US6875325B2 - Sputtering target producing few particles - Google Patents

Sputtering target producing few particles Download PDF

Info

Publication number
US6875325B2
US6875325B2 US10/297,265 US29726503A US6875325B2 US 6875325 B2 US6875325 B2 US 6875325B2 US 29726503 A US29726503 A US 29726503A US 6875325 B2 US6875325 B2 US 6875325B2
Authority
US
United States
Prior art keywords
sputtering target
face
sputtering
sprayed coating
side face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime, expires
Application number
US10/297,265
Other languages
English (en)
Other versions
US20030155235A1 (en
Inventor
Hirohito Miyashita
Takeo Okabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
Nikko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Materials Co Ltd filed Critical Nikko Materials Co Ltd
Assigned to NIKKO MATERIALS COMPANY LIMITED reassignment NIKKO MATERIALS COMPANY LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MIYASHITA, HIROHITO, OKABE, TAKEO
Publication of US20030155235A1 publication Critical patent/US20030155235A1/en
Application granted granted Critical
Publication of US6875325B2 publication Critical patent/US6875325B2/en
Assigned to NIPPON MINING & METALS CO., LTD. reassignment NIPPON MINING & METALS CO., LTD. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: NIKKO MATERIALS CO., LTD.
Assigned to JX NIPPON MINING & METALS CORPORATION reassignment JX NIPPON MINING & METALS CORPORATION CHANGE OF NAME/MERGER Assignors: NIPPON MINING & METALS CO., LTD.
Assigned to JX NIPPON MINING & METALS CORPORATION reassignment JX NIPPON MINING & METALS CORPORATION CHANGE OF ADDRESS Assignors: JX NIPPON MINING & METALS CORPORATION
Adjusted expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge

