US5700771A - Polyhydroxy fatty acid amide surfactants in percarbonate bleach-containing compositions - Google Patents
Polyhydroxy fatty acid amide surfactants in percarbonate bleach-containing compositions Download PDFInfo
- Publication number
- US5700771A US5700771A US08/400,632 US40063295A US5700771A US 5700771 A US5700771 A US 5700771A US 40063295 A US40063295 A US 40063295A US 5700771 A US5700771 A US 5700771A
- Authority
- US
- United States
- Prior art keywords
- alkyl
- fatty acid
- surfactants
- polyhydroxy fatty
- detergent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/39—Organic or inorganic per-compounds
- C11D3/3947—Liquid compositions
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/38—Cationic compounds
- C11D1/65—Mixtures of anionic with cationic compounds
- C11D1/652—Mixtures of anionic compounds with carboxylic amides or alkylol amides
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/39—Organic or inorganic per-compounds
- C11D3/3902—Organic or inorganic per-compounds combined with specific additives
- C11D3/3905—Bleach activators or bleach catalysts
- C11D3/3907—Organic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/39—Organic or inorganic per-compounds
- C11D3/3942—Inorganic per-compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/14—Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
- C11D1/146—Sulfuric acid esters
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/28—Sulfonation products derived from fatty acids or their derivatives, e.g. esters, amides
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/29—Sulfates of polyoxyalkylene ethers
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/38—Cationic compounds
- C11D1/52—Carboxylic amides, alkylolamides or imides or their condensation products with alkylene oxides
- C11D1/525—Carboxylic amides (R1-CO-NR2R3), where R1, R2 or R3 contain two or more hydroxy groups per alkyl group, e.g. R3 being a reducing sugar rest
Definitions
- This invention relates to detergent compositions containing certain polyhydroxy fatty acid amide surfactants and bleaching agents.
- Detergent compositions for cleaning purposes should be able to clean a large variety of soils and stains over a broad variety of wash conditions.
- adjunct cleaning ingredients can be added to the compositions.
- Grease and oil cleaning performance is one important attribute of many, if not most, detergent compositions.
- Linear alkyl benzene sulfonates have traditionally been utilized in detergent compositions for their superior grease/oil and good overall cleaning abilities over a wide variety of wash conditions. Whereas linear alkyl benzene sulfonates and other surfactants have performed admirably, they tend to be largely petroleum-derived surfactants.
- polyhydroxy fatty acid amide surfactants can be incorporated into detergent compositions optionally containing anionic, other nonionic, or cationic surfactants to proportionally reduce the level of, or eliminate, linear alkyl benzene sulfonate, while preserving excellent overall cleaning, including grease and oil cleaning, over a wide variety of conditions. Furthermore, such polyhydroxy fatty acid amides are superior to other nonionic surfactants in cleaning, and yet can provide similar or better ease of formulation benefits.
- Bleaching agents have long been used in detergent compositions to assist in stain removal, as well in certain instances for whitening, of fabrics. In general, bleaches remove soil and colored stains from fabrics by oxidation to make the soil or stain more soluble, and thus more easily remove it. Bleaches can also whiten light colored fabrics that have suffered from yellowing over time and use.
- bleaching agent can be critical for performance of detergent compositions containing polyhy- droxy fatty acid amide surfactants at lower wash water temperatures, particularly lower than about 50° C., especially below about 40° C.
- bleaching agents containing borate or borate-forming materials can adversely affect detersive action of the compositions under these conditions.
- This invention thus, provides polyhydroxy fatty acid amide-containing detergent compositions in combination with non-borate, non-borate-forming bleaching agent to thereby maximize overall detergent cleaning ability.
- N-acyl, N-methyl glucamides for example, are disclosed by J. W. Goodby, M. A. Marcus, E. Chin, and P. L. Finn in "The Thermotropic Liquid-Crystalline Properties of Some Straight Chain Carbohydrate Amphiphiles," Liquid Crystals, 1988, Volume 3, No. 11, pp 1569-1581, and by A. Muller-Fahrnow, V. Zabel, M. Steifa, and R. Hilgenfeld in "Molecular and Crystal Structure of a Nonionic Detergent: Nonanoyl-N-methylglucamide," J. Chem. Soc. Chem.
- N-alkyl polyhydroxyamide surfactants have been of substantial interest recently for use in biochemistry, for example in the dissociation of biological membranes. See, for example, the journal article "N-D-Gluco-N-methyl-alkanamide Compounds, a New Class of Non-Ionic Detergents For Membrane Biochemistry," Biochem. J. (1982), Vol. 207, pp 363-366, by J. E. K. Hildreth.
- N-alkyl glucamides in detergent compositions has also been discussed.
- U.S. Pat. No. 2,965,576, issued Dec. 20, 1960 to E. R. Wilson, and G.B. Patent 809,060, published Feb. 18, 1959, assigned to Thomas Hedley & Co., Ltd. relate to detergent compositions containing anionic surfactants and certain amide surfactants, which can include N-methyl glucamide, added as a low temperature suds enhancing agent.
- These compounds include an N-acyl radical of a higher straight chain fatty acid having 10-14 carbon atoms.
- These compositions may also contain auxiliary materials such as alkali metal phosphates, alkali metal silicates, sulfates, and carbonates. It is also generally indicated that additional constituents to impart desirable properties to the composition can also be included in the compositions, such as fluorescent dyes, bleaching agents, perfumes, etc.
- U.S. Pat. No. 2,703,798, issued Mar. 8, 1955 to A. M. Schwartz relates to aqueous detergent compositions containing the condensation reaction product of N-alkyl glucamine and an aliphatic ester of a fatty acid.
- the product of this reaction is said to be useable in aqueous detergent compositions without further purification.
- PCT International Application WO 83/04412 published Dec. 22, 1983, by J. Hildreth, relates to amphiphilic compounds containing polyhydroxyl aliphatic groups said to be useful for a variety of purposes including use as surfactants in cosmetics, drugs, shampoos, lotions, and eye ointments, as emulsifiers and dispensing agents for medicines, and in biochemistry for solubilizing membranes, whole cells, or other tissue samples, and for preparation of liposomes.
- R is hydrogen or an organic grouping
- R' is an aliphatic hydrocarbon group of at least three carbon atoms
- R" is the residue of an aldose
- European Patent 0 285 768 published Oct. 12, 1988, H. Kelkenberg, et al., relates to the use of N-polyhydroxy alkyl fatty acid amides as thickening agents in aqueous detergent systems. Included are amides of the formula R 1 C(O)N(X)R 2 wherein R 1 is a C 1 -C 17 (preferably C 7 -C 17 ) alkyl, R 2 is hydrogen, a C 1 -C 18 (preferably C 1 -C 6 ) alkyl, or an alkylene oxide, and X is a polyhydroxy alkyl having four to seven carbon atoms, e.g., N-methyl, coconut fatty acid glucamide.
- the thickening properties of the amides are indicated as being of particular use in liquid surfactant systems containing paraffin sulfonate, although the aqueous surfactant systems can contain other anionic surfactants, such as alkylaryl sulfonates, olefin sulfonate, sulfosuccinic acid half ester salts, and fatty alcohol ether sulfonates, and nonionic surfactants such as fatty alcohol polyglycol ether, alkylphenol polyglycol ether, fatty acid polyglycol ester, polypropylene oxide-polyethylene oxide mixed polymers, etc.
- anionic surfactants such as alkylaryl sulfonates, olefin sulfonate, sulfosuccinic acid half ester salts, and fatty alcohol ether sulfonates
- nonionic surfactants such as fatty alcohol polyglycol ether, alkylphenol polyglycol ether,
- Paraffin sulfonate/N-methyl coconut fatty acid glucamide/nonionic surfactant shampoo formulations are exemplified.
- the N-polyhydroxy alkyl fatty acid amides are said to have superior skin tolerance attributes.
- U.S. Pat. No. 2,982,737 issued May 2, 1961, to Boettner, et al., relates to detergent bars containing urea, sodium lauryl sulfate anionic surfactant, and an N-alkylglucamide nonionic surfactant which is selected from N-methyl,N-sorbityl lauramide and N-methyl, N-sorbityl myristamide.
- glucamide surfactants are disclosed, for example, in DT 2,226,872, published Dec. 20, 1973, H. W. Eckert, et al., which relates to washing compositions comprising one or more surfactants and builder salts selected from polymeric phosphates, sequestering agents, and washing alkalis, improved by the addition of an N-acylpolyhydroxyalkyl-amine of the formula R 1 C(O)N(R 2 )CH 2 (CHOH) n CH 2 OH, wherein R 1 is a C 1 -C 3 alkyl, R 2 is a C 10 -C 22 alkyl, and n is 3 or 4.
- the N-acylpolyhydroxyalkyl-amine is added as a soil suspending agent.
- U.S. Pat. No. 3,654,166 issued Apr. 4, 1972, to H. W. Eckert, et al., relates to detergent compositions comprising at least one surfactant selected from the group of anionic, zwitterionic, and nonionic surfactants and, as a textile softener, an N-acyl, N-alkyl polyhydroxylalkyl compound of the formula R 1 N(Z)C(O)R 2 wherein R 1 is a C 10 -C 22 alkyl, R 2 is a C 7 -C 21 alkyl, R 1 and R 2 total from 23 to 39 carbon atoms, and Z is a polyhydroxyalkyl which can be --CH 2 (CHOH) m CH 2 OH where m is 3 or 4.
- N-polyhydroxylalkyl-amines which include compounds of the formula R 1 N(R)CH(CHOH) m R 2 wherein R 1 is H, lower alkyl, hydroxy-lower alkyl, or aminoalkyl, as well as heterocyclic aminoalkyl, R is the same as R 1 but both cannot be H, and R 2 is CH 2 OH or COOH.
- French Patent 1,360,018, Apr. 26, 1963, assigned to Commercial Solvents Corporation, relates to solutions of formaldehyde stabilized against polymerization with the addition of amides of the formula RC(O)N(R 1 )G wherein R is a carboxylic acid functionality having at least seven carbon atoms, R 1 is hydrogen or a lower alkyl group, and G is a glycitol radical with at least 5 carbon atoms.
- German Patent 1,261,861, Feb. 29, 1968, A. Heins relates to glucamine derivatives useful as wetting and dispersing agents of the formula N(R)(R 1 )(R 2 ) wherein R is a sugar residue of glucamine, R 1 is a C 10 -C 20 alkyl radical, and R 2 is a C 1 -C 5 acyl radical.
- G.B. Patent 745,036, published Feb. 15, 1956, assigned to Atlas Powder Company, relates to heterocyclic amides and carboxylic esters thereof that are said to be useful as chemical intermediates, emulsifiers, wetting and dispersing agents, detergents, textile softeners, etc.
- the compounds are expressed by the formula N(R)(R 1 )C(O)R 2 wherein R is the residue of an anhydrized hexane pentol or a carboxylic acid ester thereof, R 1 is a monovalent hydrocarbon radical, and --C(O)R 2 is the acyl radical of a carboxylic acid having from 2 to 25 carbon atoms.
- U.S. Pat. No. 3,312,627 discloses solid toilet bars that are substantially free of anionic detergents and alkaline builder materials, and which contain lithium soap of certain fatty acids, a nonionic surfactant selected from certain propylene oxide-ethylenediamine-ethylene oxide condensates, propylene oxide-propylene glycol-ethylene oxide condensates, and polymerized ethylene glycol, and also contain a nonionic lathering component which can include polyhydroxyamide of the formula RC(O)NR 1 (R 2 ) wherein RC(O) contains from about 10 to about 14 carbon atoms, and R 1 and R 2 each are H or C 1 -C 6 alkyl groups, said alkyl groups containing a total number of carbon atoms of from 2 to about 7 and a total number of substituent hydroxyl groups of from 2 to about 6.
- a substantially similar disclosure is found in U.S. Pat. No. 3,312,626, also issued Apr. 4, 1967 to
- a detergent composition comprising a polyhydroxy fatty acid amide surfactant of the formula: ##STR2## wherein R 1 is H, C 1 -C 4 hydrocarbyl, 2-hydroxy ethyl, 2 hydroxy propyl, or a mixture thereof, R 2 is C 5 -C 31 hydrocarbyl, and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls connected directly to said chain, or an alkoxylated derivative thereof, and a non-borate, non-borate-forming bleaching agent.
- This invention further provides a method for cleaning substrates, such as fabrics, fibers, textiles, hard surfaces, etc., at temperatures even below about 50° C., especially even below about 40° C., with a detergent composition containing the polyhydroxy fatty acid amide surfactant, as described above, optional auxiliary detersive surfactants, optional detersive adjunct ingredients, and a bleaching agent, wherein said bleaching agent is a non-borate, non-borate-forming bleaching agent.
- compositions hereof will comprise at least about 1%, weight basis, typically from about 3% to about 50%, preferably from about 3% to about 30%, of the polyhydroxy fatty acid amide surfactant described below.
- the polyhydroxy fatty acid amide surfactant component of the present invention comprises compounds of the structural formula: ##STR3## wherein: R 1 is H, C 1 -C 4 hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl, or a mixture thereof, preferably C 1 -C 4 alkyl, more preferably C 1 or C 2 alkyl, most preferably C 1 alkyl (i.e., methyl); and R 2 is a C 5 -C 31 hydrocarbyl, preferably straight chain C 7 -C 19 alkyl or alkenyl, more preferably straight chain C 9 -C 17 alkyl or alkenyl, most preferably straight chain C 11 -C 17 alkyl or alkenyl, or mixtures thereof; and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative (preferably ethoxylated or propoxylated) thereof.
- Z preferably will be derived from a reducing sugar in a reductive amination reaction; more preferably Z is a glycityl.
- Suitable reducing sugars include glucose, fructose, maltose, lactose, galactose, mannose, and xylose.
- high dextrose corn syrup, high fructose corn syrup, and high maltose corn syrup can be utilized as well as the individual sugars listed above. These corn syrups may yield a mix of sugar components for Z. It should be understood that it is by no means intended to exclude other suitable raw materials.
- Z preferably will be selected from the group consisting of --CH 2 --(CHOH) n --CH 2 OH, --CH(CH 2 OH)--(CHOH) n-1 --CH 2 OH, --CH 2 --(CHOH) 2 --(CHOR')(CHOH)--CH 2 OH, where n is an integer from 3 to 5, inclusive, and R' is H or a cyclic or aliphatic monosaccharide, and alkoxylated derivatives thereof. Most preferred are glycityls wherein n is 4, particularly --CH 2 --(CHOH) 4 --CH 2 OH.
- R 1 can be, for example, N-methyl, N-ethyl, N-propyl, N-isopropyl, N-butyl, N-2-hydroxy ethyl, or N-2-hydroxy propyl.
- R 2 --CO--N ⁇ can be, for example, cocamide, stearamide, oleamide, lauramide, myristamide, capricamide, palmitamide, tallowamide, etc.
- Z can be 1-deoxyglucityl, 2-deoxyfructityl, 1-deoxymaltityl, 1-deoxylactityl, 1-deoxygalactityl, 1-deoxymannityl, 1-deoxymaltotriotityl, etc.
- polyhydroxy fatty acid amides are known in the art. In general, they can be made by reacting an alkyl amine with a reducing sugar in a reductive amination reaction to form a corresponding N-alkyl polyhydroxyamine, and then reacting the N-alkyl polyhydroxyamine with a fatty aliphatic ester or triglyceride in a condensation/amidation step to form the N-alkyl, N-polyhydroxy fatty acid amide product.
- Processes for making compositions containing polyhydroxy fatty acid amides are disclosed, for example, in G.B. Patent Specification 809,060, published Feb. 18, 1959, by Thomas Hedley & Co., Ltd., U.S. Pat. No.
- N-deoxyglycityl fatty acid amides wherein the glycityl component is derived from glucose and the N-alkyl or N-hydroxyalkyl functionality is N-methyl, N-ethyl, N-propyl, N-butyl, N-hydroxyethyl, or N-hydroxypropyl
- the product is made by reacting N-alkyl- or N-hydroxyalkyl-glucamine with a fatty ester selected from fatty methyl esters, fatty ethyl esters, and fatty triglycerides in the presence of a catalyst selected from the group consisting of trilithium phosphate, trisodium phosphate, tripotassium phosphate, tetrasodium pyrophosphate, pentapotassium tripolyphosphate, lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate,
- the amount of catalyst is preferably from about 0.5 mole % to about 50 mole %, more preferably from about 2.0 mole % to about 10 mole %, on an N-alkyl or N-hydroxyalkyl-glucamine molar basis.
- the reaction is preferably carried out at from about 138° C. to about 170° C. for typically from about 20 to about 90 minutes.
- the reaction is also preferably carried out using from about 1 to about 10 weight % of a phase transfer agent, calculated on a weight percent basis of total reaction mixture, selected from saturated fatty alcohol polyethoxylates, alkylpolyglycosides, linear glycamide surfactant, and mixtures thereof.
- a phase transfer agent calculated on a weight percent basis of total reaction mixture, selected from saturated fatty alcohol polyethoxylates, alkylpolyglycosides, linear glycamide surfactant, and mixtures thereof.
- this process is carried out as follows:
- N-linear glucosyl fatty acid amide product is added to the reaction mixture, by weight of the reactants, as the phase transfer agent if the fatty ester is a triglyceride. This seeds the reaction, thereby increasing reaction rate.
- a detailed experimental procedure is provided below in the Experimental.
- polyhydroxy "fatty acid” amide materials used herein also offer the advantages to the detergent formulator that they can be prepared wholly or primarily from natural, renewable, non-petrochemical feedstocks and are degradable. They also exhibit low toxicity to aquatic life.
- the processes used to produce them will also typically produce quantities of nonvolatile by-product such as esteramides and cyclic polyhydroxy fatty acid amide.
- the level of these by-products will vary depending upon the particular reactants and process conditions.
- the polyhydroxy fatty acid amide incorporated into the detergent compositions hereof will be provided in a form such that the polyhydroxy fatty acid amide-containing composition added to the detergent contains less than about 10%, preferably less than about 4%, of cyclic polyhydroxy fatty acid amide.
- the preferred processes described above are advantageous in that they can yield rather low levels of by-products, including such cyclic amide by-product.
- the detergent compositions hereof contain a non-borate, non-borate-forming oxygen bleaching agent component.
- These bleaching agent components can include one or more oxygen bleaching agents and, depending upon the bleaching agent chosen, one or more bleach activators.
- bleaching compounds When present bleaching compounds will typically be present at levels of from about 1% to about 20%, more typically from about 1% to about 10%, of the detergent composition.
- bleaching compounds are optional components in non-liquid formulations, e.g., granular detergents. If present, the amount of bleach activators will typically be from about 0.1% to about 60%, more typically from about 0.5% to about 40% of the bleaching composition.
- the bleaching agent component for use herein can be any of the bleaching agents useful for detergent compositions in textile cleaning, hard surface cleaning, or other cleaning purposes that are now known or become known. These include oxygen bleaches as well as others known in the art.
- Borate-containing bleaching agents e.g., perborate bleaches, and other bleaching agents which can form borate in situ under detergent storage or wash conditions ("borate-forming" bleaching agents) are preferably not present in the compositions, or if present, only in small amounts.
- the bleaching agents hereof are non-borate, non-borate-forming bleaching agents.
- detergents to be used at these temperatures are substantially free of borate-containing and borate-forming material of any kind.
- substantially free of borate-containing and borate-forming material shall mean that the composition contains not more than about 2%, by weight, of borate-containing and borate-forming material of any type, preferably, no more than 1%, more preferably no more than about 0.5%, most preferably essentially 0%.
- this invention further provides a method for cleaning substrates, such as fabrics, fibers, textiles, hard surfaces, etc., at temperatures below about 50° C., especially below about 40° C., with a detergent composition containing polyhydroxy fatty acid amide surfactant, optional auxiliary detersive surfactants, optional detersive adjunct ingredients, and bleaching agent, wherein said bleaching is a non-borate-containing, non-borate-forming bleaching agent.
