US5005434A - Autosampler with a means for detecting air bubble in specimen - Google Patents
Autosampler with a means for detecting air bubble in specimen Download PDFInfo
- Publication number
- US5005434A US5005434A US07/390,720 US39072089A US5005434A US 5005434 A US5005434 A US 5005434A US 39072089 A US39072089 A US 39072089A US 5005434 A US5005434 A US 5005434A
- Authority
- US
- United States
- Prior art keywords
- specimen
- block
- passage
- light
- needle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/10—Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
- G01N35/1095—Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices for supplying the samples to flow-through analysers
- G01N35/1097—Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices for supplying the samples to flow-through analysers characterised by the valves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/02—Devices for withdrawing samples
- G01N1/10—Devices for withdrawing samples in the liquid or fluent state
- G01N1/14—Suction devices, e.g. pumps; Ejector devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N2015/0007—Investigating dispersion of gas
- G01N2015/0011—Investigating dispersion of gas in liquids, e.g. bubbles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N2021/4735—Solid samples, e.g. paper, glass
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/08—Optical fibres; light guides
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/26—Conditioning of the fluid carrier; Flow patterns
- G01N30/28—Control of physical parameters of the fluid carrier
- G01N30/34—Control of physical parameters of the fluid carrier of fluid composition, e.g. gradient
Definitions
- This invention relates to an autosampler which detects air bubbles in specimen and, more particularly, to an autosampler used in liquid chromatograph or automatic chemical analyzer to check whether the liquid sample has been drawn from a sample container into the analyzing apparatus without bubbles, being mixed therein.
- the Japanese Patent Laid-Open No. 167470/1987 describes a method of removing the air portion from the specimen by detecting the air portion in the liquid specimen drawn in through a needle from a specimen container and by removing the air bubble from the liquid specimen analyzing passage.
- the specimen taken in from the needle is fed through a long passage to a 6-way valve, and at the inlet thereof the air bubbles are detected.
- the air bubbles cannot be detected without taking in a significant amount of specimen from the needle.
- the air portion in the liquid specimen is to be removed from the needle, a large amount of the liquid specimen has to be discarded along with the air bubble.
- the air portion in the liquid specimen is detected in a wide passage at the inlet of the 6-way valve, the fine air bubbles are very difficult to detected. While the detection may be made possible by narrowing the inlet, this will also increase the flow speed of specimen making it difficult to discharge the unwanted air-mixed specimen at an appropriate timing by changing the slow-response 6-way valve. Therefore, the above air detection method is not suitable for the autosampler that makes analysis and measurement of a very small amount of specimen which may easily trap fine bubbles.
- the Japanese Patent Laid-Open No. 132064/1982 and 275659/1986 describe a method of detecting air bubbles by installing electrodes in a tube connected to a suction nozzle through which the liquid specimen is drawn in and by checking changes in electrostatic capacitance. This method, too, has a long passage from the specimen suction point to the air detecting point and therefore has similar drawbacks to those stated above.
- the object of this invention is to provide an autosampler which reliably detects an air portion such as fine air bubbles when a very small amount of liquid specimen is drawn in and which removes the air portion mixed in the specimen while keeping the wasted amount of the specimen to a minimum.
- a very fine needle is often used to introduce by suction the specimen in a container into a measuring passage. If the air portion could be detected at the tip of the fine needle, it would be possible to remove the air portion from the specimen with a loss of a very small amount of the specimen by discharging the air portion in the specimen from that needle end.
- the needle construction however, necessarily becomes complex as it has to connect the electrodes to the detector thereon, and is thus not suitable for needles as expendable parts.
- this invention introduces a construction in which a block that rigidly supports a needle is provided with a fine passage following the fine needle passage and in which a detecting means is arranged in the block in such a manner as to face the passage in the block.
- fine air portion such as bubbles pass immediately in front of the air detecting means and thus can reliably be detected.
- the air portion in the specimen can be removed by discharging only a small amount of specimen from the needle tip, minimizing the wasted amount of specimen.
- FIGS. 1a and 2a are respectively vertical cross-sectional views of embodiments of this invention in which a light source and a light receiving member are embedded in the block supporting the needle;
- FIGS. 1b and 2b are exploded perspective views of the embodiments shown in FIGS. 1a and 2a, respectively;
- FIGS. 3a, 3b, 3c, 4a and 4b are vertical cross-sectional views of embodiments of this invention in which optical fibers are connected to the light source and light receiving member;
- FIG. 5 is a vertical cross-sectional view of one embodiment of this invention using ultrasonic waves
- FIG. 6 is a vertical cross-sectional view of one embodiment of this invention in which electrodes are embedded in a block to detect air portion electrochemically;
- FIG. 7 is a perspective view of one embodiment of the block used in this invention.