Definitions

  • the present invention relates to a sputtering target producing few particles during deposition.
  • the sputtering method capable of easily controlling the film thickness and components is being widely used as one of the deposition methods of materials for electronic and electric components.
  • This sputtering method makes the targets formed of a positive electrode and a negative electrode face each other and applies a high voltage between these substrates and the target under an inert gas atmosphere in order to generate an electric field, and employs the fundamental principle in which plasma is formed upon the atoms ionized at such time colliding with the inert gas, the positive ions within this plasma colliding with the target (negative electrode) surface and discharging the atoms structuring the target, whereby the film is formed by the discharged atoms adhering to the opposing substrate surface.
  • the problem of the production of particles has been attracting attention.
  • the thin film is deposited within the walls of the thin film forming device and all over the materials and the like therein, in addition to the substrate, when a target is sputtered. Faces and side faces other than the erosion portion of the target are no exceptions, and the deposits of sputtered particles have been observed.
  • flakes separating from such materials and the like within the thin film forming device directly flying on the substrate surface is considered to be one of the major causes for the production of particles.
  • a sputtering target is connected to a backing plate having a larger measurement with such means as welding, diffusion bonding or soldering.
  • the side face of the sputtering target to be connected to the backing plate is usually formed to have an inclined face broadening toward such backing plate.
  • a backing plate plays the role of cooling the target by the back face thereof contacting a coolant, and materials such as aluminum or copper or the alloys thereof having a favorable thermal conductivity are used.
  • the side face of the foregoing sputtering target is not the portion which will erode (become subject to wear) from sputtering. Nonetheless, since it is close to the erosion face of the target, there is a trend toward the sputtered particles flying during the sputtering operation further adhering and depositing thereto.
  • the erosion face of a sputtering target has a smooth surface from the turning process, and the foregoing inclined side face is similarly subject to the turning process.
  • An object of the present invention is to obtain a sputtering target capable of directly preventing the separating and flying of the deposit produced from the side face of the sputtering target, particularly between the target side face and the backing plate.
  • the present inventors discovered that the production of particles within the deposition could be efficiently suppressed by devising the structure of the sputtering target and the structure between the target side face and the backing plate.
  • FIG. 1 is an explanatory diagram of the cross section showing an example of the sputtering target—backing plate assembly.
  • FIG. 2 is an explanatory diagram of the cross section showing another example of the sputtering target—backing plate assembly.
  • the sputtering target of the present invention may be employed in a rectangular or circular target, as well as targets of other shapes, and, since these targets are thick, they have all side faces. Although the side faces are often inclined faces as described above, the present invention may also be employed in sputtering targets having a structure of perpendicular faces or planar faces successive thereto. The present invention includes all of the above.
  • the basic background of the present invention is as follows. As mentioned above, it has been observed that the sputtered particles (deposits) once adhered to the inclined side face are separated therefrom once again, float, and cause the production of particles, and, it has become known that, rather than from the vicinity of the flat peripheral erosion face, the separation of such deposits occurs more often from a location distant therefrom. Thus, in order to get to the bottom of the cause of production of particles, this phenomenon was foremost investigated.
  • the sputtered particles adhering to the flat peripheral erosion face and the inclined face near such erosion face have a relatively fast speed and energy, and tend to have strong adhesiveness.
  • the side face of the target is of a step shape as described above, at the side face distant from the flat erosion face, it has been observed that the particles separated in a pillar shape do not adhere in large amounts in layers, but rather adhere in small amounts in each step. And, this type of adhesion in a pillar shape tends to be much easier to peel off in comparison to a layered adhesion on a single face.
  • the prime task was to suppress such separation and to prevent the separation of adhered particles that cause the production of particles from the sputtering target side face.
  • FIG. 1 the structure of the sputtering target and backing plate assembly is shown in FIG. 1 .
  • the sputtering target 1 is mounted on the backing plate 2 , and connected with row connection or the like.
  • FIG. 2 is a modification thereof, and the backing plate area to which the sputtered particles fly and adhere during sputtering is made to be of the same material as the target 3 in the assembly of the sputtering target 3 and the backing plate 4 .
  • this example illustrates a mode where the target 3 is embedded in the backing plate 4
  • the edge portion of the target 3 is of a shape exceeding the backing plate area to which the sputtered particles fly and adhere during sputtering.
  • the present invention is a sputtering target having a sprayed coating at least on the side face thereof.
  • Reference numeral 5 in FIG. 1 and FIG. 2 represents the sprayed coating.
  • the material of the sprayed coating a material of the same quality of material as the target material may be used, or other materials may be used.
  • the only limitation would be that it is desirable to use a material that will not contaminate the sputtering thin film to the substrate.
  • the sprayed coating shows a unique anchor effect, this is not particularly limited unless it becomes a cause of contamination due to the sprayed coating separates as a result of the sprayed coating becoming vulnerable.
  • used may be Ti, Zr, Hf, Nb, Ta, Mo, W, Al, Cu, alloys with these as the main component, and nitrides, carbides, carbonitrides, oxides thereof and the like.
  • the backing plate material the ordinarily used copper, copper alloy, aluminum, aluminum alloy and the like may be used, and there is no limitation.
  • the present invention may be used for sputtering targets in which the side face thereof to be connected to the backing plate is broadening toward such backing plate.
  • the sprayed coating of the present invention it is desirable that the sprayed coating is formed successively along the sputtering target side face and the backing plate face.
  • the formation of the successive sprayed coatings to the backing plate may be over the entire face in which the target is exposed, or may be in the vicinity of the connection with the target.
  • the present invention includes all of the above. Therefore, it goes without saying that the sprayed coating may be employed in the structured depicted in FIG. 2 , and the sprayed coating may be formed successively along the sputtering target side face, lower planar face and backing plate face.
