US3857705A - Small grain promoting aluminum-titanium-boron mother alloy - Google Patents

Small grain promoting aluminum-titanium-boron mother alloy Download PDF

Info

Publication number
US3857705A
US3857705A US00330094A US33009473A US3857705A US 3857705 A US3857705 A US 3857705A US 00330094 A US00330094 A US 00330094A US 33009473 A US33009473 A US 33009473A US 3857705 A US3857705 A US 3857705A
Authority
US
United States
Prior art keywords
titanium
aluminum
boron
alloy
mother alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00330094A
Other languages
English (en)
Inventor
Y Miyasaka
Y Masuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Research Laboratory Ltd
Original Assignee
Nippon Light Metal Research Laboratory Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Research Laboratory Ltd filed Critical Nippon Light Metal Research Laboratory Ltd
Application granted granted Critical
Publication of US3857705A publication Critical patent/US3857705A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium

Definitions

  • the alloy is preferably prepared by admixing finely divided titanium alkali fluoride and alkali borofluoride to molten aluminum at [52] US. Cl.
  • the present invention relates to an aluminumtitanium-boron mother alloy which is adapted to be added to a molten mass of aluminum or aluminum alloy for castings to promote the formation of small crystal grains in such castings.
  • a mother alloy of aluminum containing titanium and boron as the medium for adding both titanium and boron to molten aluminum and one alloy designed for this purpose is commercially available.
  • This commercial alloy has the disadvantage that its grain size reducing effect decreases with the retention time of the molten metal before casting. Therefore, in aluminum casting using a furnace of large capacity, in which a long time is required for the molten metal to be freed of gases and impurities and for all the molten metal to be poured into the molds, there can occur a significant difference in the ultimate grain size from the beginning to the end of the casting operation.
  • an aluminum-titanium boron alloy of this kind is effective for reducing the grain size in aluminum castings because the intermetallic compounds TiAl and TiB formed in the mother alloy act when added to aluminum on each other to greatly promote the generation of crystalline nuclei of aluminum.
  • a suitable mother alloy can be readily prepared using finely divided tita' nium alkali fluoride and alkali borofluoride as the sources of titanium and boron, these fluoride powders being added to molten aluminum of the mother alloy in proportions such that the ratio of boron to titanium contained in the alloy is about 1:20 -40 by weight, the melting temperature being as low as possible below about 900C.
  • the present invention provides a small grain promoting aluminum-titanium-boron mother alloy which is prepared by adding to a small amount of molten aluminum titanium alkali fluoride powder and alkali borofluoride powder in amounts such that titanium and boron are contained in the alloy in the ranges of 3.5 to 7.5 wt% and 0.1 to 0.3 wt%, respectively, and the ratio by weight of boron to titanium is about 1:2040 by weight, the melting temperature being kept below about 900C.
  • the resultant molten alloy was skimmed and poured into a mold.
  • Aluminum-titanium-boron mother alloys thus obtained were added to the casting mass of molten aluminum of 99.7% purity held in a 2-ton melting furnace at 750C to give a content of titanium of 0.025 wt%.
  • the molten aluminum was stirred and kept at the same temperature for a predetermined time as specified in Table I.
  • the molten aluminum was then cast into cylindrical ingots 200 mm in diameter and cooled with water.
  • the resulting ingots were inspected by a polarizing microscope to determine the diameter of the crystalline grains therein. The average diameter for 400 crystalline grains for each such inspection is specified in the table, together with the character of the crystalline structure of the alloy in each sample.
  • the attached drawings are reproductions of microphotographs showing the crystalline microstructure of a commercial grain size reducing aluminum-titaniumboron mother alloy vs an alloy according to the invention. They also compare the crystalline macrostructure of ingots cast from molten aluminum, to which these mother alloys had been added, after holding the molten aluminum for a long time.
  • FIG. 2b shows crystalline macrostructure of an ingot obtained in the same manner but using the alloy specified for FIG. lb according to the invention.
  • the ratio of boron/titanium contained in the alloy be about 1:2040 and preferably l/35 to l/25 when maximum improvement is required. Also, it is essential to form the mother alloy at fusion temperatures not exceeding about 900C.
