=1C(C(=O)OC2CCCCC2)=CC(C(=O)OC2CCCCC2)=CC=1C(=O)OC1CCCCC1 VHUXYHABEMANLP-UHFFFAOYSA-N 0.000 description 1
- 150000005691 triesters Chemical class 0.000 description 1
- KXGOWZRHSOJOLF-UHFFFAOYSA-N triethyl benzene-1,3,5-tricarboxylate Chemical compound CCOC(=O)C1=CC(C(=O)OCC)=CC(C(=O)OCC)=C1 KXGOWZRHSOJOLF-UHFFFAOYSA-N 0.000 description 1
- RZRMJIZJMVYZDL-UHFFFAOYSA-N triicosyl benzene-1,3,5-tricarboxylate Chemical compound CCCCCCCCCCCCCCCCCCCCOC(=O)C1=CC(C(=O)OCCCCCCCCCCCCCCCCCCCC)=CC(C(=O)OCCCCCCCCCCCCCCCCCCCC)=C1 RZRMJIZJMVYZDL-UHFFFAOYSA-N 0.000 description 1
- SRPWOOOHEPICQU-UHFFFAOYSA-N trimellitic anhydride Chemical compound OC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 SRPWOOOHEPICQU-UHFFFAOYSA-N 0.000 description 1
- RGCHNYAILFZUPL-UHFFFAOYSA-N trimethyl benzene-1,3,5-tricarboxylate Chemical compound COC(=O)C1=CC(C(=O)OC)=CC(C(=O)OC)=C1 RGCHNYAILFZUPL-UHFFFAOYSA-N 0.000 description 1
- YAJSFGLBTBIDSV-UHFFFAOYSA-N trinonyl benzene-1,3,5-tricarboxylate Chemical compound CCCCCCCCCOC(=O)C1=CC(C(=O)OCCCCCCCCC)=CC(C(=O)OCCCCCCCCC)=C1 YAJSFGLBTBIDSV-UHFFFAOYSA-N 0.000 description 1
- GPXRYVVWVFWRCM-UHFFFAOYSA-N trioctadecyl benzene-1,3,5-tricarboxylate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)C1=CC(C(=O)OCCCCCCCCCCCCCCCCCC)=CC(C(=O)OCCCCCCCCCCCCCCCCCC)=C1 GPXRYVVWVFWRCM-UHFFFAOYSA-N 0.000 description 1
- JNXDCMUUZNIWPQ-UHFFFAOYSA-N trioctyl benzene-1,2,4-tricarboxylate Chemical compound CCCCCCCCOC(=O)C1=CC=C(C(=O)OCCCCCCCC)C(C(=O)OCCCCCCCC)=C1 JNXDCMUUZNIWPQ-UHFFFAOYSA-N 0.000 description 1
- YQMVQCLVLBAKBX-UHFFFAOYSA-N trioctyl benzene-1,3,5-tricarboxylate Chemical compound CCCCCCCCOC(=O)C1=CC(C(=O)OCCCCCCCC)=CC(C(=O)OCCCCCCCC)=C1 YQMVQCLVLBAKBX-UHFFFAOYSA-N 0.000 description 1
- ZCBFZNUXFWUZLC-UHFFFAOYSA-N tripropyl benzene-1,3,5-tricarboxylate Chemical compound CCCOC(=O)C1=CC(C(=O)OCCC)=CC(C(=O)OCCC)=C1 ZCBFZNUXFWUZLC-UHFFFAOYSA-N 0.000 description 1
- WDRCVXGINNJWPH-UHFFFAOYSA-N tris(6-methylheptyl) benzene-1,2,4-tricarboxylate Chemical compound CC(C)CCCCCOC(=O)C1=CC=C(C(=O)OCCCCCC(C)C)C(C(=O)OCCCCCC(C)C)=C1 WDRCVXGINNJWPH-UHFFFAOYSA-N 0.000 description 1
- YPDXSCXISVYHOB-UHFFFAOYSA-N tris(7-methyloctyl) benzene-1,2,4-tricarboxylate Chemical compound CC(C)CCCCCCOC(=O)C1=CC=C(C(=O)OCCCCCCC(C)C)C(C(=O)OCCCCCCC(C)C)=C1 YPDXSCXISVYHOB-UHFFFAOYSA-N 0.000 description 1
- HRQUPYKJIVYVPA-UHFFFAOYSA-N tris(7-methyloctyl) benzene-1,3,5-tricarboxylate Chemical compound CC(C)CCCCCCOC(=O)C1=CC(C(=O)OCCCCCCC(C)C)=CC(C(=O)OCCCCCCC(C)C)=C1 HRQUPYKJIVYVPA-UHFFFAOYSA-N 0.000 description 1
- CXIOVBOMPMLYMX-UHFFFAOYSA-N tris(9-methyldecyl) benzene-1,3,5-tricarboxylate Chemical compound CC(C)CCCCCCCCOC(=O)C1=CC(C(=O)OCCCCCCCCC(C)C)=CC(C(=O)OCCCCCCCCC(C)C)=C1 CXIOVBOMPMLYMX-UHFFFAOYSA-N 0.000 description 1
- RULJLCRLHSZAGP-UHFFFAOYSA-N tris-decyl benzene-1,3,5-tricarboxylate Chemical compound CCCCCCCCCCOC(=O)C1=CC(C(=O)OCCCCCCCCCC)=CC(C(=O)OCCCCCCCCCC)=C1 RULJLCRLHSZAGP-UHFFFAOYSA-N 0.000 description 1
- UYWNXLSMDGZFSM-UHFFFAOYSA-N tritert-butyl benzene-1,3,5-tricarboxylate Chemical compound CC(C)(C)OC(=O)C1=CC(C(=O)OC(C)(C)C)=CC(C(=O)OC(C)(C)C)=C1 UYWNXLSMDGZFSM-UHFFFAOYSA-N 0.000 description 1
- IEDCMIWCKPMJRH-UHFFFAOYSA-N triundecyl benzene-1,3,5-tricarboxylate Chemical compound CCCCCCCCCCCOC(=O)C1=CC(C(=O)OCCCCCCCCCCC)=CC(C(=O)OCCCCCCCCCCC)=C1 IEDCMIWCKPMJRH-UHFFFAOYSA-N 0.000 description 1
- 229960004799 tryptophan Drugs 0.000 description 1
- 229960004441 tyrosine Drugs 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 229960004295 valine Drugs 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- MWOOGOJBHIARFG-UHFFFAOYSA-N vanillin Chemical compound COC1=CC(C=O)=CC=C1O MWOOGOJBHIARFG-UHFFFAOYSA-N 0.000 description 1
- FGQOOHJZONJGDT-UHFFFAOYSA-N vanillin Natural products COC1=CC(O)=CC(C=O)=C1 FGQOOHJZONJGDT-UHFFFAOYSA-N 0.000 description 1
- 235000012141 vanillin Nutrition 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/04—Reduction, e.g. hydrogenation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/46—Ruthenium, rhodium, osmium or iridium
- B01J23/462—Ruthenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/75—Cobalt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/391—Physical properties of the active metal ingredient
- B01J35/392—Metal surface area
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
- B01J37/0203—Impregnation the impregnation liquid containing organic compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
- B01J37/082—Decomposition and pyrolysis
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/17—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds
- C07C29/19—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds in six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C5/00—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
- C07C5/02—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
- C07C5/10—Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of aromatic six-membered rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/30—Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
- C07C67/303—Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by hydrogenation of unsaturated carbon-to-carbon bonds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/391—Physical properties of the active metal ingredient
- B01J35/394—Metal dispersion value, e.g. percentage or fraction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/617—500-1000 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/618—Surface area more than 1000 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/64—Pore diameter
- B01J35/647—2-50 nm
Definitions
- the present invention relates to a process for the hydrogenation of organic compounds and to a process for the manufacture of a hydrogenation catalyst and in particular to a hydrogenation process that utilizes a hydrogenation catalyst prepared via the formation and decomposition of an organic complex on a catalyst support.
- Hydrogenation is an established process both in the chemical and petroleum refining industries. Hydrogenation is conventionally carried out in the presence of a catalyst, which usually comprises a metal hydrogenation component deposited on a porous support material.
- the metal hydrogenation component is often one or more metals for example nickel, platinum, palladium, rhodium, ruthenium or mixtures thereof.
- organic compounds have one or more groups or functionality that is susceptible to hydrogenation under appropriate conditions with the use of a suitable metal containing catalyst.
- One particular group of compounds that are susceptible to hydrogenation is those that contain one or more unsaturated groups or functionality such as for example carbon-carbon double bonds or triple bonds.
- dimethylterephthalate is hydrogenated at ⁇ 140° C. and a pressure of from 50 to 170 bar over supported Pd catalysts, which are treated with Ni, Pt and/or Ru to give the corresponding dimethylhexahydroterephthalate.
- the supports used are alumina of crystalline phase alpha or theta or delta or gamma or beta or mixtures thereof.
- aromatic carboxylic esters are hydrogenated at from 70 to 250° C. and from 30 to 200 bar over supported Ni, Ru, Rh and/or Pd catalysts to give the corresponding cycloaliphatic carboxylic esters.
- the support used is an aluminium oxide of which at least 20% has been converted into lithium-aluminium spinel.
- EP-A 0 603 825 relates to a process for the preparation of 1,4-cycylohexanedicarboxylic acid by hydrogenating terephthalic acid by using a supported palladium catalyst, wherein as support alumina, silica or active charcoal is used.
- U.S. Pat. No. 3,334,149 describes a multistage process for the hydrogenation of dialkylterephthalate using a Pd catalyst followed by use of a copper chromite catalyst.
- U.S. Pat. No. 5,936,126 describes a process for the hydrogenation of an aromatic compound.
- the catalyst used contains ruthenium as active metal alone or optionally with one or more other Group IB, VIIB or VIIIB metals on a macroporous support.
- the macroporous support exhibits an average pore diameter of at least 50 nm and a BET surface area of not more than about 30 m 2 /g.
- U.S. Pat. No. 6,248,924 describes a process for reacting organic compounds.
- the catalyst used contains ruthenium as active metal alone or optionally with one or more other Group IB, VIIB or VIIIB metals on a support.
- the support may be a material having macropores (50 to 10000 nm pore diameter) and mesopores (2 to 50 nm pore diameter). In the support 10-50% of the pores are macropores and 50 to 90% of the pores are mesopores.
- Alumina of surface area (BET) 238 m 2 /g is specifically exemplified.
- the catalyst used comprises ruthenium as an active metal which is deposited alone or together with at least one other metal of subgroups I, VII or VIII of the periodic table on a support.
- One of three separate types of support may be used.
- the first support is macroporous having a mean pore diameter of at least about 50 nm and a BET surface area of at most 30 m 2 /g.
- the second support is a material, which has both macropores and mesopores (2 to 50 nm pore diameter), and in which 5-50% of the pores are macropores, 50 to 95% of the pores are mesopores and the surface area of the support is preferably from 50 to about 500 m 2 /g.
- the third type of support is a material, which is macroporous and has a mean pore diameter of at least 50 nm and a surface area of at most 15 m 2 /g.
- the present invention accordingly provides a process for hydrogenating one or more organic compounds, which process comprises bringing the one or more organic compound into contact, under hydrogenation conditions, with a source of hydrogen in the presence of a catalyst comprising one or more catalytically active metal sites located on a catalyst support and recovering the hydrogenation products, wherein at least one of the catalytically active metal sites has been obtained via the decomposition on the support of an organic complex of the metal.
- the present invention also provides a process for hydrogenating one or more benzenepolycarboxylic acids or one or more derivatives thereof, or a mixture of one or more benzenepolycarboxylic acids with one or more derivatives thereof by bringing, under hydrogenation conditions, the benzenepolycarboxylic acid or the derivative thereof or the mixture into contact with a hydrogen-containing gas in the presence of a catalyst, the catalyst comprising one or more catalytically active metal sites located on a catalyst support, wherein at least one of the catalytically active metal sites has been obtained via decomposition on the support of an organic complex of the metal.
- the present invention also provides a process for the manufacture of a hydrogenation catalyst which process comprises;
- the present invention also provides for a hydrogenation catalyst comprising one or more catalytically active metals and one or more support materials wherein the total metal dispersion is 45% or more and the metal dispersion relating to a strongly chemisorbed component of the total metal dispersion is 20% or greater.
- full decomposition may be achieved by exposing the organic complex on the support to pyrolysis conditions in the presence of hydrogen.
- the decomposition of the organic metal complex is followed by treatment of the fully or partially decomposed organic complex on the support with a source of hydrogen.
- the hydrogen treatment is of a partially decomposed organic complex on the support the hydrogen treatment preferably fully decomposes the partially decomposed organic complex.
- FIG. 1 shows a plot of DINP conversion vs reaction time for 0.5 wt % Ru/MCM-41 catalyst in which the active metal has been deposited from an aqueous solution
- FIG. 2 shows a plot of DINP conversion vs reaction time for 0.5 wt % Ru/MCM-41 catalyst in which the active metal has been deposited from a mixture of an aqueous solution of metal with triethanolamine.
- FIG. 3 shows a quadrapole mass spectrum of the product of Example 7 heated in air at 4 deg/min
- FIG. 4 shows the transmission infra-red spectra of silica and Examples 7, 9 and 14,
- FIG. 5 shows an air treatment TGA plot for a supported metal catalyst (0.5 wt % Ru/SiO 2 ) prepared using impregnation of the metal with triethanolamine and drying at 100° C.,
- FIG. 6 shows an air treatment TGA plot for a supported metal catalyst (0.5 wt % Ru/SiO 2 ) prepared using impregnation of the metal with triethanolamine and calcination at 300° C.
- FIG. 7 shows a hydrogen treatment TGA plot for a supported metal catalyst (0.5 wt % Ru/SiO 2 ) prepared using impregnation of the metal with triethanolamine and calcination at 300° C.
- organic compounds especially unsaturated organic compounds are hydrogenated in the presence of hydrogen and a hydrogenation catalyst that has been prepared in a specific way.
- the hydrogenation catalyst is prepared via the formation of one or more organic metal complexes, as the source of catalytically active metal. After deposition and/or formation of one or more organic metal complexes in or on the support material the complexes are partially or fully decomposed.
- This method of preparation results in hydrogenation catalysts that have good catalytic activity when compared to hydrogenation catalysts prepared using more conventional catalyst preparation methods.
- the fully or partially decomposed organic complex is treated in a further stage with a source of hydrogen. This further stage may be omitted when a hydrogen source is used in a first stage to fully decompose the organic complex.
- the process of the present invention is suitable for hydrogenating any organic compound that is susceptible to hydrogenation.
- Organic compounds that are particularly suitable are organic compounds that comprise one or more groups or functionality with unsaturated bonds; these compounds are herein described as “unsaturated organic compounds”.
- the term “unsaturated organic compound” as used within the present invention comprises all organic compounds including low molecular weight (monomeric) and polymeric organic compounds which may be catalytically reacted, in particular those which exhibit groups which are treatable with hydrogen, such as carbon-carbon double or carbon-carbon triple bonds. This term comprises low molecular weight organic compounds as well as polymers. “Low molecular weight organic compounds” are compounds having a molecular weight of below 500.
- polymer is defined as relating to molecules having a molecular weight of higher than about 500.
- organic compounds having one or more of the following structural units may be used, although the present invention is not limited to organic compounds that only have these structural units as groups that are susceptible to hydrogenation.