- FIGS. 8(a) and 8(b) are perspective views of one example of a method of manufacturing the apparatus of this invention.
- FIGS. 9 and 10 are schematic diagrams of example liquid chromatographs to which an autosampler equipped with the apparatus of this invention is applied.
- FIGS. 11(a), 11(b), 12(a) and 12(b) are schematic diagrams showing the working principle of this invention.
- FIG 1(a) is a vertical cross section and FIG. 1b is an exploded perspective view showing the sequence of assembly of one embodiment with an air portion detector of a light transmission type.
- Reference numeral 1 represents a light illuminating member, 2 a light receiving member, 3 and 4 connecting members with light elements, 5 a needle, 6 a needle fixing member, 7 a tube, 8 an expanded portion of the tube 7, 9 a packing, 10 a block, and 19 a comparator. These constitute the air portion detector.
- the tube 7 is made of transparent or semi-transparent plastic (such as polytetra-fluoro-ethylene). Light from the light illuminating member 1 is radiated into the fluid passage inside the tube 7 and the light that has passed through the fluid in the tube 7 is received by the light receiving member 2.
- the amount of light transmitted varies depending on whether the fluid being checked is liquid or gas and constitutes information to be conveyed to the light receiving member 2. Whether the specimen in the passage is gas or liquid can be determined as follows. The outputs of the light receiving member 2 for both the gas and liquid are measured, the comparator is connected after the light receiving member 2 is set to an intermediate value of the two outputs, and the signal from the light receiving member 2 is compared with the comparator's set value.
- the needle fixing member 6 that rigidly supports the needle 5 is connected to and screwed over the block 10 with the packing 9 interposed therebetween.
- the block 10 is provided with a passage which is continuous with and almost equal in diameter to the narrow specimen passage in the needle 5.
- the light illuminating member 1 and the light receiving member 2 are arranged so as to closely face each other with the passage in the block passing perpendicularly therebetween. In this arrangement an air portion such as fine air bubbles pass immediately before the light receiving member 2 and thus can reliably be detected.
- the detected fine air bubble though not shown can be removed from the tip of the needle 5 by discarding only a small amount of air-laden specimen, thus wasting a minimal amount of specimen.
- the air-mixed specimen may either be removed from the needle end or by a change-over valve installed in the tube 7 following the needle 5. In either case, when the air bubbles are drawn in from the needle end and detected, they can be removed by discharging the minimal amount of air-mixed specimen at an appropriate timing.
- FIG. 2(a) is a vertical cross section and FIG. 2(b) is an exploded perspective view showing the sequence of assembly of another embodiment with an air portion detector of the light reflecting type. Parts identical with those in FIGS. 1(a) and (b) are given like reference numbers and their descriptions are omitted.
- 10' designates a block. The output of the light receiving member 2 varies depending on whether the fluid is gas or liquid. As explained earlier referring to FIG. 1(a), the comparator 19 is installed after the light receiving member 2 to reliably detect an air portion such as fine air bubbles.
- the block 10' has a fluid passage which is continuous with the narrow specimen passage in the needle and which is almost equal in diameter to the needle passage.
- the light illuminating member 1 and the light receiving member 2 are arranged so as to closely face each other with the passage in the block passing perpendicularly therebetween.
- FIGS. 3(a)-(c) are vertical cross sections of autosamplers using an optical fiber in the specimen check section.
- FIG. 3(a) represents a light transmission type
- FIG. 3(b) and 3(c) represent a light reflection type.
- These types using optical fibers have the advantage of a simple construction and are practical where the specimen is drawn in through direct contact with cleaning liquid.
- the air portion detector in the three optical fiber embodiments consists of a light illuminating optical fiber 11, 21, 31, a light receiving optical fiber 12, 22, 32, a light source 13 (not shown in FIG. 3(b) and 3(c)), a light receiving element 14 (not shown in FIG.
- the light illuminating optical fiber 11, 21, 31 is connected at its end with a light source 13 such as light emitting diode, as shown in FIG. 3(a).
- the light receiving optical fiber 12, 22, 32 is connected at its end with a light receiving element 14 such as phototransistor connected to the comparator, as shown in FIG. 3(a).
- the optical fiber is cut and the cut end surfaces are polished.
- the optical fiber end is cut at 45 degrees and the cut end surfaces are coated with light reflecting metal so that the light is reflected at 90 degrees. Any of these three types--FIGS. 3(a), 3(b) and 3(c)--can be chosen according to the construction of the specimen suction member and its associated parts.
- the block 20, 30, 40 is provided with a fluid passage which is continuous with and equal in diameter to the narrow specimen passage in the needle, as in the first embodiment of FIG. 1(a).
- FIGS. 4(a) and 4(b) are vertical cross sections of further embodiments having the air portion detector using optical fibers, in which two optical fibers are provided a specified distance apart.