  • the mother alloys are designed to be added in small quantities to the molten casting aluminum and is used in a diluted state. Therefore, the lower limit of the quantity of titanium and boron in the alloy is not an essential limitation on the usefulness of the alloy. However, an extremely low content of titanium and boron is not desirable from the standpoint of economy, since the alloy has then to be added in very large quantities to the molten aluminum to make its influence felt. According to the invention, the lower limits of content of titanium and boron are set at 3.5 wt% and 0.1 wt%, respectively. These limits are selected somewhat arbitrarily purely on the basis of what is most economic for use in the art and hence must not be given undue importance.
  • the titanium alkali fluoride powder and alkali borofluoride powder added in this manner are chemically reduced by molten aluminum and become dispersed into the mass aluminum as a metallic component of the alloy. Local formation of free titanium and boron metal in high concentrations in the molten aluminum should be avoided because they tend to produce undesirable crystal structures in the resulting alloy and decrease the duration of the grain size reducing effect.
  • the molten casting aluminum should be slowly stirred to distribute the added powders on the free metal as uniformly therethrough as possible.
  • the molten metal mass to which titanium alkali fluoride powder and alkali borofluoride powder are thus admixed is allowed, if necessary, to stand for a very short time to float the residues produced as a byproduct of the reduction reaction to the surface for easy separation. After removal of these residues, the molten alloy is poured rapidly into a mold, thereby obtaining an aluminum-titanium-boron mother alloy containing substantially the predetermined content of titanium and boron.
  • the melting time is desirably limited to less than 30 minutes after the addition of the powder to the molten aluminum mass.
  • alkali is intended to include potassium, sodium and any other equivalent alkaline cations having the capacity of forming fluoride complexes with titanium or boron.
  • other complexes of these metals which are adapted to be reduced to release the free metal on contact with molten aluminum and give by-product residues that can be conveniently removed without deleteriously affecting the advantageous properties of the mother alloys could be substituted for those specifically identified within the scope of this invention.
  • the size of the powdered form of these complexes is not critical and can be any size suitable for generally uniform distribution in the molten aluminum mass and for chemical reduction to free metal within the relatively short period named above. A particle range of about 20l00 mesh is satisfactory for these requirements but other sizes could be useful.
  • An aluminum-titanium-boron mother alloy for addition to molten casting aluminum to promote the for' mation in the solid castings of a uniform small grain crystalline structure, said mother alloy consisting essentially of aluminum containing from about 3.5 up to about 7.5% by weight titanium and from about 0.1 up toabout 0.3% by weight boron in a weight ratio of titanium to boron of 20-4011 and being substantially free of acicular crystals.
  • a method of preparing an aluminum-titaniumboron mother alloy for addition to molten casting aluminum to promote the formation of a uniform small grain crystalline structure in the solid castings which comprises the steps of adding to a molten mass of aluminum maintained at a temperature of less than about 900C finely divided particles of an alkali titanium fluoride complex and of an alkali boron fluoride complex in amounts sufficient to give a content of titanium and boron of from about 35 up to 7.5% by weight and from about 0.1 up to 0.3% by weight, respectively, in a weight ratio of about 20-40:l, said complexes being chemically reduced by said aluminum to free metal, mixing said aluminum mass to generally uniformly distribute said titanium and boron through said aluminum, and recovering the resultant mother alloy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
US00330094A 1972-02-14 1973-02-06 Small grain promoting aluminum-titanium-boron mother alloy Expired - Lifetime US3857705A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP47014831A JPS5143011B2 (enrdf_load_html_response) 1972-02-14 1972-02-14

Publications (1)

Publication Number Publication Date
US3857705A true US3857705A (en) 1974-12-31

Family

ID=11871969

Family Applications (1)

Application Number Title Priority Date Filing Date
US00330094A Expired - Lifetime US3857705A (en) 1972-02-14 1973-02-06 Small grain promoting aluminum-titanium-boron mother alloy

Country Status (6)