- the process of the invention is particularly suitable for hydrogenating an unsaturated organic compound which is selected from the group consisting of an aromatic compound in which at least one hydroxyl group is bonded to an aromatic ring, an aromatic compound in which at least one amino group is bonded to an aromatic ring, an aromatic compound in which at least one carboxylic acid group or derivative thereof is bonded to an aromatic ring, a ketone, an aldehyde, a carboxylic acid or a derivative thereof, a polymer comprising at least one carbon-carbon double bond, a polymer comprising at least one carbonyl group, a polymer comprising at least one nitrile group, and a mixture of two or more thereof.
- Aliphatic unsaturated organic compounds comprising aldehyde groups as the only unsaturated group are not preferred.
- Aliphatic unsaturated organic compounds comprising aldehyde groups and alcohol groups especially polyols such as D-glucose are not preferred.
- unsaturated organic compounds comprising units of different structures, as defined above, may be hydrogenated, such as unsaturated organic compounds, which exhibit carbon-carbon multiple bonds and carbonyl groups, since the catalyst used within the process of the invention are capable to first selectively hydrogenate one of the two groups, i.e. to achieve a hydrogenation of these groups from about 90 to 100%, while at first the other groups are reacted, preferably hydrogenated, to an extent of less than 25% and in general 0 to about 7%. Generally, first the carbon-carbon multiple bond and subsequently the nitrile group are reacted, e.g. hydrogenated, respectively.
- aromatic compound in which at least one hydroxyl group is bonded to an aromatic ring or “aromatic compound in which at least one amino group is bonded to an aromatic ring” or “aromatic compound in which at least one carboxylic acid group or derivative thereof is bonded to an aromatic ring” means all compounds which have a unit of the structure (I):
- R is a hydroxyl group or an amino group or carboxylic acid group or derivative thereof.
- structure (I) there may be two or more substituent R groups in the aromatic ring.
- the resulting isomer ratio of cis to trans products can be varied within a wide range, depending on the reaction conditions (temperature, solvent). Furthermore, the compounds obtained can be processed further without further purification steps, since the formation of alkylbenzenes is virtually completely avoided.
- aromatic compounds in which at least one amino group is bonded to an aromatic ring can also be hydrogenated by the process of the present invention to give the corresponding cycloaliphatic compounds with high selectivity.
- aromatic compounds in which at least one amino group is bonded to an aromatic ring can also be hydrogenated by the process of the present invention to give the corresponding cycloaliphatic compounds with high selectivity.
- amines additionally substituted by a C 1 -C 10 -alkyl radical and/or C 1 -C 10 -alkoxy radical, what has been said above regarding the ratio of the cis and trans isomers also applies.
- this embodiment substantially avoids the formation of deamination products such as cyclohexanes or partially hydrogenated dimerization products such as phenylcyclohexylamines.
- deamination products such as cyclohexanes or partially hydrogenated dimerization products such as phenylcyclohexylamines.
- the following compounds may be hydrogenated with the process of the invention.
- Aromatic compounds in which at least one hydroxyl group and preferably also at least one unsubstituted or substituted C 1 -C 10 -alkyl radical and/or alkoxy radical is bonded to an aromatic ring can be hydrogenated by means of the process of the present invention to give the corresponding cycloaliphatic compounds, with it also being possible to use mixtures of two or more of these compounds.
- the aromatic compounds used can be monocyclic or polycyclic aromatic compounds.
- the aromatic compounds contain at least one hydroxyl group bonded to an aromatic ring; the simplest compound of this group is phenol.
- the aromatic compounds preferably have one hydroxyl group per aromatic ring and can be substituted on the aromatic ring or rings by one or more alkyl and/or alkoxy radicals, preferably C 1 -C 10 -alkyl and/or alkoxy radicals, particularly preferably C 1 -C 10 -alkyl radicals, in particular methyl, ethyl, propyl, isopropyl, butyl, isobutyl and tert-butyl radicals; among the alkoxy radicals, preference is given to C 1 -C 8 -alkoxy radicals such as the methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy and tert-butoxy radicals.
- the aromatic ring or rings and also the alkyl and alkoxy radicals may be unsubstituted or substituted by halogen atoms, in particular fluorine atoms, or other suitable inert substituents.
- the compounds which can be hydrogenated according to the present invention have at least one, preferably from one to four, in particular one, C 1 -C 10 -alkyl radical which is preferably located on the same aromatic ring as the hydroxyl group or groups.
- Preferred compounds are (mono)alkylphenols, where the alkyl radical can be in the o, m or p position relative to the hydroxyl group.
- trans-alkylphenols also known as 4-alkylphenols, where the alkyl radical preferably has from 1 to 10 carbon atoms and is, in particular, a tert-butyl radical.
- Polycyclic aromatic compounds, which can be used according to the present invention are, for example, ⁇ -naphthol and ⁇ -naphthol.
- the aromatic compounds in which at least one hydroxyl group and preferably also at least one unsubstituted or substituted C 1 -C 10 -alkyl radical and/or alkoxy radical is bonded to an aromatic ring can also have a plurality of aromatic rings which are linked via an alkylene radical, preferably a methylene group.
- the alkylene group, preferably methylene group, which forms the linkage can have one or more alkyl substituents which can be C 1 -C 20 -alkyl radicals and are preferably C 1 -C 10 -alkyl radicals, particularly preferably methyl, ethyl, propyl, isopropyl, butyl or tert-butyl.
- each of the aromatic rings can bear at least one bonded hydroxyl group.
- examples of such compounds are bisphenols, which are linked in the 4 position via an alkylene radical, preferably a methylene radical.
- a phenol substituted by a C 1 -C 10 -alkyl radical preferably C 1 -C 6 -alkyl radical, where the alkyl radical may be unsubstituted or substituted by an aromatic radical, or mixtures of two or more of these compounds.
- p-tert-butylphenol, bis(p-hydroxyphenyl) dimethylmethane or a mixture thereof is hydrogenated.
- the process of the present invention also enables aromatic compounds in which at least one amino group is bonded to an aromatic ring to be hydrogenated to give the corresponding cycloaliphatic compounds, with mixtures of two or more of these compounds also being able to be used.
- the aromatic compounds can be monocyclic or polycyclic aromatic compounds.
- the aromatic compounds contain at least one amino group, which is bonded to an aromatic ring.
- the aromatic compounds are preferably aromatic amines or diamines and can be substituted on the aromatic ring or rings or on the amino group by one or more alkyl and/or alkoxy radicals, preferably C 1 -C 20 -alkyl radicals, in particular methyl, ethyl, propyl, isopropyl, butyl, isobutyl and tert-butyl radicals.
- alkoxy radicals preference is given to C 1 -C 8 -alkoxy radicals such as methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy and tert-butoxy radicals.
- the aromatic ring or rings and also the alkyl and alkoxy radicals can be unsubstituted or substituted by halogen atoms, in particular fluorine atoms, or other suitable inert substituents.
- the aromatic compound in which at least one amino group is bonded to an aromatic ring can also have a plurality of aromatic rings which are linked via an alkylene group, preferably a methylene group.
- the alkylene group, preferably methylene group, which forms the linkage can bear one or more alkyl substituents which can be C 1 -C 20 -alkyl radicals and are preferably C 1 -C 10 -alkyl radicals, particularly preferably methyl, ethyl, propyl, isopropyl, butyl, sec-butyl or tert-butyl.
- the amino group bonded to the aromatic ring may be unsubstituted or substituted by one or two of the above-described alkyl radicals.
- Particularly preferred compounds are aniline, naphthylamine, diaminobenzenes, diaminotoluenes and bi-p-aminophenylmethane or mixtures thereof.
- aldehydes and ketones preferably those having 1 to 20 C-atoms, such as formaldehyde, acetaldehyde, propionaldehyde, n-butyraldehyde, valeraldehyde, caproaldehyde, heptaldehyde, phenylacetaldehyde, acrolein, crotonaldehyde, benzaldehyde, o-, m-, p-tolualdehyde, salicylic aldehyde, anisaldehyde, vanillin, zinnamic aldehyde, acetone, methyl ethyl ketone, 2-pentanone, 3-pentanone, 2-hexanone, 3-hexanone, cyclohexanone, isophorone, methyl isobutyl ketone, mesityl oxide, acetophenone, propiophenone, benzophenone, benza
- polyketones such as copolymers of ethylene and CO are used.
- carboxylic acids and derivatives thereof preferably those having 1 to 20 C-atoms may be reacted.
- Carboxylic acids such as formic acid, acetic acid, propanoic acid, butanoic acid, iso-butanoic acid, n-valeric acid, pivalic acid, caproic acid, heptanoic acid, octanoic acid, decanoic acid, lauric acid, myristic acid, palmitic acid, stearic acid, acrylic acid, methacrylic acid, oleic acid, elaidic acid, linoleic acid, linolenic acid, cyclohexane carboxylic acid, benzoic acid, phenylacetic acid, o-, m-, p-toluylic acid, o-, p-chlorobenzoic acid, o-, p-nitrobenzoic acid, salicylic acid, p-hydroxy
- Carboxylic acid halides such as the chlorides and bromides of the above-mentioned carboxylic acids, in particular acetylchloride or -bromide, stearic acid chloride or -bromide and benzoic acid chloride or -bromide, which are dehalogenated.
- Carboxylic acid esters such as the C 1 - to C 10 -alkyl esters of the above-mentioned carboxylic acids, particularly methyl formate, acetic acid ester, butanoic acid butyl ester, dimethyl terephthalate, dimethyl adipate, methyl (meth)acrylate, butyrolactone, caprolactone and polycarboxylic acid esters, such as polyacrylic and polymethacrylic acid esters and copolymers and polyesters thereof, such as poly(methyl(meth)acrylates); these esters are in particular hydrogenated, i.e. the esters are reacted to the corresponding acids and alcohols.
- Carboxylic anhydrides such as anhydrides of the above-mentioned carboxylic acids, in particular acetic acid anhydride, propanoic acid anhydride, benzoic acid anhydride and maleic anhydride.
- Carboxylic acid amides such as amides of the above-mentioned carboxylic acids, such as formamide, acetamide, propionic amide, stearamide and terephthalamide.
- hydroxy carboxylic acids such as lactic, malic acid, tartaric acid or citric acid
- amino acids such as glycine, alanine, proline and arginine
- nitrites preferably aliphatic or aromatic mono or dinitriles, such as acetonitrile, propionitrile, butyronitrile, stearic acid nitrile, isocrotonic acid nitrile, 3-butylnitrile, 2,3-butadiene nitrile, 2,4-pentadiene nitrile, 3-hexene-1,6-dinitrile, chloracetonitrile, trichloracetonitrile, lactic acid nitrile, phenol acetonitrile, 2-chlorbenzonitrile, 2,6-dichlorobenzonitrile, isophthalonitrile, particularly aliphatic alpha, omega-dinitriles, such as succinonitrile, glutaronitrile, adiponitrile, pimelicnitrile and suberic nitrile or aminonitriles, such as 4-amino butanoic acid nitrile, 5-aminopentanoic acid nitrile
- the following reactions may be carried out:
- aromatic compounds such as benzene, toluenes, xylols, naphthalines and substituted derivatives thereof, leading to the corresponding alicylic compounds
- alkenes or alkynes such as ethylene, propylene, 1-, 2-butene, 1-, 2-, 3- and 4-octene, butadiene, and hexatriene leading to the corresponding alkanes
- the hydrogenation of nitroalkanes such as nitroethane, nitromethane, nitropropane and 1,1-dinitroethane leading to the corresponding amines
- imines such as quinone imines, ketimines, ketene imines or aliphatic imines, such as propioamine, hexane imine
- imines such as quinone imines, ketimines, ketene imines or aliphatic imines, such as propioamine, hexane imine
- the catalysts according to the invention may be also used for the hydrogenation of large molecules, preferably of polymers. Accordingly, the present invention also relates to a process for hydrogenating a polymer comprising at least one catalytically reactable group in the presence of the above identified catalyst, wherein the hydrogenation of polymers comprising carbonyl groups, such as polyesters of dicarboxylic acids, unsaturated monocarboxylic acids, such as poly(meth)acrylates, olefin/CO-copolymers or polyketones, and the hydrogenation of polymers comprising nitrile groups, such as copolymers of styrene and butadiene, copolymers of acrylonitrile and the aminating hydrogenolysis of polyvinylalcohols and polyketones in the presence of the above-mentioned catalyst are preferred.
- polymers comprising carbonyl groups such as polyesters of dicarboxylic acids, unsaturated monocarboxylic acids, such as poly(meth)acrylates,
- the present invention relates to a process for the hydrogenation of a polymer comprising at least one carbonyl group or a polymer comprising at least one nitrile group.
- polymer comprising at least one catalytically reactable group relates to all polymers comprising such groups, in particular to polymers comprising units having the structures (I) to (VIII), as defined above with respect to the monomeric compounds, or a halogen atom. Needless to say that the referenced polymers comprise the respective unit at least once and that also one or more units of two or more of said structures may be present in the polymer reacted according to the invention.
- the average molecular weight of the polymers to be reacted within the process of the invention is generally about 500 to about 500000, preferably about 1000 to about 100000 and more preferably about 1000 to about 50000. It is, however, possible to also react polymers having a higher molecular weight of up to one or several millions. If polymers comprising at least one carbon-carbon multiple bond, i.e. polymers comprising repeating units of the above defined structures (I) and (II) are reacted, these generally exhibit a weight average molecular weight of from about 5000 to about 1000000, preferably from about 50000 to about 500000 and more preferably from about 150000 to about 500000.
- polymers containing olefinic double bonds it is further preferred to use polymers containing diene units and copolymers containing vinylaromatic units and diene units.
- the catalyst comprising ruthenium as the active metal also the catalyst comprising palladium as the active metal may be used.
- Common diene units include all conventional polyunsaturated monomers containing from three to twelve carbon atoms, butadiene being preferred.
- Copolymers to be hydrogenated may contain recurring units in random, block, or tapered distribution.
- Aromatic monomers which may be present in the polymers to be hydrogenated in the process of the invention, include monovinyl-substituted and polyvinyl-substituted aromatic compounds, the preferred monomers being styrene, alpha-methyl styrene, acrylonitrile, methacrylonitrile, and divinyl benzene. Furthermore, mixtures of vinylaromatic and/or diolefin monomers, optionally together with conventional olefinic monomers, can be present in the polymers to be hydrogenated.
- polymers having carbon-carbon double bonds e.g. polybutadienes, such as poly(2,3-dimethylbutadiene), polyisoprene, polyacetylenes and polycylopenta- and -hexadiene
- polymers having carbon-carbon triple bonds such as polydiacetylenes
- polymers having aromatic groups such as polystyrene, terpolymers of acrylonitrile, butadiene and styrene, and copolymers of styrene and acrylonitrile
- polymers having carbon-nitrogen triple bonds such as polyacrylonitrile, polyacrylonitrile-copolymers with e.g.
- polymers being preferably used within the present invention include polyisoprene, polybutadiene, ethylene/CO-copolymers, propylene/CO-copolymers, poly(methyl(meth)acrylate), polyterephthalate, polyadipate, styrene-butadiene-copolymers, acrylonitrile-butadiene-copolymers, acrylonitrile-styrene-copolymers, styrene-isoprene-styrene-triblock copolymers, styrene-butadiene-styrene-triblock copolymers and styrene-butadiene-styrene-starblock copolymers.
- reaction preferably hydrogenation
- the reaction may also be carried out in such a way that by suitably choice of temperature, H 2 -pressure and/or H 2 -amount only one of the type of groups susceptible to hydrogenation may be reacted, while the other kind of groups susceptible to hydrogenation are not appreciably hydrogenated.