  • a discoid target when viewed two-dimensionally which is high purity Ti (5N purity) having a diameter of 300 mm and thickness of 10 mm, was bonded with an Al alloy backing plate with diffusion bonding in order to prepare a sputtering target—backing plate assembly having an overall thickness of 17 mm.
  • This structure is the assembly structure of the target and backing plate illustrated in FIG. 1 .
  • a sprayed coating to which Al was sprayed and having a surface roughness of 16, 14, 17 ⁇ m Ra and thickness of 250 ⁇ m was formed on the side face of this target. This was mounted on a magnetron sputtering sputter device, TiN reactive sputtering was performed thereto, and a TiN film was formed until the thickness became 20 ⁇ m in order to examine the production of particles.
  • a target outside the conditions of the present invention that is, a target in which a sprayed coating is not formed on the side face thereof was prepared
  • reactive sputtering of TiN having a thickness of 4 ⁇ m was performed under the same conditions in order to examine the generation of particles.
  • reactive sputtering of TiN having a thickness of 4 ⁇ m was performed under the same conditions upon preparing a target in which a sprayed coating having a surface roughness of 5 ⁇ m, 7 ⁇ m, 23 ⁇ m Ra was formed on the side face thereof in order to examine the production of particles (Comparative Example 1).
  • the following results are an average of 10 sample tests.
  • Sample Nos. 1 to 3 are the Examples of the present invention, and Sample Nos. 4 to 7 are the Comparative Examples.
  • this Table the adhesive mode of the sputtered particles and the existence of separation were observed for each sample.
  • Comparative Example Sample No. 4 without a sprayed coating formed on the side face thereof showed numerous separations of the deposited films on the side face with a TiN film having a thickness of 4 ⁇ m (regardless of the thickness or thinness of the film). This is considered to be because there is hardly any anchor effect of the side face. Moreover, with Comparative Examples Sample Nos. 5 and 6, this is considered to be because the anchor effect was low due to the surface roughness of the sprayed coating being small. With Comparative Example Sample 7, the sprayed coating itself separated most likely because the respective particle connection of the sprayed coating was weak.
  • Example 2 Similar to Example 1, a discoid target when viewed two-dimensionally, which is high purity Ti (5N purity) having a diameter of 300 mm and thickness of 10 mm, was bonded with an Al alloy backing plate with diffusion bonding in order to prepare a sputtering target—backing plate assembly having an overall thickness of 17 mm structured as illustrated in FIG. 2 .
  • high purity Ti 5N purity
  • a sprayed coating to which Al was sprayed successively and having a surface roughness of 16, 12, 18 ⁇ m Ra and thickness of 300 ⁇ m was formed on the side face of this target and the backing plate. This was mounted on a magnetron sputtering sputter device, TiN reactive sputtering was performed thereto, and a TiN film was formed until the thickness became 30 ⁇ m in order to examine the production of particles.
  • a target in which a sprayed coating is not formed on the side face of the sputtering target—backing plate assembly of the same structure was prepared in order to examine the generation of particles.
  • reactive sputtering of TiN having a thickness of 3 ⁇ m was performed under the same conditions upon preparing a target in which a sprayed coating having a surface roughness of 5, 8, 25 ⁇ m Ra was formed on the side face thereof in order to examine the production of particles (Comparative Example 2).
  • the following results are an average of 10 sample tests.
  • Sample Nos. 8 to 10 are the Examples of the present invention, and Sample Nos. 11 to 14 are the Comparative Examples.
  • the adhesive mode of the sputtered particles and the existence of separation were observed for each sample.
  • Comparative Example Sample No. 11 without a sprayed coating formed on the side face thereof showed the deposition of sputtered particles in a pillar shape and numerous separations of the deposited films on the side face with a TiN film having a thickness of 4 ⁇ m (regardless of the thickness or thinness of the film). This is considered to be because there is hardly any anchor effect of the side face.
  • the prevention effect of the separation of sputtered particles is high, and is further effective in preventing the production of particles.
  • Example 2 Similar to Example 1, a discoid target when viewed two-dimensionally, which is high purity Ti (5N purity) having a diameter of 300 mm and thickness of 10 mm, was bonded with an Al alloy backing plate with diffusion bonding in order to prepare a sputtering target—backing plate assembly having an overall thickness of 17 mm structured as illustrated in FIG. 1 .
  • high purity Ti 5N purity
  • Al+5% Mg alloy was sprayed to the side face of this target in order to form a sprayed coating having a surface roughness of 14, 17, 19 ⁇ m Ra and thickness of 250 ⁇ m.
  • Sample Nos. 15 to 17 are the Examples of the present invention, and Sample Nos. 18 to 20 are the Comparative Examples.
  • the adhesive mode of the sputtered particles and the existence of separation were observed for each sample.
  • Comparative Example Sample Nos. 18 and 19 showed separations of the sputtered particles. This is considered to be because the anchor effect was low due to the surface roughness of the sprayed coating being small.
  • Comparative Example Sample 20 Although separation of the sprayed coating itself was observed, this is considered to be because the respective particle connection of the sprayed coating was weak, and the spray coating itself separated as a result thereof.
  • a discoid target when viewed two-dimensionally which is high purity Ti (5N purity) having a diameter of 300 mm and thickness of 10 mm, was bonded with an Al alloy backing plate with diffusion bonding in order to prepare a sputtering target—backing plate assembly having an overall thickness of 17 mm structured as illustrated in FIG. 2 .
  • Al+5% Mg alloy was successively sprayed to the side face of this target in order to form a sprayed coating having a surface roughness of 15, 13, 18 ⁇ m Ra and thickness of 300 ⁇ m.
  • Sample Nos. 21 to 23 are the Examples of the present invention, and Sample Nos. 24 to 26 are the Comparative Examples. In this Table, the adhesive mode of the sputtered particles and the existence of separation were observed for each sample.
  • Comparative Example Sample Nos. 24 and 25 showed separations of the sputtered particles. This is considered to be because the anchor effect was low due to the surface roughness of the sprayed coating being small.
  • Comparative Example Sample 26 Although separation of the sprayed coating itself was observed, this is considered to be because the respective particle connection of the sprayed coating was weak, and the spray coating itself separated as a result thereof.
  • Yielded is a superior effect of being able to directly prevent the separating and flying of the deposit produced from the side face of the sputtering target, particularly between the target side face and the backing plate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Physical Vapour Deposition (AREA)
  • Coating By Spraying Or Casting (AREA)
US10/297,265 2000-08-25 2001-04-20 Sputtering target producing few particles Expired - Lifetime US6875325B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2000255323 2000-08-25
JP2000-255323 2000-08-25
JP2000-314778 2000-10-16
JP2000314778A JP3791829B2 (ja) 2000-08-25 2000-10-16 パーティクル発生の少ないスパッタリングターゲット
PCT/JP2001/003386 WO2002016665A1 (fr) 2000-08-25 2001-04-20 Cible de pulverisation produisant peu de particules