Country Link
US (1) US3857705A (enrdf_load_html_response)
JP (1) JPS5143011B2 (enrdf_load_html_response)
CH (1) CH588561A5 (enrdf_load_html_response)
DE (1) DE2307250C3 (enrdf_load_html_response)
FR (1) FR2172197B1 (enrdf_load_html_response)
IT (1) IT977305B (enrdf_load_html_response)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3955262A (en) * 1973-05-09 1976-05-11 Societe De Vente De L'aluminum Pechiney Blanks for wiredrawing by impact
US4298408A (en) * 1980-01-07 1981-11-03 Cabot Berylco Inc. Aluminum-titanium-boron master alloy
FR2568589A1 (fr) * 1984-08-02 1986-02-07 Cabot Corp Affineur de grain d'aluminium contenant des cristaux doubles
GB2174103A (en) * 1985-03-25 1986-10-29 Cabot Corp Grain refiner for aluminum containing silicon
GB2162540B (en) * 1984-06-22 1989-05-04 Cabot Corp Aluminum grain refiner containing "duplex" crystals
EP0396388A3 (en) * 1989-05-03 1991-03-27 Alcan International Limited Production of aluminum grain refiner
US5055256A (en) * 1985-03-25 1991-10-08 Kb Alloys, Inc. Grain refiner for aluminum containing silicon
US5057150A (en) * 1989-05-03 1991-10-15 Alcan International Limited Production of aluminum master alloy rod
US5180447A (en) * 1985-03-25 1993-01-19 Kb Alloys, Inc. Grain refiner for aluminum containing silicon
US6368427B1 (en) 1999-09-10 2002-04-09 Geoffrey K. Sigworth Method for grain refinement of high strength aluminum casting alloys
US6645321B2 (en) 1999-09-10 2003-11-11 Geoffrey K. Sigworth Method for grain refinement of high strength aluminum casting alloys
US20060231171A1 (en) * 2005-04-19 2006-10-19 Davis Samuel A Method for adding boron to metal alloys
WO2007052174A1 (en) 2005-11-02 2007-05-10 Tubitak Process for producing a grain refining master alloy
GB2434376A (en) * 2006-01-23 2007-07-25 Middlesex Silver Co Ltd Making boron containing gold alloys using a master alloy
RU2406774C2 (ru) * 2008-10-30 2010-12-20 Общество с ограниченной ответственностью Средневолжский сертификационно-диагностический центр "Дельта" Способ получения алюминиевых лигатур
WO2011022986A1 (zh) * 2010-02-05 2011-03-03 新星化工冶金材料(深圳)有限公司 一种铝钛硼合金熔体的净化方法
CN102534274A (zh) * 2012-03-06 2012-07-04 哈尔滨理工大学 一种铝用Al-Ti-B中间合金细化剂的制备方法
RU2464337C1 (ru) * 2011-04-14 2012-10-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тольяттинский государственный университет" Способ получения алюминиевых лигатур
RU2467086C2 (ru) * 2011-01-11 2012-11-20 Государственное образовательное учреждение высшего профессионального образования "Тольяттинский государственный университет" Способ получения алюминиевых лигатур с переходными металлами
WO2013072898A2 (en) 2011-11-18 2013-05-23 Tubitak Grain refinement, aluminium foundry alloys
RU2486271C1 (ru) * 2012-04-03 2013-06-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тольяттинский государственный университет" Способ получения алюминиево-медных лигатур
CN104831096A (zh) * 2015-04-09 2015-08-12 昌吉市吉日光有色金属合金制造有限公司 一种铝钛硼中间合金细化剂及其制备工艺