- the process of the invention is particularly suitable hydrogenating polymers comprising units of different structure, as defined above, e.g. a polymer comprising carbon-carbon multiple bonds and carbonyl groups and/or nitrile groups, since the catalyst of the present invention is capable to first selectively react the carbon-carbon multiple bond, e.g. to achieve a hydrogenation of these groups of about 90 to 100%, while at the same time the carbonyl groups and/or nitrile groups are reacted, e.g. hydrogenated to an extent of less than 25% and in general 0 to about 7%.
- the process of the invention is particularly suitable for the hydrogenation of polymers of high molecular weight and containing both carbon-carbon multiple bonds and aromatic groups, since the catalysts used in the process of the invention are capable of achieving hydrogenation of the carbon-carbon multiple bonds, e.g. ethylenically unsaturated regions, to an extent of from 90 to 100%, whilst the aromatic regions are hydrogenated to an extent of less than 25% and generally to an extent of from 0% to 7%.
- the process of the present invention is of particular benefit in the hydrogenation of benzenepolycarboxylic acid or a derivative thereof, which are the most preferred organic compound for hydrogenation in the process.
- benzenepolycarboxylic acid or a derivative thereof used for the purposes of the present invention encompasses all benzenepolycarboxylic acids as such, e.g.
- esters used are alkyl, cycloalkyl and alkoxyalkyl esters, where the alkyl, cycloalkyl and alkoxyalkyl groups generally have from 1 to 30, preferably from 2 to 20 and particularly preferably from 3 to 18, carbon atoms and can be branched or linear.
- alkyl terephthalates such as monomethyl terephthalate, dimethyl terephthalate, diethyl terephthalate, di-n-propyl terephthalate, di-n-butyl terephthalate, di-tert-butyl terephthalate, diisobutyl terephthalate, monoglycol esters of terephthalic acid, diglycol esters of terephthalic acid, di-n-octyl terephthalate, diisooctyl terephthalate, mono-2-ethylhexyl terephthalate, di-2-ethylhexyl terephthalate, di-n-nonyl terephthalate, diisononyl terephthalate, di-n-decyl terephthalate, di-n-undecyl terephthalate
- alkyl phthalates such as monomethyl phthalate, dimethyl phthalate, diethyl phthalate, di-n-propyl phthalate, di-n-butyl phthalate, di-tert-butyl phthalate, diisobutyl phthalate, monoglycol esters of phthalic acid, diglycol esters of phthalic acid, di-n-octyl phthalate, diisooctyl phthalate, di-2-ethylhexyl phthalate, di-n-nonyl phthalate, diisononyl phthalate, di-n-decyl phthalate, diisodecyl phthalate, di-n-undecyl phthalate, di-isoundecyl phthalate, diisododecyl phthalate, di-n-octadecyl phthalate, diisooctadecyl phthalate, diisooc
- alkyl trimellitates such as monomethyl trimellitate, dimethyl trimellitate, diethyl trimellitate, di-n-propyl trimellitate, di-n-butyl trimellitate, di-tert-butyl trimellitate, diisobutyl trimellitate, the monoglycol ester of trimellitic acid, diglycol esters of trimellitic acid, di-n-octyl trimellitate, diisooctyl trimellitate, di-2-ethylhexyl trimellitate, di-n-nonyl trimellitate, diisononyl trimellitate, di-n-decyl trimellitate, diisodecyl trimellitate, di-n-undecyl trimellitate, di-isoundecyl trimellitate, diisododecyl trimellitate, di-n-octadecyl trimellitate, diisooctadecyl trimellitate, diiso
- alkyl trimesates such as monomethyl trimesate, dimethyl trimesate, diethyl trimesate, di-n-propyl trimesate, di-n-butyl trimesate, di-tert-butyl trimesate, diisobutyl trimesate, monoglycol esters of trimesic acid, diglycol esters of trimesic acid, di-n-octyl trimesate, diisooctyl trimesate, di-2-ethylhexyl trimesate, di-n-nonyl trimesate, diisononyl trimesate, di-n-decyl trimesate, diisodecyl trimesate, di-n-undecyl trimesate, di-isoundecyl trimesate, diisododecyl trimesate, di-n-octadecyl trimesate
- a further suitable class are the alkyl hemimellitates such as monomethyl hemimellitate, dimethyl hemimellitate, diethyl hemimellitate, di-n-propyl hemimellitate, di-n-butyl hemimellitate, di-tert-butyl hemimellitate, diisobutyl hemimellitate, monoglycol esters of hemimellitic acid, diglycol esters of hemimellitic acid, di-n-octyl hemimellitate, diisooctyl hemimellitate, di-2-ethylhexyl hemimellitate, di-n-nonyl hemimellitate, diisononyl hemimellitate, di-n-decyl hemimellitate, diisodecyl hemimellitate, di-n-undecyl hemimellitate, di-isoundecyl hemimellitate, diisod
- alkyl pyromellitates such as monomethyl pyromellitate, dimethylpyromellitate, diethyl pyromellitate, di-n-propyl pyromellitate, di-n-butyl pyromellitate, di-tert-butyl pyromellitate, diisobutyl pyromellitate, monoglycol esters of pyromellitic acid, diglycol esters of pyromellitic acid, di-n-octyl pyromellitate, diisooctyl pyromellitate, di-2-ethylhexyl pyromellitate, di-n-nonyl pyromellitate, diisononyl pyromellitate, di-n-decyl pyromellitate, diisodecyl pyromellitate, di-n-undecyl pyromellitate, di-isoundecyl pyromellitate, diisodo
- anhydrides of phthalic acid trimellitic acid, hemimellitic acid and pyromellitic acid.
- alkyl terephthalates alkyl phthalates, alkyl isophthalates, dialkyl or trialkyl trimellitates, dialkyl or trialkyl trimesates, dialkyl or trialkyl hemimellitates and dialkyl, trialkyl or tetraalkyl pyromellitates in which one or more of the alkyl groups contain 5, 6 or 7 carbon atoms (e.g.
- alkyl groups include; n-pentyl, 1-methylbutyl terephthalate, 2-methylbutyl, 3-methylbutyl, 2,2-dimethylpropyl, 1,1-dimethylpropyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1,1-dimethylbutyl, 2,2-dimethylbutyl, 3,3-dimethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,3-dimethylbutyl, 1-methyl-2-ethylpropyl, 1-ethyl-2-methylpropyl, 1-ethylbutyl, 2-ethylbutyl, n-heptyl, 1-methylhexyl, 2-methylhexyl, 3-methylhexyl, 4-methylhexyl, 5-methylhexyl, 1,1-d
- alkyl groups are not identical such as for example in butylpropyl terephthalate or where one of the alkyl groups is replaced by a benzyl group such as for example in butylbenzyl terephthalate.
- mixtures of one or more of the benzenepolycarboxylic acid or a derivative thereof described herein When the derivatives are esters the mixture may be derived through use of a two or more alcohols in admixture or in sequence to esterify the same sample of a benzenepolycarboxylic acid derivative or a mixture of two or more benzenepolycarboxylic acids or a derivatives.
- the alcohols may be used to form, in separate syntheses, two different esterified derivatives, which may then be mixed together to form a mixture of two or more esterified derivatives.
- the mixture may comprise a mixture of esters derived from branched or linear alcohols, for example the mixture may comprise ester derivatives prepared from C7, C9, C8, C10 and C11 linear or branched alcohols, preferably linear alcohols, with the alcohols being used in the same synthesis of a mixture of derivatives or in separate syntheses of the derivative where the resultant derivative products in each synthesis are combined to form a mixed derivative.
- the preferred products are those derived from phthalates and in particular the following: cyclohexane-1,2-dicarboxylic acid di(isopentyl) ester, obtainable by hydrogenation of a di(isopentyl) phthalate having the Chemical Abstracts registry number (in the following: CAS No.) 84777-06-0; cyclohexane-1,2-dicarboxylic acid di(isoheptyl) ester, obtainable by hydrogenating the di(isoheptyl) phthalate having the CAS No.
- cyclohexane-1,2-dicarboxylic acid di(isononyl) ester obtainable by hydrogenating the di(isononyl)phthalate having the CAS No. 68515-48-0; cyclohexane-1,2-dicarboxylic acid di(isononyl) ester, obtainable by hydrogenating the di(isononyl)phthalate having the CAS No. 28553-12-0, which is based on n-butene; cyclohexane-1,2-dicarboxylic acid di(isononyl) ester, obtainable by hydrogenating the di(isononyl)phthalate having the CAS No.
- 28553-12-0 which is based on isobutene; a 1,2-di-C 9 -ester of cyclohexanedicarboxylic acid, obtainable by hydrogenating the di(nonyl)phthalate having the CAS No. 68515-46-8; cyclohexane-1,2-dicarboxylic acid di(isodecyl) ester, obtainable by hydrogenating a di(isodecyl)phthalate having the CAS No. 68515-49-1; 1,2-C 7-11 -ester of cyclohexanedicarboxylic acid, obtainable by hydrogenating the corresponding phthalic acid ester having the CAS No.
- 1,2-di-C 7-11 -ester of cyclohexanedicarboxylic acid obtainable by hydrogenating the di-C 7-11 -phthalates having the following CAS Nos.: 111381-89-6, 111381-90-9, 111381-91-0, 68515-44-6, 68515-45-7 and 3648-20-7; a 1,2-di-C 9-11 -ester of cyclohexanedicarboxylic acid, obtainable by hydrogenating a di-C 9-11 -phthalate having the CAS No.
- a 1,2-di(isodecyl)cyclohexanedicarboxylic acid ester obtainable by hydrogenating a di(isodecyl)phthalate, consisting essentially of di-(2-propylheptyl)phthalate; 1,2-di-C 7-9 -cyclohexanedicarboxylic acid ester, obtainable by hydrogenating the corresponding phthalic acid ester, which comprises branched and linear C 7-9 -alkylester groups; respective phthalic acid esters which may be e.g. used as starting materials have the following CAS Nos.: di-C 7-9 -alkylphthalate having the CAS No. 111 381-89-6; di-C 7-9 -alkylphthalate having the CAS No. 68515-44-6; and di-C 9 -alkylphthalate having the CAS No. 68515-45-7.
- the above explicitly mentioned C 5-7 , C 9 , C 10 , C 7-11 , C 9-11 and C 7-9 esters of 1,2-cyclohexanedicarboxylic acids are preferably the hydrogenation products of the commercially available benzenepolycarboxylic acid esters with the trade names Jayflex® DINP (CAS No. 68515-48-0), Jayflex® DIDP (CAS No. 68515-49-1), Jayflex® DIUP (CAS No. 85507-79-5), Jayflex® DTDP (CAS No. 68515-47-9), Palatinol® 911P, Vestinol® 9 (CAS No. 28553-12-0), TOTM-I® (CAS No. 3319-31-1), Linplast® 68-TM and Palatinol® N (CAS No. 28553-12-0) which are used as plasticizers in plastics.
- Jayflex® DINP CAS No. 68515-48-0
- Jayflex® DIDP CAS No. 68515-49-1
- benzenepolycarboxylic acid esters suitable for use in the present invention include phthalates such as: Palatinol® AH (Di-(2-ethylhexyl) phthalate; Palatinol® AH L (Di-(2-ethylhexyl) phthalate); Palatinol® C (Dibutyl phthalate); Palatinol® IC (Diisobutyl phthalate); Palatinol® N (Diisononyl phthalate); Palatinol® Z (Diisodecyl phthalate) Palatinol® 10-P (Di-(2-Propylheptyl) phthalate); Palatinol® 711P (Heptylundecyl phthalate); Palatinol® 911 (Nonylundecyl phthalate); Palatinol® 11P-E (Diundecyl phthalate); Palatinol® M (D
- adipates such as: Plastomoll® DOA (Di-(2-ethylhexyl) adipate) and Plastomoll® DNA (Diisononyl adipate).
- suitable commercially available materials are Vestinol® C (DBP), Vestinol® IB (DIBP), Vestinol® AH (DEHP), Witamol® 110 (610P) and Witamol® 118 (810P).
- macropores and “mesopores” are used as they are defined in Pure Appl. Chem., 45 (1976), 79, namely as pores whose diameter is above 50 nm (macropores) or whose diameter is from 2 nm and 50 nm (mesopores).
- the catalyst may be prepared using a wide variety of porous and non-porous support materials that are well known in the art. These include but are not limited to alumina, silica, TiO 2 , ZrO 2 , activated carbon, silicon carbide, magnesium oxide, zinc oxide and similar inorganic oxides or mixtures of two or more thereof.
- the preferred support materials are alumina, silica or mixtures thereof, with the most preferred material being silica, especially amorphous silica.
- the support is preferably a porous support.
- the support is preferably a support that comprises mesopores and most preferably as support that is substantially completely mesoporous or has as a major component, when the support is a mixture of two or more materials, at least one material that is substantially completely mesoporous.
- the preferred materials for use as supports in the present invention are amorphous materials such as alumina and silica with the most preferred support being amorphous silica.
- a further class of materials that may be used as supports in the present invention are crystalline materials such as crystalline molecular sieve materials and more preferably crystalline molecular sieve materials that are mesoporous.
- a further class of materials that may be use are ordered mesoporous materials.
- Ordered mesoporous molecular sieve materials which may be used as supports in the present invention, are those materials that may be synthesized using amphiphilic compounds as directing agents. Examples of such materials are described in U.S. Pat. No. 5,250,282, the whole contents of which are hereby incorporated by reference. Examples of amphiphilic compounds are also provided in Winsor, Chemical Reviews, 68(1), 1968. Other suitable ordered mesoporous materials of this type are also described in “Review of Ordered Mesoporous Materials”, U. Ciesla and F. Schuth, Microporous and Mesoporous Materials, 27, (1999), 131-49.
- Such materials include but are not limited to materials designated as SBA (Santa Barbara) such as SBA-2, SBA-15 and SBA-16, materials designated as FSM (Folding Sheet Mechanism) such as FSM-16 and KSW-2, materials designated as MSU (Michigan State) such as MSU-S and MSU-X, materials designated as TMS or Transition Metal Sieves, materials designated as FMMS or functionalized monolayers on mesoporous supports and materials designated as APM or Acid Prepared Mesostructure.
- Particularly preferred ordered mesoporous materials are the silicate or aluminosilicate ordered mesoporous materials designated as M41S such as MCM-14, MCM-22, MCM-41, MCM-48, MCM-49, and MCM-50.
- mesoporous materials are described in detail in U.S. Pat. No. 5,102,643, the whole contents of which are hereby incorporated by reference.
- a particularly suitable sub-class of this family of materials for use in the present invention are the mesoporous silicas designated as MCM-41 and MCM-48.
- MCM-41 is particularly preferred and has a hexagonal arrangement of uniformly sized mesopores.
- MCM-41 molecular sieve materials are described in detail in U.S. Pat. No. 5,098,684, the whole contents of which are hereby incorporated by reference.
- the MCM-41 molecular sieves generally have a SiO 2 /Al 2 O 3 molar ratio when alumina is present and it is preferred that the SiO 2 /Al 2 O 3 molar ratio for these materials is greater than 100, preferably greater than 200, and most preferably greater than 300.
- the hydrogenation process utilizes a catalyst, which comprises a hydrogenation function in the form of at least one active metal site on a support material comprising one or more ordered mesoporous materials with a unique structure and pore geometry as described below.
- a catalyst which comprises a hydrogenation function in the form of at least one active metal site on a support material comprising one or more ordered mesoporous materials with a unique structure and pore geometry as described below.
- These materials are inorganic, porous, non-layered materials which, in their calcined forms exhibit an X-ray diffraction pattern with at least one peak at a d-spacing greater than about 18 Angstrom Units ( ⁇ ). They also have a benzene adsorption capacity of greater than 15 grams of benzene per 100 grams of the material at 50 torr and 25° C.