- a detergent composition containing polyhydroxy fatty acid amide surfactant, optional auxiliary detersive surfactants, optional detersive adjunct ingredients, and bleaching agent, wherein said bleaching is a non-borate-containing, non-borate-forming bleaching agent.
- the substrated is treated with such detergent composition in the substantial absence of borate-forming or borate-containing material of any type.
- oxygen bleaching agent that can be used encompasses percarboxylic acid bleaching agents and salts thereof. Suitable examples of this class of agents include magnesium monoperoxyphthalate hexahydrate, the magnesium salt of meta-chloro perbenzoic acid, 4-nonylamino-4-oxoperoxybutyric acid and diperoxydodecanedioic acid.
- Such bleaching agents are disclosed in U.S. Pat. No. 4,483,781, Hartman, issued Nov. 20, 1984, U.S. patent application Ser. No. 740,446, Burns et al., filed Jun. 3, 1985, European Patent Application 0,133,354, Banks et al., published Feb. 20, 1985, and U.S. Pat. No.
- Highly preferred bleaching agents also include 6-nonylamino-6-oxoperoxycaproic acid as described in U.S. Pat. No. 4,634,551, issued Jan. 6, 1987 to Burns, et al., incorporated herein by reference.
- bleaching agents that can be used encompasses the halogen bleaching agents.
- hypohalite bleaching agents include trichloro isocyanuric acid and the sodium and potassium dichloroisocyanurates and N-chloro and N-bromo alkane sulphonamides. Such materials are normally added at 0.5-10% by weight of the finished product, preferably 1-5% by weight.
- Peroxygen bleaching agents can also be used. Suitable peroxygen bleaching compounds include sodium carbonate peroxyhydrate, sodium pyrophosphate peroxyhydrate, urea peroxyhydrate, and sodium peroxide.
- Peroxygen bleaching agents are preferably combined with bleach activators, which lead to the in situ production in aqueous solution (i.e., during the washing process) of the peroxy acid corresponding to the bleach activator.
- Preferred bleach activators incorporated into compositions of the present invention have the general formula: ##STR4## wherein R is an alkyl group containing from about 1 to about 18 carbon atoms wherein the longest linear alkyl chain extending from and including the carbonyl carbon contains from about 6 to about 10 carbon atoms and L is a leaving group, the conjugate acid of which has a PK a in the range of from about 4 to about 13.
- R is an alkyl group containing from about 1 to about 18 carbon atoms wherein the longest linear alkyl chain extending from and including the carbonyl carbon contains from about 6 to about 10 carbon atoms and L is a leaving group, the conjugate acid of which has a PK a in the range of from about 4 to about 13.
- Bleaching agents other than oxygen bleaching agents are also known in the art and can be utilized herein.
- One type of non-oxygen bleaching agent of particular interest includes photoactivated bleaching agents such as the sulfonated zinc and/or aluminum phthalocyanines. These materials can be deposited upon the substrate during the washing process. Upon irradiation with light, in the presence of oxygen, such as by hanging clothes out to dry in the daylight, the sulfonated zinc phthalocyanine is activated and, consequently, the substrate is bleached.
- Preferred zinc phthalocyanine and a photoactivated bleaching process are described in U.S. Pat. No. 4,033,718, issued Jul. 5, 1977 to Holcombe et al., incorporated herein by reference.
- detergent compositions will contain about 0.025% to about 1.25%, by weight, of sulfonated zinc phthalocyanine.
- the detergent compositions can additionally contain one or more other detersive surfactants in combination with the polyhydroxy fatty acid amide.
- Suitable auxiliary surfactants are disclosed below, although it is not meant to limit the scope of the invention thereto.
- compositions hereof contain one or more additional surfactants which can be anionic, cationic or nonionic.
- the surfactant system will include one or more anionic and/or nonionic surfactants in addition to the polyhydroxy fatty acid amide.
- the amount of additional detersive surfactant present is from about 3% to about 40%, by weight, of the detergent composition, preferably from about 5% to about 30%. Suitable surfactants are described below.
- Alkyl ester sulfonate surfactants hereof include linear esters of C 8 -C 20 carboxylic acids (i.e., fatty acids) which are sulfonated with gaseous SO 3 according to "The Journal of the American Oil Chemists Society," 52 (1975), pp. 323-329. Suitable starting materials would include natural fatty substances as derived from tallow, palm, and coconut oils, etc.
- the preferred alkyl ester sulfonate surfactant especially for laundry applications, comprise alkyl ester sulfonate surfactants of the structural formula: ##STR5## wherein R 3 is a C 8 -C 20 hydrocarbyl, preferably an alkyl, or combination thereof, R 4 is a C 1 -C 6 hydrocarbyl, preferably an alkyl, or combination thereof, and M is a cation which forms a water soluble salt with the alkyl ester sulfonate.
- Suitable salt-forming cations include metals such as sodium, potassium, and lithium, and substituted or unsubstituted ammonium cations, such as methyl-, dimethyl, -trimethyl, and quaternary ammonium cations, e.g. tetramethyl-ammonium and dimethyl piperdinium, and cations derived from alkanolamines, e.g. monoethanolamine, diethanolamine, and triethanolamine.
- R 3 is C 10 -C 16 alkyl
- R 4 is methyl, ethyl or isopropyl.
- methyl ester sulfonates wherein R 3 is C 14 -C 16 alkyl.
- Alkyl sulfate surfactants hereof are water soluble salts or acids of the formula ROSO 3 M wherein R preferably is a C 10 -C 24 hydrocarbyl, preferably an alkyl or hydroxyalkyl having a C 10 -C 20 alkyl component, more preferably a C 12 -C 18 alkyl or hydroxyalkyl, and M is H or a cation, e.g., an alkali metal cation (e.g., sodium, potassium, lithium), substituted or unsubstituted ammonium cations such as methyl-, dimethyl-, and trimethyl ammonium and quaternary ammonium cations, e.g., tetramethyl-ammonium and dimethyl piperdinium, and cations derived from alkanolamines such as ethanolamine, diethanolamine, triethanolamine, and mixtures thereof, and the like.
- alkyl chains of C 12-16 are preferred for lower wash temperatures (e.g.
- Alkyl alkoxylated sulfate surfactants hereof are water soluble salts or acids of the formula RO(A) m SO 3 M wherein R is an unsubstituted C 10 -C 24 alkyl or hydroxyalkyl group having a C 10 -C 24 alkyl component, preferably a C 12 -C 20 alkyl or hydroxyalkyl, more preferably C 12 -C 18 alkyl or hydroxyalkyl, A is an ethoxy or propoxy unit, m is greater than zero, typically between about 0.5 and about 6, more preferably between about 0.5 and about 3, and M is H or a cation which can be, for example, a metal cation (e.g., sodium, potassium, lithium, calcium, magnesium, etc.), ammonium or substituted-ammonium cation.
- R is an unsubstituted C 10 -C 24 alkyl or hydroxyalkyl group having a C 10 -C 24 alkyl component, preferably
- Alkyl ethoxylated sulfates as well as alkyl propoxylated sulfates are contemplated herein.
- Specific examples of substituted ammonium cations include methyl-, dimethyl-, trimethyl-ammonium, and quaternary ammonium cations, such as tetramethyl-ammonium, dimethyl piperdinium cations, and cations derived from alkanolamines, e.g. monoethanolamine, diethanolamine, and triethanolamine, and mixtures thereof.
- Exemplary surfactants are C 12 -C 18 alkyl polyethoxylate (1.0) sulfate, C 12 -C 18 alkyl polyethoxylate (2.25) sulfate, C 12 -C 18 alkyl polyethoxylate (3.0) sulfate, and C 12 -C 18 alkyl polyethoxylate (4.0) sulfate wherein M is conveniently selected from sodium and potassium.
- anionic surfactants useful for detersive purposes can also be included in the compositions hereof. These can include salts (including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts) of soap, C 9 -C 20 linear alkylbenzenesulphonates, C 8 -C 22 primary or secondary alkanesulphonates, C 8 -C 24 olefinsulphonates, sulphonated polycarboxylic acids prepared by sulphonation of the pyrolyzed product of alkaline earth metal citrates, e.g., as described in British patent specification No.
- salts including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts
- C 9 -C 20 linear alkylbenzenesulphonates C 8 -C 22 primary or secondary alkanesulphonates
- C 8 -C 24 olefinsulphonates
- alkyl glycerol sulfonates alkyl glycerol sulfonates, fatty acyl glycerol sulfonates, fatty oleyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, paraffin sulfonates, alkyl phosphates, isethionates such as the acyl isethionates, N-acyl taurates, fatty acid amides of methyl tauride, alkyl succinamates and sulfosuccinates, monoesters of sulfosuccinate (especially saturated and unsaturated C 12 -C 18 monoesters), diesters of sulfosuccinate (especially saturated and unsaturated C 6 -C 14 diesters), N-acyl sarcosinates, sulfates of alkylpolysaccharides such as the sulfates of alkylpolygluco
- Resin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tall oil. Further examples are described in "Surface Active Agents and Detergents" (Vol. I and II by Schwartz, Perry and Berch). A variety of such surfactants are also generally disclosed in U.S. Pat. No. 3,929,678, issued Dec. 30, 1975 to Laughlin, et al. at Column 23, line 58 through Column 29, line 23 (herein incorporated by reference).
- Suitable nonionic detergent surfactants are generally disclosed in U.S. Pat. No. 3,929,678, Laughlin et al., issued Dec. 30, 1975, at column 13, line 14 through column 16, line 6, incorporated herein by reference. Exemplary, non-limiting classes of useful nonionic surfactants are listed below.
- the polyethylene, polypropylene, and polybutylene oxide condensates of alkyl phenols are preferred. These compounds include the condensation products of alkyl phenols having an alkyl group containing from about 6 to about 12 carbon atoms in either a straight chain or branched chain configuration with the alkylene oxide.
- the ethylene oxide is present in an amount equal to from about 5 to about 25 moles of ethylene oxide per mole of alkyl phenol.
- nonionic surfactants of this type include IgepalTM CO-630, marketed by the GAF Corporation; and TritonTM X-45, X-114, X-100, and X-102, all marketed by the Rohm & Haas Company. These surfactants are commonly referred to as alkyl phenol alkoxylates, e.g., alkyl phenol ethoxylates.
- the condensation products of aliphatic alcohols with from about 1 to about 25 moles of ethylene oxide can either be straight or branched, primary or secondary, and generally contains from about 8 to about 22 carbon atoms. Particularly preferred are the condensation products of alcohols having an alkyl group containing from about 10 to about 20 carbon atoms with from about 2 to about 18 moles of ethylene oxide per mole of alcohol.
- nonionic surfactants of this type include TergitolTM 15-S-9 (the condensation product of C 11 -C 15 linear secondary alcohol with 9 moles ethylene oxide), TergitolTM 24-L-6 NNW (the condensation product of C 12 -C 14 primary alcohol with 6 moles ethylene oxide with a narrow molecular weight distribution), both marketed by Union Carbide Corporation; NeodolTM 45-9 (the condensation product of C 14 -C 15 linear alcohol with 9 moles of ethylene oxide), NeodolTM 23-6.5 (the condensation product of C 12 -C 13 linear alcohol with 6.5 moles of ethylene oxide), NeodolTM 45-7 (the condensation product of C 14 -C 15 linear alcohol with 7 moles of ethylene oxide), NeodolTM 45-4 (the condensation product of C 14 -C 15 linear alcohol with 4 moles of ethylene oxide), marketed by Shell Chemical Company, and KyroTM EOB (the condensation product of C 13 -C 15 alcohol with 9 moles ethylene oxide), marketed by The Proc
- the hydrophobic portion of these compounds preferably has a molecular weight of from about 1500 to about 1800 and exhibits water insolubility.
- the addition of polyoxyethylene moieties to this hydrophobic portion tends to increase the water solubility of the molecule as a whole, and the liquid character of the product is retained up to the point where the polyoxyethylene content is about 50% of the total weight of the condensation product, which corresponds to condensation with up to about 40 moles of ethylene oxide.
- Examples of compounds of this type include certain of the commercially-available PluronicTM surfactants, marketed by BASF.
- the condensation products of ethylene oxide with the product resulting from the reaction of propylene oxide and ethylenediamine consist of the reaction product of ethylenediamine and excess propylene oxide, and generally has a molecular weight of from about 2500 to about 3000.
- This hydrophobic moiety is condensed with ethylene oxide to the extent that the condensation product contains from about 40% to about 80% by weight of polyoxyethylene and has a molecular weight of from about 5,000 to about 11,000.
- this type of nonionic surfactant include certain of the commercially available TetronicTM compounds, marketed by BASF.
- Semi-polar nonionic surfactants are a special category of nonionic surfactants which include water-soluble amine oxides containing one alkyl moiety of from about 10 to about 18 carbon atoms and 2 moieties selected from the group consisting of alkyl groups and hydroxyalkyl groups containing from about 1 to about 3 carbon atoms; water-soluble phosphine oxides containing one alkyl moiety of from about 10 to about 18 carbon atoms and 2 moieties selected from the group consisting of alkyl groups and hydroxyalkyl groups containing from about 1 to about 3 carbon atoms; and water-soluble sulfoxides containing one alkyl moiety of from about 10 to about 18 carbon atoms and a moiety selected from the group consisting of alkyl and hydroxyalkyl moieties of from about 1 to about 3 carbon atoms.
- Semi-polar nonionic detergent surfactants include the amine oxide surfactants having the formula ##STR6## wherein R 3 is an alkyl, hydroxyalkyl, or alkyl phenyl group or mixtures thereof containing from about 8 to about 22 carbon atoms; R 4 is an alkylene or hydroxyalkylene group containing from about 2 to about 3 carbon atoms or mixtures thereof; x is from 0 to about 3; and each R 5 is an alkyl or hydroxyalkyl group containing from about 1 to about 3 carbon atoms or a polyethylene oxide group containing from about 1 to about 3 ethylene oxide groups.
- the R 5 groups can be attached to each other, e.g., through an oxygen or nitrogen atom, to form a ring structure.
- amine oxide surfactants in particular include C 10 -C 18 alkyl dimethyl amine oxides and C 8 -C 12 alkoxy ethyl dihydroxy ethyl amine oxides.
- Any reducing saccharide containing 5 or 6 carbon atoms can be used, e.g., glucose, galactose and galactosyl moieties can be substituted for the glucosyl moieties.
- the hydrophobic group is attached at the 2-, 3-, 4-, etc. positions thus giving a glucose or galactose as opposed to a glucoside or galactoside.
- the intersaccharide bonds can be, e.g., between the one position of the additional saccharide units and the 2-, 3-, 4-, and/or 6-positions on the preceding saccharide units.
- a polyalkyleneoxide chain joining the hydrophobic moiety and the polysaccharide moiety.
- the preferred alkyleneoxide is ethylene oxide.
- Typical hydrophobic groups include alkyl groups, either saturated or unsaturated, branched or unbranched containing from about 8 to about 18, preferably from about 10 to about 16, carbon atoms.
- the alkyl group is a straight chain saturated alkyl group.
- the alkyl group can contain up to about 3 hydroxy groups and/or the polyalkyleneoxide chain can contain up to about 10, preferably less than 5, alkyleneoxide moieties.
- Suitable alkyl polysaccharides are octyl, nonyldecyl, undecyldodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, and octadecyl, di-, tri-, tetra-, penta-, and hexaglucosides, galactosides, lactosides, glucoses, fructosides, fructoses and/or galactoses.
- Suitable mixtures include coconut alkyl, di-, tri-, tetra-, and pentaglucosides and tallow alkyl tetra-, penta-, and hexaglucosides.
- the preferred alkylpolyglycosides have the formula
- R 2 is selected from the group consisting of alkyl, alkylphenyl, hydroxyalkyl, hydroxyalkylphenyl, and mixtures thereof in which the alkyl groups contain from about 10 to about 18, preferably from about 12 to about 14, carbon atoms; n is 2 or 3, preferably 2; t is from 0 to about 10, preferably 0; and x is from about 1.3 to about 10, preferably from about 1.3 to about 3, most preferably from about 1.3 to about 2.7.
- the glycosyl is preferably derived from glucose. To prepare these compounds, the alcohol or alkylpolyethoxy alcohol is formed first and then reacted with glucose, or a source of glucose, to form the glucoside (attachment at the 1-position). The additional glycosyl units can then be attached between their 1-position and the preceding glycosyl units 2-, 3-, 4- and/or 6-position, preferably predominately the 2-position.
- Fatty acid amide surfactants having the formula: ##STR7## wherein R 6 is an alkyl group containing from about 7 to about 21 (preferably from about 9 to about 17) carbon atoms and each R 7 is selected from the group consisting of hydrogen, C 1 -C 4 alkyl, C 1 -C 4 hydroxyalkyl, and --(C 2 H 4 O) x H where x varies from about 1 to about 3.
- Preferred amides are C 8 -C 20 ammonia amides, monoethanolamides, diethanolamides, and isopropanolamides.
- Cationic detersive surfactants can also be included in detergent compositions of the present invention.
- Cationic surfactants include the ammonium surfactants such as alkyldimethylammonium halogenides, and those surfactants having the formula:
- R 2 is an alkyl or alkyl benzyl group having from about 8 to about 18 carbon atoms in the alkyl chain
- each R 3 is selected from the group consisting of --CH 2 CH 2 --, --CH 2 CH(CH 3 )--, --CH 2 (CH 2 OH)--, --CH 2 CH 2 CH 2 --, and mixtures thereof
- each R 4 is selected from the group consisting of C 1 -C 4 alkyl, C 1 -C 4 hydroxyalkyl, benzyl, ring structures formed by joining the two R 4 groups, --CH 2 CHOH--CHOHCOR 6 CHOHCH 2 OH wherein R 6 is any hexose or hexose polymer having a molecular weight less than about 1000, and hydrogen when y is not 0
- R 5 is the same as R 4 or is an alkyl chain wherein the total number of carbon atoms of R 2 plus R 5 is not more than about 18
- each y is from 0 to about 10 and the
- Ampholytic surfactants can be incorporated into the detergent compositions hereof. These surfactants can be broadly described as aliphatic derivatives of secondary or tertiary amines, or aliphatic derivatives of heterocyclic secondary and tertiary amines in which the aliphatic radical can be straight chain or branched.
- One of the aliphatic substituents contains at least about 8 carbon atoms, typically from about 8 to about 18 carbon atoms, and at least one contains an anionic water-solubilizing group, e.g., carboxy, sulfonate, sulfate. See U.S. Pat. No. 3,929,678 to Laughlin et al., issued Dec. 30, 1975 at column 19, lines 18-35 (herein incorporated by reference) for examples of ampholytic surfactants.
- Zwitterionic surfactants can also be incorporated into the detergent compositions hereof. These surfactants can be broadly described as derivatives of secondary and tertiary amines, derivatives of heterocyclic secondary and tertiary amines, or derivatives of quaternary ammonium, quaternary phosphonium or tertiary sulfonium compounds. See U.S. Pat. No. 3,929,678 to Laughlin et al., issued Dec. 30, 1975 at column 19, line 38 through column 22, line 48 (herein incorporated by reference) for examples of zwitterionic surfactants.
- Ampholytic and zwitterionic surfactants are generally used in combination with one or more anionic and/or nonionic surfactants.
- Detergent compositions of the present invention can comprise inorganic or organic detergent builders to assist in mineral hardness control.
- the level of builder can vary widely depending upon the end use of the composition and its desired physical form.
- Liquid formulations typically comprise at least about 1%, more typically from about 5% to about 50%, preferably about 5% to about 30%, by weight of detergent builder.
- Granular formulations typically comprise at least about 1%, more typically from about 10% to about 80%, preferably from about 15% to about 50% by weight of the detergent builder.
- Lower or higher levels of builder, however, are not meant to be excluded.