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53131610U (enrdf_load_html_response) * 1977-03-25 1978-10-19
JPS53141038U (enrdf_load_html_response) * 1977-04-13 1978-11-08
JPS5424219U (enrdf_load_html_response) * 1977-07-20 1979-02-17
DE3109025A1 (de) * 1981-03-10 1982-09-30 Metallgesellschaft Ag, 6000 Frankfurt Verfahren zur herstellung von aluminiumvorlegierungen mit hochschmelzenden metallen
US5041263A (en) * 1986-09-08 1991-08-20 Kb Alloys, Inc. Third element additions to aluminum-titanium master alloys
US4812290A (en) * 1986-09-08 1989-03-14 Kb Alloys, Inc. Third element additions to aluminum-titanium master alloys
DE3739187C1 (en) * 1987-11-19 1988-10-06 Riedelbauch & Stoffregen Gmbh Process for producing aluminium prealloys containing high-melting point metals and/or metalloids
GB2274656B (en) * 1993-01-29 1996-12-11 London Scandinavian Metall Alloying additive
RU2111276C1 (ru) * 1994-04-27 1998-05-20 Самарский государственный технический университет Способ получения лигатур для приготовления алюминиевых сплавов
JP7062464B2 (ja) * 2018-02-21 2022-05-06 Dowaメタルテック株式会社 アルミニウム-セラミックス接合基板およびその製造方法
RU2725498C1 (ru) * 2019-09-18 2020-07-02 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВО "МГТУ "СТАНКИН") Спеченная лигатура из порошковых материалов для легирования алюминиевых сплавов

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2578098A (en) * 1944-08-09 1951-12-11 Nat Lead Co Aluminum base alloy
US2931722A (en) * 1956-11-21 1960-04-05 Nat Lead Co Aluminum-titanium master alloys
US3503738A (en) * 1967-09-15 1970-03-31 Hugh S Cooper Metallurgical process for the preparation of aluminum-boron alloys

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1264974A (fr) * 1960-08-11 1961-06-23 Kawecki Chemical Company Alliage
FR2133439A5 (en) * 1971-04-13 1972-11-24 London Scandinavian Metall Aluminium refining alloy - consisting of dispersion of fine transition metal diboride particles in aluminium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2578098A (en) * 1944-08-09 1951-12-11 Nat Lead Co Aluminum base alloy
US2931722A (en) * 1956-11-21 1960-04-05 Nat Lead Co Aluminum-titanium master alloys
US3503738A (en) * 1967-09-15 1970-03-31 Hugh S Cooper Metallurgical process for the preparation of aluminum-boron alloys

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3955262A (en) * 1973-05-09 1976-05-11 Societe De Vente De L'aluminum Pechiney Blanks for wiredrawing by impact
US4298408A (en) * 1980-01-07 1981-11-03 Cabot Berylco Inc. Aluminum-titanium-boron master alloy
GB2162540B (en) * 1984-06-22 1989-05-04 Cabot Corp Aluminum grain refiner containing "duplex" crystals
FR2568589A1 (fr) * 1984-08-02 1986-02-07 Cabot Corp Affineur de grain d'aluminium contenant des cristaux doubles
GB2174103A (en) * 1985-03-25 1986-10-29 Cabot Corp Grain refiner for aluminum containing silicon
GB2174103B (en) * 1985-03-25 1989-06-21 Cabot Corp Grain refiner for aluminum containing silicon
US5055256A (en) * 1985-03-25 1991-10-08 Kb Alloys, Inc. Grain refiner for aluminum containing silicon
US5180447A (en) * 1985-03-25 1993-01-19 Kb Alloys, Inc. Grain refiner for aluminum containing silicon
EP0396388A3 (en) * 1989-05-03 1991-03-27 Alcan International Limited Production of aluminum grain refiner
US5057150A (en) * 1989-05-03 1991-10-15 Alcan International Limited Production of aluminum master alloy rod
AU624945B2 (en) * 1989-05-03 1992-06-25 Alcan International Limited Production of aluminium master alloy rod
US6645321B2 (en) 1999-09-10 2003-11-11 Geoffrey K. Sigworth Method for grain refinement of high strength aluminum casting alloys
US6368427B1 (en) 1999-09-10 2002-04-09 Geoffrey K. Sigworth Method for grain refinement of high strength aluminum casting alloys
US20060231171A1 (en) * 2005-04-19 2006-10-19 Davis Samuel A Method for adding boron to metal alloys
WO2007052174A1 (en) 2005-11-02 2007-05-10 Tubitak Process for producing a grain refining master alloy
GB2434376A (en) * 2006-01-23 2007-07-25 Middlesex Silver Co Ltd Making boron containing gold alloys using a master alloy
RU2406774C2 (ru) * 2008-10-30 2010-12-20 Общество с ограниченной ответственностью Средневолжский сертификационно-диагностический центр "Дельта" Способ получения алюминиевых лигатур
WO2011022986A1 (zh) * 2010-02-05 2011-03-03 新星化工冶金材料(深圳)有限公司 一种铝钛硼合金熔体的净化方法
RU2467086C2 (ru) * 2011-01-11 2012-11-20 Государственное образовательное учреждение высшего профессионального образования "Тольяттинский государственный университет" Способ получения алюминиевых лигатур с переходными металлами
RU2464337C1 (ru) * 2011-04-14 2012-10-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тольяттинский государственный университет" Способ получения алюминиевых лигатур
WO2013072898A2 (en) 2011-11-18 2013-05-23 Tubitak Grain refinement, aluminium foundry alloys
CN102534274A (zh) * 2012-03-06 2012-07-04 哈尔滨理工大学 一种铝用Al-Ti-B中间合金细化剂的制备方法
RU2486271C1 (ru) * 2012-04-03 2013-06-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тольяттинский государственный университет" Способ получения алюминиево-медных лигатур
CN104831096A (zh) * 2015-04-09 2015-08-12 昌吉市吉日光有色金属合金制造有限公司 一种铝钛硼中间合金细化剂及其制备工艺