- the support material is characterized by a substantially uniform hexagonal honeycomb microstructure with uniform pores having a cell diameter greater than 2 nm and typically in the range of 2 to 50 nm, more preferably 5 to 20 nm, and most preferably from 3 to 20 nm.
- a material identified as MCM-41 which is usually synthesized as a metallosilicate with Broensted acid sites by incorporating a tetrahedrally coordinated trivalent element such as Al, Ga, B, or Fe within the silicate framework.
- MCM-41 which is usually synthesized as a metallosilicate with Broensted acid sites by incorporating a tetrahedrally coordinated trivalent element such as Al, Ga, B, or Fe within the silicate framework.
- the preferred forms of these materials are the aluminosilicates although other metallosilicates may also be utilized.
- MCM-41 is characterized by a microstructure with a uniform, hexagonal arrangement of pores with diameters of at least about 2 nm: after calcination it exhibits an X-ray diffraction pattern with at least one d-spacing greater than about 18 ⁇ and a hexagonal electron diffraction pattern that can be indexed with a d 100 value of greater than about 18 ⁇ , which corresponds to the d-spacing of the peak in the X-ray diffraction pattern.
- This material is described below and in detail in Ser. No. 07/625,245, now U.S. Pat. No. 5,098,684 (Kresge et al) and U.S. Pat. No. 5,102,643 to Kresge et al., both of which are incorporated herein in their entirety.
- the ordered mesoporous materials may be crystalline, that is having sufficient order to provide a diffraction pattern such as, for example, by X-ray, electron or neutron diffraction, following calcination, with at least one peak.
- a diffraction pattern such as, for example, by X-ray, electron or neutron diffraction, following calcination, with at least one peak.
- These mesoporous materials may be characterized by their structure, which includes extremely large pore windows as well as high sorption capacities.
- Ordered mesoporous materials as used in the present invention can be distinguished from other porous inorganic solids by the regularity of their large open pores, whose pore size more nearly resembles that of amorphous or paracrystalline materials, but whose regular arrangement and uniformity of size (pore size distribution within a single phase of, for example, +/ ⁇ 25%, usually +/ ⁇ 15% or less of the average pore size of that phase) resemble more those of crystalline framework materials such as zeolites.
- the term “hexagonal” is intended to encompass not only materials that exhibit mathematically perfect hexagonal symmetry within the limits of experimental measurement, but also those with significant observable deviations from that ideal state.
- a working definition as applied to the microstructure of the present invention would be that most channels in the material would be surrounded by six nearest neighbor channels at roughly the same distance. Defects and imperfections will cause significant numbers of channels to violate this criterion to varying degrees, depending on the quality of the material's preparation. Samples which exhibit as much as +/ ⁇ 25% random deviation from the average repeat distance between adjacent channels still clearly give recognizable images of the present ordered mesoporous materials.
- the ordered mesoporous materials as used for preparation of the catalyst support preferably have the following composition: M n/q (W a X b Y c Z d O h )
- W is a divalent element, such as a divalent first row transition metal, e.g. manganese, cobalt and iron, and/or magnesium, preferably cobalt;
- X is a trivalent element, such as aluminium, boron, iron and/or gallium, preferably aluminium;
- Y is a tetravalent element such as silicon and/or germanium, preferably silicon;
- Z is a pentavalent element, such as phosphorus;
- M is one or more ions, such as, for example, ammonium, Group IA, IIA and VIIB ions, usually hydrogen, sodium and/or fluoride ions;
- n is the charge of the composition excluding M expressed as oxides;
- q is the weighted molar 1 average valence of M;
- n/q is the number of moles or mole fraction of M;
- a, b, c, and d are mole fractions of W, X, Y and 1 Z,
- the mesoporous material has a composition, on an anhydrous basis, expressed empirically as follows: rRM n/q (W a X b Y c Z d O h )
- R is the total organic material not included in M as an ion
- r is the coefficient for R, i.e. the number of moles or mole fraction of R.
- the M and R components are associated with the material as a result of their presence during crystallisation, and are easily removed or, in the case of M, replaced by post-crystallisation methods hereinafter more particularly described.
- the original M e.g. ammonium, sodium or chloride
- ions of the as-synthesised material can be replaced in accordance with techniques well known in the art, at least in part, by ion exchange with other ions.
- Preferred replacing ions include metal ions, hydrogen ions, hydrogen precursor, e.g. ammonium, ions and mixtures thereof.
- Other M ions include rare earth metals and metals of Groups IA (e.g. K), IIA (e.g. Ca), VIIA (e.g. Mn), VIIA (e.g. Ni), IB (e.g. Cu), IIB (e.g. Zn), IIIB (e.g. In), IVB (e.g. Sn), and VIIB (e.g. F) of the Periodic Table of the Elements (Sargent-Welch Co. Cat. No. S-18806, 1979) and mixtures thereof.
- IA e.g. K
- IIA e.g. Ca
- VIIA e
- the preferred support for use in the present invention is a silica support.
- the preferred ordered mesoporous materials for use in the process of the present invention are the ordered mesoporous silicas.
- the most preferred ordered mesoporous silicas are those designated as M41S, with the most preferred being MCM-41.
- mesoporous materials that may be used in the process of the present invention are the mesoporous silicas as described in and prepared according to U.S. Pat. No. 5,951,962, the disclosure of which is incorporated herein in its entirety.
- mesoporous silica is prepared by converting a silica precursor in a water and polymer dispersion containing reaction medium.
- the preferred polymer dispersion is a cationic polymer.
- High surface area mesoporous alumina solids may be used in preparing the catalyst supports for use in the process of the present invention; such high surface area mesoporous alumina solids may be prepared according to the methods described in U.S. Pat. No. 6,238,701, the disclosure of which is incorporated herein in its entirety.
- the support may be macroporous materials or materials that are both macroporous and mesoporous, such as those described in U.S. Pat. Nos. 5,936,126, 6,248,924 and 6,284,917 the disclosures of which are incorporated herein in their entirety.
- Such macroporous materials have a mean pore diameter of at least about 50 nm, preferably at least about 100 nm, in particular at least about 500 nm.
- these macroporous materials have a BET surface area that is at most about 30 m 2 /g, preferably at most about 15 m 2 /g, more preferably at most about 10 m 2 /g in particular at most about 5 m 2 /g and more preferably at most about 3 m 2 /g.
- the mean pore diameter of theses macroporous materials is preferably from about 100 nm to about 20000 nm, and more preferably from about 500 nm to about 5000 nm, and most preferably 500 nm to 1000 nm.
- the surface area of these macroporous materials is preferably from about 0.2 to about 15 m 2 /g, more preferably from about 0.5 to about 10 m 2 /g, in particular from about 0.5 to about 5 m 2 /g and more preferably from about 0.5 to about 3 m 2 /g.
- the pore size distribution of the macroporous material is preferably approximately bimodal, with the pore diameter distribution having one maxima at about 600 nm. Further preference is given to a macroporous material, which has a surface area of 1.75 m 2 /g and this bimodal distribution of the pore diameter.
- the pore volume of the preferred macroporous material is preferably about 0.53 ml/g.
- the one or more materials of mixed porosity may be used in addition to a silica support and/or one or more materials having mesopores. These materials of mixed porosity may possess mesopores in addition to their macropores. Examples of such material are described in U.S. Pat. Nos. 6,248,924 and 6,284,917, the disclosures of which are incorporated herein in their entirety.
- the materials of mixed porosity may have a pore distribution in which from about 5 to about 50%, preferably from about 10 to about 45%, more preferably from about 10 to about 30% and in particular from about 15 to about 25%, of the pore volume is formed by macropores having pore diameters in the range from about 50 nm to about 10,000 nm and from about 50 to about 95%, preferably from about 55 to about 90%, more preferably from about 70 to about 90% and in particular from about 75 to about 85%, of the pore volume is formed by mesopores having a pore diameter of from about 2 to about 50 nm where in each case the sum of the pore volumes adds up to 100%.
- the total pore volume of the mixed porosity material is from about 0.05 to 1.5 cm 3 /g, preferably from 0.1 to 1.2 cm 3 /g and in particular from about 0.3 to 1.0 cm 3 /g.
- the mean pore diameter of the mixed porosity material is preferably from about 5 to 20 ⁇ m, preferably from about 8 to about 15 nm and in particular from about 9 to about 12 nm.
- the surface area of the mixed porosity material is preferably from about 50 to about 600 m 2 /g, more preferably from about 200 to about 600 m 2 /g and in particular from about 250 to about 600 m 2 /g of the support.
- the surface area of the macroporous materials and mixed porosity materials may be determined by the BET method using N 2 adsorption, in particular in accordance with DIN 66131.
- the mean pore diameter and the size distribution may be determined by Hg porosimetry, in particular in accordance with DIN 66133.
- the macroporous materials and mixed porosity materials that may be used are, for example, macropore containing activated carbon, silicon carbide, aluminum oxide, silicon dioxide, titanium dioxide, zirconium dioxide, magnesium oxide, zinc oxide or mixtures of two or more thereof, with preference being given to using macropore containing alumina.
- the catalyst may consist solely of one or more active hydrogenation metals deposited on the surfaces of one or more supports such as amorphous silica or ordered mesoporous materials.
- the catalyst is free of added inorganic binder.
- the support with or without active metal deposited thereon may be shaped into a wide variety of particle sizes.
- the particles can be in the form of a powder, a granule, or a molded product, such as an extrudate having particle size sufficient to pass through a 2 mesh (Tyler) screen and be retained on a 400 mesh (Tyler) screen.
- the crystals can be extruded before drying or partially dried and then extruded.
- the support material may be formed into composites with matrix materials resistant to the temperatures and other conditions employed in the hydrogenation process.
- Such materials include active and inactive materials and synthetic or naturally occurring zeolites as well as inorganic materials such as clays and/or oxides such as alumina, silica or silica-alumina The latter may be either naturally occurring or in the form of gelatinous precipitates or gels including mixtures of silica and metal oxides.
- Use of a material in conjunction with the zeolite, i.e., combined therewith or present during its synthesis, which itself is catalytically active may change the conversion and/or selectivity of the catalyst.
- the catalyst support may be composited with the matrix material in amounts from 99:01 to 05:95 by weight, preferably from 99:01 to 10:90, more preferably from 99:01 to 20:80, and most preferably from 99:01 to 50:50 catalyst support:matrix material.
- the additional matrix material is kept to a minimum typically less than 50 wt % of the combined weight of catalyst support and matrix material, ideally less than 40 wt %, preferably less than 30 wt %, more preferably less than 20 wt %, more preferably less than 15 wt %, most preferably less than 10 wt % and in a most preferred embodiment less than 5 wt %.
- Formation of the composition may be achieved by conventional means including mulling the materials together followed by extrusion of pelletizing into the desired finished catalyst particles.
- the additional matrix material is macroporous or is a material of mixed porosity i.e. both macroporous and mesoporous.
- the materials of mixed porosity may have a pore distribution in which from about 5 to about 50%, preferably from about 10 to about 45%, more preferably from about 10 to about 30 and in particular from about 15 to about 25%, of the pore volume is formed by macropores having pore diameters in the range from about 50 nm to about 10,000 nm and from about 50 to about 95%, preferably from about 55 to about 90%, more preferably from about 70 to about 90% and in particular from about 75 to about 85%, of the pore volume is formed by mesopores having a pore diameter of from about 2 to about 50 nm where in each case the sum of the pore volumes adds up to 100%.
- the total pore volume of the mixed porosity material is from about 0.05 to 1.5 cm 3 /g, preferably from 0.1 to 1.2 cm 3 /g and in particular from about 0.3 to 1.0 cm 3 /g.
- the mean pore diameter of the mixed porosity material is preferably from about 5 to 20 nm, preferably from about 8 to about 15 nm and in particular from about 9 to about 12 nm.
- the surface area of the mixed porosity material is preferably from about 50 to about 500 m 2 /g, more preferably from about 200 to about 350 m 2 /g and in particular from about 250 to about 300 m 2 /g of the support.
- the surface area of the macroporous materials and mixed porosity materials may be determined by the BET method using N 2 adsorption, in particular in accordance with DIN 66131.
- the mean pore diameter and the size distribution may be determined by Hg porosimetry, in particular in accordance with DIN 66133.
- the macroporous materials and mixed porosity materials that may be used are, for example, macropore containing activated carbon, silicon carbide, aluminum oxide, silicon dioxide, titanium dioxide, zirconium dioxide, magnesium oxide, zinc oxide or mixtures of two or more thereof, with preference being given to using macropore containing alumina
- the catalyst used in the present invention comprises one or more active hydrogenation metals deposited on one or more support materials.
- the hydrogenation component is provided by a metal or combination of metals.
- Active metals that may be used are preferably one or more metals of transition group VIII of the Periodic Table. Preference is given to using platinum, rhodium, palladium, cobalt, nickel or ruthenium or a mixture of two or more thereof as active metal. A particular preference is given to using ruthenium, platinum, palladium nickel or mixtures of two or more thereof.
- a particularly preferred active metal is ruthenium or nickel, most preferably ruthenium. It has to be noted in this respect that besides one or more metals of transition group VIII metals other metals may used be used in combination with the group VIII metals such as Group IB, VIIB, or VIIIB metals.
- the content of the metal component will vary according to its catalytic activity.
- the highly active noble metals may be used in smaller amounts than the less active base metals. For example, about 1 wt. percent or less or ruthenium, palladium or platinum will be effective.
- the metal component may exceed about 30 percent in a monolayer.
- the active metal content is generally from about 0.01 to about 30% by weight, preferably from about 0.01 to about 5% by weight and in particular from about 0.1 to about 5% by weight, in each case based on the total weight of the catalyst used.
- a preferred catalyst is one that comprises ruthenium alone or in combination with one or more additional active metals at a total content of less than 5% by weight of active metal and preferably at a total content of less than 2% by weight of active metal.
- the content of ruthenium is from about 0.01 to 2%, more preferably 0.1 to 1% by weight of the total catalyst.
- the hydrogenation catalyst is manufactured using a process according to the present invention in which a support is provided with one or more catalytically active metal sites through the use of a specific sequence of process steps.
- the support is provided with one or more organic complexes of one or more catalytically active metals in a second step the organic complex is either fully or partially decomposed.
- a compound, or salt, of one or more catalytically active metals is combined with one or more organic compounds to form a mixture which is then contacted with a support to deposit the organic complex.
- the complex may be formed on formation of the mixture or may be formed after contact with the support and after removal of any solvent or solvents used during formation of the mixture.
- the support is first contacted with a compound, or salt, of one or more catalytically active metals followed by treatment with one or more organic compounds to form the organic complex on the support.
- the support is first contacted with one or more organic compounds followed by treatment with a compound, or salt, or one or more catalytically active metals to form the complex on the support.
- one or more organic compounds and a compound, or salt, or one or more catalytically active metals are contacted simultaneously with the support to form the organic complex.
- a suitable organic complex of the desired metal may be synthesised and applied to the support via solution of the complex in a suitable solvent for the complex.
- the one or more catalytically active metals may be exchanged onto the support material, impregnated into it or physically admixed with it.
- the application of the individual components or mixture of components may be achieved by steeping the support in an aqueous metal salt solution, or a solution in a suitable solvent of a compound of the metal, or in the mixture.
- the deposition may be achieved by dipping, spraying or any other method.
- Suitable metal salts for preparing the metal salt solutions are for example nitrates, nitrosyl nitrates, halides, carbonates, carboxylates, acetylacetonates, chloro complexes, nitrito complexes or amine complexes of the corresponding metals, with preference being given to the nitrates and nitrosyl nitrates and most preferably the nitrosyl nitrates.