Publications (2)

Publication Number Publication Date
US20030155235A1 US20030155235A1 (en) 2003-08-21
US6875325B2 true US6875325B2 (en) 2005-04-05

Family

ID=26598456

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/297,265 Expired - Lifetime US6875325B2 (en) 2000-08-25 2001-04-20 Sputtering target producing few particles

Country Status (7)

Country Link
US (1) US6875325B2 (fr)
EP (1) EP1314795B1 (fr)
JP (1) JP3791829B2 (fr)
KR (1) KR100515906B1 (fr)
DE (1) DE60112101T2 (fr)
TW (1) TWI221162B (fr)
WO (1) WO2002016665A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080116066A1 (en) * 2004-11-17 2008-05-22 Nippon Mining & Metals Co., Ltd. Sputtering Target, Sputtering Target-Backing Plate Assembly and Deposition System
US20090008245A1 (en) * 2001-12-19 2009-01-08 Nippon Mining & Metals Co., Ltd. Method for Connecting Magnetic Substance Target to Backing Plate, and Magnetic Substance Target
US20090229975A1 (en) * 2007-02-09 2009-09-17 Nippon Mining & Metals Co., Ltd. Target formed of Sintering-Resistant Material of High-Melting Point Metal Alloy, High-Melting Point Metal Silicide, High-Melting Point Metal Carbide, High-Melting Point Metal Nitride, or High-Melting Point Metal Boride, Process for Producing the Target, Assembly of the Sputtering Target-Backing Plate, and Process for Producing the Same
US20090277788A1 (en) * 2006-06-29 2009-11-12 Nippon Mining & Metals Co., Ltd. Sputtering Target/Backing Plate Bonded Body
US9704695B2 (en) 2011-09-30 2017-07-11 Jx Nippon Mining & Metals Corporation Sputtering target and manufacturing method therefor
US10984992B2 (en) 2015-05-21 2021-04-20 Jx Nippon Mining & Metals Corporation Sputtering target