- FIG. 4(a) represents a light transmission type
- FIG. 4(b) represents a light reflection type.
- an air layer for preventing specimen diffusion is inserted between the cleaning liquid and the specimen. This construction is useful when it is desired to distinguish specimens from the undesired air portion in the specimens and to introduce only the specimens into the apparatus.
- the air portion detector comprises a light illuminating optical fiber 41, 43, 51, 53, a light receiving optical fiber 42, 44, 52, 54, a needle 5, a needle fixing member 6, a tube 7, an expanded portion 8 of the tube 7, a packing 9, and block 50, 60.
- the light elements (not shown) connected to the ends of the light illuminating and light receiving optical fibers are identical with those used in the embodiment of FIG. 3(a).
- the feature of this embodiment is that the two sets of light receiving element members are spaced a specified distance from each other and that an AND circuit is provided after the two comparators. The AND circuit decides that undesired air portions have been drawn in only when two light receiving elements detect the gas phase simultaneously.
- the deliberately inserted air layer for preventing diffusion of the specimen is usually short, but long enough to separate the cleaning liquid and the specimen.
- the light receiving element members detect an air layer which is shorter than the specified distance, it decides that the air layer detected is not an unwanted air portion in the specimen and will operate normally. While it is possible to detect an air portion of very small size stated above, it is also possible to detect an air layer longer than the specified length by the same detecting mechanism. To identify the long air layer, the discharging operation must be kept inactivated until the final decision is made, i.e., until the air layer has moved the specified distance.
- the air lump detector in FIGS. 4(a) and 4(b) may be provided with only one light sensing member, as in the case of FIGS. 1(a) through 3(c).
- the information from one light illuminating member representing the air portion persists for more than a specified period of time, it is decided that a gas lump or bubble other than the specimen diffusion prevention air layer has been taken into the apparatus.
- FIGS. 4(a) and 4(b) may be provided with only one light sensing member, as in the case of FIGS. 1(a) through 3(c).
- the time required for the air layer to pass the light detecting member is determined from the length of the air layer and the velocity of specimen being introduced, and it is possible to set the passing time with a sufficient margin.
- the air portion detector given the above setting, when air is drawn in instead of liquid specimen or when specimen mixed with air portion such as the air bubbles is introduced, the time it takes for the air to pass the light detecting member is longer than the setting time. If the air portion detected is shorter than the specified time duration, then the air portion detector decides that the air portion is the air layer for preventing the specimen diffusion. In this way, the deliberately inserted specimen separation air layer is distinguished from air portion in the liquid specimen.
- An integrating circuit is provided at the output of the light receiving element (not shown) attached to the end of the light receiving optical fiber 44, 54.
- the output of the integrating circuit is then fed, either directly or through a hold circuit, to the comparator which has a specified setting.
- This method allows elimination of one set of optical fibers and light emitting and light receiving elements, and it only needs addition of a simple circuit. This simplifies the structure of the air portion detector.
- FIGS. 11(a) and 11(b) in cross section
- FIGS. 12(a) and 12(b) in cross section
- FIGS. 11(a) and 12(a) represent the case where gas is flowing in the passage
- FIGS. 11(b) and 12(b) represent the case where liquid is flowing in the passage.
- Reference number 100 denotes the light illuminating member, 101 a light receiving member, 102 an incident light, 103 and 106 reflected light, 104 and 105 transmitted light, 110 a transparent or semitransparent tube, 111 gas, and 112 liquid.
- the tube 110 and the liquid 112 have almost the same refractive indexes, greater than that of the gas 111.
- FIG. 5 is a vertical cross section of a further embodiment of this invention that uses an ultrasonic system for the specimen detector.
- the detector of FIG. 5 consists of a needle 5, a needle fixing member 6, a tube 7, an expanded portion 8 of the tube 7, a packing 9, a block 10", a piezoelectric element 18 for sending and receiving ultrasonic waves, a drive circuit 16 for the piezoelectric element 18, a detecting circuit 24 for the piezoelectric element 18, a converter circuit 25, a comparator 26, and lead wires 17, 27.
- the ultrasonic wave is sent out from the piezoelectric element 18 and reflected from the boundary between the fluid and the tube 7. There is a difference in intensity between the reflected ultrasonic waves when the fluid drawn into the needle 5 is gas and when it is liquid.
- This difference is caused by the differing acoustic impedances for ultrasonic waves at the tube-liquid boundary and at the tube-gas boundary.
- the reflected ultrasonic wave from the gas is higher in intensity than from the liquid.
- the reflected ultrasonic waves are detected by the detecting circuit 24 and the detected peak values of the reflected waves are converted by the converter circuit 25 into d.c. voltages, which are proportional to the magnitudes of the peak values.
- the converted d.c. voltages are entered into the comparator 26, which is installed after the converter circuit 25.