- Pt is the active metal it is preferred that it is not complexed with the organic compound as its nitrate salt, preferably it is complexed as a chloride or hydroxide salt.
- the metal salts or metal salt solutions or metal compound solutions or mixtures may be applied simultaneously or in succession.
- any organic compounds that are capable of forming organic complexes with the one or more catalytically active metals may be used.
- these will be organic compounds that are capable of forming complexes that are stable under the conditions that are normally used for depositing catalytically active metals.
- the organic compounds are selected to provide metal organic complexes that are stable under the conditions normally used for drying catalyst supports after impregnation with one or more catalytically active metals.
- Suitable organic compounds are well known in the art of transition metal chemistry and include such organic compounds as organic chelating agents, organic monodentate, bidentate and polydentate ligands commonly used in the preparation of transition metal coordination complexes. In a number of such complexes one or more ligands being covalently bonded molecules and/or ions may be present in the complex.
- particularly suitable organic compounds are compounds that contain one or more amino groups such as amines or amino acids and most preferably organic compounds containing amino and alcohol groups.
- the compounds containing one or more amino groups may be aliphatic amines, cycloaliphatic amines, aralkyl amines and alkylaryl amines. These may be primary, secondary and tertiary amines. They may also be quaternary ammonium salts with a counter ion. It is preferred that the nitrogen-containing compound is one or more primary, secondary or tertiary amines, preferably one or more aliphatic amines and most preferably one or more amines having one or more hydroxyl groups such as for example hydroxyalkylamines.
- the nitrogen-containing compound used according to the present invention has the following general formula: NR 1 R 2 R 3 (I)
- R 1 , R 2 and R 3 independently are one or more of the following groups: C 1 -C 50 -alkyl, C 3 -C 50 -cycloalkyl, aromatic, alkyl substituted aromatic, such as C 1 -C 50 -alkyl substituted aromatic, aromatic substituted aliphatic moieties such as C 1 -C 50 -alkylene moieties substituted with one or more aromatic groups, C 1 -C 50 -hydroxyalkyl, amino- and/or hydroxyl-substituted C 1 -C 50 -alkyl, alkoxyalkyl such as C 2 -C 50 -alkoxyalkyl, dialkylaminoalkyl such as C 3 -C 50 -dialkylaminoalkyl, alkylaminoalkyl such as C 2 -C 50 -alkylaminoalkyl, heterocyclic, aromatic heterocyclic, alkyl substituted heterocyclic and alkyl substituted aromatic heterocyclic, such as C 1
- alkyl groups include; methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, sec-pentyl, neopentyl, 1,2-dimethylpropyl, n-hexyl, isohexyl, sec-hexyl, n-heptyl, isoheptyl, n-octyl, isooctyl, 2-ethylhexyl, n-decyl, 2-n-propyl-n-heptyl, n-tridecyl, 2-n-butyl-n-nonyl and 3-n-butyl-n-nonyl, particularly preferably ethyl, isopropyl, 2-ethylhexyl, n-decyl, 2-n-propy
- cycloalkyl groups include C 3 -C 12 -cycloalkyl, preferably C 3 -C 8 -cycloalkyl such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl.
- aromatic groups include; phenyl, 1-naphthyl, 2-naphthyl, 1-anthryl, 2-anthryl and 9-anthryl, 1-phenanthryl, 2-phenanthryl, 3-phenanthryl, 4-phenanthryl and 9-phenanthryl.
- alkyl substituted aromatic groups include C 7 -C 50 alkyl aromatic groups, preferably C 7 -C 40 -alkylphenyl such as 2-nonylphenyl, 3-nonlyphenyl, 4-nonylphenyl, 2-decylphenyl, 3-decylphenyl, 4-decylphenyl, 2,3-dinonylphenyl, 2,4-dinonylphenyl, 2,5-dinonylphenyl, 3,4-dinonylphenyl, 3,5-dinonylphenyl, 2,3-didecylphenyl, 2,4-didecylphenyl, 2,5-didecylphenyl, 3,4-didecylphenyl and 3,5-didecylphenyl, more preferably C 7 -C 12 alkylphenyl such as 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, 2,4-dimethylphenyl, 2,5-di
- aromatic substituted aliphatic moieties include C 7 -C 50 alkylene moieties substituted with one or more aromatic substituents, preferably C 7 -C 12 -phenylalkyl such as benzyl, 1-phenethyl, 2-phenethyl, 1-phenylpropyl, 2-phenylpropyl, 3-phenylpropyl, 1-phenylbutyl, 2-phenylbutyl, 3-phenylbutyl and 4-phenylbutyl, particularly preferably benzyl, 1-phenethyl and 2-phenethyl.
- hydroxyalkyl groups include C 1 -C 50 -hydroxyalkyl, preferably C 1 -C 8 -hydroxyalkyl, particularly preferably C 1 -C 4 -hydroxyalkyl such as hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 1-hydroxy-n-propyl, 2-hydroxy-n-propyl, 3-hydroxy-n-propyl and 1-hydroxy-methyl-ethyl.
- Particularly preferred hydoxyalkyl group containing nitrogen compounds include the mono-, di-, and tri-, substituted aliphatic hydroxyalkylamines such as methanolamine, di-methanolamine, tri-methanolamine, ethanolamine, di-ethanolamine, tri-ethanolamine, butanolamine, di-butanolamine, tri-butanolamine, propanolamine, di-propanolamine, and tri-propanolamine.
- amino- and hydroxyalkyl groups include C 1 -C 50 -alkyl, preferably amino- and/or hydroxyl-substituted C 1 -C 8 -alkyl, particularly preferably amino and/or hydroxyl-substituted C 1 -C 4 -alkyl such as N-(hydroxyethyl)aminoethyl and N-(aminoethyl)aminoethyl.
- alkoxyalkyl groups include C 2 -C 50 -alkoxyalkyl, preferably C 2 -C 20 -alkoxyalkyl, particularly preferably C 2 -C 8 -alkoxyalkyl such as methoxymethyl, ethoxymethyl, n-propoxymethyl, isopropoxymethyl, n-butoxymethyl, isobutoxymethyl, sec-butoxymethyl, tert-butoxymethyl, 1-methoxyethyl and 2-methoxyethyl, particularly preferably C 2 -C 4 -alkoxyalkyl such as methoxymethyl, ethoxymethyl, n-propoxymethyl, isopropoxymethyl, n-butoxymethyl, isobutoxymethyl, sec-butoxymethyl, tert-butoxymethyl, 1-methoxyethyl and 2-methoxyethyl.
- dialkylamino groups include C 3 -C 50 -dialkylaminoalkyl, preferably C 3 -C 20 -dialkylaminoalkyl, particularly preferably C 3 -C 10 -dialkylaminoalkyl such as dimethylaminomethyl, dimethylaminoethyl, diethylaminoethyl, di-n-propylaminoethyl and diisopropylaminoethyl.
- alkylaminoalkyl groups include C 2 -C 50 -alkylaminoalkyl, preferably C 2 -C 20 -alkylaminoalkyl, particularly preferably C 2 -C 8 -alkylaminoalkyl such as methylaminomethyl, methylaminoethyl, ethylaminomethyl, ethylaminoethyl and iso-propylaminoethyl.
- aromatic heterocycles examples include 2-pyridinyl, 3-pyridinyl, 4-pyridinyl, pyrazinyl, 3-pyrrolyl, 2-imidazolyl, 2-furanyl and 3-furanyl.
- alkyl substituted aromatic heterocycles include C 4 -C 50 -mono-hetarylalkyl, such as 2-pyridylmethyl, 2-furanyl-methyl, 3-pyrrolylmethyl and 2-imidazolylmethyl, and C 4 -C 50 -alkylhetaryl such as 2-methyl-3-pyridinyl, 4,5-dimethyl-2-imidazolyl, 3-methyl-2-furanyl and 5-methyl-2-pyrazinyl.
- alkylaminoalkyl groups include C 2 -C 50 -alkylaminoalkyl, preferably C 2 -C 16 -alkylaminoalkyl such as methylaminomethyl, methylaminoethyl, ethylaminomethyl, ethylaminoethyl and isopropylaminoethyl.
- dialkylaminoalkyl groups include C 3 -C 50 -dialkylaminoalkyl, preferably C 3 -C 16 -dialkylaminoalkyl such as dimethylaminomethyl, dimethylaminoethyl, diethylaminoethyl, di-n-propylaminoethyl and diisopropylaminoethyl.
- heterocyclic compounds examples include pyridine, pyrrole, imidazole, oxazole, thiazole, pyrazole, 3-pyrroline, pyrrolidine, pyrimidine, and substituted examples of these heterocyclic compounds.
- organonitrile compounds include acrylonitrile, alkyl nitrites such as for example methyl nitrile, and ethyl nitrile.
- Suitable amino acids include natural and synthetic amino acids.
- the natural amino acids include all isomers of the following: alanine, arginine, asparagines, aspartic acid, cysteine, cystine, 3,5-dibromotyrosine, 3,5, diiodotyrosine, glutamic acid, glutamine, glycine, histidine, hydroxylysine, hydroxyproline, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, thyroxine, tryptophane, tyrosine and valine, a particularly preferred amino acid is L-arginine.
- the organic compound may be used at any suitable level in relation to the amount of salt or compound of the catalytically active metal. Ideally it is used at an appropriate mole ratio to convert all of the salt or compound of the catalytically active metal to one or more organic complexes. This may be a molar ratio of 1:1 or higher depending on the capacity of the metal to complex with the organic compound, the capacity of the organic compound to complex with the metal and the presence of other complexing ligands such as monodentate ligands.
- the mole ratio of organic compound to catalytically active metal is within the range of 0.1:1 to 40:1, preferably, 0.1:1 to 30:1, more preferably 0.2:1 to 25:1, even more preferably 0.25:1 to 10:1 or 0.5:1 to 10:1, more preferably 0.25:1 to 5:1, and most preferably 0.5:1 to 5:1.
- the mixture When the complex is formed in a mixture before contact with the support the mixture is usually and preferably formed in combination with a solvent, which may be water or an organic solvent or a mixture of water and solvent.
- a solvent which may be water or an organic solvent or a mixture of water and solvent.
- the amount of solvent used may vary within wide ranges but is typically sufficient to ensure that the mixture may be effectively contacted with the support so as to wet support and when the support is porous to allow penetration of the mixture into the porous support.
- the salt or compound of one or more catalytically active metals and the organic compound(s) are used in amounts which depending on their form allow the required mole ratios indicated above to be achieved in the mixture.
- the remainder of the mixture comprises one or more solvents which may be present in an amount from 1 to 99 wt % of the weight of the total mixture, preferably 5 to 90 wt % of the weight of the total mixture, more preferably 5 to 80 wt % of the weight of the total mixture, even more preferably 10 to 70 wt % of the weight of the total mixture and most preferably 10 to 65 wt % of the weight of the total mixture.
- the support may and preferably is dried to remove most of the solvent and/or water present during formation of the complex. Drying may be achieved under ambient conditions such as room temperature or this may be achieved at elevated temperatures, preferably drying is at a temperature from 100 to 150° C. Preferably, little or no decomposition of the organic complex occurs during the drying phase and drying merely results in the removal of non-complexed volatile materials.
- the second step in the process of the present invention for the manufacture of a hydrogenation catalyst is the decomposition of the organic complex on the support, which may be partial or full decomposition at this stage.
- this decomposition results in the formation in-situ of one or more precursors to the catalytically active metal sites. It is believed that it is, in part, the formation of these precursors and their treatment with hydrogen that ensures that the final catalyst exhibits a high degree of catalytic activity and has high levels of metal dispersion within the catalyst.
- the hydrogen may be used in a further step after full or partial decomposition or the full or partial decomposition may be undertaken in the presence of hydrogen under pyrolysis conditions.
- An important parameter in the activity of catalytically active metals is the form of the metal on the support and the level of dispersion of the metal on the support.
- the process of the present invention produces hydrogenation catalysts that comprise catalytically active metal particles that are relatively small and highly dispersed.
- the level of dispersion is relatively stable.
- Chemisorption measurements are commonly used to estimate the size of supported metal catalysts and metal surface area.
- the general method for measuring metal surface area by chemisorption is described in J. Lemaitre et al., “Characterization of Heterogenous Catalysts”, edited by Francis Delanney, Marcel Dekker, New York (1984), pp. 31.0-324.
- the total metal surface area on the catalyst is preferably from 0.01 to 10 m 2 /g, particularly preferably from 0.05 to 5 m 2 /g and more preferably from 0.05 to 3 m 2 /g of the catalyst.
- the % dispersion (% of metal atoms that populate the surface of the metal particles) can be estimated since a properly chosen titrant used in the chemisorption measurements adsorbs only on metal atoms populating the surface. Consequently higher dispersion values indicate smaller particles with more of the metal atoms populating the surface. For many hydrogenation reactions, activity correlates with dispersion.
- the preferred method for determining metal dispersion is by using hydrogen as the chemisorption probe molecule under high vacuum static conditions as follows. The sample is held at a temperature of 40° C. and an 8-point isotherm (with pressures between 80 and 400 torr) is obtained using H 2 as the chemisorption probe molecule.
- the value for the strongly chemisorbed hydrogen is an accurate indication of metal dispersion.
- the metal dispersion figures provided are based on the total chemisorbed probe and are not split into strong and weak components.
- the hydrogenation catalysts used have dispersion values relating to the strongly chemisorbed component in excess of 20% more preferably in excess of 25% and most preferably in excess of 30%.
- total dispersion values in excess of 45% preferably in excess of 50%, more preferably in excess of 55%, and most preferably in excess of 60% are achieved.
- 40% or more of the total metal dispersion relates to the strongly chemisorbed component, more preferably 45% or more and most preferably 50% or more.
- the organic complex is decomposed at least partially or fully decomposed.
- partial decompositions means that the chemical composition of the organic complex is varied; this may be due to a change in the structure of the organic complex or may be due to the chemical destruction of part of or a component of the complex.
- the destruction is partial the method of destruction is selected to ensure that the removal of non-metal chemical species associated with the complex is incomplete.
- the destruction is complete the only significant element of the complex remaining would be the one or more catalytically active metals as oxides when destruction is carried out under oxidizing conditions or the reduced metal when the destruction is carried out in the presence of hydrogen.
- residues such as carbon residues formed from decomposition of the organic complex.
- the partial decomposition is due to variations in structure and/or composition that do not normally occur under the drying conditions typically used in catalyst preparation methods.
- the changes of structure and/or composition under the conditions of the second stage may be detected and monitored using various analytical techniques that are well known in the art such as infra-red spectroscopy, mass spectroscopy, thermogravimetric analysis, gas or liquid chromatography and spectroscopy.
- a variety of methods may be used to induce partial or full destruction of the organic complex. These include chemical methods such as chemically induced hydrolysis or decomposition such as by the treatment with acid or base or ozone or similar chemical active materials. Other methods for inducing full or partial decomposition include thermal methods such as pyrolysis and/or calcination, both of which are the preferred methods with particular preference being given to calcination.
- a further method is treatment with steam. In one embodiment the pyrolysis may be carried out in the presence of hydrogen; in this embodiment any subsequent treatment with hydrogen may be omitted.
- the temperature at which this occurs if below the total decomposition temperature may be selected as the temperature for the partial decomposition or if above the total decomposition temperature may be selected as the temperature for full decomposition.
- the temperature below which significant quantities of nitrogen oxides are produced may be selected as the temperature for treatment to induce partial decomposition.