- Inorganic detergent builders include, but are not limited to, the alkali metal, ammonium and alkanolammonium salts of polyphosphates (exemplified by the tripolyphosphates, pyrophosphates, and glassy polymeric meta-phosphates), phosphonates, phytic acid, silicates, carbonates (including bicarbonates and sesquicarbonates), sulphates, and aluminosilicates.
- Borate builders, as well as builders containing borate-forming materials that can produce borate under detergent storage or wash conditions hereinafter, collectively “borate builders"
- non-borate builders are used in the compositions of the invention intended for use at wash conditions less than about 50° C., especially less than about 40° C.
- silicate builders are the alkali metal silicates, particularly those having a SiO 2 :Na 2 O ratio in the range 1.6:1 to 3.2:1 and layered silicates, such as the layered sodium silicates described in U.S. Pat. No. 4,664,839, issued May 12, 1987 to H. P. Rieck, incorporated herein by reference.
- layered silicates such as the layered sodium silicates described in U.S. Pat. No. 4,664,839, issued May 12, 1987 to H. P. Rieck, incorporated herein by reference.
- other silicates may also be useful such as for example magnesium silicate, which can serve as a crispening agent in granular formulations, as a stabilizing agent for oxygen bleaches, and as a component of suds control systems.
- carbonate builders are the alkaline earth and alkali metal carbonates, including sodium carbonate and sesquicarbonate and mixtures thereof with ultra-fine calcium carbonate as disclosed in German Patent Application No. 2,321,001 published on Nov. 15, 1973, the disclosure of which is incorporated herein by reference.
- Aluminosilicate builders are especially useful in the present invention. Aluminosilicate builders are of great importance in most currently marketed heavy duty granular detergent compositions, and can also be a significant builder ingredient in liquid detergent formulations. Aluminosilicate builders include those having the empirical formula:
- M is sodium, potassium, ammonium or substituted ammonium
- z is from about 0.5 to about 2; and y is 1; this material having a magnesium ion exchange capacity of at least about 50 milligram equivalents of CaCO 3 hardness per gram of anhydrous aluminosilicate.
- Preferred aluminosilicates are zeolite builders which have the formula:
- z and y are integers of at least 6, the molar ratio of z to y is in the range from 1.0 to about 0.5, and x is an integer from about 15 to about 264.
- aluminosilicate ion exchange materials are commercially available. These aluminosilicates can be crystalline or amorphous in structure and can be naturally-occurring aluminosilicates or synthetically derived. A method for producing aluminosilicate ion exchange materials is disclosed in U.S. Pat. No. 3,985,669, Krummel, et al., issued Oct. 12, 1976, incorporated herein by reference. Preferred synthetic crystalline aluminosilicate ion exchange materials useful herein are available under the designations Zeolite A, Zeolite P (B), and Zeolite X. In an especially preferred embodiment, the crystalline aluminosilicate ion exchange material has the formula:
- x is from about 20 to about 30, especially about 27.
- This material is known as Zeolite A.
- the aluminosilicate has a particle size of about 0.1-10 microns in diameter.
- Specific examples of polyphosphates are the alkali metal tripolyphosphates, sodium, potassium and ammonium pyrophosphate, sodium and potassium and ammonium pyrophosphate, sodium and potassium orthophosphate, sodium polymeta phosphate in which the degree of polymerization ranges from about 6 to about 21, and salts of phytic acid.
- phosphonate builder salts are the water-soluble salts of ethane 1-hydroxy-1,1-diphosphonate particularly the sodium and potassium salts, the water-soluble salts of methylene diphosphonic acid e.g. the trisodium and tripotassium salts and the water-soluble salts of substituted methylene diphosphonic acids, such as the trisodium and tripotassium ethylidene, isopyropylidene benzylmethylidene and halo methylidene phosphonates.
- Phosphonate builder salts of the aforementioned types are disclosed in U.S. Pat. Nos. 3,159,581 and 3,213,030 issued Dec. 1, 1964 and Oct.
- Organic detergent builders suitable for the purposes of the present invention include, but are not restricted to, a wide variety of polycarboxylate compounds.
- polycarboxylate refers to compounds having a plurality of carboxylate groups, preferably at least 3 carboxylates.
- Polycarboxylate builder can generally be added to the composition in acid form, but can also be added in the form of a neutralized salt.
- alkali metals such as sodium, potassium, and lithium salts, especially sodium salts, or ammonium and substituted ammonium (e.g., alkanolammonium) salts are preferred.
- polycarboxylate builders include a variety of categories of useful materials.
- One important category of polycarboxylate builders encompasses the ether polycarboxylates.
- a number of ether polycarboxylates have been disclosed for use as detergent builders.
- Examples of useful ether polycarboxylates include oxydisuccinate, as disclosed in Berg, U.S. Pat. No. 3,128,287, issued Apr. 7, 1964, and Lamberti et al., U.S. Pat. No. 3,635,830, issued Jan. 18, 1972, both of which are incorporated herein by reference.
- ether polycarboxylates useful as builders in the present invention also include those having the general formula:
- A is H or OH; B is H or --O--CH(COOX)--CH 2 (COOX); and X is H or a salt-forming cation.
- a and B are both H, then the compound is oxydissuccinic acid and its water-soluble salts. If A is OH and B is H, then the compound is tartrate monosuccinic acid (TMS) and its water-soluble salts. If A is H and B is --O--CH(COOX)--CH 2 (COOX), then the compound is tartrate disuccinic acid (TDS) and its water-soluble salts. Mixtures of these builders are especially preferred for use herein.
- mixtures of TMS and TDS in a weight ratio of TMS to TDS of from about 97:3 to about 20:80 are disclosed in U.S. Pat. No. 4,663,071, issued to Bush et al., on May 5, 1987.
- Suitable ether polycarboxylates also include cyclic compounds, particularly alicyclic compounds, such as those described in U.S. Pat. Nos. 3,923,679; 3,835,163; 4,158,635; 4,120,874 and 4,102,903, all of which are incorporated herein by reference.
- ether hydroxypolycarboxylates represented by the structure:
- M is hydrogen or a cation wherein the resultant salt is water-soluble, preferably an alkali metal, ammonium or substituted ammonium cation, n is from about 2 to about 15 (preferably n is from about 2 to about 10, more preferably n averages from about 2 to about 4) and each R is the same or different and selected from hydrogen, C 1-4 alkyl or C 1-4 substituted alkyl (preferably R is hydrogen).
- Still other ether polycarboxylates include copolymers of maleic anhydride with ethylene or vinyl methyl ether, 1, 3, 5-trihydroxy benzene-2,4,6-trisulphonic acid, and carboxymethyloxysuccinic acid.
- Organic polycarboxylate builders also include the various alkali metal, ammonium and substituted ammonium salts of polyacetic acids.
- polyacetic builder salts include the sodium, potassium, lithium, ammonium and substituted ammonium salts of ethylenediamine tetraacetic acid and nitrilotriacetic acid.
- polycarboxylates such as mellitic acid, succinic acid, polymaleic acid, benzene 1,3,5-tricarboxylic acid, benezene pentacarboxylic acid, and carboxymethyloxysuccinic acid, and soluble salts thereof.
- Citric builders e.g., citric acid and soluble salts thereof, is a polycarboxylate builder of particular importance for heavy duty liquid detergent formulations, but can also be used in granular compositions.
- Suitable salts include the metal salts such as sodium, lithium, and potassium salts, as well as ammonium and substituted ammonium salts.
- carboxylate builders include the carboxylated carbohydrates disclosed in U.S. Pat. No. 3,723,322, Diehl, issued Mar. 28, 1973, incorporated herein by reference.
- Also suitable in the detergent compositions of the present invention are the 3,3-dicarboxy-4-oxa-1,6-hexanedioates and the related compounds disclosed in U.S. Pat. No. 4,566,984, Bush, issued Jan. 28, 1986, incorporated herein by reference.
- Useful succinic acid builders include the C 5 -C 20 alkyl succinic acids and salts thereof. A particularly preferred compound of this type is dodecenylsuccinic acid.
- Alkyl succinic acids typically are of the general formula R--CH(COOH)CH 2 (COOH) i.e., derivatives of succinic acid, wherein R is hydrocarbon, e.g., C 10 -C 20 alkyl or alkenyl, preferably C 12 -C 16 or wherein R may be substituted with hydroxyl, sulfo, sulfoxy or sulfone substituents, all as described in the above-mentioned patents.
- R is hydrocarbon, e.g., C 10 -C 20 alkyl or alkenyl, preferably C 12 -C 16 or wherein R may be substituted with hydroxyl, sulfo, sulfoxy or sulfone substituents, all as described in the above-mentioned patents.
- the succinate builders are preferably used in the form of their water-soluble salts, including the sodium, potassium, ammonium and alkanolammonium salts.
- succinate builders include: laurylsuccinate, myristylsuccinate, palmitylsuccinate, 2-dodecenylsuccinate (preferred), 2-pentadecenylsuccinate, and the like. Laurylsuccinates are the preferred builders of this group, and are described in European Patent Application 86200690.5/0,200,263, published Nov. 5, 1986.
- useful builders also include sodium and potassium carboxymethyloxymalonate, carboxymethyloxysuccinate, cis-cyclohexanehexacarboxylate, cis-cyclopentane-tetracarboxylate, water-soluble polyacrylates (these polyacrylates having molecular weights to above about 2,000 can also be effectively utilized as dispersants), and the copolymers of maleic anhydride with vinyl methyl ether or ethylene.
- polyacetal carboxylates are the polyacetal carboxylates disclosed in U.S. Pat. No. 4,144,226, Crutchfield et al., issued Mar. 13, 1979, incorporated herein by reference. These polyacetal carboxylates can be prepared by bringing together, under polymerization conditions, an ester of glyoxylic acid and a polymerization initiator. The resulting polyacetal carboxylate ester is then attached to chemically stable end groups to stabilize the polyacetal carboxylate against rapid depolymerization in alkaline solution, converted to the corresponding salt, and added to a surfactant.
- Polycarboxylate builders are also disclosed in U.S. Pat. No. 3,308,067, Diehl, issued Mar. 7, 1967, incorporated herein by reference. Such materials include the water-soluble salts of homo- and copolymers of aliphatic carboxylic acids such as maleic acid, itaconic acid, mesaconic acid, fumaric acid, aconitic acid, citraconic acid and methylenemalonic acid.
- organic builders known in the art can also be used.
- monocarboxylic acids, and soluble salts thereof, having long chain hydrocarbyls can be utilized. These would include materials generally referred to as "soaps.” Chain lengths of C 10 -C 20 are typically utilized.
- the hydrocarbyls can be saturated or unsaturated.
- Detersive enzymes can be included in the detergent formulations for a variety of purposes including removal of protein-based, carbohydrate-based, or triglyceride-based stains, for example, and prevention of refugee dye transfer.
- the enzymes to be incorporated include proteases, amylases, lipases, cellulases, and peroxidases, as well as mixtures thereof. They may be of any suitable origin, such as vegetable, animal, bacterial, fungal and yeast origin. However, their choice is governed by several factors such as pH-activity and/or stability optima, thermostability, stability versus active detergents, builders and so on. In this respect bacterial or fungal enzymes are preferred, such as bacterial amylases and proteases, and fungal cellulases.
- proteases are the subtilisins which are obtained from particular strains of B.subtilis and B.licheniforms. Another suitable protease is obtained from a strain of Bacillus, having maximum activity throughout the pH range of 8-12, developed and sold by Novo Industries A/S under the registered trade name Esperase®. The preparation of this enzyme and analogous enzymes is described in British patent specification No. 1,243,784 of Novo.
- protealytic enzymes suitable for removing protein-based stains that are commercially available include those sold under the tradenames ALCALASETM and SAVINASETM by Novo Industries A/S (Denmark) and MAXATASETM by International Bio-Synthetics, Inc. (The Netherlands).
- Protease A and Protease B are enzymes referred to herein as Protease A and Protease B.
- Protease A and methods for its preparation are described in European Patent Application 130,756, published Jan. 9, 1985, incorporated herein by reference.
- Protease B is a proteolytic enzyme which differs from Protease A in that it has a leucine substituted for tyrosine in position 217 in its amino acid sequence.
- Protease B is described in European Patent Application Serial No. 87303761.8, filed Apr. 28, 1987, incorporated herein by reference.
- Methods for preparation of Protease B are also disclosed in European Patent Application 130,756, Bott et al., published Jan. 9, 1985, incorporated herein by reference.
- Amylases include, for example, ⁇ -amylases obtained from a special strain of B.licheniforms, described in more detail in British patent specification No. 1,296,839 (Novo), previously incorporated herein by reference.
- Amylolytic proteins include, for example, RAPIDASETM, International Bio-Synthetics, Inc. and TERMAMYLTM, Novo Industries.
- the cellulases usable in the present invention include both bacterial or fungal cellulase. Preferably, they will have a pH optimum of between 5 and 9.5. Suitable cellulases are disclosed in U.S. Pat. No. 4,435,307, Barbesgoard et al., issued Mar. 6, 1984, incorporated herein by reference, which discloses fungal cellulase produced from Humicola insolens. Suitable cellulases are also disclosed in GB-A-2.075.028; GB-A-2.095.275 and DE-OS-2.247.832.
- cellulases examples include cellulases produced by a strain of Humicola insolens (Humicola grisea var. thermoidea), particularly the Humicola strain DSM 1800, and cellulases produced by a fungus of Bacillus N or a cellulase 212-producing fungus belonging to the genus Aeromonas, and cellulase extracted from the hepatopancreas of a marine mollusc (Dolabella Auricula Solander).
- Suitable lipase enzymes for detergent usage include those produced by microorganisms of the Pseudomonas group, such as Pseudomonas stutzeri ATCC 19.154, as disclosed in British Patent No. 1,372,034, incorporated herein by reference.
- Suitable lipases include those which show a positive immunoligical cross-reaction with the antibody of the lipase, produced by the microorganism Pseudomonas fluorescens IAM 1057. This lipase and a method for its purification have been described in Japanese Patent Application No. 53-20487, laid open to public inspection on Feb. 24, 1978. This lipase is available from Amano Pharmaceutical Co.
- Lipase P Lipase P
- Amano-P Lipase P
- Such lipases of the present invention should show a positive immunological cross reaction with the Amano-P antibody, using the standard and well-known immunodiffusion procedure according to Ouchterlony (Acta. Med. Scan., 133, pages 76-79 (1950)).
- Ouchterlony Acta. Med. Scan., 133, pages 76-79 (1950)
- These lipases, and a method for their immunological cross-reaction with Amano-P are also described in U.S. Pat. No. 4,707,291, Thom et al., issued Nov. 17, 1987, incorporated herein by reference.
- Typical examples thereof are the Amano-P lipase, the lipase ex Pseudomonas fragi FERM P 1339 (available under the trade name Amano-B), lipase ex Psuedomonas nitroreducens var. lipolyticum FERM P 1338 (available under the trade name Amano-CES), lipases ex Chromobacter viscosum, e.g. Chromobacter viscosum var. lipolyticum NRRLB 3673, commercially available from Toyo Jozo Co., Tagata, Japan; and further Chromobacter viscosum lipases from U.S. Biochemical Corp., U.S.A.
- Hydrocarbon suds suppressors are described, for example, in U.S. Pat. No. 4,265,779, issued May 5, 1981 to Gandolfo, et al., incorporated herein by reference.
- the hydrocarbons thus, include aliphatic, alicyclic, aromatic, and heterocyclic saturated or unsaturated hydrocarbons having from about 12 to about 70 carbon atoms.
- the term "paraffin,” as used in this suds suppressor discussion, is intended to include mixtures of true paraffins and cyclic hydrocarbons.
- Peroxidase enzymes are used in combination with oxygen sources, e.g., percarbonate, perborate, persulfate, hydrogen peroxide, etc. They are used for "solution bleaching," i.e. to prevent transfer of dyes or pigments removed from substrates during wash operations to other substrates in the wash solution.
- Peroxidase enzymes are known in the art, and include, for example, horseradish peroxidase, ligninase, and haloperoxidase such as chloro- and bromo-peroxidase.
- Peroxidase-containing detergent compositions are disclosed, for example, in PCT International Application WO 89/099813; published Oct. 19, 1989, by O. Kirk, assigned to Novo Industries A/S, incorporated herein by reference.
- Enzymes are normally incorporated at levels sufficient to provide up to about 5 mg by weight, more typically about 0.05 mg to about 3 mg, of active enzyme per gram of the composition.
- the enzymes are preferably coated or prilled with additives inert toward the enzymes to minimize dust formation and improve storage stability. Techniques for accomplishing this are well known in the art.
- an enzyme stabilization system is preferably utilized. Enzyme stabilization techniques for aqueous detergent compositions are well known in the art.
- one technique for enzyme stabilization in aqueous solutions involves the use of free calcium ions from sources such as calcium acetate, calcium formate, and calcium propionate. Calcium ions can be used in combination with short chain carboxylic acid salts, perferably formates. See, for example, U.S. Pat. No. 4,318,818, Letton, et al., issued Mar.
- Polymeric soil release agents are characterized by having both hydrophilic segments, to hydrophilize the surface of hydrophobic fibers, such as polyester and nylon, and hydrophobic segments, to deposit upon hydrophobic fibers and remain adhered thereto through completion of washing and rinsing cycles and, thus, serve as an anchor for the hydrophilic segments. This can enable stains occurring subsequent to treatment with the soil release agent to be more easily cleaned in later washing procedures.
- polymeric soil release agents in any of the detergent compositions hereof, especially those compositions utilized for laundry or other applications wherein removal of grease and oil from hydrophobic surfaces is needed
- the presence of polyhydroxy fatty acid amide in detergent compositions also containing anionic surfactants can enhance performance of many of the more commonly utilized types of polymeric soil release agents.
- Anionic surfactants interfere with the ability of certain soil release agents to deposit upon and adhere to hydrophobic surfaces.
- These polymeric soil release agents have nonionic hydrophile segments or hydrophobe segments which are anionic surfactant-interactive.
- compositions hereof for which improved polymeric soil release agent performance can be obtained through the use of polyhydroxy fatty acid amide are those which contain an anionic surfactant system, an anionic surfactant-interactive soil release agent and a soil release agent-enhancing amount of the polyhydroxy fatty acid amide (PFA), wherein: (I) anionic surfactant-interaction between the soil release agent and the anionic surfactant system of the detergent composition can be shown by a comparison of the level of soil release agent (SRA) deposition on hydrophobic fibers (e.g., polyester) in aqueous solution between (A) a "Control" run wherein deposition of the SRA of the detergent composition in aqueous solution, in the absence of the other detergent ingredients, is measured, and (B) an "SRA/Anionic surfactant" test run wherein the same type and amount of the anionic surfactant system utilized in detergent composition is combined in aqueous solution with the SRA, at the same weight ratio of SRA to the anionic surfactant system of the
- the tests hereof should be conducted at anionic surfactant concentrations in the aqueous solution that are above the critical micelle concentration (CMC) of the anionic surfactant and preferably above about 100 ppm.
- the polymeric soil release agent concentration should be at least 15 ppm.
- a swatch of polyester fabric should be used for the hydrophobic fiber source. Identical swatches are immersed and agitated in 35° C. aqueous solutions for the respective test runs for a period of 12 minutes, then removed, and analyzed.
- Polymeric soil release agent deposition level can be determined by radiotagging the soil release agent prior to treatment and subsequently conducting radiochemical analysis, according to techniques known in the art.
- soil release agent deposition can alternately be determined in the above test runs (i.e., test runs A, B, and C) by determination of ultraviolet light (UV) absorbance of the test solutions, according to techniques well known in the art. Decreased UV absorbance in the test solution after removal of the hydrophobic fiber material corresponds to increased SRA deposition.
- UV analysis should not be utilized for test solutions containing types and levels of materials which cause excessive UV absorbance interference, such as high levels of surfactants with aromatic groups (e.g., alkyl benzene sulfonates, etc.).