- the comparator 26 is set at an intermediate value between the converter circuit outputs for the gas and the liquid. From a signal produced by the comparator 26, it is possible to determine whether the fluid in the passage is gas or liquid.
- FIG. 6 is a schematic vertical cross section of a further embodiment of this invention using an electrochemical detecting method.
- the detector of FIG. 6 consists of a needle 5, a needle fixing member 6, a tube 7, an expanded portion 8 of the tube 7, a packing 9, a block 40', electrodes 46, 47, an ammeter 48, and an a.c. power source 49.
- the electrodes 46, 47 may be formed of a glassy carbon net electrode or fiber bundle electrode.
- the a.c. power source is connected between the two electrodes 46, 47 to generate a.c. voltage. While the power source may be a d.c. source, the a.c. power source 49 is used here to remove the influence of polarization.
- a current flowing between the electrodes 46, 47 is measured by the ammeter 48 to detect electric resistance or electric conductivity.
- current is conducted by ions in the liquid.
- gas is drawn, almost no current flows. So, the gas and the liquid can be distinguished.
- the comparator is installed behind the ammeter 48.
- FIG. 7 is a perspective view of one embodiment of the block used in the specimen detector of this invention.
- the block 70 consists of a tubal through-hole 71, a tube protector 72, an optical fiber insertion hole 73, and a connector 74 for the needle fixing member.
- the block is manufactured by first cutting a lump of opaque material to form a block member with the tube protector 72 and the connector 74 and then drilling the tubal through-hole 71 and the optical fiber insertion hole 73 therein.
- FIGS. 8(a) and 8(b) are perspective views showing the process of manufacturing the specimen detector of this invention.
- FIG. 8(a) is a perspective view immediately after the assembling has been started and FIG. 8(b) is a perspective view immediately before completion.
- the constitutional elements include a needle 5, a needle fixing member 6, a tube 7, an expanded portion 8 of the tube 7, a packing 9, a tubal through-hole 71, a tube protector 72, an optical fiber insertion hole 73, a connector 74, a block 70, a light illuminating optical fiber 75, and a light receiving optical fiber 76.
- FIG. 9 is a schematic diagram of a liquid chromatograph, an example of application of the autosampler (enclosed by broken line 900) of this invention using the detector shown in FIGS. 1 through 8.
- the liquid chromatograph consists of a cleaning port 80, a specimen 81, a specimen bottle 82, a specimen detector 83, a needle 5, a tube 7, a 6-way valve 84, a specimen loop 85, an eluent 88, an eluent container 89, a pump 90 a separation column 86, a detector 87, a 3-way cock 91, a syringe 92, a cleaning liquid 93, and a cleaning liquid container 94.
- the specimen 81 is introduced into the liquid chromatograph as follows. First, the 3-way cock 91 is set as shown by the broken line and the syringe 92 is pulled to draw the cleaning liquid 93 into it. Next, the 3-way cock 91 is switched as shown by the solid line and the 6-way valve 84 is also switched as shown by the solid line. The needle 5 is moved immediately above the cleaning port 80 and the syringe 92 is pushed to cause the cleaning liquid in the syringe 92 to flow through the passage to clean it. At this time the pump 90 is delivering the eluent 88, and the passage through the specimen loop 85, separation column 86, and detector 87 is in the initial condition.
- the 6-way valve 84 is switched as shown by the broken line and the needle 5 is inserted into the specimen bottle 82.
- the syringe 92 is pulled to introduce the specimen 81 into the specimen loop 85.
- the tube 7 is mounted with a specimen detector 83 of this invention, which prevents the 6-way valve 84 from being switched to the solid line passage when air bubbles, not the specimen 81, are drawn in.
- the 6-way valve 84 is switched to the solid line passage for performing analysis.
- FIG. 10 is a schematic diagram of another liquid chromatograph that applies the autosampler 900 of this invention using the detector shown in FIGS. 1(a) through 8(b).
- the component that are identical with those of FIG. 9 are given like reference numerals and their explanations are omitted.
- the 6-way valve 96 which takes the place of valve 84 of FIG. 9, is connected with an injection port 95 so that the 6-way valve 69 can be bypassed in cleaning the needle 5.
- the specimen 81 is introduced into the liquid chromatograph in the following sequence. First, the 3-way cock 91 is set to the position shown by the broken line and the cleaning liquid 93 is drawn in by the syringe 92.
- the 3-way cock 91 is switched to complete the passage indicated by the solid line, and the 6-way valve 96 is switched to the solid line passage.
- the needle 5 is moved to the injection port 95 and the syringe 92 is pushed to clean the passage.
- the pump 90 is delivering eluent 88 and therefore the passage in the specimen loop 85, separation column 86 and the detector 87 is in the initial state.