- the temperature at which CO or CO 2 are removed from the complex may be the temperature at which CO or CO 2 are removed from the complex.
- amines and especially amines containing hydroxyl groups or amino acids as the organic compound it may be the formation of new vibration bands that appear in the infra-red spectra at between 2100-2200 cm ⁇ 1 and tentatively assignable to complex carbon nitrogen species such as nitrites and isonitriles being present in the partially decomposed organic complex.
- TGA analysis shows total weight loss of the organic complex; temperatures below total weight loss may be selected for partial decomposition and temperatures at or above the temperature for total weight loss may be selected for full decomposition.
- the calcination temperatures used are typically within the range of 200 to 1000° C., preferably from 250 to 600° C.
- the exact temperature used will depend on whether or not full or partial decomposition of the organic complex is desired and will depend on the nature of the organic complex.
- Factors that may affect the decomposition temperature of the organic metal complex include the nature of the metal and/or organic compound within the complex. Another factor may be the nature of the counter-ion present when the metal is introduced in the form of a salt.
- the support with the organic complex deposited thereon is calcined at a temperature that is less than the temperature as determined by TGA in air, at which total weight loss of the organic complex occurs.
- the support with the organic complex deposited thereon is calcined at a temperature that is at or above the temperature, as determined by TGA, at which total weight loss of the organic complex occurs.
- it is between the temperature at which total weight loss of the organic complex occurs and 1000° C.
- oxygen is present either as a component of an otherwise inert diluent or as a consequence of calcination being undertaken in air.
- the pyrolysis may be undertaken in an inert atmosphere free of oxygen or in a hydrogen atmosphere that may be and preferably is free of oxygen.
- the organic complexes may decompose at higher temperatures than those observed under calcinations conditions.
- the temperature, under pyrolysis conditions, for partial or full decomposition may be determined using a variety of methods of which TGA is preferred.
- TGA is preferred.
- the support with the organic complex deposited thereon is pyrolysed in an inert atmosphere or under hydrogen at a temperature that is less than the temperature as determined by TGA in an inert atmosphere or under hydrogen, at which total weight loss of the organic complex occurs.
- it is between 200° C.
- the supports with the organic complex deposited thereon are pyrolysed at a temperature that is at or above the temperature, as determined by TGA, at which total weight loss of the organic complex occurs under pyrolysis conditions in an inert atmosphere or under hydrogen.
- a temperature that is at or above the temperature, as determined by TGA, at which total weight loss of the organic complex occurs under pyrolysis conditions in an inert atmosphere or under hydrogen.
- it is the between the temperature, under pyrolysis conditions in an inert atmosphere or under hydrogen, at which total weight loss of the organic complex occurs and 1000° C.
- the supports with the organic complex deposited thereon are pyrolysed in nitrogen or hydrogen at a temperature of less than 1000° C.
- the support comprising organic complex may be calcined or pyrolysed at the partial decomposition temperature for a period of time that is sufficient to ensure the partial decomposition of the organic complex occurs. Typically this will be for a period of at least 20 minutes, preferably at least 30, more preferably at least 45 mins and most preferably for 1 hour or more. Typically the period of time is 48 hours or less, preferably 24 hours or less and most preferably 12 hours or less. When full decomposition is required the support comprising organic complex may be calcined or pyrolysed at the full decomposition temperature for a period of time that is sufficient to ensure the full decomposition of the organic complex.
- the support comprising the partially or fully decomposed complex may be treated with a source of hydrogen. This may be omitted when the initial decomposition is undertaken in the presence of hydrogen. In a preferred embodiment this treatment is undertaken using conditions and methods normally used for the activation of hydrogenation catalysts. These conditions and methods are selected to ensure that catalytically active metal is converted to the catalytically active form.
- the treatment with hydrogen is carried out by contacting the support comprising fully or partially decomposed complex with a gas stream comprising free hydrogen at from 30 to 600° C., preferably from 100 to 550° C., even more preferably from 200 to 500° C., and most preferably from 200 to 450° C.
- the gas stream preferably consists of from 50 to 100% by volume of H 2 and from 0 to 50% by volume of N 2 .
- the treatment may be carried our under a continuous flow of hydrogen under atmospheric pressure or under static conditions at elevated pressures up to 100 bar, preferably 1 to 90 bar, more preferably 1 to 20 bar.
- the activation may be undertaken for a period of up to 48 hours, preferably no more than 36 hours, more preferably less than 24 hours, and most preferably from 30 mins to 12 hours.
- the support comprising fully or partially decomposed complex is exposed to hydrogen at atmospheric pressure and the temperature raised at a rate slower than 5° C. min ⁇ 1 , more preferably slower than 5° C. min ⁇ 1 and most preferably slower than 2° C.
- the hydrogen treatment temperature is generally higher than the decomposition temperature of the organic complex and the especially the partially decomposed organic complex.
- the various process stages of the present invention may be repeated in order to deposit each metal in sequence.
- the total metal surface area on the catalyst is preferably from 0.01 to 10 m 2 /g, particularly preferably from 0.05 to 5 m 2 /g and more preferably from 0.05 to 3 m 2 /g of the catalyst.
- the metal surface area may be measured by the chemisorption method as herein described.
- the hydrogenation conditions are selected taking into account the nature of the organic compound to be hydrogenated.
- the hydrogenation process is carried out at from about 50 to 250° C., preferably from about 70 to 220° C., most preferably 75 to 200° C., and more preferably at greater than 80° C.
- the most preferred temperature range is from 80 to 200° C.
- the pressures used here are generally above 10 bar, preferably from about 30 to about 300 bar, and most preferably greater than 50, preferably greater than 75 bar and more preferably from 50 to 220 bar, especially 75 to 220 bar.
- the process of the present invention may be carried out either continuously or batchwise, with preference being given to carrying out the process continuously.
- the amount of the benzenepolycarboxylic acid or derivative thereof to be hydrogenated or of the mixture of two or more thereof is preferably from about 0.05 to about 3 kg per liter of catalyst per hour, more preferably from about 0.1 to about 2 kg per liter of catalyst per hour, most preferably from 0.2 to 1 Kg per liter of catalyst per hour.
- hydrogenation gases it is possible to use any gases which comprise free hydrogen and do not contain harmful amounts of catalyst poisons such as CO, CO 2 , COS, H 2 S and amines.
- catalyst poisons such as CO, CO 2 , COS, H 2 S and amines.
- waste gases from a reformer can be used. Preference is given to using pure hydrogen as the hydrogenation gas.
- the hydrogenation of the present invention can be carried out in the presence or absence of a solvent or diluent, i.e. it is not necessary to carry out the hydrogenation in solution.
- Solvents or diluents which can be used, are any suitable solvent or diluent. The choice is not critical as long as the solvent or diluent used is able to form a homogeneous solution with the benzenepolycarboxylic acid or ester to be hydrogenated.
- the solvents or diluents can also comprise water.
- suitable solvents or diluents include the following: straight-chain or cyclic ethers such as tetrahydrofuran or dioxane, and also aliphatic alcohols in which the alkyl radical preferably has from 1 to 10 carbon atoms, in particular from 3 to 6 carbon atoms.
- alkyl radical preferably has from 1 to 10 carbon atoms, in particular from 3 to 6 carbon atoms.
- alcohols which are preferably used, are i-propanol, n-butanol, i-butanol and n-hexanol. Mixtures of these or other solvents or diluents can likewise be used.
- the amount of solvent or diluent used is not restricted in any particular way and can be selected freely depending on requirements. However, preference is given to amounts which lead to a 10-70% strength by weight solution of the benzenepolycarboxylic acid or ester to be hydrogenated.
- the process of the present invention it is also possible to use one or more derivates of benzenepolycarboxylic acids in the unpurified state that is in the presence of one or more starting materials for their manufacture such as for example alcohol in the case of ester derivatives. Also present may be traces of monoester derivatives, un-reacted acid such as phthalic acid, sodium monoester derivatives and sodium salts of the acids.
- the benzenecarboxylic acid derivative is hydrogenated prior to purification and after hydrogenation is then sent to process finishing for stripping, drying and polishing filtration.
- the benzenecarboxylic acid derivative may be an intermediate feed containing high levels of alcohol in the case of ester derivatives. There may be present 5 to 30% excess alcohol than that required to achieve complete esterification of the acid. In one embodiment there may be an intermediate feed containing 8 to 10 wt % isononyl alcohol in di-isononyl phthalate.
- the desired products are one or more cyclohexyl materials derived from the hydrogenation of the corresponding benzenepolycarboxylic acid or derivatives thereof.
- the benzenepolycarboxylic acid or derivatives thereof are converted to the desired product with a high degree of selectivity and with the maximum conversion possible of the benzenepolycarboxylic acid or derivatives thereof. Hydrogenations of this type often result in undesirable by-products of relatively low molecular weight and low boiling point; these by-products are referred to as “lights”.
- lights are defined as materials in the as hydrogenated reaction product that are eluted before the object cyclohexyl materials when the as hydrogenated reaction product is analyzed by Gas Liquid Chromatography. Details for one suitable method for determining the “lights” content of a product obtained by the process of the present invention is provided in the specific examples. When using the process of the present invention it is possible to obtain greater than 95% conversion of the starting material (one or more benzenepolycarboxylic acid or derivatives thereof), whilst at the same time producing less than 1.5% by weight based on the total weight of reaction product of “lights”.
- the product obtained directly from the hydrogenation reaction ideally contains the object cyclohexyl derivative(s) in an amount that equates to 97 or greater mole % conversion of the starting material, preferably 98.5 or greater mole % conversion, more preferably 99 or greater mole % conversion, and most preferably 99.9 or greater mole % conversion.
- the product obtained directly from the hydrogenation reaction ideally contains 1.3% or less, preferably 1.0% or less, more preferably 0.75% or less, even more preferably 0.5% or less, and in the most preferable embodiment less than 0.3% by weight based on the total weight of the reaction product of “lights”.
- hydrogenated products of this level of purity it may be possible to use these materials directly in certain applications without the need for further purification of the as hydrogenated product such as plasticisers for plastics products.
- MCM-41 40 ⁇ was prepared in accordance with the method described below, which corresponds to Example 21 of U.S. Pat. No. 5,837,639.
- the following mixture (parts by weight—pbw) was charged to an autoclave:
- CMA Cetyltrimethylammonium hydroxide prepared by contacting a 29 wt. % N,N,N-trimethyl-1-hexadecylammonium chloride solution with a hydroxide-for halide exchange resin, 1.7 pbw sodium aluminate, 41.1 pbw tetramethylammonium silicate (10% aqueous solution), and 10.5 pbw precipitated hydrated silica (HiSil)
- the mixture was crystallized at 100° C. for 20 hours with stirring under autogeneous pressure.
- the resulting product was recovered by filtration and dried in air at ambient temperature.
- the product was then calcined at 540° C. for one hour in nitrogen, followed by six hours in air.
- the calcined product had a surface area of 1120 m 2 /g and the following equilibrium adsorption capacities in gram/100 grams:
- the product was identified as MCM-41 with an X-ray diffraction pattern that included a very strong relative intensity line at 38.4+/ ⁇ 2.0 ⁇ , and weak lines at 22.6+/ ⁇ 1.0, 20.0+/ ⁇ 1.0, and 15.2+/ ⁇ ⁇ .
- the mixture was crystallized at 150° C. for 20 hours with stirring under autogeneous pressure.
- the resulting product was recovered by filtration and dried in air at ambient temperature.
- the product was then calcined at 540° C. for one hour in nitrogen, followed by six hours in air.
- the product was identified as MCM-41.
- the calcined product has a surface area of 903 m 2 /g and a pore size (determined by nitrogen adsorption) of 3.8 nm.
- the analyses are as follows:
- a solution was prepared by combining with stirring 16.6 grams of ruthenium (III) nitrosyl nitrate aqueous solution with 25.7 grams of triethanolamine and 25.7 grams of distilled water. This solution was added slowly to 25 grams of MCM-41 of Example 1b and dried overnight at 100° C. The catalyst was then calcined to 400° C. for three hours in flowing air. The ruthenium content was a nominal 0.5%.
- a solution was prepared by combining with stirring 16.6 grams of ruthenium (III) nitrosyl nitrate aqueous solution with 51.4 grams of distilled water. This solution was added slowly to 25 grams of MCM-41 of Example 1b and dried overnight at 100° C. The catalyst was then calcined to 400° C. for three hours in flowing air. The ruthenium content was a nominal 0.5%.
- the catalysts prepared in Examples 2 and 3 were activated under two sets of conditions a) and b) as follows:
- Catalyst particles (10/20 mesh) were loaded into a stainless-steel catalyst basket then installed in a 300 cm 3 autoclave. Metal reduction was conducted under a continuous atmospheric hydrogen flow of ⁇ 100 cm 3 min ⁇ 1 at 200° C. for 18 hours.
- Catalyst particles (10/20 mesh) were loaded into a stainless-steel catalyst basket then installed in a 300 cm 3 autoclave. Metal reduction was conducted under a static hydrogen pressure of 1250 psig (approx 86 bar) at 200° C. for 14 hours.
- the lights content of the sample was determined by Gas Liquid Chromatography using a DB-1 column (60 m ⁇ 0.25 mm ⁇ 0.25 ⁇ m), operated at 40-275° C. at a ramp rate of 10° C./min and holding at 275° C. for 35 minutes. The lights were determined as being all peaks, which eluted before 24.5 minutes. Components eluted thereafter were considered as Cyclohexanedicarboxylates products. The conversions and selectivities for the various hydrogenations are provided in Table 1.
- the data in this table indicates that the catalysts prepared via impregnation with a triethanolamine/aqueous ruthenium mixture are more active hydrogenation catalysts compared with those prepared via aqueous ruthenium impregnation without the use of triethanolamine.
- the data also indicates that the catalysts prepared via impregnation with a triethanolamine/aqueous ruthenium mixture produce lower levels of lights at higher hydrogenation pressures.
- FIG. 1 A comparison of FIG. 1 and FIG. 2 illustrates that the catalyst prepared according to the process of the present invention is significantly more active as a hydrogenation catalyst compared to the catalyst prepared via the conventional aqueous route.
- Example 6 A portion of sample from Example 6 was calcined in flowing air as the temperature was ramped 1° C./minute to 300° C. and held for one hour at that temperature. A chemisorption measurement was made on this sample after hydrogen treatment.
- Example 6 A portion of sample from Example 6 was further calcined in air at a heating rate of 1° C./min to 400° C. and held at that temperature for 3 hours. A chemisorption measurement was made on this sample after hydrogen treatment.
- Table 2 compares the dispersion measurements by H chemisorption of the catalysts of Examples 7 and 8. This comparison shows that the highest dispersions are obtained when the Ru-TEA on silica catalyst is calcined at 300° C., which partially decomposes the complex. After 400° C. calcination the organic complex is totally destroyed before hydrogen treatment and it can be seen that the chemisorption values are substantially lower and are unstable as they decrease as the reduction temperature is increased above 250° C. The higher values in the Example 7 catalyst remain stable during reduction at 400° C.
- Example 9 A portion of sample from Example 9 was calcined in flowing air as the temperature was ramped 1° C./minute to 275° C. and held at that temperature for one hour. A chemisorption measurement was made on this sample after hydrogen treatment.
- Table 3 compares the dispersion measurements by H chemisorption of the catalysts of Examples 10 and 11. Both treatments generate a remnant of the starting Ru-triethanolamine complex. This comparison shows that the partial decomposition may be achieved at higher temperatures when under inert pyrolysis conditions (absence of oxygen) to form the Ru-organic precursor that gives high dispersion as well as when produced via oxidation.