- soil release agent-enhancing amount of polyhydroxy fatty acid amide is meant an amount of such surfactant that will enhance deposition of the soil release agent upon hydrophobic fibers, as described above, or an amount for which enhanced grease/oil cleaning performance can be obtained for fabrics washed in the detergent composition hereof in the next subsequent cleaning operation.
- compositions will comprise from about 0.01% to about 10%, by weight, of the polymeric soil release agent, typically from about 0.1% to about 5%, and from about 4% to about 50%, more typically from about 5% to about 30% of anionic surfactant.
- Such compositions should generally contain at least about 1%, preferably at least about 3%, by weight, of the polyhydroxy fatty acid amide, though it is not intended to necessarily be limited thereto.
- the polymeric soil release agents for which performance is enhanced by polyhydroxy fatty acid amide in the presence of anionic surfactant include those soil release agents having: (a) one or more nonionic hydrophile components consisting essentially of (i) polyoxyethylene segments with a degree of polymerization of at least 2, or (ii) oxypropylene or polyoxypropylene segments with a degree of polymerization of from 2 to 10, wherein said hydrophile segment does not encompass any oxypropylene unit unless it is bonded to adjacent moieties at each end by ether linkages, or (iii) a mixture of oxyalkylene units comprising oxyethylene and from 1 to about 30 oxypropylene units wherein said mixture contains a sufficient amount of oxyethylene units such that the hydrophile component has hydrophilicity great enough to increase the hydrophilicity of conventional polyester synthetic fiber surfaces upon deposit of the soil release agent on such surface, said hydrophile segments preferably comprising at least about 25% oxyethylene units and more preferably, especially for such components having about 20 to
- the polyoxyethylene segments of (a)(i) will have a degree of polymerization of from 2 to about 200, although higher levels can be used, preferably from 3 to about 150, more preferably from 6 to about 100.
- Suitable oxy C 4 -C 6 alkylene hydrophobe segments include, but are not limited to, end-caps of polymeric soil release agents such as MO 3 S(CH 2 ) n OCH 2 CH 2 O--, where M is sodium and n is an integer from 4-6, as disclosed in U.S. Pat. No. 4,721,580, issued Jan. 26, 1988 to Gosselink, incorporated herein by reference.
- Polymeric soil release agents useful in the present invention include cellulosic derivatives such as hydroxyether cellulosic polymers, copolymeric blocks of ethylene terephthalate or propylene terephthalate with polyethylene oxide or polypropylene oxide terephthalate, and the like.
- Cellulosic derivatives that are functional as soil release agents are commercially available and include hydroxyethers of cellulose such as Methocel® (Dow).
- Cellulosic soil release agents for use herein also include those selected from the group consisting of C 1 -C 4 alkyl and C 4 hydroxyalkyl cellulose such as methylcellulose, ethylcellulose, hydroxypropyl methylcellulose, and hydroxybutyl methylcellulose.
- C 1 -C 4 alkyl and C 4 hydroxyalkyl cellulose such as methylcellulose, ethylcellulose, hydroxypropyl methylcellulose, and hydroxybutyl methylcellulose.
- a variety of cellulose derivatives useful as soil release polymers are disclosed in U.S. Pat. No. 4,000,093, issued Dec. 28, 1976 to Nicol, et al., incorporated herein by reference.
- Soil release agents characterized by poly(vinyl ester) hydrophobe segments include graft copolymers of poly(vinyl ester), e.g., C 1 -C 6 vinyl esters, preferably poly(vinyl acetate) grafted onto polyalkylene oxide backbones, such as polyethylene oxide backbones.
- poly(vinyl ester) e.g., C 1 -C 6 vinyl esters
- poly(vinyl acetate) grafted onto polyalkylene oxide backbones such as polyethylene oxide backbones.
- Such materials are known in the art and are described in European Patent Application 0 219 048, published Apr. 22, 1987 by Kud, et al.
- Suitable commercially available soil release agents of this kind include the SokalanTM type of material, e.g., SokalanTM HP-22, available from BASF (West Germany).
- One type of preferred soil release agent is a copolymer having random blocks of ethylene terephthalate and polyethylene oxide (PEO) terephthalate. More specifically, these polymers are comprised of repeating units of ethylene terephthalate and PEO terephthalate in a mole ratio of ethylene terephthalate units to PEO terephthalate units of from about 25:75 to about 35:65, said PEO terephthalate units containing polyethylene oxide having molecular weights of from about 300 to about 2000.
- the molecular weight of this polymeric soil release agent is in the range of from about 25,000 to about 55,000. See U.S. Pat. No. 3,959,230 to Hays, issued May 25, 1976, which is incorporated by reference. See also U.S. Pat. No. 3,893,929 to Basadur issued Jul. 8, 1975 (incorporated by reference) which discloses similar copolymers.
- Another preferred polymeric soil release agent is a polyester with repeat units of ethylene terephthalate units containing 10-15% by weight of ethylene terephthalate units together with 90-80% by weight of polyoxyethylene terephthalate units, derived from a polyoxyethylene glycol of average molecular weight 300-5,000, and the mole ratio of ethylene terephthalate units to polyoxyethylene terephthalate units in the polymeric compound is between 2:1 and 6:1.
- this polymer include the commercially available material Zelcon® 5126 (from Dupont) and Milease® T (from ICI). These polymers and methods of their preparation are more fully described in U.S. Pat. No. 4,702,857, issued Oct. 27, 1987 to Gosselink, which is incorporated herein by reference.
- Another preferred polymeric soil release agent is a sulfonated product of a substantially linear ester oligomer comprised of an oligomeric ester backbone of terephthaloyl and oxyalkyleneoxy repeat units and terminal moieties covalently attached to the backbone, said soil release agent being derived from allyl alcohol ethoxylate, dimethyl terephthalate, and 1,2 propylene diol, wherein after sulfonation, the terminal moieties of each oligomer have, on average, a total of from about 1 to about 4 sulfonate groups.
- These soil release agents are described fully in U.S. Pat. No. 4,968,451, issued Nov. 6, 1990 to J. J. Scheibel and E. P. Gosselink, U.S. Ser. No. 07/474,709, filed Jan. 29, 1990, incorporated herein by reference.
- Suitable polymeric soil release agents include the ethyl- or methyl-capped 1,2-propylene terephthalatepolyoxyethylene terephthalate polyesters of U.S. Pat. No. 4,711,730, issued Dec. 8, 1987 to Gosselink et al., the anionic end-capped oligomeric esters of U.S. Pat. No. 4,721,580, issued Jan. 26, 1988 to Gosselink, wherein the anionic end-caps comprise sulfo-polyethoxy groups derived from polyethylene glycol (PEG), the block polyester oligomeric compounds of U.S. Pat. No. 4,702,857, issued Oct.
- PEG polyethylene glycol
- Additional polymeric soil release agents include the soil release agents of U.S. Pat. No. 4,877,896, issued Oct. 31, 1989 to Maldonado et al., which discloses anionic, especially sulfoaroyl, end-capped terephthalate esters, said patent being incorporated herein by reference.
- the terephthalate esters contain unsymmetrically substituted oxy-1,2-alkyleneoxy units.
- Included among the soil release polymers of U.S. Pat. No. 4,877,896 are materials with polyoxyethylene hydrophile components or C 3 oxyalkylene terephthalate (propylene terephthalate) repeat units within the scope of the hydrophobe components of (b)(i) above. It is the polymeric soil release agents characterized by either, or both, of these criteria that particularly benefit from the inclusion of the polyhydroxy fatty acid amides hereof, in the presence of anionic surfactants.
- soil release agents will generally comprise from about 0.01% to about 10.0%, by weight, of the detergent compositions herein, typically from about 0.1% to about 5%, preferably from about 0.2% to about 3.0%.
- the detergent compositions herein may also optionally contain one or more iron and manganese chelating agents as a builder adjunct material.
- chelating agents can be selected from the group consisting of amino carboxylates, amino phosphonates, polyfunctionally-substituted aromatic chelating agents and mixtures thereof, all as hereinafter defined. Without intending to be bound by theory, it is believed that the benefit of these materials is due in part to their exceptional ability to remove iron and manganese ions from washing solutions by formation of soluble chelates.
- Amino carboxylates useful as optional chelating agents in compositions of the invention can have one or more, preferably at least two, units of the substructure ##STR8## wherein M is hydrogen, alkali metal, ammonium or substituted ammonium (e.g. ethanolamine) and x is from 1 to about 3, preferably 1.
- these amino carboxylates do not contain alkyl or alkenyl groups with more than about 6 carbon atoms.
- Operable amine carboxylates include ethylenediaminetetraacetates, N-hydroxyethylethylenediaminetriacetates, nitrilotriacetates, ethylenediamine tetraproprionates, triethylenetetraaminehexaacetates, diethylenetriaminepentaacetates, and ethanoldiglycines, alkali metal, ammonium, and substituted ammonium salts thereof and mixtures thereof.
- Amino phosphonates are also suitable for use as chelating agents in the compositions of the invention when at least low levels of total phosphorus are permitted in detergent compositions.
- Compounds with one or more, preferably at least two, units of the substructure ##STR9## wherein M is hydrogen, alkali metal, ammonium or substituted ammonium and x is from 1 to about 3, preferably 1, are useful and include ethylenediaminetetrakis (methylenephosphonates), nitrilotris (methylenephosphonates) and diethylenetriaminepentakis (methylenephosphonates).
- these amino phosphonates do not contain alkyl or alkenyl groups with more than about 6 carbon atoms.
- Alkylene groups can be shared by substructures.
- Polyfunctionally-substituted aromatic chelating agents are also useful in the compositions herein. These materials can comprise compounds having the general formula ##STR10## wherein at least one R is --SO 3 H or --COOH or soluble salts thereof and mixtures thereof.
- Preferred compounds of this type in acid form are dihydroxydisulfobenzenes such as 1,2-dihydroxy-3,5-disulfobenzene.
- Alkaline detergent compositions can contain these materials in the form of alkali metal, ammonium or substituted ammonium (e.g. mono- or triethanol-amine) salts.
- these chelating agents will generally comprise from about 0.1% to about 10% by weight of the detergent compositions herein. More preferably chelating agents will comprise from about 0.1% to about 3.0% by weight of such compositions.
- compositions of the present invention can also optionally contain water-soluble ethoxylated amines having clay soil removal and anti-redeposition properties.
- Granular detergent compositions which contain these compounds typically contain from about 0.01% to about 10.0% by weight of the water-soluble ethoxylated amines; liquid detergent compositions, typically about 0.01% to about 5%. These compounds are selected preferably from the group consisting of:
- ethoxylated polyamines having the formula: ##STR12## (4) ethoxylated amine polymers having the general formula: ##STR13## and (5) mixtures thereof; wherein A 1 is ##STR14## or --O--; R is H or C 1 -C 4 alkyl or hydroxyalkyl; R 1 is C 2 -C 12 alkylene, hydroxyalkylene, alkenylene, arylene or alkarylene, or a C 2 -C 3 oxyalkylene moiety having from 2 to about 20 oxyalklene units provided that no O--N bonds are formed; each R 2 is C 1 -C 4 or hydroxyalkyl, the moiety --L--X, or two R 2 together form the moiety --(CH 2 ) r , --A 2 --(CH 2 ) s --, wherein A 2 is --O-- or --CH 2 --, r is 1 or 2, s is 1 or 2, and r+s is 3 or 4; X is
- the most preferred soil release and anti-redeposition agent is ethoxylated tetraethylenepentamine. Exemplary ethoxylated amines are further described in U.S. Pat. No. 4,597,898, VanderMeer, issued Jul. 1, 1986, incorporated herein by reference.
- Another group of preferred clay soil removal/anti-redeposition agents are the cationic compounds disclosed in European Patent Application 111,965, Oh and Gosselink, published Jun. 27, 1984, incorporated herein by reference.
- Other clay soil removal/anti-redeposition agents which can be used include the ethoxylated amine polymers disclosed in European Patent Application 111,984, Gosselink, published Jun.
- CMC carboxy methyl cellulose
- Polymeric dispersing agents can advantageously be utilized in the compositions hereof. These materials can aid in calcium and magnesium hardness control. Suitable polymeric dispersing agents include polymeric polycarboxylates and polyethylene glycols, although others known in the art can also be used. It is believed, though it is not intended to be limited by theory, that polymeric dispersing agents enhance overall detergent builder performance, when used in combination with other builders (including lower molecular weight polycarboxylates).
- Polycarboxylate materials which can be employed as the polymeric dispersing agent herein are these polymers or copolymers which contain at least about 60% by weight of segments with the general formula ##STR15## wherein X, Y, and Z are each selected from the group consisting of hydrogen, methyl, carboxy, carboxymethyl, hydroxy and hydroxymethyl; a salt-forming cation and n is from about 30 to about 400.
- X is hydrogen or hydroxy
- Y is hydrogen or carboxy
- Z is hydrogen
- M is hydrogen, alkali metal, ammonia or substituted ammonium.
- Polymeric polycarboxylate materials of this type can be prepared by polymerizing or copolymerizing suitable unsaturated monomers, preferably in their acid form.
- Unsaturated monomeric acids that can be polymerized to form suitable polymeric polycarboxylates include acrylic acid, maleic acid (or maleic anhydride), fumaric acid, itaconic acid, aconitic acid, mesaconic acid, citraconic acid and methylenemalonic acid.
- the presence in the polymeric polycarboxylates herein of monomeric segments, containing no carboxylate radicals such as vinylmethyl ether, styrene, ethylene, etc. is suitable provided that such segments do not constitute more than about 40% by weight.
- Particularly suitable polymeric polycarboxylates can be derived from acrylic acid.
- acrylic acid-based polymers which are useful herein are the water-soluble salts of polymerized acrylic acid.
- the average molecular weight of such polymers in the acid form preferably ranges from about 2,000 to 10,000, more preferably from about 4,000 to 7,000 and most preferably from about 4,000 to 5,000.
- Water-soluble salts of such acrylic acid polymers can include, for example, the alkali metal, ammonium and substituted ammonium salts. Soluble polymers of this type are known materials. Use of polyacrylates of this type in detergent compositions has been disclosed, for example, in Diehl, U.S. Pat. No. 3,308,067, issued Mar. 7, 1967. This patent is incorporated herein by reference.
- Acrylic/maleic-based copolymers may also be used as a preferred component of the dispersing/anti-redeposition agent.
- Such materials include the water-soluble salts of copolymers of acrylic acid and maleic acid.
- the average molecular weight of such copolymers in the acid form preferably ranges from about 2,000 to 100,000, more preferably from about 5,000 to 75,000, most preferably from about 7,000 to 65,000.
- the ratio of acrylate to maleate segments in such copolymers will generally range from about 30:1 to about 1:1, more preferably from about 10:1 to 2:1.
- Water-soluble salts of such acrylic acid/maleic acid copolymers can include, for example, the alkali metal, ammonium and substituted ammonium salts. Soluble acrylate/maleate copolymers of this type are known materials which are described in European Patent Application No. 66915, published Dec. 15, 1982, which publication is incorporated herein by reference.
- PEG polyethylene glycol
- PEG can exhibit dispersing agent performance as well as act as a clay soil removal/anti-redeposition agent.
- Typical molecular weight ranges for these purposes range from about 500 to about 100,000, preferably from about 1,000 to about 50,000, more preferably from about 1,500 to about 10,000.
- suds suppressors can be desirable because the polyhydroxy fatty acid amide surfactants hereof can increase suds stability of the detergent compositions. Suds suppression can be of particular importance when the detergent compositions include a relatively high sudsing surfactant in combination with the polyhydroxy fatty acid amide surfactant. Suds suppression is particularly desirable for compositions intended for use in front loading automatic washing machines. These machines are typically characterized by having drums, for containing the laundry and wash water, which have a horizontal axis and rotary action about the axis. This type of agitation can result in high suds formation and, consequently, in reduced cleaning performance. The use of suds suppressors can also be of particular importance under hot water washing conditions and under high surfactant concentration conditions.
- suds suppressors are well known to those skilled in the art. They are generally described, for example, in Kirk Othmer Encyclopedia of Chemical Technology, Third Edition, Volume 7, pages 430-447 (John Wiley & Sons, Inc., 1979).
- One category of suds suppressor of particular interest encompasses monocarboxylic fatty acids and soluble salts thereof. These materials are discussed in U.S. Pat. No. 2,954,347, issued Sep. 27, 1960 to Wayne St. John, said patent being incorporated herein by reference.
- the monocarboxylic fatty acids, and salts thereof, for use as suds suppressor typically have hydrocarbyl chains of 10 to about 24 carbon atoms, preferably 12 to 18 carbon atoms.
- Suitable salts include the alkali metal salts such as sodium, potassium, and lithium salts, and ammonium and alkanolammonium salts. These materials are a preferred category of suds suppressor for detergent compositions.
- the detergent compositions may also contain non-surfactant suds suppressors.
- non-surfactant suds suppressors include, for example, list: high molecular weight hydrocarbons such as paraffin, fatty acid esters (e.g., fatty acid triglycerides), fatty acid esters of monovalent alcohols, aliphatic C 18 -C 40 ketones (e.g. stearone), etc.
- suds inhibitors include N-alkylated amino triazines such as tri- to hexa-alkylmelamines or di- to tetra-alkyldiamine chlortriazines formed as products of cyanuric chloride with two or three moles of a primary or secondary amine containing 1 to 24 carbon atoms, propylene oxide, and monostearyl phosphates such as monostearyl alcohol phosphate ester and monostearyl di-alkali metal (e.g., K, Na, Li) phosphates and phosphate esters.
- the hydrocarbons such as paraffin and haloparaffin can be utilized in liquid form.
- the liquid hydrocarbons will be liquid at room temperature and atmospheric pressure, and will have a pour point in the range of about -40° C. and about 5° C., and a minimum boiling point not less than about 110° C. (atmospheric pressure). It is also known to utilize waxy hydrocarbons, preferably having a melting point below about 100° C.
- the hydrocarbons constitute a preferred category of suds suppressor for detergent compositions. Hydrocarbon suds suppressors are described, for example, in U.S. Pat. No. 4,265,779, issued May 5, 1981 to Gandolfo, et al., incorporated herein by reference.
- the hydrocarbons thus, include aliphatic, alicyclic, aromatic, and heterocyclic saturated or unsaturated hydrocarbons having from about 12 to about 70 carbon atoms.
- the term "paraffin,” as used in this suds suppressor discussion, is intended to include mixtures of true paraffins and cyclic hydrocarbons.
- Non-surfactant suds comprises silicone suds suppressors.
- This category includes the use of polyorganosiloxane oils, such as polydimethylsiloxane, dispersions or emulsions of polyorganosiloxane oils or resins, and combinations of polyorganosiloxane with silica particles wherein the polyorganosiloxane is chemisorbed of fused onto the silica.
- Silicone suds suppressors are well known in the art and are, for example, disclosed in U.S. Pat. No. 4,265,779, issued May 5, 1981 to Gandolfo et al. and European Patent Application No. 89307851.9, published Feb. 7, 1990, by Starch, M. S., both incorporated herein by reference.
- silicone and silanated silica are described, for instance, in German Patent Application DOS 2,124,526.
- Silicone defoamers and suds controlling agents in granular detergent compositions are disclosed in U.S. Pat. No. 3,933,672, Bartolotta et al., and in U.S. Pat. No. 4,652,392, Baginski et al., issued Mar. 24, 1987.
- An exemplary silicone based suds suppressor for use herein is a suds suppressing amount of a suds controlling agent consisting essentially of:
- polydimethylsiloxane fluid having a viscosity of from about 20 cs. to about 1500 cs. at 25° C.;
- siloxane resin composed of (CH 3 ) 3 SiO 1/2 units of SiO 2 units in a ratio of from (CH 3 ) 3 SiO 1/2 units and to SiO 2 units of from about 0.6:1 to about 1.2:1;
- suds should not form to the extent that they overflow the washing machine.
- Suds suppressors when utilized, are preferably present in a "suds suppressing amount.”