- the 6-way valve 96 is switched to the broken line passage; the needle 5 is inserted into the specimen bottle 82; and the syringe 92 is pulled to draw the specimen into the passage.
- the needle 5 is moved to the injection port 95 to introduce the specimen into the specimen loop 85.
- FIG. 9 when an air layer for preventing specimen diffusion is to be inserted between the cleaning liquid 93 and the specimen 81 in the embodiment of FIG. 10, it would be effective to use two sensing members as illustrated in FIG. 4.
- the autosampler since even a small amount of air is reliably distinguished from normal specimens when a specimen mixed with air bubbles is introduced from the specimen bottle or when air is drawn in from an empty specimen bottle, the reliability of the specimen analyzing system using the autosampler can be significantly improved.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Hydrology & Water Resources (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
- Sampling And Sample Adjustment (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP63-213356 | 1988-08-27 | ||
| JP63213356A JPH0781996B2 (ja) | 1988-08-27 | 1988-08-27 | オートサンプラ |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US5005434A true US5005434A (en) | 1991-04-09 |
Family
ID=16637817
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US07/390,720 Expired - Lifetime US5005434A (en) | 1988-08-27 | 1989-08-08 | Autosampler with a means for detecting air bubble in specimen |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US5005434A (enExample) |
| JP (1) | JPH0781996B2 (enExample) |
| DE (1) | DE3927718C1 (enExample) |
Cited By (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE19646273A1 (de) * | 1996-11-09 | 1998-05-14 | Bosch Gmbh Robert | Naßchemisches Ätzverfahren für Halbleiter und Vorrichtung hierzu |
| JP2000338117A (ja) * | 1999-04-28 | 2000-12-08 | Roche Diagnostics Gmbh | 分析装置の液体移送のための方法およびデバイス |
| US6281517B1 (en) * | 1998-08-17 | 2001-08-28 | Roche Diagnostics Corporation | Apparatus for monitoring pipetting operations |
| US20020192113A1 (en) * | 2001-06-13 | 2002-12-19 | Uffenheimer Kenneth F. | Automated fluid handling system and method |
| EP1116953A3 (en) * | 2000-01-13 | 2003-10-08 | Ortho-Clinical Diagnostics, Inc. | Failure detection in automated clinical analyzers |
| US20040185569A1 (en) * | 2001-02-02 | 2004-09-23 | Zweifel Ronald A. | Controlling microdrop dispensing apparatus |
| US20060083659A1 (en) * | 2004-10-19 | 2006-04-20 | Karl Abele | Solid phase extraction apparatus and method |
| US20060093525A1 (en) * | 2004-05-14 | 2006-05-04 | Roche Diagnostics Operations, Inc. | Level sensor apparatus for detecting contact of a pipetting needle with a liquid in a vessel |
| US20060286678A1 (en) * | 2004-05-14 | 2006-12-21 | Roche Diagnostics Operations, Inc. | Pipetting needle |
| US8800352B2 (en) | 2011-07-15 | 2014-08-12 | Thermo Finnigan Llc | Method for automatic optimization of liquid chromatography autosampler |
| CN106424061A (zh) * | 2016-09-30 | 2017-02-22 | 苏州长光华医生物医学工程有限公司 | 一种磁分离清洗针结构 |
| DE102015117638A1 (de) * | 2015-10-16 | 2017-04-20 | Endress+Hauser Conducta Gmbh+Co. Kg | Verfahren zur Dosierung einer Flüssigkeit in einem nasschemischen Analysegerät zur Bestimmung eines Parameters einer Flüssigkeitsprobe |
| CN107687963A (zh) * | 2016-08-04 | 2018-02-13 | 深圳迈瑞生物医疗电子股份有限公司 | 确认样本采样可靠性的方法、装置及血液细胞分析仪 |
| WO2019241418A1 (en) * | 2018-06-12 | 2019-12-19 | Waters Technologies Corporation | Techniques for monitoring chromatographic fluid flows |
| US11879875B2 (en) | 2020-03-17 | 2024-01-23 | Waters Technologies Corporation | Sample manager, system and method |
| US11913916B2 (en) | 2020-03-17 | 2024-02-27 | Waters Technologies Corporation | Needle drive, system and method |
| US12031959B2 (en) | 2018-12-10 | 2024-07-09 | Shimadzu Corporation | Auto-sampler for chromatographs |