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6858116B2 (en) * 2000-11-17 2005-02-22 Nikko Materials Company, Limited Sputtering target producing few particles, backing plate or sputtering apparatus and sputtering method producing few particles
US7077945B2 (en) * 2002-03-01 2006-07-18 Northwest Aluminum Technologies Cu—Ni—Fe anode for use in aluminum producing electrolytic cell
US20050072668A1 (en) * 2003-10-06 2005-04-07 Heraeus, Inc. Sputter target having modified surface texture
JP4336206B2 (ja) * 2004-01-07 2009-09-30 Hoya株式会社 マスクブランクの製造方法、及びマスクブランク製造用スパッタリングターゲット
WO2005077677A1 (fr) * 2004-02-09 2005-08-25 Honeywell International, Inc. Constituants de depot physique en phase vapeur, et procedes de traitement de constituants
JP4959118B2 (ja) * 2004-04-30 2012-06-20 株式会社アルバック スパッタリング装置及びスパッタリング装置用のターゲット
US20080145688A1 (en) 2006-12-13 2008-06-19 H.C. Starck Inc. Method of joining tantalum clade steel structures
US8197894B2 (en) 2007-05-04 2012-06-12 H.C. Starck Gmbh Methods of forming sputtering targets
US8246903B2 (en) 2008-09-09 2012-08-21 H.C. Starck Inc. Dynamic dehydriding of refractory metal powders
JP5410545B2 (ja) * 2010-11-19 2014-02-05 Jx日鉱日石金属株式会社 Itoスパッタリングターゲット
KR20140015367A (ko) 2011-02-14 2014-02-06 토소우 에스엠디, 인크 확산-접합 스퍼터링 타겟 조립체 및 그 제조 방법
JP2013007109A (ja) * 2011-06-27 2013-01-10 Ulvac Japan Ltd スパッタリング用のターゲット及びこれを用いたスパッタリング方法
US8734896B2 (en) 2011-09-29 2014-05-27 H.C. Starck Inc. Methods of manufacturing high-strength large-area sputtering targets
JP5775175B2 (ja) * 2011-12-12 2015-09-09 キヤノンアネルバ株式会社 スパッタリング装置およびシールド
US20150279636A1 (en) * 2012-10-09 2015-10-01 Applied Materials, Inc. Particle free rotary target and method of manufacturing thereof
KR20160074568A (ko) 2013-10-22 2016-06-28 토소우 에스엠디, 인크 최적화된 구조화 표면 및 최적화 방법
WO2016051771A1 (fr) 2014-09-30 2016-04-07 株式会社 東芝 Structure de cible de pulvérisation cathodique et procédé de fabrication de structure de cible de pulvérisation cathodique
JP6624585B2 (ja) * 2015-01-09 2019-12-25 Jx金属株式会社 スパッタリングターゲット−バッキングプレート接合体
JP7424854B2 (ja) 2020-02-14 2024-01-30 アルバックテクノ株式会社 成膜処理用部品及び成膜装置
CN113416913B (zh) * 2021-07-02 2023-05-09 河南东微电子材料有限公司 一种氧化镁靶材背板的氧化铝涂层制备方法
CN114986106B (zh) * 2022-07-06 2023-09-08 宁波江丰电子材料股份有限公司 一种钽溅射靶材端面密封槽的加工方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07126841A (ja) 1993-11-05 1995-05-16 Idemitsu Material Kk スパッタ装置
JPH08176816A (ja) 1994-12-20 1996-07-09 Hitachi Ltd 成膜装置用防着板の表面処理方法
JPH09143706A (ja) 1995-11-14 1997-06-03 Mitsubishi Chem Corp スパッタリングターゲット
JPH09272965A (ja) * 1996-04-09 1997-10-21 Toshiba Corp 真空成膜装置用部品とそれを用いた真空成膜装置、およびターゲット、バッキングプレート
JPH1030174A (ja) 1996-07-17 1998-02-03 Advanced Display:Kk スパッタリング装置および該装置に用いるバッキングプレートの加工方法
US5863398A (en) * 1996-10-11 1999-01-26 Johnson Matthey Electonics, Inc. Hot pressed and sintered sputtering target assemblies and method for making same
JPH11236663A (ja) 1998-02-25 1999-08-31 Seiko Epson Corp スパッタリングターゲット、スパッタリング装置およびスパッタリング方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08277466A (ja) * 1995-04-06 1996-10-22 Japan Energy Corp パーティクル発生防止方法
JPH09176842A (ja) * 1995-12-22 1997-07-08 Mitsubishi Materials Corp マグネトロンスパッタリング用Tiターゲット
JPH1055538A (ja) * 1996-08-08 1998-02-24 Mitsubishi Chem Corp 磁気記録媒体の製造方法
JPH11131224A (ja) * 1997-10-31 1999-05-18 Kubota Corp スパッタリングターゲットおよびスパッタ装置用部材