- Suds suppressing amount is meant that the formulator of the composition can select an amount of this suds controlling agent that will sufficiently control the suds to result in a low-sudsing laundry detergent for use in automatic laundry washing machines.
- the amount of suds control will vary with the detergent surfactants selected. For example, with high sudsing surfactants, relatively more of the suds controlling agent is used to achieve the desired suds control than with lesser foaming surfactants.
- a sufficient amount of suds suppressor should be incorporated in low sudsing detergent compositions so that the suds that form during the wash cycle of the automatic washing machine (i.e., upon agitation of the detergent in aqueous solution under the intended wash temperature and concentration conditions) do not exceed about 75% of the void volume of washing machine's containment drum, preferably the suds do not exceed about 50% of said void volume, wherein the void volume is determined as the difference between total volume of the containment drum and the volume of the water plus the laundry.
- compositions hereof will generally comprise from 0% to about 5% of suds suppressor.
- monocarboxylic fatty acids, and salts thereof When utilized as suds suppressors, monocarboxylic fatty acids, and salts thereof, will be present typically in amounts up to about 5%, by weight, of the detergent composition.
- from about 0.5% to about 3% of fatty monocarboxylate suds suppressor is utilized.
- Silicone suds suppressors are typically utilized in amounts up to about 2.0%, by weight, of the detergent composition, although higher amounts may be used. This upper limit is practical in nature, due primarily to concern with keeping costs minimized and effectiveness of lower amounts for effectively controlling sudsing.
- from about 0.01% to about 1% of silicone suds suppressor is used, more preferably from about 0.25% to about 0.5%.
- these weight percentage values include any silica that may be utilized in combination with polyorganosiloxane, as well as any adjunct materials that may be utilized.
- Monostearyl phosphates are generally used in amounts ranging from about 0.1% to about 2%, by weight, of the composition.
- Hydrocarbon suds suppressors are typically utilized in amounts ranging from about 0.01% to about 5.0%, although higher levels can be used.
- compositions hereof A wide variety of other ingredients useful in detergent compositions can be included in the compositions hereof, including other active ingredients, carriers, hydrotropes, processing aids, dyes or pigments, brighteners, solvents for liquid formulations, etc.
- Liquid detergent compositions can contain water and other solvents as carriers.
- Low molecular weight primary or secondary alcohols exemplified by methanol, ethanol, propanol, and isopropanol are suitable.
- Monohydric alcohols are preferred for solubilizing surfactant, but polyols such as those containing from 2 to about 6 carbon atoms and from 2 to about 6 hydroxy groups (e.g., propylene glycol, ethylene glycol, glycerine, and 1,2-propanediol) can also be used.
- the detergent compositions hereof will preferably be formulated such that during use in aqueous cleaning operations, the wash water will have a pH of between about 6.5 and about 11, preferably between about 7.5 and about 10.5.
- Liquid product formulations preferably have a pH between about 7.5 and about 9.5, more preferably between about 7.5 and about 9.0.
- Techniques for controlling pH at recommended usage levels include the use of buffers, alkalis, acids, etc., and are well known to those skilled in the art.
- This invention further provides a method for improving the performance of detergents containing anionic, nonionic, and/or cationic surfactant and polycarboxylate builder by incorporating into such composition the polyhydroxy fatty acid amide surfactant described above, such that the weight ratio of polycarboxylate to the amide surfactant is from about 1:10 to about 10:1.
- This invention further provides a method for cleaning substrates, such as fabrics, fibers, textiles, hard surfaces, etc., at temperatures below about 50° C., especially below about 40° C., with a detergent composition containing the polyhydroxy fatty acid amide surfactant, as described above, optional auxiliary detersive surfactants, optional detersive adjunct ingredients, and a bleaching agent, wherein said bleaching agent is a non-borate, non-borate-forming bleaching agent.
- one suitable apparatus for use herein comprises a three-liter four-necked flask fitted with a motor-driven paddle stirrer and a thermometer of length sufficient to contact the reaction medium.
- the other two necks of the flask are fitted with a nitrogen sweep and a wide-bore side-arm (caution: a wide-bore side-arm is important in case of very rapid methanol evolution) to which is connected an efficient collecting condenser and vacuum outlet.
- the latter is connected to a nitrogen bleed and vacuum gauge, then to an aspirator and a trap.
- a 500 watt heating mantle with a variable transformer temperature controller (“Variac”) used to heat the reaction is so placed on a lab-jack that it may be readily raised or lowered to further control temperature of the reaction.
- Variac variable transformer temperature controller
- N-methylglucamine (195 g., 1.0 mole, Aldrich, M4700-0) and methyl laurate (Procter & Gamble CE 1270, 220.9 g., 1.0 mole) are placed in a flask.
- the solid/liquid mixture is heated with stirring under a nitrogen sweep to form a melt (approximately 25 minutes).
- catalyst anhydrous powdered sodium carbonate, 10.5 g., 0.1 mole, J. T. Baker
- the nitrogen sweep is shut off and the aspirator and nitrogen bleed are adjusted to give 5 inches (5/31 atm.) Hg. vacuum. From this point on, the reaction temperature is held at 150° C. by adjusting the Variac and/or by raising or lowering the mantle.
- Examples 1-3 are 1-cup formulations for preferred use of about 1650 ppm, wash water weight basis, for temperatures below about 50 C.
- the above examples are made by combining the base granule ingredients as a slurry, and spray drying to about 4-8% residual moisture. The remaining dry ingredients are admixed in granular or powder form with the spray dryed granule in a rotary mixing drum, and the liquid ingredients (nonionic surfactant and perfume) sprayed on.
- Examples 4 and 5 exemplify condensed granular detergent compositions, preferably utilized at about 1200 ppm, wash water bsis, and intended for temperatures below about 50° C. These are prepared by slurrying and spray drying the base granule ingredients, admixing the powdered or granular dry admixes, and spraying on the liquid admix ingredients.
- compositions of Examples 6 and 7 represent condensed granular formulations prepared by slurrying and spray drying the base granule ingredients to a moisture of about 5%, and mixing in the additional dry ingredients. The resulting mixture is dedusted by spraying on the liquid ingredients.
- the product is intended for use at about 1000 ppm concentration, at wash temperatures less than about 30° C.
- Examples 8-10 show standard density heavy duty granular detergent compositions for wash temperatures preferably between about 50°-95° C., at concentrations of about 8000 ppm, wash water weight basis.
- the compositions are prepared by spray drying a slurry of the base granule ingredients to about 10-13% moisture, adding additional dry powdered ingredients, such as bleach, activators, and other adjuncts, and spraying on liquids such as perfume, nonionics, or suds suppressor fluids.
- compositions of Examples 11-13 are preferably utilized at concentrations of about 6000 ppm, wash water weight basis, at temperature of preferably from about 50° C. to 95° C. These compositions can be made by slurrying the base granule ingredients and spray dried to about 9% moisture content. Remaining dry ingredients are added and mixed in a rotary mix drum, followed by spray on addition of the final liquid ingredients.
- the following example shows a heavy duty liquid composition containing polyhydroxy fatty acid amides and hydrogen peroxide bleach.
- An alternate method for preparing the polyhydroxy fatty acid amides used herein is as follows.
- a reaction mixture consisting of 84.87 g. fatty acid methyl ester (source: Procter & Gamble methyl ester CE1270), 75 g. N-methyl-D-glucamine (source: Aldrich Chemical Company M4700-0), 1.049 g. sodium methoxide (source: Aldrich Chemical Company 16,499-2), and 68.51 g. methyl alcohol is used.
- the reaction vessel comprises a standard reflux set-up fitted with a drying tube, condenser and stir bar. In this procedure, the N-methyl glucamine is combined with methanol with stirring under argon and heating is begun with good mixing (stir bar; reflux).
- the ester and sodium methoxide catalyst are added. Samples are taken periodically to monitor the course of the reaction, but it is noted that the solution is completely clear by 63.5 minutes. It is judged that the reaction is, in fact, nearly complete at that point.
- the reaction mixture is maintained at reflux for 4 hours. After removal of the methanol, the recovered crude product weighs 156.16 grams. After vacuum drying and purification, an overall yield of 106.92 grams purified product is recovered. However, percentage yields are not calculated on this basis, inasmuch as regular sampling throughout the course of the reaction makes an overall percentage yield value meaningless.
- the reaction can be carried out at 80% and 90% reactant concentrations for periods up to 6 hours to yield products with extremely small by-product formation.
- polyhydroxy fatty acid amides are, by virtue of their amide bond, subject to some instability under highly basic or highly acidic conditions. While some decomposition can be tolerated, it is preferred that these materials not be subjected to pH's above about 11, preferably 10, nor below about 3 for unduly extended periods. Final product pH (liquids) is typically 7.0-9.0.
- the detergent formulator will recognize that it is a simple and convenient matter to use an acid which provides an anion that is otherwise useful and desirable in the finished detergent composition.
- citric acid can be used for purposes of neutralization and the resulting citrate ion (ca. 1%) be allowed to remain with a ca. 40% polyhydroxy fatty acid amide slurry and be pumped into the later manufacturing stages of the overall detergent-manufacturing process.
- the acid forms of materials such as oxydisuccinate, nitrilotriacetate, ethylenediaminetetraacetate, tartrate/succinate, and the like, can be used similarly.
- the polyhydroxy fatty acid amides derived from coconut alkyl fatty acids are more soluble than their tallow alkyl (predominantly C 16 -C 18 ) counterparts. Accordingly, the C 12 -C 14 materials are somewhat easier to formulate in liquid compositions, and are more soluble in cool-water laundering baths. However, the C 16 -C 18 materials are also quite useful, especially under circumstances where warm-to-hot wash water is used. Indeed, the C 16 -C 18 materials may be better detersive surfactants than their C 12 -C 14 counterparts. Accordingly, the formulator may wish to balance ease-of-manufacture vs. performance when selecting a particular polyhydroxy fatty acid amide for use in a given formulation.
- solubility of the polyhydroxy fatty acid amides can be increased by having points of unsaturation and/or chain branching in the fatty acid moiety.
- materials such as the polyhydroxy fatty acid amides derived from oleic acid and iso-stearic acid are more soluble than their n-alkyl counterparts.
- polyhydroxy fatty acid amides prepared from disaccharides, trisaccharides, etc. will ordinarily be greater than the solubility of their monosaccharide-derived counterpart materials. This higher solubility can be of particular assistance when formulating liquid compositions.
- polyhydroxy fatty acid amides wherein the polyhydroxy group is derived from maltose appear to function especially well as detergents when used in combination with conventional alkylbenzene sulfonate ("LAS") surfactants.
- LAS alkylbenzene sulfonate
- the polyhydroxy fatty acid amides can be manufactured not only from the purified sugars, but also from hydrolyzed starches, e.g., corn starch, potato starch, or any other convenient plant-derived starch which contains the mono-, di-, etc. saccharide desired by the formulator. This is of particular importance from the economic standpoint. Thus, "high glucose” corn syrup, "high maltose” corn syrup, etc. can conveniently and economically be used. De-lignified, hydrolyzed cellulose pulp can also provide a raw material source for the polyhydroxy fatty acid amides.
- polyhydroxy fatty acid amides derived from the higher saccharides such as maltose, lactose, etc.
- the more soluble polyhydroxy fatty acid amides can help solubilize their less soluble counterparts, to varying degrees.
- the formulator may elect to use a raw material comprising a high glucose corn syrup, for example, but to select a syrup which contains a modicum of maltose (e.g., 1% or more).
- the resulting mixture of polyhydroxy fatty acids will, in general, exhibit more preferred solubility properties over a broader range of temperatures and concentrations than would a "pure" glucose-derived polyhydroxy fatty acid amide.
- the polyhydroxy fatty acid amides prepared from mixed sugars can offer very substantial advantages with respect to performance and/or ease-of-formulation.
- some loss of grease removal performance may be noted at fatty acid maltamide levels above about 25% and some loss in sudsing above about 33% (said percentages being the percentage of maltamide-derived polyhydroxy fatty acid amide glucose-derived polyhydroxy fatty acid amide in the mixture). This can vary somewhat, depending on the chain length of the fatty acid moiety.
- the formulator electing to use such mixtures may find it advantageous to select polyhydroxy fatty acid amide mixtures which contain ratios of monosaccharides (e.g., glucose) to di- and higher saccharides (e.g., maltose) from about 4:1 to about 99:1.
- monosaccharides e.g., glucose
- di- and higher saccharides e.g., maltose
- the manufacture of preferred, uncyclized polyhydroxy fatty acid amides from fatty esters and N-alkyl polyols can be carried out in alcohol solvents at temperatures from about 30° C.-90° C., preferably about 50° C.-80° C. It has now been determined that it may be convenient for the formulator of, for example, liquid detergents to conduct such processes in 1,2-propylene glycol solvent, since the glycol solvent need not be completely removed from the reaction product prior to use in the finished detergent formulation. Likewise, the formulator of, for example, solid, typically granular, detergent compositions may find it convenient to run the process at 30° C.-90° C.
- ethoxylated alcohols such as the ethoxylated (EO 3-8) C 12 -C 14 alcohols, such as those available as NEODOL 23 E06.5 (Shell).
- EO 3-8 ethoxylated (EO 3-8) C 12 -C 14 alcohols, such as those available as NEODOL 23 E06.5 (Shell).
- NEODOL 23 E06.5 Shell
- T designation.
- the industrial scale reaction sequence for preparing the preferred acyclic polyhydroxy fatty acid amides will comprise: Step 1--preparing the N-alkyl polyhydroxy amine derivative from the desired sugar or sugar mixture by formation of an adduct of the N-alkyl amine and the sugar, followed by reaction with hydrogen in the presence of a catalyst; followed by Step 2--reacting the aforesaid polyhydroxy amine with, preferably, a fatty ester to form an amide bond.
- Step 2- Reacting the aforesaid polyhydroxy amine with, preferably, a fatty ester to form an amide bond.
- N-alkyl polyhydroxy amines useful in Step 2 of the reaction sequence can be prepared by various art-disclosed processes, the following process is convenient and makes use of economical sugar syrup as the raw material. It is to be understood that, for best results when using such syrup raw materials, the manufacturer should select syrups that are quite light in color or, preferably, nearly colorless ("water-white").
- Adduct Formation is a standard process in which about 420 g of about 55% glucose solution (corn syrup--about 231 g glucose about 1.28 moles) having a Gardner Color of less than 1 is reacted with about--119 g of about 50% aqueous methylamine (59.5 g of methylamine--1.92 moles) solution.
- the methylamine (MMA) solution is purged and shielded with N 2 and cooled to about 10° C., or less.
- the corn syrup is purged and shielded with N 2 at a temperature of about 10°-20° C.
- the corn syrup is added slowly to the MMA solution at the indicated reaction temperature as shown.
- the Gardner Color is measured at the indicated approximate times in minutes.
- the Gardner Color for the adduct is much worse as the temperature is raised above about 30° C. and at about 50° C., the time that the adduct has a Gardner Color below 7 is only about 30 minutes.
- the temperature should be less than about 20° C.
- the Gardner Color should be less than about 7, and preferably less than about 4 for good color glucamine.
- the time to reach substantial equilibrium concentration of the adduct is shortened by the use of higher ratios of amine to sugar.
- equilibrium is reached in about two hours at a reaction temperature of about 30° C.
- the time is at least about three hours.
- the combination of amine:sugar ratio; reaction temperature; and reaction time is selected to achieve substantially equilibrium conversion, e.g., more than about 90%, preferably more than about 95%, even more preferably more than about 99%, based upon the sugar, and a color that is less than about 7, preferably less than about 4, more preferably less than about 1, for the adduct.
- the MMA adduct color (after substantial equilibrium is reached in at least about two hours) is as indicated.
- the starting sugar material must be very near colorless in order to consistently have adduct that is acceptable.
- the sugar has a Gardner Color of about 1, the adduct is sometimes acceptable and sometimes not acceptable.
- the Gardner Color is above 1 the resulting adduct is unacceptable. The better the initial color of the sugar, the better is the color of the adduct.
- the above procedure is repeated with about 23.1 g of Raney Ni catalyst with the following changes.
- the catalyst is washed three times and the reactor, with the catalyst in the reactor, is purged twice with 200 psig H 2 and the reactor is pressurized with H 2 at 1600 psig for two hours, the pressure is released at one hour and the reactor is repressurized to 1600 psig.
- the adduct is then pumped into the reactor which is at 200 psig and 20° C., and the reactor is purged with 200 psig H 2 , etc., as above.
- the resulting product in each case is greater than about 95% N-methyl glucamine; has less than about 10 ppm Ni based upon the glucamine; and has a solution color of less than about Gardner 2.
- the crude N-methyl glucamine is color stable to about 140° C. for a short exposure time.
- adduct that has low sugar content (less than about 5%, preferably less than about 1%) and a good color (less than about 7, preferably less than about 4 Gardner, more preferably less than about 1).
- adduct is prepared starting with about 159 g of about 50% methylamine in water, which is purged and shielded with N 2 at about 10°-20° C. About 330 g of about 70% corn syrup (near water-white) is degassed with N 2 at about 50° C. and is added slowly to the methylamine solution at a temperature of less than about 20° C. The solution is mixed for about 30 minutes to give about 95% adduct that is a very light yellow solution.
- About 190 g of adduct in water and about 9 g of United Catalyst G49B Ni catalyst are added to a 200 ml autoclave and purged three times with H 2 at about 20° C.
- the H 2 pressure is raised to about 200 psi and the temperature is raised to about 50° C.
- the pressure is raised to 250 psi and the temperature is held at about 50°-55° C. for about three hours.
- the product, which is about 95% hydrogenated at this point, is then raised to a temperature of about 85° C. for about 30 minutes and the product, after removal of water and evaporation, is about 95% N-methyl glucamine, a white powder.
- Ni content in the glucamine is about 100 ppm as compared to the less than 10 ppm in the previous reaction.
- a 200 ml autoclave reactor is used following typical procedures similar to those set forth above to make adduct and to run the hydrogen reaction at various temperatures.
- Adduct for use in making glucamine is prepared by combining about 420 g of about 55% glucose (corn syrup) solution (231 g glucose; 1.28 moles) (the solution is made using 99DE corn syrup from CarGill, the solution having a color less than Gardner 1) and about 119 g of 50% methylamine (59.5 g MMA; 1.92 moles) (from Air Products).
- the adduct is used for the hydrogen reaction right after making, or is stored at low temperature to prevent further degradation.
- the glucamine adduct hydrogen reactions are as follows:
- Sample 3 is for about 50°-55° C.; Sample 4 is for about 75° C.; and Sample 5 is for about 85° C. (The reaction time for about 85° C. is about 45 minutes.)
- the preparation of the tallow (hardened) fatty acid amide of N-methyl maltamine for use in detergent compositions according to this invention is as follows.
- Step 1--Reactants Maltose monohydrate (Aldrich, lot 01318KW); methylamine (40 wt% in water) (Aldrich, lot 03325TM); Raney nickel, 50% slurry (UAD 52-73D, Aldrich, lot 12921LW).
- the reactants are added to glass liner (250 g maltose, 428 g methylamine solution, 100 g catalyst slurry--50 g Raney Ni) and placed in 3 L rocking autoclave, which is purged with nitrogen (3 ⁇ 500 psig) and hydrogen (2 ⁇ 500 psig) and rocked under H 2 at room temperature over a weekend at temperatures ranging from 28° C. to 50° C.
- the crude reaction mixture is vacuum filtered 2 ⁇ through a glass microfiber filter with a silica gel plug.
- the filtrate is concentrated to a viscous material.
- the final traces of water are azetroped off by dissolving the material in methanol and then removing the methanol/water on a rotary evaporator.
- Step 2--Reactants N-methyl maltamine (from Step 1); hardened tallow methyl esters; sodium methoxide (25% in methanol); absolute methanol (solvent); mole ratio 1:1 amine:ester; initial catalyst level 10 mole % (w/r maltamine), raised to 20 mole %; solvent level 50% (wt.).