| US12352731B2 (en) | 2019-01-17 | 2025-07-08 | Shimadzu Corporation | Autosampler for chromatograph and fluid chromatography system |
Families Citing this family (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5082371A (en) * | 1989-12-28 | 1992-01-21 | New Jersey Institute Of Technology | Method and apparatus for measuring entrained air in concrete |
| JPH03275136A (ja) * | 1990-03-26 | 1991-12-05 | Kurabo Ind Ltd | 気泡検知方法、液供給方法およびその装置 |
| AU657544B2 (en) * | 1991-08-07 | 1995-03-16 | Toa Medical Electronics Co., Ltd. | Method and apparatus for agitating and sampling a liquid specimen |
| JPH08338849A (ja) * | 1995-04-11 | 1996-12-24 | Precision Syst Sci Kk | 液体の吸引判別方法およびこの方法により駆動制御される分注装置 |
| JP3545852B2 (ja) * | 1995-09-20 | 2004-07-21 | 株式会社堀場製作所 | 自動血球計数装置およびその液面検出方法 |
| AU2290897A (en) * | 1996-04-04 | 1997-10-29 | Novartis Ag | Device for counting small particles and a sorting apparatus comprising such a device |
| DE19641882C2 (de) * | 1996-10-10 | 1998-11-05 | Willi Fischer | Verwendung einer Einrichtung zum Feststellen metallischer Teilchen |
| JP2001183382A (ja) * | 1999-12-28 | 2001-07-06 | Roche Diagnostics Gmbh | 分注機の動作確認装置および確認方法 |
| DE10052819B4 (de) | 2000-10-24 | 2004-02-19 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Pipettensystem und Pipettenarray sowie Verfahren zum Befüllen eines Pipettensystems |
| AT412515B (de) | 2003-08-07 | 2005-03-25 | Hoffmann La Roche | Verfahren zur detektion einer gasblase in einer flüssigkeit |
| JP5015874B2 (ja) * | 2008-07-22 | 2012-08-29 | 日立アロカメディカル株式会社 | ノズルユニット |
| DE102012212874A1 (de) * | 2012-07-23 | 2014-01-23 | Forschungszentrum Jülich GmbH | Blasendetektor |
| KR101588397B1 (ko) * | 2014-09-19 | 2016-01-27 | 한국건설기술연구원 | 모듈러 주택 운송용 차량의 화물 고정장치 |
| CN105277386B (zh) * | 2015-11-27 | 2018-08-10 | 长沙开元仪器股份有限公司 | 卸料机构、螺旋采样机、全断面螺旋采样机 |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3699348A (en) * | 1970-08-14 | 1972-10-17 | Zeiss Stiftung | Radiation sensitive device for the successive investigation of several samples |
| DE2133797A1 (de) * | 1971-07-07 | 1973-01-25 | Hoechst Ag | Messung von verfaerbungen an einer stroemenden polymerschmelze |
| US4312341A (en) * | 1979-12-13 | 1982-01-26 | Baxter Travenol Laboratories, Inc. | Bubble detector |
| US4318884A (en) * | 1979-12-07 | 1982-03-09 | Olympus Optical Co., Ltd. | Distributing nozzle with cooperating ionic detector |
| JPS57163849A (en) * | 1981-04-01 | 1982-10-08 | Kenseishiya:Kk | Optical bubble detector |
| US4399711A (en) * | 1980-04-18 | 1983-08-23 | Beckman Instruments, Inc. | Method and apparatus ensuring full volume pickup in an automated pipette |
| US4419903A (en) * | 1982-02-22 | 1983-12-13 | Beckman Instruments, Inc. | Method and apparatus for detecting insufficient liquid levels |
| JPS613034A (ja) * | 1984-06-15 | 1986-01-09 | Masanori Nomura | 気泡検出センサ |
| US4829837A (en) * | 1988-01-28 | 1989-05-16 | Shell Oil Company | Robotic liquid separation sensing using a cannula |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS57127848A (en) * | 1981-01-30 | 1982-08-09 | Shimadzu Corp | Liquid chromatograph |
| JPS57132064A (en) * | 1981-02-09 | 1982-08-16 | Toshiba Corp | Determinate quantity dispensing apparatus |
| JPS5838856A (ja) * | 1981-08-31 | 1983-03-07 | Kyoto Daiichi Kagaku:Kk | 自動化された液体クロマト装置 |
| JPS6022665A (ja) * | 1983-07-18 | 1985-02-05 | Shimadzu Corp | 自動試料導入装置 |
| JPS6085355A (ja) * | 1983-10-17 | 1985-05-14 | Union Giken:Kk | 光学的検出器 |
| JPS61275659A (ja) * | 1985-05-31 | 1986-12-05 | Toshiba Corp | 自動化学分析装置 |
| JPH0734007B2 (ja) * | 1985-11-29 | 1995-04-12 | 株式会社島津製作所 | 液体クロマトグラフ用試料導入装置 |
-
1988
- 1988-08-27 JP JP63213356A patent/JPH0781996B2/ja not_active Expired - Fee Related
-
1989
- 1989-08-08 US US07/390,720 patent/US5005434A/en not_active Expired - Lifetime
- 1989-08-22 DE DE3927718A patent/DE3927718C1/de not_active Expired - Lifetime