- Table 4 compares the dispersion measurements by H chemisorption of the catalysts of Examples 7, 12 and 13. Only the catalyst prepared according to Example 7 in the Table is an object of this invention and has the remnant of the starting Ru-triethanolamine complex. This comparison shows that a high initial dispersion can be obtained on a catalyst that is simply impregnated with an aqueous solution of the Ruthenium salt and then dried at low temperature if it is reduced at temperatures as low as 150° C. On reduction at higher temperatures the dispersion numbers decrease dramatically, most probably as a result of sintering. This does not happen with the catalyst of Example 7, which remains stable at 400° C. reduction temperatures. If the aqueous salt solution of Ru is calcined first to 300° C. the dispersion numbers are very low (Example 13).
- Table 5 compares the dispersion measurements by H chemisorption of the catalysts of Examples 7 and 14. Both calcined samples leave a remnant of the starting Ru-amino complexes. This comparison shows that high dispersions are obtained when using either aminoalcohols or aminoacids in the impregnation solution.
- the data Table 6 shows the chemisorption data for Examples 9 and 10. This comparison shows that the dried catalyst with the amino complex (Example 9) gives a good dispersion value if directly reduced in hydrogen that is superior to the sample where the complex is completely oxidized to remove the complex (Example 8 see Table 2). However, the dispersion is not as good as that obtained if the organic complex is either partially oxidized or pyrolysed.
- FIG. 3 shows that a water peak is released slightly below 200° C. and then there is formation of CO 2 , NO 2 and H 2 O as the organic complex is completely oxidized near to 350° C. This shows that the complex contained C, N and H. There might be O as well but we cannot tell from this experiment as it is carried out under oxidizing conditions.
- Example 7 The samples containing partially decomposed organic complex derived from Ru-triethanolamine and Ru-arginine were also analyzed using infrared spectroscopy. Approximately 25 mg of the materials of Example 7, (TEA, calc 300° C.), Example 12 (no organic, dry 100° C.) and Example 14 (L-arginine, calc 250 C) were separately formed into 13 mm pellets and loaded into an IR spectrometer operating in transmission mode. The samples were heated in vacuum to 150° C. before the spectra were obtained.
- the data are shown in FIG. 4 .
- the data shows the plot of transmittance vs. wave number of the IR radiation.
- the transmittance decreases where the catalyst absorbs infrared radiation due to a characteristic stretching of a molecular species.
- the peaks between 1500 and 2000 cm ⁇ 1 are primarily silica stretching bands.
- the presence of absorption features around 2100-2200 cm ⁇ 1 present on samples from Examples 7 and 14 are reported to be features of complexed carbon nitrogen species such as nitrites and isonitriles (see: Infrared and Raman Spectra of Inorganic and Coordination Compounds, by K. Nakamoto, John Wiley publishers, 3rd edition, 1978; ISBN: 0-471-62979-0 pages 267-269).
- peaks are absent on the starting silica as well as on the sample prepared by aqueous impregnation of the ruthenium complex with no amino alcohol or amino acids present. Consequently these peaks are an indication of the remnant of the starting Ru-triethanolamine and Ru-arginine complexes present after partial decomposition of the organic complex.
- FIG. 5 shows the air treatment TGA plot for a catalyst sample (0.5 wt % Ru on SiO 2 ), which had been prepared with triethanolamine as the organic compound and dried at 100° C. prior to analysis.
- the TGA plot shows weight loss at temperatures below 300° C. due to loss of water and partial oxidation of the complex with triethanolamine. In addition there is a further weight loss at approximately 325° C., which is believed to be due to the complete oxidation of the organic complex.
- FIG. 6 shows the air treatment TGA plot for a similar catalyst to that used in FIG. 1 (0.5 wt % Ru on SiO 2 ), which had previously been calcined at 300° C.
- the majority of the weight loss in the sample is due to the partially decomposed organic complex, which is oxidized at approximately 325° C. This results shows that that calcination below the decomposition temperature is necessary to form the partially decomposed organic complex.
- FIG. 7 shows the hydrogen treatment TGA for the catalyst sample (0.5 wt % Ru on SiO 2 ), which had previously been calcined at 300° C.
- This TGA analysis shows that the partially oxidised organic complex is fully decomposed under the hydrogen treatment conditions at a higher temperature ( ⁇ 400° C.) than under calcination conditions.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/712,793 US7875742B2 (en) | 2002-11-20 | 2010-02-25 | Hydrogenation processes |
US12/967,254 US8143438B2 (en) | 2002-11-20 | 2010-12-14 | Hydrogenation processes |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB0227086.6A GB0227086D0 (en) | 2002-11-20 | 2002-11-20 | Hydrogenation processes |
GB0227086.6 | 2002-11-20 | ||
PCT/EP2003/012885 WO2004046076A2 (en) | 2002-11-20 | 2003-11-18 | Hydrogenation catalyst, preparation thereof and hydrogenation processes using this catalyst |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2003/012885 A-371-Of-International WO2004046076A2 (en) | 2002-11-20 | 2003-11-18 | Hydrogenation catalyst, preparation thereof and hydrogenation processes using this catalyst |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/712,793 Continuation US7875742B2 (en) | 2002-11-20 | 2010-02-25 | Hydrogenation processes |
Publications (2)
Publication Number | Publication Date |
---|---|
US20060149097A1 US20060149097A1 (en) | 2006-07-06 |
US7732634B2 true US7732634B2 (en) | 2010-06-08 |
Family
ID=9948196
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/534,075 Expired - Fee Related US7732634B2 (en) | 2002-11-20 | 2003-11-18 | Hydrogenation processes |
US12/712,793 Expired - Fee Related US7875742B2 (en) | 2002-11-20 | 2010-02-25 | Hydrogenation processes |
US12/967,254 Expired - Fee Related US8143438B2 (en) | 2002-11-20 | 2010-12-14 | Hydrogenation processes |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/712,793 Expired - Fee Related US7875742B2 (en) | 2002-11-20 | 2010-02-25 | Hydrogenation processes |
US12/967,254 Expired - Fee Related US8143438B2 (en) | 2002-11-20 | 2010-12-14 | Hydrogenation processes |
Country Status (12)
Country | Link |
---|---|
US (3) | US7732634B2 (ko) |
EP (1) | EP1578712A2 (ko) |
JP (1) | JP2006506430A (ko) |
KR (1) | KR100995156B1 (ko) |
CN (1) | CN100425345C (ko) |
AU (1) | AU2003288097A1 (ko) |
CA (1) | CA2503519A1 (ko) |
GB (1) | GB0227086D0 (ko) |
IN (1) | IN2005DE01533A (ko) |
NO (1) | NO20053024L (ko) |
WO (1) | WO2004046076A2 (ko) |
ZA (1) | ZA200503610B (ko) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013025277A1 (en) | 2011-08-15 | 2013-02-21 | Exxonmobil Chemical Patents Inc. | Esters and their preparation and use |
US20140336294A1 (en) * | 2013-05-08 | 2014-11-13 | Lg Chem, Ltd. | Method for preparing ester composition and resin composition |
US20140336319A1 (en) * | 2013-05-08 | 2014-11-13 | Lg Chem. Ltd. | Ester composition, method of preparing the same and resin composition including the same |
WO2018046306A1 (en) | 2016-09-09 | 2018-03-15 | Exxonmobil Chemical Patents Inc. | Processes for the hydrogenation of phthalate esters |
US10618878B1 (en) | 2019-03-27 | 2020-04-14 | King Fahd University Of Petroleum And Minerals | Catalytic reduction of aromatic ring in aqueous medium |
Families Citing this family (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0227086D0 (en) * | 2002-11-20 | 2002-12-24 | Exxonmobil Res & Eng Co | Hydrogenation processes |
GB0227087D0 (en) * | 2002-11-20 | 2002-12-24 | Exxonmobil Chem Patents Inc | Hydrogenation of benzene polycarboxylic acids or derivatives thereof |
US20050113614A1 (en) | 2003-11-24 | 2005-05-26 | Lowe David M. | Catalyst and process for selective hydrogenation |
US7199273B2 (en) | 2003-11-24 | 2007-04-03 | Exxonmobil Chemical Patents, Inc. | Selective hydrogenation of alkynes and/or diolefins |
US7220700B2 (en) | 2003-11-24 | 2007-05-22 | Exxonmobil Chemical Patents Inc. | Catalyst and process for selective hydrogenation |
US7220701B2 (en) | 2003-11-24 | 2007-05-22 | Exxonmobil Chemical Patents Inc. | Catalyst and process for selective hydrogenation |
JP2005218958A (ja) * | 2004-02-05 | 2005-08-18 | Tottori Univ | 芳香族化合物の水素化反応触媒および芳香族化合物の水素化方法 |
CN1922128B (zh) | 2004-02-17 | 2011-08-17 | 埃克森美孚研究工程公司 | 使用高活性粉末催化剂改进合成严重位阻的氨基-醚醇和二氨基聚链烯基醚 |
JP4604051B2 (ja) | 2004-02-17 | 2010-12-22 | エクソンモービル リサーチ アンド エンジニアリング カンパニー | 金属装填触媒を用いた立体障害の大きなアミノ−エーテルアルコール類の触媒的調製 |
US7718564B2 (en) | 2005-06-24 | 2010-05-18 | Exxonmobil Research And Engineering Company | Partially decomposed catalyst and hydrocarbon oxidation processes using the same |
US7538066B2 (en) * | 2005-09-29 | 2009-05-26 | Exxonmobil Research And Engineering Company | Method of preparing a hydrotreating catalyst on a support containing a rare earth metal |
US7605107B2 (en) * | 2005-09-29 | 2009-10-20 | Exxonmobil Research And Engineering Company | Method of preparing a supported hydrotreating catalyst |
JP5030691B2 (ja) * | 2007-07-12 | 2012-09-19 | 株式会社マーレ フィルターシステムズ | キャニスタ |
KR20120081993A (ko) * | 2009-10-06 | 2012-07-20 | 바이엘 크롭사이언스 아게 | 1,1-디플루오로-2-니트로에탄의 수소화에 의한 2,2-디플루오로에틸아민 유도체의 제조방법 |
US8921590B2 (en) | 2009-12-15 | 2014-12-30 | Exxonmobil Chemical Patents Inc. | Oligomerisation process |
CN102958900B (zh) | 2010-09-20 | 2016-09-28 | 埃克森美孚化学专利公司 | 邻苯二甲酸酯的液相氢化方法 |
CN102020532A (zh) * | 2010-11-11 | 2011-04-20 | 江苏索普(集团)有限公司 | 以醇、醛、酸和酯的水溶液混合物为原料加氢制醇的方法 |
WO2012152821A1 (de) * | 2011-05-11 | 2012-11-15 | Basf Se | Katalysatoren zur hydrierung aromatischer amine |
KR101930087B1 (ko) * | 2011-07-26 | 2018-12-18 | 에스케이이노베이션 주식회사 | 방향족 카르복시산 및/또는 방향족 카르복시산 알킬 에스테르 제조 공정에서 발생하는 부산물로부터 방향족 탄화수소 제조방법 |
KR101404231B1 (ko) * | 2011-11-25 | 2014-06-05 | 서울대학교산학협력단 | 균일한 기공성 탄소에 담지된 귀금속 담지 촉매, 그 제조 방법 및 상기 촉매를 이용하여 숙신산으로부터 사수소화퓨란을 제조하는 방법 |
WO2014150384A1 (en) | 2013-03-15 | 2014-09-25 | Segetis, Inc. | Method of manufacture of octanedioic acid, precursors, and derivatives |
JP6314411B2 (ja) * | 2013-10-10 | 2018-04-25 | 三菱瓦斯化学株式会社 | 芳香族カルボン酸類の水素化触媒およびその製造方法 |
WO2015057313A1 (en) | 2013-10-18 | 2015-04-23 | Exxonmobil Chemical Patents Inc. | A hydrogenation catalyst, its method of preparation and use |
US9861960B2 (en) | 2013-10-18 | 2018-01-09 | Exxonmobil Chemical Patents Inc. | Hydrogenation catalyst, its method of preparation and use |
US9943829B2 (en) | 2013-10-18 | 2018-04-17 | Exxonmobil Chemical Patents Inc. | Hydrogenation catalyst, its method of preparation and use |
EP2918610A1 (en) * | 2014-03-10 | 2015-09-16 | LANXESS Deutschland GmbH | Process for the preparation of polymers containing amino groups employing a heterogeneous iron catalyst |
CN107074725A (zh) * | 2014-10-29 | 2017-08-18 | 埃克森美孚化学专利公司 | 苯多羧酸及其衍生物的改进氢化方法 |
US9512054B2 (en) | 2015-02-10 | 2016-12-06 | Eastman Chemical Company | Method for making a high purity alcohol |
WO2016160921A1 (en) | 2015-03-31 | 2016-10-06 | Basf Corporation | Hydrogenation and ethynylation catalysts |
WO2017030074A1 (ja) * | 2015-08-19 | 2017-02-23 | セントラル硝子株式会社 | α-フルオロアルデヒド類の製造方法 |
JP6806990B2 (ja) * | 2015-08-19 | 2021-01-06 | セントラル硝子株式会社 | α−フルオロアルデヒド類の製造方法 |
US11673125B2 (en) | 2016-08-18 | 2023-06-13 | The University Of Chicago | Metal oxide-supported earth-abundant metal catalysts for highly efficient organic transformations |
CN106563487A (zh) * | 2016-10-28 | 2017-04-19 | 绍兴文理学院 | 一种催化剂及其制备方法与应用 |
FR3061198B1 (fr) | 2016-12-22 | 2019-07-26 | IFP Energies Nouvelles | Procede d'hydrogenation des aromatiques mettant en œuvre un catalyseur a base de nickel |
CN108786915B (zh) * | 2017-04-28 | 2021-05-04 | 山东新和成药业有限公司 | 一种固体缩合催化剂的制备方法与用途 |
KR102324239B1 (ko) | 2017-11-06 | 2021-11-08 | 한화솔루션 주식회사 | 방향족 화합물의 수소화 반응용 촉매 및 이의 제조방법 |
FR3076747B1 (fr) | 2018-01-15 | 2022-06-10 | Ifp Energies Now | Procede de preparation d'un catalyseur particulier d'hydrogenation selective et d'hydrogenation des aromatiques par malaxage |
CN110496614A (zh) * | 2018-05-16 | 2019-11-26 | 中国科学院大连化学物理研究所 | 金属催化剂、其制备方法及在水相催化糠醛加氢制备糠醇中的应用 |
FR3087787B1 (fr) * | 2018-10-25 | 2020-12-18 | Ifp Energies Now | Procede d’hydrogenation comprenant un catalyseur prepare par addition d’un compose organique en phase gazeuse |
CN112295544A (zh) * | 2019-08-02 | 2021-02-02 | 中国石油化工股份有限公司 | 具有改性金属有机化合物骨架的硫化氢吸附剂及其制备方法和应用 |
CN111036279B (zh) * | 2019-12-12 | 2023-02-10 | 西安近代化学研究所 | 应用于邻苯二甲酸二异壬酯加氢合成环己烷-1,2-二甲酸二异壬酯的催化剂的制备方法 |
FR3104462B1 (fr) | 2019-12-17 | 2022-06-10 | Ifp Energies Now | Catalyseur pour l’hydrogenation de composes aromatiques obtenu a partir de sels fondus et d’un additif organique |
CN111977663A (zh) * | 2020-08-25 | 2020-11-24 | 西北大学 | 一种多级孔道结构沸石分子筛及其制备方法和应用 |