- a silica gel slurry in 100% methanol is loaded into a funnel and washed several times with 100% methanol.
- a concentrated sample of the product (20 g in 100 ml of 100% methanol) is loaded onto the silica gel and eluted several times using vacuum and several methanol washes.
- the collected eluant is evaporated to dryness (rotary evaporator). Any remaining tallow ester is removed by trituration in ethyl acetate overnight, followed by filtration. The filter cake is vacuum dried.
- the product is the tallowalkyl N-methyl maltamide.
- Step 1 of the foregoing reaction sequence can be conducted using commercial corn syrup comprising glucose or mixtures of glucose and, typically, 5%, or higher, maltose.
- the resulting polyhydroxy fatty acid amides and mixtures can be used in any of the detergent compositions herein.
- Step 2 of the foregoing reaction sequence can be carried out in 1,2-propylene glycol or NEODOL.
- the propylene glycol or NEODOL need not be removed from the reaction product prior to its use to formulate detergent compositions.
- the methoxide catalyst can be neutralized by citric acid to provide sodium citrate, which can remain in the polyhydroxy fatty acid amide.
- the compositions herein can contain more or less of various suds control agents.
- various suds control agents For dishwashing high sudsing is desirable so no suds control agent will be used.
- a wide variety of suds control agents are known in the art and can be routinely selected for use herein. Indeed, the selection of suds control agent, or mixtures of suds control agents, for any specific detergent composition will depend not only on the presence and amount of polyhydroxy fatty acid amide used therein, but also on the other surfactants present in the formulation.
- silicone-based suds control agents of various types are more efficient (i.e., lower levels can be used) than various other types of suds control agents.
- the silicone suds control agents available as X2-3419 and Q2-3302 (Dow Corning) are particularly useful.
- the formulator of fabric laundering compositions which can advantageously contain soil release agent has a wide variety of known materials to choose from (see, for example, U.S. Pat. Nos. 3,962,152; 4,116,885; 4,238,531; 4,702,857; 4,721,580 and 4,877,896).
- Additional soil release materials useful herein include the nonionic oligomeric esterification product of a reaction mixture comprising a source of C 1 -C 4 alkoxy-terminated polyethoxy units (e.g., CH 3 OCH 2 CH 2 !
- a source of terephthaloyl units e.g, dimethyl terephthalate
- a source of poly(oxyethylene)oxy units e.g., polyethylene glycol 1500
- a source of oxyiso-propyleneoxy units e.g., 1,2-propylene glycol
- a source of oxyethyleneoxy units e.g., ethylene glycol especially wherein the mole ratio of oxyethyleneoxy units:oxyisopropyleneoxy units is at least about 0.5:1.
- Such nonionic soil release agents are of the general formula ##STR16## wherein R 1 is lower (e.g., C 1 -C 4 ) alkyl, especially methyl; x and y are each integers from about 6 to about 100; m is an integer of from about 0.75 to about 30; n is an integer from about 0.25 to about 20; and R 2 is a mixture of both H and CH 3 ) to provide a mole ratio of oxyethyleneoxy:oxyisopropyleneoxy of at least about 0.5:1.
- R 1 is lower (e.g., C 1 -C 4 ) alkyl, especially methyl
- x and y are each integers from about 6 to about 100
- m is an integer of from about 0.75 to about 30
- n is an integer from about 0.25 to about 20
- R 2 is a mixture of both H and CH 3 ) to provide a mole ratio of oxyethyleneoxy:oxyisopropyleneoxy of at least about 0.5:1.
- soil release agent useful herein is of the general anionic type described in U.S. Pat. No. 4,877,896, but with the condition that such agents be substantially free of monomers of the HOROH type wherein R is propylene or higher alkyl.
- the soil release agents of U.S. Pat. No. 4,877,896 can comprise, for example, the reaction product of dimethyl terephthalate, ethylene glycol, 1,2-propylene glycol and 3-sodiosulfobenzoic acid
- these additional soil release agents can comprise, for example, the reaction product of dimethyl terephthalate, ethylene glycol, 5-sodiosulfoisophthalate and 3-sodiosulfobenzoic acid.
- Such agents are preferred for use in granular laundry detergents.
- compositions herein can contain a solid percarbonate bleach, normally in the form of the sodium salt, incorporated at a level of from 3% to 20% by weight, more preferably from 5% to 18% by weight and most preferably from 8% to 15% by weight of the composition.
- Sodium percarbonate is an addition compound having a formula corresponding to 2Na 2 CO 3 .3H 2 O 2 , and is available commercially as a crystalline solid. Most commercially available material includes a low level of a heavy metal sequestrant such as EDTA, 1-hydroxyethylidene 1,1-diphosphonic acid (HEDP) or an aminophosphonate, that is incorporated during the manufacturing process.
- a heavy metal sequestrant such as EDTA, 1-hydroxyethylidene 1,1-diphosphonic acid (HEDP) or an aminophosphonate
- the percarbonate can be incorporated into detergent compositions without additional protection, but preferred embodiments of the invention utilize a stable form of the material (FMC).
- sodium silicate of SiO 2 :Na 2 O ratio from 1.6:1 to 2.8:1, preferably 2.0:1, applied as an aqueous solution and dried to give a level of from 2% to 10% (normally from 3% to 5%), of silicate solids by weight of the percarbonate.
- Magnesium silicate can also be used and a chelant such as one of those mentioned above can also be included in the coating.
- the particle size range of the crystalline percarbonate is from 350 micrometers to 450 micrometers with a mean of approximately 400 micrometers. When coated, the crystals have a size in the range from 400 to 600 micrometers.
- the percarbonate While heavy metals present in the sodium carbonate used to manufacture the percarbonate can be controlled by the inclusion of sequestrants in the reaction mixture, the percarbonate still requires protection from heavy metals present as impurities in other ingredients of the product. It has been found that the total level of iron, copper and manganese ions in the product should not exceed 25 ppm and preferably should be less than 20 ppm in order to avoid an unacceptably adverse effect on percarbonate stability.
- a granular laundry detergent composition suitable for use at the relatively high concentrations common to front-loading automatic washing machines, especially in Europe, and over a wide range of temperatures is as follows.
- the procedure for preparing the granules comprises various tower-drying, agglomerating, dry-additions, etc., as follows. The percentages are based on the finished composition.
- a surfactant mixture of 20% DOBANOL C 12-15 EO(3) and 80% C 16 -C 18 N-methyl glucose amide is obtained and coagglomerated with sodium carbonate.
- the above particle is then coagglomerated with a high active paste (70%) of a sodium salt of C 14 -C 15 alkyl sulfate and C 12-15 EO(3) sulfate and Zeolite A and extra sodium carbonate.
- This particle evidences a good dispersibility in cold water of the C 16 -C 18 N-methyl glucose amide.
- the silicone suds suppressor X2-3419 (95%-97% high molecular weight linear silicone; 3%-5% hydrophobic silica) ex Dow Corning is coagglomerated with Zeolite A (2-5 ⁇ size), starch and stearyl alcohol binder.
- This particle has the following formulation:
- the detergent preparation exhibits excellent solubility, superior performance and excellent suds control when used in European washing machine, e.g., using 85 g detergent in a AEG-brand washing machine in 30° C., 40° C., 60° C. and 90° C. cycles.
- the fatty acid glucamide surfactant can be replaced by an equivalent amount of the maltamide surfactant, or mixtures of glucamide/maltamide surfactants derived from plant sugar sources.
- the use of ethanolamides appears to help cold temperature stability of the finished formulations.
- the use of sulfobetaine (aka “sultaine”) surfactants provides superior sudsing.
- the formulator of high sudsing compositions will desirably avoid the introduction of suds-suppressing amounts of such fatty acids into high sudsing compositions with the polyhydroxy fatty acid amides, and/or avoid the formation of C 14 and higher fatty acids on storage of the finished compositions.
- One single means is to use C 12 ester reactants to prepare the polyhydroxy fatty acid amides herein. Fortunately, the use of amine oxide or sulfobetaine surfactants can overcome some of the negative sudsing effects caused by the fatty acids.
- anionic optical brighteners to liquid detergents containing relatively high concentrations (e.g., 10% and greater) of anionic or polyanionic substituents such as the polycarboxylate builders may find it useful to pre-mix the brightener with water and the polyhydroxy fatty acid amide, and then to add the pre-mix to the final composition.
- Polyglutamic acid or polyaspartic acid dispersants can be usefully employed with zeolite-built detergents.
- AE fluid or flake and DC-544 are other examples of useful suds control agents herein.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Detergent Compositions (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/400,632 US5700771A (en) | 1990-09-28 | 1995-03-07 | Polyhydroxy fatty acid amide surfactants in percarbonate bleach-containing compositions |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US58973890A | 1990-09-28 | 1990-09-28 | |
US75609891A | 1991-09-06 | 1991-09-06 | |
US08/400,632 US5700771A (en) | 1990-09-28 | 1995-03-07 | Polyhydroxy fatty acid amide surfactants in percarbonate bleach-containing compositions |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US7968593A Continuation | 1993-06-21 | 1993-06-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
US5700771A true US5700771A (en) | 1997-12-23 |
Family
ID=27080648
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/400,632 Expired - Fee Related US5700771A (en) | 1990-09-28 | 1995-03-07 | Polyhydroxy fatty acid amide surfactants in percarbonate bleach-containing compositions |
Country Status (18)
Country | Link |
---|---|
US (1) | US5700771A (cs) |
EP (1) | EP0550690B1 (cs) |
JP (1) | JPH06501043A (cs) |
CN (1) | CN1040771C (cs) |
AR (1) | AR244330A1 (cs) |
AT (1) | ATE164390T1 (cs) |
AU (1) | AU663852B2 (cs) |
BR (1) | BR9106922A (cs) |
CA (1) | CA2092188C (cs) |
CZ (1) | CZ282821B6 (cs) |
DE (1) | DE69129152T2 (cs) |
HU (1) | HU213940B (cs) |
IE (1) | IE913409A1 (cs) |
MX (1) | MX9101353A (cs) |
NZ (1) | NZ240026A (cs) |
SK (1) | SK25593A3 (cs) |
TW (1) | TW230220B (cs) |
WO (1) | WO1992006155A1 (cs) |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5902354A (en) * | 1994-04-12 | 1999-05-11 | The Procter & Gamble Company | Bleaching compositions |
US5905065A (en) * | 1995-06-27 | 1999-05-18 | The Procter & Gamble Company | Carpet cleaning compositions and method for cleaning carpets |
US6110882A (en) * | 1995-06-12 | 2000-08-29 | The Procter & Gamble Company | Cleaning composition and method for the cleaning of delicate surfaces |
US6169063B1 (en) * | 1997-04-04 | 2001-01-02 | The Procter & Gamble Company | Low sudsing granular detergent composition containing optimally selected levels of a foam control agent and enzymes |
US6187055B1 (en) * | 1996-01-03 | 2001-02-13 | Henkel Kommanditgesellschaft Auf Aktien | Washing agents with specific oxidized oligosaccharides |
US6291420B1 (en) * | 1996-01-31 | 2001-09-18 | Rhodia Chimie | System containing a non-ionic surfactant and an alkali metal silicate |
US6323014B1 (en) * | 1999-06-23 | 2001-11-27 | Unilever Home & Personal Care Division Of Conopco, Inc. | Method and composition for enhancing the activity of an enzyme |
US6506722B1 (en) * | 1999-09-11 | 2003-01-14 | Clariant Gmbh | Cogranulates comprising alkali metal phyllosilicates and disintegrants |
US20050239681A1 (en) * | 2002-12-20 | 2005-10-27 | Horst-Dieter Speckmann | Bleach-containing washing or cleaning agents |
US20060030504A1 (en) * | 2003-02-10 | 2006-02-09 | Josef Penninger | Detergents or cleaning agents comprising a water-soluble building block system and a cellulose derivative with dirt dissolving properties |
US20060035804A1 (en) * | 2003-02-10 | 2006-02-16 | Josef Penninger | Use of cellulose derivatives as foam regulators |
US20060035806A1 (en) * | 2003-02-10 | 2006-02-16 | Josef Penninger | Increase in the water absorption capacity of textiles |
US20060035801A1 (en) * | 2003-02-10 | 2006-02-16 | Josef Penninger | Bleach-containing laundry detergents or cleaning compositions comprising water-soluble builder system and soil release-capable cellulose derivative |
US20060035805A1 (en) * | 2003-02-10 | 2006-02-16 | Josef Penninger | Bleach-containing laundry detergent comprising cotton-active soil release-capable cellulose derivative |
US20060046950A1 (en) * | 2003-02-10 | 2006-03-02 | Josef Penninger | Enhancement of the cleaning performance of laundry detergents by cellulose derivative and hygroscopic polymer |
US20060046951A1 (en) * | 2003-02-10 | 2006-03-02 | Josef Penninger | Enhancement of the cleaning performance of laundry detergents by a combination of cellulose derivatives |
US20090325853A1 (en) * | 2006-02-10 | 2009-12-31 | Gyorgyi Fenyvesi | Detergent and liquid soap compositions comprising biologically-based mono and di esters |
EP2380954A1 (en) * | 2010-04-22 | 2011-10-26 | Cognis IP Management GmbH | Solvent compositions |
WO2014085272A1 (en) * | 2012-11-28 | 2014-06-05 | Ecolab Usa Inc. | Viscoelastic surfactant based cleaning compositions |
WO2014085273A1 (en) * | 2012-11-28 | 2014-06-05 | Ecolab Usa Inc. | Viscoelastic surfactant based cleaning compositions |
US8759277B1 (en) | 2013-03-08 | 2014-06-24 | Ecolab Usa Inc. | Foam stabilization and oily soil removal with associative thickeners |
US8759276B2 (en) | 2012-11-28 | 2014-06-24 | Ecolab Usa Inc. | Foam stabilization with polyethyleneimine ethoxylates |
US10370626B2 (en) | 2016-05-23 | 2019-08-06 | Ecolab Usa Inc. | Reduced misting acidic cleaning, sanitizing, and disinfecting compositions via the use of high molecular weight water-in-oil emulsion polymers |
US10392587B2 (en) | 2016-05-23 | 2019-08-27 | Ecolab Usa Inc. | Reduced misting alkaline and neutral cleaning, sanitizing, and disinfecting compositions via the use of high molecular weight water-in-oil emulsion polymers |
US10435308B2 (en) | 2013-03-08 | 2019-10-08 | Ecolab Usa Inc. | Enhanced foam fractionation of oil phase from aqueous/oil mixed phase via increased viscoelasticity |
US10773973B2 (en) | 2013-03-08 | 2020-09-15 | Ecolab Usa Inc. | Enhanced foam removal of total suspended solids and multiply charged cations from aqueous or aqueous/oil mixed phase via increased viscoelasticity |
CN114540135A (zh) * | 2022-03-17 | 2022-05-27 | 广州大白生物科技有限公司 | 一种水溶膜包裹的固态洗涤剂 |
US11540512B2 (en) | 2017-03-01 | 2023-01-03 | Ecolab Usa Inc. | Reduced inhalation hazard sanitizers and disinfectants via high molecular weight polymers |
US11834633B2 (en) | 2019-07-12 | 2023-12-05 | Ecolab Usa Inc. | Reduced mist alkaline cleaner via the use of alkali soluble emulsion polymers |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4019870A1 (de) * | 1990-06-22 | 1992-01-09 | Degussa | Vakuumisolationspanel mit asymmetrischem aufbau |
WO1994012511A1 (en) * | 1992-11-25 | 1994-06-09 | Unilever Plc | Aldonamides and their use as surfactants |
IT1256617B (it) * | 1992-12-02 | 1995-12-12 | Ausimont Spa | Processo per aumentare il potere sbiancante di un persale inorganico odel perossido di idrogeno. |
DE4323253C1 (de) * | 1993-07-12 | 1995-01-05 | Henkel Kgaa | Verwendung von Fettsäure-N-alkylpolyhydroxyalkylamiden als Klarspülmittel für die maschinelle Reinigung harter Oberflächen |
EP0717767B1 (en) * | 1993-09-09 | 1999-03-31 | The Procter & Gamble Company | Granular detergent with n-alkoxy polyhydroxy fatty acid amide surfactant |
EP0717766B1 (en) * | 1993-09-09 | 1998-04-01 | The Procter & Gamble Company | Automatic dishwashing detergent with alkoxy or aryloxy amide surfactant |
DE4331297A1 (de) * | 1993-09-15 | 1995-03-16 | Henkel Kgaa | Stückseifen |
DE4400632C1 (de) * | 1994-01-12 | 1995-03-23 | Henkel Kgaa | Tensidgemische und diese enthaltende Mittel |
DE4409321A1 (de) * | 1994-03-18 | 1995-09-21 | Henkel Kgaa | Detergensgemische |
EP0751210A1 (en) * | 1995-06-27 | 1997-01-02 | The Procter & Gamble Company | Bleaching compositions |
DE19533539A1 (de) | 1995-09-11 | 1997-03-13 | Henkel Kgaa | O/W-Emulgatoren |
DE19544710C2 (de) | 1995-11-30 | 1998-11-26 | Henkel Kgaa | Verdickungsmittel |
DE19548068C1 (de) | 1995-12-21 | 1997-06-19 | Henkel Kgaa | Verfahren zur Herstellung hellfarbiger, niedrigviskoser Tensidkonzentrate |
US5932535A (en) * | 1995-12-21 | 1999-08-03 | Henkel Kommanditgesellschaft Auf Aktien | Process for the production of light-colored, low-viscosity surfactant concentrates |
DE10018812A1 (de) | 2000-04-15 | 2001-10-25 | Cognis Deutschland Gmbh | Verfahren zur Herstellung von nichtionischen Tensidgranulaten |