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07126841A (ja) 1993-11-05 1995-05-16 Idemitsu Material Kk スパッタ装置
JPH08176816A (ja) 1994-12-20 1996-07-09 Hitachi Ltd 成膜装置用防着板の表面処理方法
JPH09143706A (ja) 1995-11-14 1997-06-03 Mitsubishi Chem Corp スパッタリングターゲット
JPH09272965A (ja) * 1996-04-09 1997-10-21 Toshiba Corp 真空成膜装置用部品とそれを用いた真空成膜装置、およびターゲット、バッキングプレート
JPH1030174A (ja) 1996-07-17 1998-02-03 Advanced Display:Kk スパッタリング装置および該装置に用いるバッキングプレートの加工方法
US5863398A (en) * 1996-10-11 1999-01-26 Johnson Matthey Electonics, Inc. Hot pressed and sintered sputtering target assemblies and method for making same
JPH11236663A (ja) 1998-02-25 1999-08-31 Seiko Epson Corp スパッタリングターゲット、スパッタリング装置およびスパッタリング方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Patent Abstracts of Japan, One page English Abstract of JP 07-126841.
Patent Abstracts of Japan, One page English Abstract of JP 08-176816.
Patent Abstracts of Japan, One page English Abstract of JP 09-143706.
Patent Abstracts of Japan, One page English Abstract of JP 10-030174.
Patent Abstracts of Japan, One page English Abstract of JP 11-236663.

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090008245A1 (en) * 2001-12-19 2009-01-08 Nippon Mining & Metals Co., Ltd. Method for Connecting Magnetic Substance Target to Backing Plate, and Magnetic Substance Target
US9653270B2 (en) 2001-12-19 2017-05-16 Jx Nippon Mining & Metals Corporation Method for connecting magnetic substance target to backing plate, and magnetic substance target
US20080116066A1 (en) * 2004-11-17 2008-05-22 Nippon Mining & Metals Co., Ltd. Sputtering Target, Sputtering Target-Backing Plate Assembly and Deposition System
US9685307B2 (en) 2004-11-17 2017-06-20 Jx Nippon Mining & Metals Corporation Sputtering target, sputtering target-backing plate assembly and deposition system
US20090277788A1 (en) * 2006-06-29 2009-11-12 Nippon Mining & Metals Co., Ltd. Sputtering Target/Backing Plate Bonded Body
US8157973B2 (en) 2006-06-29 2012-04-17 Jx Nippon Mining & Metals Corporation Sputtering target/backing plate bonded body
US20090229975A1 (en) * 2007-02-09 2009-09-17 Nippon Mining & Metals Co., Ltd. Target formed of Sintering-Resistant Material of High-Melting Point Metal Alloy, High-Melting Point Metal Silicide, High-Melting Point Metal Carbide, High-Melting Point Metal Nitride, or High-Melting Point Metal Boride, Process for Producing the Target, Assembly of the Sputtering Target-Backing Plate, and Process for Producing the Same
US9677170B2 (en) 2007-02-09 2017-06-13 Jx Nippon Mining & Metals Corporation Target formed of sintering-resistant material of high-melting point metal alloy, high-melting point metal silicide, high-melting point metal carbide, high-melting point metal nitride, or high-melting point metal boride, process for producing the target, assembly of the sputtering target-backing plate, and process for producing the same
US10344373B2 (en) 2007-02-09 2019-07-09 Jx Nippon Mining & Metals Corporation Process for producing a target formed of a sintering-resistant material of a high-melting point metal alloy, silicide, carbide, nitride or boride
US9704695B2 (en) 2011-09-30 2017-07-11 Jx Nippon Mining & Metals Corporation Sputtering target and manufacturing method therefor
US10984992B2 (en) 2015-05-21 2021-04-20 Jx Nippon Mining & Metals Corporation Sputtering target