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3699348A (en) * | 1970-08-14 | 1972-10-17 | Zeiss Stiftung | Radiation sensitive device for the successive investigation of several samples |
| DE2133797A1 (de) * | 1971-07-07 | 1973-01-25 | Hoechst Ag | Messung von verfaerbungen an einer stroemenden polymerschmelze |
| US4318884A (en) * | 1979-12-07 | 1982-03-09 | Olympus Optical Co., Ltd. | Distributing nozzle with cooperating ionic detector |
| US4312341A (en) * | 1979-12-13 | 1982-01-26 | Baxter Travenol Laboratories, Inc. | Bubble detector |
| US4399711A (en) * | 1980-04-18 | 1983-08-23 | Beckman Instruments, Inc. | Method and apparatus ensuring full volume pickup in an automated pipette |
| JPS57163849A (en) * | 1981-04-01 | 1982-10-08 | Kenseishiya:Kk | Optical bubble detector |
| US4419903A (en) * | 1982-02-22 | 1983-12-13 | Beckman Instruments, Inc. | Method and apparatus for detecting insufficient liquid levels |
| JPS613034A (ja) * | 1984-06-15 | 1986-01-09 | Masanori Nomura | 気泡検出センサ |
| US4829837A (en) * | 1988-01-28 | 1989-05-16 | Shell Oil Company | Robotic liquid separation sensing using a cannula |
Cited By (31)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE19646273C2 (de) * | 1996-11-09 | 1998-08-20 | Bosch Gmbh Robert | Naßchemisches Ätzverfahren für Halbleiter und Vorrichtung hierzu |
| DE19646273A1 (de) * | 1996-11-09 | 1998-05-14 | Bosch Gmbh Robert | Naßchemisches Ätzverfahren für Halbleiter und Vorrichtung hierzu |
| US6281517B1 (en) * | 1998-08-17 | 2001-08-28 | Roche Diagnostics Corporation | Apparatus for monitoring pipetting operations |
| JP2000338117A (ja) * | 1999-04-28 | 2000-12-08 | Roche Diagnostics Gmbh | 分析装置の液体移送のための方法およびデバイス |
| EP1048953A3 (de) * | 1999-04-28 | 2003-12-17 | Roche Diagnostics GmbH | Verfahren und Vorrichtung zum Flüssigkeitstransfer mit einem Analysegerät |
| CN100419429C (zh) * | 2000-01-13 | 2008-09-17 | 奥索临床诊断有限公司 | 自动临床分析仪中的检测流体计量失败的方法 |
| US8026101B2 (en) | 2000-01-13 | 2011-09-27 | Ortho-Clinical Diagnostics, Inc. | Failure detection in automated clinical analyzers |
| EP1116953A3 (en) * | 2000-01-13 | 2003-10-08 | Ortho-Clinical Diagnostics, Inc. | Failure detection in automated clinical analyzers |
| US20050196867A1 (en) * | 2000-01-13 | 2005-09-08 | Bower Randy K. | Failure detection in automated clinical analyzers |
| US20040185569A1 (en) * | 2001-02-02 | 2004-09-23 | Zweifel Ronald A. | Controlling microdrop dispensing apparatus |
| US7939017B2 (en) | 2001-06-13 | 2011-05-10 | Uffenheimer Kenneth F | Automated fluid handling system and method |
| US20020192113A1 (en) * | 2001-06-13 | 2002-12-19 | Uffenheimer Kenneth F. | Automated fluid handling system and method |
| US7198956B2 (en) | 2001-06-13 | 2007-04-03 | Uffenheimer Kenneth F | Automated fluid handling system and method |
| US7615378B2 (en) * | 2004-05-14 | 2009-11-10 | Roche Diagnostics Operations, Inc. | Pipetting needle |
| US7416706B2 (en) * | 2004-05-14 | 2008-08-26 | Roche Diagnostics Operations, Inc. | Level sensor apparatus for detecting contact of a pipetting needle with a liquid in a vessel |
| US20060286678A1 (en) * | 2004-05-14 | 2006-12-21 | Roche Diagnostics Operations, Inc. | Pipetting needle |
| US20060093525A1 (en) * | 2004-05-14 | 2006-05-04 | Roche Diagnostics Operations, Inc. | Level sensor apparatus for detecting contact of a pipetting needle with a liquid in a vessel |
| US20060083659A1 (en) * | 2004-10-19 | 2006-04-20 | Karl Abele | Solid phase extraction apparatus and method |
| US7563410B2 (en) * | 2004-10-19 | 2009-07-21 | Agilent Technologies, Inc. | Solid phase extraction apparatus and method |
| US8800352B2 (en) | 2011-07-15 | 2014-08-12 | Thermo Finnigan Llc | Method for automatic optimization of liquid chromatography autosampler |
| DE102015117638A1 (de) * | 2015-10-16 | 2017-04-20 | Endress+Hauser Conducta Gmbh+Co. Kg | Verfahren zur Dosierung einer Flüssigkeit in einem nasschemischen Analysegerät zur Bestimmung eines Parameters einer Flüssigkeitsprobe |