DE102005025933B3 (de) | 2005-06-06 | 2006-07-13 | Centrotherm Photovoltaics Gmbh + Co. Kg | Dotiergermisch für die Dotierung von Halbleitern |
ES2738320T3 (es) | 2015-06-26 | 2020-01-21 | Clariant Int Ltd | Composiciones detergentes para lavavajillas automáticos que comprenden N-Acilglucamina |
Citations (75)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE53839C (de) * | R. WAGNER in Schierstein | Richtmaschine für Wellen und Kanteisen | ||
DE23346C (de) * | C. JEDDING in Oythe, Oldenburg | Neuerungen an Strohschüttlern für Dreschmaschinen | ||
DE13746C (de) * | H. BUDEL-MANN und J. F. AHLERS in Bremen | Neuerungen an Hobelmaschinen | ||
GB420518A (en) * | 1933-03-23 | 1934-11-23 | Ici Ltd | Textile assistants |
US1985424A (en) * | 1933-03-23 | 1934-12-25 | Ici Ltd | Alkylene-oxide derivatives of polyhydroxyalkyl-alkylamides |
US2016962A (en) * | 1932-09-27 | 1935-10-08 | Du Pont | Process for producing glucamines and related products |
GB519381A (en) * | 1937-09-21 | 1940-03-26 | Du Pont | Manufacture of maltosamines |
US2653932A (en) * | 1949-10-20 | 1953-09-29 | Commercial Solvents Corp | Amide-glycamine condensation products |
US2662073A (en) * | 1951-04-27 | 1953-12-08 | Charles L Mehltretter | Gluconamides |
US2703798A (en) * | 1950-05-25 | 1955-03-08 | Commercial Solvents Corp | Detergents from nu-monoalkyl-glucamines |
US2717894A (en) * | 1951-05-19 | 1955-09-13 | Commercial Solvents Corp | Sulfuric esters of acylated glucamines |
GB745036A (en) * | 1953-01-06 | 1956-02-15 | Atlas Powder Co | Improvements in or relating to heterocyclic amides and carboxylic esters thereof |
GB771423A (en) * | 1954-08-19 | 1957-04-03 | Rohm & Haas | Improvements in alkyl-n-sorbitylalkanamides |
GB809060A (en) * | 1956-05-14 | 1959-02-18 | Hedley Thomas & Co Ltd | Detergent compositions |
US2891052A (en) * | 1956-04-10 | 1959-06-16 | Rohm & Haas | Anhydrosorbityl amides and process of preparation |
US2954347A (en) * | 1955-10-27 | 1960-09-27 | Procter & Gamble | Detergent composition |
US2982737A (en) * | 1957-05-27 | 1961-05-02 | Rohm & Haas | Detergent bars |
US2991296A (en) * | 1959-02-26 | 1961-07-04 | Oscar L Scherr | Method for improving foam stability of foaming detergent composition and improved stabilizers therefor |
US3128287A (en) * | 1963-01-31 | 1964-04-07 | Pfizer & Co C | 2,2'-oxodisuccinic acid, derivatives thereof, and process for preparing |
FR1360018A (fr) * | 1963-04-26 | 1964-04-30 | Commercial Solvents Corp | Solutions de formaldéhyde stabilisées, et leur procédé de stabilisation |
US3285856A (en) * | 1964-03-18 | 1966-11-15 | Chevron Res | Low foaming compositions having good detersive properties |
US3308067A (en) * | 1963-04-01 | 1967-03-07 | Procter & Gamble | Polyelectrolyte builders and detergent compositions |
US3312626A (en) * | 1965-09-03 | 1967-04-04 | Procter & Gamble | Toilet bar |
US3312627A (en) * | 1965-09-03 | 1967-04-04 | Procter & Gamble | Toilet bar |
DE1261861B (de) * | 1963-08-22 | 1968-02-29 | Dehydag Gmbh | Verfahren zur Herstellung von Glycaminabkoemmlingen |
US3455839A (en) * | 1966-02-16 | 1969-07-15 | Dow Corning | Method for reducing or preventing foam in liquid mediums |
FR1580491A (cs) * | 1967-07-19 | 1969-09-05 | ||
US3576749A (en) * | 1969-02-06 | 1971-04-27 | Procter & Gamble | Soap toilet bars having improved smear characteristics |
US3635830A (en) * | 1968-05-24 | 1972-01-18 | Lever Brothers Ltd | Detergent compositions containing oxydisuccing acid salts as builders |
US3637495A (en) * | 1966-08-01 | 1972-01-25 | Henkel & Cie Gmbh | Agent for the posttreatment of laundry |
DE2038103A1 (de) * | 1970-07-31 | 1972-02-10 | Henkel & Cie Gmbh | Waessrige Reinigungsmittelkonzentrate mit einem Gehalt an stabilisierten Enzymen |
US3654166A (en) * | 1967-08-14 | 1972-04-04 | Henkel & Cie Gmbh | Detergent compositions |
US3704228A (en) * | 1969-06-07 | 1972-11-28 | Henkel & Cie Gmbh | Washing agents containing a textile softener |
DE2226872A1 (de) * | 1972-06-02 | 1973-12-20 | Henkel & Cie Gmbh | Waschmittel mit einem gehalt an vergrauungsverhuetenden zusaetzen |
DE2404070A1 (de) * | 1974-01-29 | 1975-08-14 | Henkel & Cie Gmbh | Hautpflege- und hautschutzmittel mit einem gehalt an haut-feuchthaltemitteln |
US3920586A (en) * | 1972-10-16 | 1975-11-18 | Procter & Gamble | Detergent compositions |
US3929678A (en) * | 1974-08-01 | 1975-12-30 | Procter & Gamble | Detergent composition having enhanced particulate soil removal performance |
US3985669A (en) * | 1974-06-17 | 1976-10-12 | The Procter & Gamble Company | Detergent compositions |
US3988255A (en) * | 1975-03-05 | 1976-10-26 | The Procter & Gamble Company | Toilet bars |
US4000093A (en) * | 1975-04-02 | 1976-12-28 | The Procter & Gamble Company | Alkyl sulfate detergent compositions |
GB1466560A (en) * | 1974-02-05 | 1977-03-09 | Jeyes Group Ltd | Bleach compositions |
US4033718A (en) * | 1973-11-27 | 1977-07-05 | The Procter & Gamble Company | Photoactivated bleaching process |
US4094808A (en) * | 1975-11-18 | 1978-06-13 | Ppg Industries, Inc. | Solubility stable encapsulated diperisophthalic acid compositions |
US4129511A (en) * | 1976-09-24 | 1978-12-12 | The Lion Fat & Oil Co., Ltd. | Method of spray drying detergents containing aluminosilicates |
US4154695A (en) * | 1975-05-13 | 1979-05-15 | Interox Chemicals Limited | Bleaching composition |
US4265779A (en) * | 1978-09-09 | 1981-05-05 | The Procter & Gamble Company | Suds suppressing compositions and detergents containing them |
US4268406A (en) * | 1980-02-19 | 1981-05-19 | The Procter & Gamble Company | Liquid detergent composition |
US4268262A (en) * | 1978-11-02 | 1981-05-19 | Henkel Kommanditgesellschaft Auf Aktien (Henkel Kgaa) | Clear, cold-stable liquid washing agent concentrates |
US4292212A (en) * | 1978-11-29 | 1981-09-29 | Henkel Corporation | Shampoo creme rinse |
US4332691A (en) * | 1980-04-11 | 1982-06-01 | Lever Brothers Company | Bleaching liquid cleaning composition |
WO1983004412A1 (en) * | 1982-06-11 | 1983-12-22 | National Research Development Corporation | Amphipathic compounds |
GB2123847A (en) * | 1982-06-28 | 1984-02-08 | Procter & Gamble | Liquid detergent compositions |
US4435317A (en) * | 1980-04-24 | 1984-03-06 | The Procter & Gamble Company | Dishwashing liquid including alkyl sulfate, alkyl ether sulfate, alkylbenzene sulfonate and magnesium |
US4483780A (en) * | 1982-04-26 | 1984-11-20 | The Procter & Gamble Company | Detergent compositions containing polyglycoside and polyethoxylate detergent surfactants |
US4483781A (en) * | 1983-09-02 | 1984-11-20 | The Procter & Gamble Company | Magnesium salts of peroxycarboxylic acids |
US4540821A (en) * | 1981-01-26 | 1985-09-10 | Texaco Inc. | Aminopolyols from sugars |
US4565647A (en) * | 1982-04-26 | 1986-01-21 | The Procter & Gamble Company | Foaming surfactant compositions |
US4605509A (en) * | 1973-05-11 | 1986-08-12 | The Procter & Gamble Company | Detergent compositions containing sodium aluminosilicate builders |
US4663071A (en) * | 1986-01-30 | 1987-05-05 | The Procter & Gamble Company | Ether carboxylate detergent builders and process for their preparation |
EP0220676A1 (de) * | 1985-10-29 | 1987-05-06 | Süddeutsche Zucker-Aktiengesellschaft | Fettsäureamide von Aminopolyolen als nichtionogene Tenside |
US4664839A (en) * | 1984-04-11 | 1987-05-12 | Hoechst Aktiengesellschaft | Use of crystalline layered sodium silicates for softening water and a process for softening water |
US4664836A (en) * | 1985-09-18 | 1987-05-12 | Amway Corporation | Drain cleaner |
US4689167A (en) * | 1985-07-11 | 1987-08-25 | The Procter & Gamble Company | Detergency builder system |
US4704224A (en) * | 1986-10-27 | 1987-11-03 | The Procter & Gamble Company | Soap bar composition containing guar gum |
EP0255033A2 (de) * | 1986-07-31 | 1988-02-03 | Südzucker Aktiengesellschaft Mannheim/Ochsenfurt | Isomaltamine sowie deren N-Acylderivate, Verfahren zu deren Herstellung und ihre Verwendung |
US4746451A (en) * | 1985-08-10 | 1988-05-24 | Henkel Kommanditgesellschaft Auf Aktien | Self-decontaminating cleansing preparations |
EP0268324A2 (en) * | 1986-11-14 | 1988-05-25 | The Procter & Gamble Company | Ion-pair complex conditioning agent and compositions containing same |
EP0282816A2 (en) * | 1987-03-06 | 1988-09-21 | Kao Corporation | External skin care preparation |
EP0285768A1 (de) * | 1987-04-08 | 1988-10-12 | Hüls Aktiengesellschaft | Verwendung von N-Polyhydroxyalkylfettsäureamiden als Verdickungsmittel für flüssige wässrige Tensidsysteme |
US4790856A (en) * | 1984-10-17 | 1988-12-13 | Colgate-Palmolive Company | Softening and anti-static nonionic detergent composition with sulfosuccinamate detergent |
US4915863A (en) * | 1987-08-14 | 1990-04-10 | Kao Corporation | Bleaching composition |
EP0422508A2 (en) * | 1989-10-09 | 1991-04-17 | Kao Corporation | Liquid detergent composition |
JPH03112904A (ja) * | 1989-09-27 | 1991-05-14 | Nippon Oil & Fats Co Ltd | 抗菌剤 |
FR2657611A1 (fr) * | 1990-02-01 | 1991-08-02 | Rennes Ecole Nale Sup Chimie | Nouveaux tensioactifs non ioniques derives de sucres: n-acylglycosylamines derives de mono- et di-saccharides et leurs procedes de fabrication. |
GB2242686A (en) * | 1990-04-02 | 1991-10-09 | Kao Corp | Cleansing composition |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102068234B1 (ko) * | 2013-10-07 | 2020-01-20 | 엘지전자 주식회사 | 스크롤 압축기 및 이를 포함하는 공기 조화기 |
-
1991
- 1991-09-25 EP EP91919397A patent/EP0550690B1/en not_active Expired - Lifetime
- 1991-09-25 WO PCT/US1991/007029 patent/WO1992006155A1/en active IP Right Grant
- 1991-09-25 SK SK25593A patent/SK25593A3/sk unknown
- 1991-09-25 HU HU9300886A patent/HU213940B/hu not_active IP Right Cessation
- 1991-09-25 DE DE69129152T patent/DE69129152T2/de not_active Expired - Fee Related
- 1991-09-25 JP JP3516785A patent/JPH06501043A/ja active Pending
- 1991-09-25 AT AT91919397T patent/ATE164390T1/de not_active IP Right Cessation
- 1991-09-25 BR BR919106922A patent/BR9106922A/pt not_active IP Right Cessation
- 1991-09-25 AU AU87101/91A patent/AU663852B2/en not_active Ceased
- 1991-09-25 CA CA002092188A patent/CA2092188C/en not_active Expired - Fee Related
- 1991-09-25 CZ CS93519A patent/CZ282821B6/cs unknown
- 1991-09-27 CN CN91109767A patent/CN1040771C/zh not_active Expired - Fee Related
- 1991-09-27 IE IE340991A patent/IE913409A1/en unknown
- 1991-09-27 AR AR91320768A patent/AR244330A1/es active
- 1991-09-30 MX MX9101353A patent/MX9101353A/es not_active IP Right Cessation
- 1991-09-30 NZ NZ240026A patent/NZ240026A/en unknown
- 1991-10-15 TW TW080108127A patent/TW230220B/zh active
-
1995
- 1995-03-07 US US08/400,632 patent/US5700771A/en not_active Expired - Fee Related
Patent Citations (81)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE53839C (de) * | R. WAGNER in Schierstein | Richtmaschine für Wellen und Kanteisen | ||
DE23346C (de) * | C. JEDDING in Oythe, Oldenburg | Neuerungen an Strohschüttlern für Dreschmaschinen | ||
DE13746C (de) * | H. BUDEL-MANN und J. F. AHLERS in Bremen | Neuerungen an Hobelmaschinen | ||
US2016962A (en) * | 1932-09-27 | 1935-10-08 | Du Pont | Process for producing glucamines and related products |
GB420518A (en) * | 1933-03-23 | 1934-11-23 | Ici Ltd | Textile assistants |
US1985424A (en) * | 1933-03-23 | 1934-12-25 | Ici Ltd | Alkylene-oxide derivatives of polyhydroxyalkyl-alkylamides |
GB519381A (en) * | 1937-09-21 | 1940-03-26 | Du Pont | Manufacture of maltosamines |
US2653932A (en) * | 1949-10-20 | 1953-09-29 | Commercial Solvents Corp | Amide-glycamine condensation products |
US2703798A (en) * | 1950-05-25 | 1955-03-08 | Commercial Solvents Corp | Detergents from nu-monoalkyl-glucamines |
US2662073A (en) * | 1951-04-27 | 1953-12-08 | Charles L Mehltretter | Gluconamides |
US2717894A (en) * | 1951-05-19 | 1955-09-13 | Commercial Solvents Corp | Sulfuric esters of acylated glucamines |
GB745036A (en) * | 1953-01-06 | 1956-02-15 | Atlas Powder Co | Improvements in or relating to heterocyclic amides and carboxylic esters thereof |
GB771423A (en) * | 1954-08-19 | 1957-04-03 | Rohm & Haas | Improvements in alkyl-n-sorbitylalkanamides |
US2954347A (en) * | 1955-10-27 | 1960-09-27 | Procter & Gamble | Detergent composition |
US2891052A (en) * | 1956-04-10 | 1959-06-16 | Rohm & Haas | Anhydrosorbityl amides and process of preparation |
GB809060A (en) * | 1956-05-14 | 1959-02-18 | Hedley Thomas & Co Ltd | Detergent compositions |
US2965576A (en) * | 1956-05-14 | 1960-12-20 | Procter & Gamble | Detergent compositions |
US2982737A (en) * | 1957-05-27 | 1961-05-02 | Rohm & Haas | Detergent bars |
US2991296A (en) * | 1959-02-26 | 1961-07-04 | Oscar L Scherr | Method for improving foam stability of foaming detergent composition and improved stabilizers therefor |
US3128287A (en) * | 1963-01-31 | 1964-04-07 | Pfizer & Co C | 2,2'-oxodisuccinic acid, derivatives thereof, and process for preparing |
US3308067A (en) * | 1963-04-01 | 1967-03-07 | Procter & Gamble | Polyelectrolyte builders and detergent compositions |
FR1360018A (fr) * | 1963-04-26 | 1964-04-30 | Commercial Solvents Corp | Solutions de formaldéhyde stabilisées, et leur procédé de stabilisation |
DE1261861B (de) * | 1963-08-22 | 1968-02-29 | Dehydag Gmbh | Verfahren zur Herstellung von Glycaminabkoemmlingen |
US3285856A (en) * | 1964-03-18 | 1966-11-15 | Chevron Res | Low foaming compositions having good detersive properties |
US3312626A (en) * | 1965-09-03 | 1967-04-04 | Procter & Gamble | Toilet bar |
US3312627A (en) * | 1965-09-03 | 1967-04-04 | Procter & Gamble | Toilet bar |
US3455839A (en) * | 1966-02-16 | 1969-07-15 | Dow Corning | Method for reducing or preventing foam in liquid mediums |
US3637495A (en) * | 1966-08-01 | 1972-01-25 | Henkel & Cie Gmbh | Agent for the posttreatment of laundry |
FR1580491A (cs) * | 1967-07-19 | 1969-09-05 | ||
US3654166A (en) * | 1967-08-14 | 1972-04-04 | Henkel & Cie Gmbh | Detergent compositions |
US3635830A (en) * | 1968-05-24 | 1972-01-18 | Lever Brothers Ltd | Detergent compositions containing oxydisuccing acid salts as builders |
US3576749A (en) * | 1969-02-06 | 1971-04-27 | Procter & Gamble | Soap toilet bars having improved smear characteristics |
US3704228A (en) * | 1969-06-07 | 1972-11-28 | Henkel & Cie Gmbh | Washing agents containing a textile softener |
DE2038103A1 (de) * | 1970-07-31 | 1972-02-10 | Henkel & Cie Gmbh | Waessrige Reinigungsmittelkonzentrate mit einem Gehalt an stabilisierten Enzymen |
DE2226872A1 (de) * | 1972-06-02 | 1973-12-20 | Henkel & Cie Gmbh | Waschmittel mit einem gehalt an vergrauungsverhuetenden zusaetzen |
US3920586A (en) * | 1972-10-16 | 1975-11-18 | Procter & Gamble | Detergent compositions |
US4605509A (en) * | 1973-05-11 | 1986-08-12 | The Procter & Gamble Company | Detergent compositions containing sodium aluminosilicate builders |
US4033718A (en) * | 1973-11-27 | 1977-07-05 | The Procter & Gamble Company | Photoactivated bleaching process |
DE2404070A1 (de) * | 1974-01-29 | 1975-08-14 | Henkel & Cie Gmbh | Hautpflege- und hautschutzmittel mit einem gehalt an haut-feuchthaltemitteln |
US4021539A (en) * | 1974-01-29 | 1977-05-03 | Henkel & Cie G.M.B.H. | Skin treating cosmetic compositions containing N-polyhydroxyalkyl-amines |
GB1466560A (en) * | 1974-02-05 | 1977-03-09 | Jeyes Group Ltd | Bleach compositions |
US3985669A (en) * | 1974-06-17 | 1976-10-12 | The Procter & Gamble Company | Detergent compositions |
US3929678A (en) * | 1974-08-01 | 1975-12-30 | Procter & Gamble | Detergent composition having enhanced particulate soil removal performance |
US3988255A (en) * | 1975-03-05 | 1976-10-26 | The Procter & Gamble Company | Toilet bars |
US4000093A (en) * | 1975-04-02 | 1976-12-28 | The Procter & Gamble Company | Alkyl sulfate detergent compositions |
US4154695A (en) * | 1975-05-13 | 1979-05-15 | Interox Chemicals Limited | Bleaching composition |
US4094808A (en) * | 1975-11-18 | 1978-06-13 | Ppg Industries, Inc. | Solubility stable encapsulated diperisophthalic acid compositions |
US4129511A (en) * | 1976-09-24 | 1978-12-12 | The Lion Fat & Oil Co., Ltd. | Method of spray drying detergents containing aluminosilicates |
US4265779A (en) * | 1978-09-09 | 1981-05-05 | The Procter & Gamble Company | Suds suppressing compositions and detergents containing them |
US4268262A (en) * | 1978-11-02 | 1981-05-19 | Henkel Kommanditgesellschaft Auf Aktien (Henkel Kgaa) | Clear, cold-stable liquid washing agent concentrates |
US4292212A (en) * | 1978-11-29 | 1981-09-29 | Henkel Corporation | Shampoo creme rinse |
US4268406A (en) * | 1980-02-19 | 1981-05-19 | The Procter & Gamble Company | Liquid detergent composition |
US4332691A (en) * | 1980-04-11 | 1982-06-01 | Lever Brothers Company | Bleaching liquid cleaning composition |
US4435317A (en) * | 1980-04-24 | 1984-03-06 | The Procter & Gamble Company | Dishwashing liquid including alkyl sulfate, alkyl ether sulfate, alkylbenzene sulfonate and magnesium |
US4540821A (en) * | 1981-01-26 | 1985-09-10 | Texaco Inc. | Aminopolyols from sugars |
US4565647A (en) * | 1982-04-26 | 1986-01-21 | The Procter & Gamble Company | Foaming surfactant compositions |
US4565647B1 (en) * | 1982-04-26 | 1994-04-05 | Procter & Gamble | Foaming surfactant compositions |