Also Published As

Publication number Publication date
TWI221162B (en) 2004-09-21
EP1314795B1 (fr) 2005-07-20
US20030155235A1 (en) 2003-08-21
EP1314795A1 (fr) 2003-05-28
WO2002016665A1 (fr) 2002-02-28
DE60112101T2 (de) 2006-01-12
EP1314795A4 (fr) 2004-04-28
JP3791829B2 (ja) 2006-06-28
DE60112101D1 (de) 2005-08-25
KR20030024899A (ko) 2003-03-26
KR100515906B1 (ko) 2005-09-21
JP2002146524A (ja) 2002-05-22

Similar Documents

Publication Publication Date Title
US6875325B2 (en) Sputtering target producing few particles
US6858116B2 (en) Sputtering target producing few particles, backing plate or sputtering apparatus and sputtering method producing few particles
US7316763B2 (en) Multiple target tiles with complementary beveled edges forming a slanted gap therebetween
US20060266639A1 (en) Sputtering target tiles having structured edges separated by a gap
EP0875924A2 (fr) Couche barrière améliorée pour le cuivre et contenant du tantale
US5362372A (en) Self cleaning collimator
JP2720755B2 (ja) マグネトロンスパッタリング用Tiターゲット材
KR101964487B1 (ko) 스퍼터링 장치
TW202020198A (zh) 具有薄且高純度塗層的濺鍍阱及其製造方法
JP2002004038A (ja) パーティクル発生の少ないスパッタリングターゲット
JP2004315931A (ja) スパッタリングターゲット
US5271817A (en) Design for sputter targets to reduce defects in refractory metal films
JP2917743B2 (ja) マグネトロンスパッタリング用Siターゲット材
JP2000204468A (ja) 多分割スパッタリングタ―ゲット
JP4566367B2 (ja) パーティクル発生の少ないスパッタリングターゲット
JPH06196476A (ja) スパッタリング装置
JP2917744B2 (ja) マグネトロンスパッタリング用Siターゲット材
JP2001303245A (ja) パーティクル発生の少ないスパッタリングターゲット−バッキングプレート組立体
JP2738263B2 (ja) マグネトロンスパッタリング用Tiターゲット材
JPH09176842A (ja) マグネトロンスパッタリング用Tiターゲット
CN115244210A (zh) 用于在介电溅射期间减少工件中缺陷的等离子体腔室靶材
JPH0790576A (ja) スパッタリングターゲット
JPH0593266A (ja) スパツタリング装置
JPH02141570A (ja) スパッタリング装置
KR20040019430A (ko) 스퍼터링 타겟

Legal Events

Date Code Title Description
AS Assignment

Owner name: NIKKO MATERIALS COMPANY LIMITED, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MIYASHITA, HIROHITO;OKABE, TAKEO;REEL/FRAME:014026/0579

Effective date: 20021120

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: NIPPON MINING & METALS CO., LTD., JAPAN

Free format text: CHANGE OF NAME;ASSIGNOR:NIKKO MATERIALS CO., LTD.;REEL/FRAME:018545/0153

Effective date: 20060403

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: JX NIPPON MINING & METALS CORPORATION, JAPAN

Free format text: CHANGE OF NAME/MERGER;ASSIGNOR:NIPPON MINING & METALS CO., LTD.;REEL/FRAME:026417/0023

Effective date: 20101221

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: JX NIPPON MINING & METALS CORPORATION, JAPAN

Free format text: CHANGE OF ADDRESS;ASSIGNOR:JX NIPPON MINING & METALS CORPORATION;REEL/FRAME:041649/0733

Effective date: 20160104