CN113663648A (zh) * | 2021-07-29 | 2021-11-19 | 昆明理工大学 | 一种后合成修饰mof材料吸附剂、制备方法及其应用 |
CN114160120B (zh) * | 2021-12-24 | 2024-01-26 | 郑州中科新兴产业技术研究院 | 一种用于己二酸酯生产己二腈的催化剂的制备方法 |
CN115041188B (zh) * | 2022-04-27 | 2023-07-21 | 大连理工大学 | 一种负载型铂铜合金催化剂的改性方法及其在丙烷脱氢制丙烯中应用 |
CN114939438B (zh) * | 2022-07-26 | 2022-09-23 | 山东新和成药业有限公司 | 一种烯属不饱和羰基化合物选择性加氢的方法及其催化剂 |
CN117399014B (zh) * | 2023-12-15 | 2024-04-23 | 乌镇实验室 | 一种限域氨分解催化剂的制备方法和应用 |
Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2889287A (en) * | 1954-10-04 | 1959-06-02 | California Research Corp | Catalyst and method of catalyst preparation |
US3027398A (en) | 1960-02-01 | 1962-03-27 | Du Pont | Process for preparing dimethyl 1, 4-cyclohexanedicarboxylate |
US3334149A (en) | 1964-07-21 | 1967-08-01 | Eastman Kodak Co | Plural stage hydrogenation of dialkyl terephthalate using palladium and then copper chromite |
US3761428A (en) * | 1970-02-23 | 1973-09-25 | Inst Du Petrole Carburants Et | Catalysts for converting hydrocarbons |
US4073750A (en) | 1976-05-20 | 1978-02-14 | Exxon Research & Engineering Co. | Method for preparing a highly dispersed supported nickel catalyst |
EP0005737A1 (de) | 1978-05-26 | 1979-12-12 | Bayer Ag | Verfahren zur Herstellung von cycloaliphatischen Carbonsäureestern |
US4431574A (en) | 1981-05-05 | 1984-02-14 | Institut Francais Du Petrole | Supported group VIII noble metal catalyst and process for making it |
US5098684A (en) | 1990-01-25 | 1992-03-24 | Mobil Oil Corp. | Synthetic mesoporous crystaline material |
US5250282A (en) | 1990-01-25 | 1993-10-05 | Mobil Oil Corp. | Use of amphiphilic compounds to produce novel classes of crystalline oxide materials |
US5286898A (en) | 1993-06-15 | 1994-02-15 | Eastman Kodak Company | Low pressure process for the hydrogenation of dimethyl benzenedicarboxylates to the corresponding dimethyl cyclohexanedicarboxlates |
US5319129A (en) | 1993-06-15 | 1994-06-07 | Eastman Kodak Company | Preparation of dimethyl cyclohexanedicarboxylates |
EP0603825A1 (en) | 1992-12-21 | 1994-06-29 | Towa Chemical Industry Co., Ltd. | Process for preparing 1,4-cyclohexandicarboxilic acid |
WO1998047618A1 (en) | 1997-04-22 | 1998-10-29 | Exxon Research And Engineering Company | Preparation of high activity catalysts, the catalysts and their use |
US5837639A (en) | 1990-01-25 | 1998-11-17 | Mobil Oil Corporation | Hydroprocessing catalyst |
WO1999032427A1 (de) | 1997-12-19 | 1999-07-01 | Basf Aktiengesellschaft | Verfahren zur hydrierung von benzolpolycarbonsäuren oder derivaten davon unter verwendung eines makroporen aufweisenden katalysators |
US5936126A (en) | 1996-06-19 | 1999-08-10 | Basf Aktiengesellschaft | Process for reacting an organic compound in the presence of a supported ruthenium catalyst |
US5951962A (en) | 1996-09-23 | 1999-09-14 | Basf Aktiengesellschaft | Mesoporous silica, its preparation and its use |
US6238701B1 (en) | 1997-07-14 | 2001-05-29 | Basf Aktiengesellschaft | High surface area alumina solid |
US6248924B1 (en) | 1996-06-19 | 2001-06-19 | Basf Aktiengesellschaft | Process for reacting an organic compound in the presence of a supported ruthenium catalyst |
WO2004046076A2 (en) | 2002-11-20 | 2004-06-03 | Exxonmobil Research And Engineering Company | Hydrogenation catalyst, preparation thereof and hydrogenation processes using this catalyst |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US288927A (en) | 1883-11-20 | Fourth to willabd l | ||
JPS6161644A (ja) * | 1984-09-03 | 1986-03-29 | Agency Of Ind Science & Technol | シリカを担体とする多孔性高分散金属触媒の調製方法 |
JP2771749B2 (ja) * | 1992-12-17 | 1998-07-02 | 出光興産株式会社 | 水素化触媒製造用含浸液及び水素化触媒の製造方法 |
US5451312A (en) | 1993-10-26 | 1995-09-19 | Mobil Oil Corporation | Catalyst and process for producing low-aromatics distillates |
JP3609830B2 (ja) | 1993-12-20 | 2005-01-12 | モービル・オイル・コーポレイション | 水素化方法 |
GB0227081D0 (en) * | 2002-11-20 | 2002-12-24 | Exxonmobil Res & Eng Co | Methods for preparing catalysts |
-
2002
- 2002-11-20 GB GBGB0227086.6A patent/GB0227086D0/en not_active Ceased
-
2003
- 2003-11-18 WO PCT/EP2003/012885 patent/WO2004046076A2/en active Application Filing
- 2003-11-18 AU AU2003288097A patent/AU2003288097A1/en not_active Abandoned
- 2003-11-18 CN CNB2003801045033A patent/CN100425345C/zh not_active Expired - Fee Related
- 2003-11-18 CA CA002503519A patent/CA2503519A1/en not_active Abandoned
- 2003-11-18 EP EP03779969A patent/EP1578712A2/en not_active Withdrawn
- 2003-11-18 JP JP2004552640A patent/JP2006506430A/ja active Pending
- 2003-11-18 US US10/534,075 patent/US7732634B2/en not_active Expired - Fee Related
-
2005
- 2005-04-15 IN IN1533DE2005 patent/IN2005DE01533A/en unknown
- 2005-05-04 ZA ZA200503610A patent/ZA200503610B/en unknown
- 2005-05-19 KR KR20057009059A patent/KR100995156B1/ko not_active IP Right Cessation
- 2005-06-20 NO NO20053024A patent/NO20053024L/no not_active Application Discontinuation
-
2010
- 2010-02-25 US US12/712,793 patent/US7875742B2/en not_active Expired - Fee Related
- 2010-12-14 US US12/967,254 patent/US8143438B2/en not_active Expired - Fee Related
Patent Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2889287A (en) * | 1954-10-04 | 1959-06-02 | California Research Corp | Catalyst and method of catalyst preparation |
US3027398A (en) | 1960-02-01 | 1962-03-27 | Du Pont | Process for preparing dimethyl 1, 4-cyclohexanedicarboxylate |
US3334149A (en) | 1964-07-21 | 1967-08-01 | Eastman Kodak Co | Plural stage hydrogenation of dialkyl terephthalate using palladium and then copper chromite |
US3761428A (en) * | 1970-02-23 | 1973-09-25 | Inst Du Petrole Carburants Et | Catalysts for converting hydrocarbons |
US4073750A (en) | 1976-05-20 | 1978-02-14 | Exxon Research & Engineering Co. | Method for preparing a highly dispersed supported nickel catalyst |
EP0005737A1 (de) | 1978-05-26 | 1979-12-12 | Bayer Ag | Verfahren zur Herstellung von cycloaliphatischen Carbonsäureestern |
US4431574A (en) | 1981-05-05 | 1984-02-14 | Institut Francais Du Petrole | Supported group VIII noble metal catalyst and process for making it |
US5098684A (en) | 1990-01-25 | 1992-03-24 | Mobil Oil Corp. | Synthetic mesoporous crystaline material |
US5102643A (en) | 1990-01-25 | 1992-04-07 | Mobil Oil Corp. | Composition of synthetic porous crystalline material, its synthesis |
US5250282A (en) | 1990-01-25 | 1993-10-05 | Mobil Oil Corp. | Use of amphiphilic compounds to produce novel classes of crystalline oxide materials |
US5837639A (en) | 1990-01-25 | 1998-11-17 | Mobil Oil Corporation | Hydroprocessing catalyst |
EP0603825A1 (en) | 1992-12-21 | 1994-06-29 | Towa Chemical Industry Co., Ltd. | Process for preparing 1,4-cyclohexandicarboxilic acid |
US5286898A (en) | 1993-06-15 | 1994-02-15 | Eastman Kodak Company | Low pressure process for the hydrogenation of dimethyl benzenedicarboxylates to the corresponding dimethyl cyclohexanedicarboxlates |
US5319129A (en) | 1993-06-15 | 1994-06-07 | Eastman Kodak Company | Preparation of dimethyl cyclohexanedicarboxylates |
US5936126A (en) | 1996-06-19 | 1999-08-10 | Basf Aktiengesellschaft | Process for reacting an organic compound in the presence of a supported ruthenium catalyst |
US6248924B1 (en) | 1996-06-19 | 2001-06-19 | Basf Aktiengesellschaft | Process for reacting an organic compound in the presence of a supported ruthenium catalyst |
US5951962A (en) | 1996-09-23 | 1999-09-14 | Basf Aktiengesellschaft | Mesoporous silica, its preparation and its use |
WO1998047618A1 (en) | 1997-04-22 | 1998-10-29 | Exxon Research And Engineering Company | Preparation of high activity catalysts, the catalysts and their use |
US6238701B1 (en) | 1997-07-14 | 2001-05-29 | Basf Aktiengesellschaft | High surface area alumina solid |
WO1999032427A1 (de) | 1997-12-19 | 1999-07-01 | Basf Aktiengesellschaft | Verfahren zur hydrierung von benzolpolycarbonsäuren oder derivaten davon unter verwendung eines makroporen aufweisenden katalysators |
US6284917B1 (en) * | 1997-12-19 | 2001-09-04 | Basf Aktiengesellschaft | Method for hydrogenating benzene polycarboxylic acids or derivatives thereof by using a catalyst containing macropores |
WO2004046076A2 (en) | 2002-11-20 | 2004-06-03 | Exxonmobil Research And Engineering Company | Hydrogenation catalyst, preparation thereof and hydrogenation processes using this catalyst |
Non-Patent Citations (6)
Title |
---|
Ahmen Kadry Aboul-Gheit: The Role of Additives in the Impregnation of Platinum and Ruthenium on Alumina Catalysts, Journal of Chemical Technology and Biotechnology, vol. 29, No. 8, Aug. 1979, pp. 480-486. |
J. Lemaitre et al.: The Measurement of Catalyst Dispersion, pp. 299-365. |
K. Nakamoto: Infrared and Roman Spectra of Inorganic and Coordination Compounds, Third Edition, 1978, Wehr Professor of Chemistry, Marquette University, pp. 267-269. |
P.A. Winsor: Binary and Multicomponent Solutions of Amphiphilic Compounds, Solubilization and the Formation, Structure, and Theoretical Significance of Liquid Crystalline Solutions, Winsor Chemical Reviews, 1969, vol. 68, No. 1. |
Robert Schaffer: Development of Clinical References Method for Glucose in Serum, Pure & Application Chemical, 1976, vol. 45, p. 79. |
U. Ciesla; F. Schuth: Review of Ordered Mesoporous Material, Microporous and Mesoporous Materials, 1999, vol. 27, pp. 131-149. |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013025277A1 (en) | 2011-08-15 | 2013-02-21 | Exxonmobil Chemical Patents Inc. | Esters and their preparation and use |
US20140336294A1 (en) * | 2013-05-08 | 2014-11-13 | Lg Chem, Ltd. | Method for preparing ester composition and resin composition |
US20140336319A1 (en) * | 2013-05-08 | 2014-11-13 | Lg Chem. Ltd. | Ester composition, method of preparing the same and resin composition including the same |
KR20140132683A (ko) * | 2013-05-08 | 2014-11-18 | 주식회사 엘지화학 | 압출 또는 사출용 염화비닐계 수지 조성물 |
US9062179B2 (en) * | 2013-05-08 | 2015-06-23 | Lg Chem, Ltd. | Ester composition, method of preparing the same and resin composition including the same |
US9505907B2 (en) | 2013-05-08 | 2016-11-29 | Lg Chem, Ltd. | Ester composition, method of preparing the same and resin composition including the same |
US9587087B2 (en) * | 2013-05-08 | 2017-03-07 | Lg Chem, Ltd. | Method for preparing ester composition and resin composition |
KR101720381B1 (ko) | 2013-05-08 | 2017-03-27 | 주식회사 엘지화학 | 압출 또는 사출용 염화비닐계 수지 조성물 |
WO2018046306A1 (en) | 2016-09-09 | 2018-03-15 | Exxonmobil Chemical Patents Inc. | Processes for the hydrogenation of phthalate esters |
US10618878B1 (en) | 2019-03-27 | 2020-04-14 | King Fahd University Of Petroleum And Minerals | Catalytic reduction of aromatic ring in aqueous medium |
US10858327B2 (en) | 2019-03-27 | 2020-12-08 | King Fahd University Of Petroleum And Minerals | Method of hydrogenating a compound having an N-heterocyclic aromatic ring |
Also Published As
Publication number | Publication date |
---|---|
US8143438B2 (en) | 2012-03-27 |
US20100184895A1 (en) | 2010-07-22 |
EP1578712A2 (en) | 2005-09-28 |
GB0227086D0 (en) | 2002-12-24 |
IN2005DE01533A (ko) | 2007-03-16 |
WO2004046076A2 (en) | 2004-06-03 |
CN1717279A (zh) | 2006-01-04 |
KR20050083906A (ko) | 2005-08-26 |
NO20053024L (no) | 2005-06-20 |
ZA200503610B (en) | 2006-08-30 |
KR100995156B1 (ko) | 2010-11-17 |
US20060149097A1 (en) | 2006-07-06 |
CA2503519A1 (en) | 2004-06-03 |
US7875742B2 (en) | 2011-01-25 |
CN100425345C (zh) | 2008-10-15 |
JP2006506430A (ja) | 2006-02-23 |
US20110082311A1 (en) | 2011-04-07 |
AU2003288097A1 (en) | 2004-06-15 |
WO2004046076A3 (en) | 2004-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7732634B2 (en) | Hydrogenation processes | |
EP1567470B1 (en) | Hydrogenation of benzene polycarboxylic acids or derivatives thereof | |
EP1569751B1 (en) | Methods for preparing catalysts | |
US7547805B2 (en) | Catalytic preparation of severely sterically hindered amino-ether alcohols using a metal loaded catalyst | |
US10017448B2 (en) | Process for hydrogenation of benzenepolycarboxylic acids and derivatives thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY, NEW J Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SOLED, STUART LEON;MALEK, ANDRZEJ;VARTULI, JAMES CLARKE;AND OTHERS;REEL/FRAME:023559/0544;SIGNING DATES FROM 20050603 TO 20050715 Owner name: EXXONMOBIL CHEMICAL PATENTS INC., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EXXONMOBIL RESEARCH AND ENGINEERING COMPANY;REEL/FRAME:023559/0589 Effective date: 20080507 Owner name: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY,NEW JE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SOLED, STUART LEON;MALEK, ANDRZEJ;VARTULI, JAMES CLARKE;AND OTHERS;SIGNING DATES FROM 20050603 TO 20050715;REEL/FRAME:023559/0544 Owner name: EXXONMOBIL CHEMICAL PATENTS INC.,TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EXXONMOBIL RESEARCH AND ENGINEERING COMPANY;REEL/FRAME:023559/0589 Effective date: 20080507 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552) Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20220608 |