US4483780A (en) * | 1982-04-26 | 1984-11-20 | The Procter & Gamble Company | Detergent compositions containing polyglycoside and polyethoxylate detergent surfactants |
WO1983004412A1 (en) * | 1982-06-11 | 1983-12-22 | National Research Development Corporation | Amphipathic compounds |
GB2123847A (en) * | 1982-06-28 | 1984-02-08 | Procter & Gamble | Liquid detergent compositions |
US4483781A (en) * | 1983-09-02 | 1984-11-20 | The Procter & Gamble Company | Magnesium salts of peroxycarboxylic acids |
US4664839A (en) * | 1984-04-11 | 1987-05-12 | Hoechst Aktiengesellschaft | Use of crystalline layered sodium silicates for softening water and a process for softening water |
US4790856A (en) * | 1984-10-17 | 1988-12-13 | Colgate-Palmolive Company | Softening and anti-static nonionic detergent composition with sulfosuccinamate detergent |
US4689167A (en) * | 1985-07-11 | 1987-08-25 | The Procter & Gamble Company | Detergency builder system |
US4746451A (en) * | 1985-08-10 | 1988-05-24 | Henkel Kommanditgesellschaft Auf Aktien | Self-decontaminating cleansing preparations |
US4664836A (en) * | 1985-09-18 | 1987-05-12 | Amway Corporation | Drain cleaner |
EP0220676A1 (de) * | 1985-10-29 | 1987-05-06 | Süddeutsche Zucker-Aktiengesellschaft | Fettsäureamide von Aminopolyolen als nichtionogene Tenside |
US4663071B1 (cs) * | 1986-01-30 | 1992-04-07 | Procter & Gamble | |
US4663071A (en) * | 1986-01-30 | 1987-05-05 | The Procter & Gamble Company | Ether carboxylate detergent builders and process for their preparation |
EP0255033A2 (de) * | 1986-07-31 | 1988-02-03 | Südzucker Aktiengesellschaft Mannheim/Ochsenfurt | Isomaltamine sowie deren N-Acylderivate, Verfahren zu deren Herstellung und ihre Verwendung |
US4843154A (en) * | 1986-07-31 | 1989-06-27 | Sueddeutsche Zucker-Aktiengesellschaft | Isomaltamines and their N-acyl derivatives, methods for their production, and their uses as surfactants and monomers |
US4704224A (en) * | 1986-10-27 | 1987-11-03 | The Procter & Gamble Company | Soap bar composition containing guar gum |
EP0268324A2 (en) * | 1986-11-14 | 1988-05-25 | The Procter & Gamble Company | Ion-pair complex conditioning agent and compositions containing same |
EP0282816A2 (en) * | 1987-03-06 | 1988-09-21 | Kao Corporation | External skin care preparation |
EP0285768A1 (de) * | 1987-04-08 | 1988-10-12 | Hüls Aktiengesellschaft | Verwendung von N-Polyhydroxyalkylfettsäureamiden als Verdickungsmittel für flüssige wässrige Tensidsysteme |
US5009814A (en) * | 1987-04-08 | 1991-04-23 | Huls Aktiengesellschaft | Use of n-polyhydroxyalkyl fatty acid amides as thickening agents for liquid aqueous surfactant systems |
US4915863A (en) * | 1987-08-14 | 1990-04-10 | Kao Corporation | Bleaching composition |
JPH03112904A (ja) * | 1989-09-27 | 1991-05-14 | Nippon Oil & Fats Co Ltd | 抗菌剤 |
EP0422508A2 (en) * | 1989-10-09 | 1991-04-17 | Kao Corporation | Liquid detergent composition |
FR2657611A1 (fr) * | 1990-02-01 | 1991-08-02 | Rennes Ecole Nale Sup Chimie | Nouveaux tensioactifs non ioniques derives de sucres: n-acylglycosylamines derives de mono- et di-saccharides et leurs procedes de fabrication. |
GB2242686A (en) * | 1990-04-02 | 1991-10-09 | Kao Corp | Cleansing composition |
Non-Patent Citations (26)
Title |
---|
23! 1-Amino-1-deoxy-D-glucitol, Long and Bollenback, Meth. Carbohyd. Chem., vol. 2, (1963), pp. 79-83. |
"Laundry Detergents Do Good Things Come in Small Packages?", Consumer Reports, Feb. 1995, pp. 92-94. |
"Molecular and Crystal Structure of a Nonionic Detergent: Nonanoyl-N-methyl-glucamide", J. Chem. Soc. Chem. Commun., 1986, pp. 1573-1574, Muller-Fahrnow, Zabel, Steifa, Hilgenfeld. |
"N-D-Gluco-N-methylalkanamide Compounds, a New Class of Non-Ionic Detergents For Membrane Biochemistry", Biochem. J. (1982), vol. 207, pp. 363-366, Hildreth. |
"New Surfactants Needed for New Century", Casey Croy, International News on Fats, Oils and Related Materials, vol. 6, No. 1, Jan. 1995, pp. 7-17. |
"Soaps & Detergents", S. J. Ainsworth, C&E News, Jan. 23, 1995, pp. 30-47 and 50 and 53. |
"The Thermotropic Liquid-Crystalline Properties of Some Straight Chain Carbohydrate Amphiphiles", Liquid Crystals, 1988, vol. 3, No. 11, pp. 1569-1581 Goodby, Marcus, Chin. Finn. |
23 1 Amino 1 deoxy D glucitol, Long and Bollenback, Meth. Carbohyd. Chem., vol. 2, (1963), pp. 79 83. * |
H. Kelkenberg, "Detergenzien auf Zuckerbasis", Tenside Surfactants Detergents 25 (1988) pp. 8-13 (English translation). |
H. Kelkenberg, Detergenzien auf Zuckerbasis , Tenside Surfactants Detergents 25 (1988) pp. 8 13 (English translation). * |
H. Kelkenberg, Tenside Surfactants Detergents 25 (1988) pp. 8 13. * |
H. Kelkenberg, Tenside Surfactants Detergents 25 (1988) pp. 8-13. |
Laundry Detergents Do Good Things Come in Small Packages , Consumer Reports, Feb. 1995, pp. 92 94. * |
Molecular and Crystal Structure of a Nonionic Detergent: Nonanoyl N methyl glucamide , J. Chem. Soc. Chem. Commun., 1986, pp. 1573 1574, Muller Fahrnow, Zabel, Steifa, Hilgenfeld. * |
N D Gluco N methylalkanamide Compounds, a New Class of Non Ionic Detergents For Membrane Biochemistry , Biochem. J. (1982), vol. 207, pp. 363 366, Hildreth. * |
New Surfactants Needed for New Century , Casey Croy, International News on Fats, Oils and Related Materials, vol. 6, No. 1, Jan. 1995, pp. 7 17. * |
Relative Stabilities of d Glucose Amine Derivatives, Mohammad and Olcott, JACS, Apr. 1947, p. 969. * |
Relative Stabilities of d-Glucose-Amine Derivatives, Mohammad and Olcott, JACS, Apr. 1947, p. 969. |
Soaps & Detergents , S. J. Ainsworth, C&E News, Jan. 23, 1995, pp. 30 47 and 50 and 53. * |
Synthesis of 14 C Labeled N Methylglucamine, Heeg et al, Can. J. of Pharmaceutical Sciences, vol. 10, No. 3 (1975), pp. 75 76. * |
Synthesis of 14 C-Labeled N-Methylglucamine, Heeg et al, Can. J. of Pharmaceutical Sciences, vol. 10, No. 3 (1975), pp. 75-76. |
Synthesis of Long Chain N Alkyllactylamines from Unprotected Lactose A new Series of Non Ionic Surfactants, Latge et al, J. Dispersion Science and Technology, 12(3&4), pp. 227 237 (1991). * |
Synthesis of Long Chain N-Alkyllactylamines from Unprotected Lactose--A new Series of Non-Ionic Surfactants, Latge et al, J. Dispersion Science and Technology, 12(3&4), pp. 227-237 (1991). |
The Reaction of Glucose with Some Amines, Mitts and Hixon, JACS, vol. 66, (1944), pp. 483 486. * |
The Reaction of Glucose with Some Amines, Mitts and Hixon, JACS, vol. 66, (1944), pp. 483-486. |
The Thermotropic Liquid Crystalline Properties of Some Straight Chain Carbohydrate Amphiphiles , Liquid Crystals, 1988, vol. 3, No. 11, pp. 1569 1581 Goodby, Marcus, Chin. Finn. * |
Cited By (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5902354A (en) * | 1994-04-12 | 1999-05-11 | The Procter & Gamble Company | Bleaching compositions |
US6110882A (en) * | 1995-06-12 | 2000-08-29 | The Procter & Gamble Company | Cleaning composition and method for the cleaning of delicate surfaces |
US5905065A (en) * | 1995-06-27 | 1999-05-18 | The Procter & Gamble Company | Carpet cleaning compositions and method for cleaning carpets |
US6187055B1 (en) * | 1996-01-03 | 2001-02-13 | Henkel Kommanditgesellschaft Auf Aktien | Washing agents with specific oxidized oligosaccharides |
US6291420B1 (en) * | 1996-01-31 | 2001-09-18 | Rhodia Chimie | System containing a non-ionic surfactant and an alkali metal silicate |
US6169063B1 (en) * | 1997-04-04 | 2001-01-02 | The Procter & Gamble Company | Low sudsing granular detergent composition containing optimally selected levels of a foam control agent and enzymes |
US6323014B1 (en) * | 1999-06-23 | 2001-11-27 | Unilever Home & Personal Care Division Of Conopco, Inc. | Method and composition for enhancing the activity of an enzyme |
US6506722B1 (en) * | 1999-09-11 | 2003-01-14 | Clariant Gmbh | Cogranulates comprising alkali metal phyllosilicates and disintegrants |
US20050239681A1 (en) * | 2002-12-20 | 2005-10-27 | Horst-Dieter Speckmann | Bleach-containing washing or cleaning agents |
US7456143B2 (en) * | 2002-12-20 | 2008-11-25 | Henkel Kommanditgesellschaft Auf Aktien (Henkel Kgaa) | Bleach-containing washing or cleaning agents containing a sulfate/silicate coated percarbonate |
US20060035806A1 (en) * | 2003-02-10 | 2006-02-16 | Josef Penninger | Increase in the water absorption capacity of textiles |
US20060035804A1 (en) * | 2003-02-10 | 2006-02-16 | Josef Penninger | Use of cellulose derivatives as foam regulators |
US20060030504A1 (en) * | 2003-02-10 | 2006-02-09 | Josef Penninger | Detergents or cleaning agents comprising a water-soluble building block system and a cellulose derivative with dirt dissolving properties |
US20060035801A1 (en) * | 2003-02-10 | 2006-02-16 | Josef Penninger | Bleach-containing laundry detergents or cleaning compositions comprising water-soluble builder system and soil release-capable cellulose derivative |
US20060035805A1 (en) * | 2003-02-10 | 2006-02-16 | Josef Penninger | Bleach-containing laundry detergent comprising cotton-active soil release-capable cellulose derivative |
US20060046950A1 (en) * | 2003-02-10 | 2006-03-02 | Josef Penninger | Enhancement of the cleaning performance of laundry detergents by cellulose derivative and hygroscopic polymer |
US20060046951A1 (en) * | 2003-02-10 | 2006-03-02 | Josef Penninger | Enhancement of the cleaning performance of laundry detergents by a combination of cellulose derivatives |
US7316995B2 (en) * | 2003-02-10 | 2008-01-08 | Henkel Kommanditgesellschaft Auf Aktien | Detergents or cleaning agents comprising a water-soluble building block system and a cellulose derivative with dirt dissolving properties |
US7375072B2 (en) * | 2003-02-10 | 2008-05-20 | Henkel Kommanditgesellschaft Auf Aktien | Bleach-containing laundry detergents or cleaning compositions comprising water-soluble builder system and soil release-capable cellulose derivative |
US20090325853A1 (en) * | 2006-02-10 | 2009-12-31 | Gyorgyi Fenyvesi | Detergent and liquid soap compositions comprising biologically-based mono and di esters |
US8802729B2 (en) | 2006-02-10 | 2014-08-12 | Dupont Tate & Lyle Bio Products Company, Llc | Enzyme stabilized detergent compositions |
US9375390B2 (en) | 2006-02-10 | 2016-06-28 | Dupont Tate & Lyle Bio Products Company, Llc | Agricultural compositions comprising renewably-based biodegradable 1,3-propanediol |
US9668951B2 (en) | 2006-02-10 | 2017-06-06 | Dupont Tate & Lyle Bio Products Company, Llc | Pharmaceutical compositions comprising renewably-based biodegradable 1,3-propanediol |
EP2380954A1 (en) * | 2010-04-22 | 2011-10-26 | Cognis IP Management GmbH | Solvent compositions |
WO2011131272A1 (en) * | 2010-04-22 | 2011-10-27 | Cognis Ip Management Gmbh | Solvent compositions |
CN103097506A (zh) * | 2010-04-22 | 2013-05-08 | 考格尼斯知识产权管理有限责任公司 | 溶剂组合物 |
US9000100B2 (en) | 2010-04-22 | 2015-04-07 | Cognis Ip Management Gmbh | Solvent compositions |
WO2014085272A1 (en) * | 2012-11-28 | 2014-06-05 | Ecolab Usa Inc. | Viscoelastic surfactant based cleaning compositions |
US10100268B2 (en) | 2012-11-28 | 2018-10-16 | Ecolab Usa Inc. | Acidic viscoelastic surfactant-based cleaning compositions with an alkali metal salt pseudo-linker |
US10975331B2 (en) | 2012-11-28 | 2021-04-13 | Ecolab Usa Inc. | Viscoelastic amphoteric surfactant based composition for increasing oil well production |
US10246665B2 (en) | 2012-11-28 | 2019-04-02 | Ecolab Usa Inc. | Viscoelastic amphoteric surfactant based cleaning compositions |
US9127238B2 (en) | 2012-11-28 | 2015-09-08 | Ecolab Usa Inc. | Foam stabilization with polyethyleneimine ethoxylates |
US9157049B2 (en) | 2012-11-28 | 2015-10-13 | Ecolab Usa Inc. | Viscoelastic surfactant based cleaning compositions |
US8759276B2 (en) | 2012-11-28 | 2014-06-24 | Ecolab Usa Inc. | Foam stabilization with polyethyleneimine ethoxylates |
US9410112B2 (en) | 2012-11-28 | 2016-08-09 | Ecolab Usa Inc. | Acidic viscoelastic surfactant based cleaning compositions |
WO2014085273A1 (en) * | 2012-11-28 | 2014-06-05 | Ecolab Usa Inc. | Viscoelastic surfactant based cleaning compositions |
US9765285B2 (en) | 2012-11-28 | 2017-09-19 | Ecolab Usa Inc. | Acidic amphoteric viscoelastic surfactant based cleaning compositions |
US9765284B2 (en) | 2012-11-28 | 2017-09-19 | Ecolab Usa Inc. | Viscoelastic amphoteric surfactant based cleaning compositions |
US9029313B2 (en) | 2012-11-28 | 2015-05-12 | Ecolab Usa Inc. | Acidic viscoelastic surfactant based cleaning compositions comprising glutamic acid diacetate |
US9102902B2 (en) | 2013-03-08 | 2015-08-11 | Ecolab Usa Inc. | Foam stabilization and oily soil removal with associative thickeners |
US10435308B2 (en) | 2013-03-08 | 2019-10-08 | Ecolab Usa Inc. | Enhanced foam fractionation of oil phase from aqueous/oil mixed phase via increased viscoelasticity |
US10773973B2 (en) | 2013-03-08 | 2020-09-15 | Ecolab Usa Inc. | Enhanced foam removal of total suspended solids and multiply charged cations from aqueous or aqueous/oil mixed phase via increased viscoelasticity |
US8759277B1 (en) | 2013-03-08 | 2014-06-24 | Ecolab Usa Inc. | Foam stabilization and oily soil removal with associative thickeners |
US11718540B2 (en) | 2013-03-08 | 2023-08-08 | Ecolab Usa Inc. | Enhanced foam fractionation of oil phase from aqueous/oil mixed phase via increased viscoelasticity |
US11987505B2 (en) | 2013-03-08 | 2024-05-21 | Ecolab Usa Inc. | Enhanced foam removal of total suspended solids and multiply charged cations from aqueous or aqueous/oil mixed phase via increased viscoelasticity |
US10370626B2 (en) | 2016-05-23 | 2019-08-06 | Ecolab Usa Inc. | Reduced misting acidic cleaning, sanitizing, and disinfecting compositions via the use of high molecular weight water-in-oil emulsion polymers |
US10392587B2 (en) | 2016-05-23 | 2019-08-27 | Ecolab Usa Inc. | Reduced misting alkaline and neutral cleaning, sanitizing, and disinfecting compositions via the use of high molecular weight water-in-oil emulsion polymers |
US11008538B2 (en) | 2016-05-23 | 2021-05-18 | Ecolab Usa Inc. | Reduced misting alkaline and neutral cleaning, sanitizing, and disinfecting compositions via the use of high molecular weight water-in-oil emulsion polymers |
US11540512B2 (en) | 2017-03-01 | 2023-01-03 | Ecolab Usa Inc. | Reduced inhalation hazard sanitizers and disinfectants via high molecular weight polymers |
US11834633B2 (en) | 2019-07-12 | 2023-12-05 | Ecolab Usa Inc. | Reduced mist alkaline cleaner via the use of alkali soluble emulsion polymers |
CN114540135A (zh) * | 2022-03-17 | 2022-05-27 | 广州大白生物科技有限公司 | 一种水溶膜包裹的固态洗涤剂 |
Also Published As
Publication number | Publication date |
---|---|
EP0550690B1 (en) | 1998-03-25 |
NZ240026A (en) | 1995-04-27 |
CA2092188A1 (en) | 1992-03-29 |
HU9300886D0 (en) | 1993-07-28 |
JPH06501043A (ja) | 1994-01-27 |
HU213940B (en) | 1997-11-28 |
CN1040771C (zh) | 1998-11-18 |
CZ282821B6 (cs) | 1997-10-15 |
CN1062162A (zh) | 1992-06-24 |
EP0550690A1 (en) | 1993-07-14 |
TW230220B (cs) | 1994-09-11 |
MX9101353A (es) | 1992-05-04 |
AU8710191A (en) | 1992-04-28 |
IE913409A1 (en) | 1992-04-08 |
WO1992006155A1 (en) | 1992-04-16 |
DE69129152T2 (de) | 1998-10-08 |
SK25593A3 (en) | 1993-07-07 |
CZ51993A3 (en) | 1994-04-13 |
HUT65145A (en) | 1994-04-28 |
AU663852B2 (en) | 1995-10-26 |
CA2092188C (en) | 1999-09-28 |
AR244330A1 (es) | 1993-10-29 |
DE69129152D1 (de) | 1998-04-30 |
BR9106922A (pt) | 1993-08-17 |
ATE164390T1 (de) | 1998-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5700771A (en) | Polyhydroxy fatty acid amide surfactants in percarbonate bleach-containing compositions | |
US5454982A (en) | Detergent composition containing polyhydroxy fatty acid amide and alkyl ester sulfonate surfactants | |
EP0550695B1 (en) | Polyhydroxy fatty acid amide surfactants to enhance enzyme performance | |
US5332528A (en) | Polyhydroxy fatty acid amides in soil release agent-containing detergent compositions | |
EP0550557B1 (en) | Detergent containing alkyl sulfate and polyhydroxy fatty acid amide surfactants | |
EP0551375B2 (en) | Polyhydroxy fatty acid amides in zeolite/layered silicate built detergents | |
EP0550606B1 (en) | Nonionic surfactant systems containing polyhydroxy fatty acid amides and one or more additional nonionic surfactants | |
EP0550644B1 (en) | Detergent compositions containing polyhydroxy fatty acid amide and alkyl alkoxylated sulfate | |
EP0550692B1 (en) | Detergent compositions with polyhydroxy fatty acid amide surfactant and polymeric dispersing agent | |
EP0551413B1 (en) | Detergent compositions containing polyhydroxy fatty acid amide and alkyl benzene sulfonate | |
EP0551393B1 (en) | Polyhydroxy fatty acid amides in polycarboxylate-built detergents | |
CA2104349C (en) | Granular detergent composition containing polyhydroxy fatty acid amide surfactants to enhance enzyme performance | |
IE913414A1 (en) | Detergent compositions containing polyhydroxy fatty acid¹amide and alkyl benzene sulfonate | |
IE913420A1 (en) | Nonionic surfactant systems containing polyhydroxy fatty¹acid amides and one or more additional nonionic surfactants |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20011223 |