| US10232366B2 (en) | 2015-10-16 | 2019-03-19 | Endress+Hauser Conducta Gmbh+Co. Kg | Method for metering a liquid in an analytical device |
| CN107687963B (zh) * | 2016-08-04 | 2022-04-26 | 深圳迈瑞生物医疗电子股份有限公司 | 确认样本采样可靠性的方法、装置及血液细胞分析仪 |
| CN107687963A (zh) * | 2016-08-04 | 2018-02-13 | 深圳迈瑞生物医疗电子股份有限公司 | 确认样本采样可靠性的方法、装置及血液细胞分析仪 |
| CN106424061A (zh) * | 2016-09-30 | 2017-02-22 | 苏州长光华医生物医学工程有限公司 | 一种磁分离清洗针结构 |
| US11085905B2 (en) | 2018-06-12 | 2021-08-10 | Waters Technologies Corporation | Techniques for monitoring chromatographic fluid flows |
| WO2019241418A1 (en) * | 2018-06-12 | 2019-12-19 | Waters Technologies Corporation | Techniques for monitoring chromatographic fluid flows |
| US12031959B2 (en) | 2018-12-10 | 2024-07-09 | Shimadzu Corporation | Auto-sampler for chromatographs |
| US12352731B2 (en) | 2019-01-17 | 2025-07-08 | Shimadzu Corporation | Autosampler for chromatograph and fluid chromatography system |
| US11879875B2 (en) | 2020-03-17 | 2024-01-23 | Waters Technologies Corporation | Sample manager, system and method |
| US11913916B2 (en) | 2020-03-17 | 2024-02-27 | Waters Technologies Corporation | Needle drive, system and method |
Also Published As
| Publication number | Publication date |
|---|---|
| DE3927718C1 (enExample) | 1990-03-29 |
| JPH0781996B2 (ja) | 1995-09-06 |
| JPH0261557A (ja) | 1990-03-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5005434A (en) | Autosampler with a means for detecting air bubble in specimen | |
| US6100094A (en) | Method for sucking/determining liquid and pipetting device driven and controlled according to method | |
| US5599503A (en) | Detector cell | |
| US5995209A (en) | Apparatus for continuously measuring physical and chemical parameters in a fluid flow | |
| US6144447A (en) | Apparatus for continuously measuring physical and chemical parameters in a fluid flow | |
| US4165484A (en) | Particle counting apparatus utilizing various fluid resistors to maintain proper pressure differentials | |
| US4637729A (en) | Fiber optic moisture analysis probe | |
| JPH0363024B2 (enExample) | ||
| US20080192255A1 (en) | Method and apparatus for optical detection of a phase transition | |
| US3912452A (en) | Method and apparatus for photometric analysis of liquid samples | |
| US6515748B2 (en) | Method and apparatus for in-situ spectroscopic analysis | |
| NZ299724A (en) | Analysis of liquid using diminished intensity of a reflected beam, use in analysing trace samples and apparatus therefor | |
| FR2481805A1 (fr) | Systeme d'analyse de parametres de fluides precieux, tels que le sang | |
| EP1229322B1 (en) | Cell for analyzing fluid and analyzing apparatus using the same | |
| US5600433A (en) | Optical fiber waist refractometer | |
| US5173740A (en) | Liquid particle analyzer and flow cell therefor | |
| US20030152308A1 (en) | Capillary waveguide fluorescence sensor | |
| US5763277A (en) | Fiber optic axial view fluorescence detector and method of use | |
| US6008055A (en) | Modular component fiber optic fluorescence detector system, and method of use | |
| JP2010521679A (ja) | 流体貯留機構と流体選択機構が一体になったバイオセンサーカートリッジ及びバイオセンサー搭載システム | |
| CA2083073A1 (en) | Fiber length analyzer | |
| EP0840889B1 (en) | Method and apparatus for measuring and controlling the volume of a liquid segment in a tube | |
| JP2022545171A (ja) | エンドトキシン検出のための混合領域を備えたカートリッジ | |
| CN212159560U (zh) | 光纤微流腔 | |
| WO1997007391A1 (en) | Serum index sample probe |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: HITACHI, LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:WATANABE, YOSHIO;TAKI, MAMORU;MIURA, JUNKICHI;AND OTHERS;REEL/FRAME:005491/0163 Effective date: 19890718 |
|
| STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
| FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
| FPAY | Fee payment |
Year of fee payment: 4 |
|
| FPAY | Fee payment |
Year of fee payment: 8 |
|
| FPAY | Fee payment |
Year of fee payment: 12 |