Also Published As

Publication number Publication date
DE2307250B2 (de) 1981-04-16
DE2307250A1 (de) 1973-08-23
DE2307250C3 (de) 1982-01-28
CH588561A5 (enrdf_load_html_response) 1977-06-15
JPS5143011B2 (enrdf_load_html_response) 1976-11-19
IT977305B (it) 1974-09-10
FR2172197B1 (enrdf_load_html_response) 1977-04-22
JPS4884013A (enrdf_load_html_response) 1973-11-08
FR2172197A1 (enrdf_load_html_response) 1973-09-28

Similar Documents

Publication Publication Date Title
US3857705A (en) Small grain promoting aluminum-titanium-boron mother alloy
Crossley et al. Mechanism of grain refinement in aluminum alloys
CN108977680B (zh) 用于亚共晶铝硅合金变质细化的孕育剂的制备方法
JPS6187842A (ja) 二重結晶を含有するアルミニウム結晶微細化剤
Yun et al. Investigation on the modification behavior of A356 alloy inoculated with a Sr-Y composite modifier
JPS62133037A (ja) 結晶微細化用合金およびその製造法
Kuz'min et al. Production of primary silumins ingots modified with strontium
JPH05214521A (ja) チタンスパッタリングターゲット
CN118792555A (zh) 一种航空航天用轻质铝合金、其制备方法和铝合金圆铸锭
CN108531760B (zh) 一种镁铝尖晶石的新用途
JPH05504166A (ja) ストロンチウム―マグネシウム―アルミニウムマスター合金
Qin et al. The formation and characterization of the primary Mg2Si dendritic phase in hypereutectic Al-Mg2Si alloys
US3360366A (en) Method of grain refining zinc
CN110885935B (zh) 一种适用于Mg-Al合金晶粒细化的铸造方法
US2029898A (en) Method of purifying magnesium
CN108251668A (zh) 一种二氧化硅的新用途
Sumida et al. Microstructure, solute partitioning and material properties of gadolinium-doped magnesium alloy AZ91D
US2620270A (en) Method of improving magnesium and the binary magnesium-base alloy of magnesium and manganese
JP2003293051A (ja) 低融点金属および高融点金属を含有するTi合金の製造方法
CN106048273B (zh) 一种铝硅镧硼四元中间合金及其制备方法
CN106011545B (zh) 一种铝‑锑中间合金及其制备方法和应用
JP3666822B2 (ja) Mg合金中へZrを添加するための母合金
JPS63255338A (ja) アルミニウム結晶微細化用合金およびその製造方法
US3627518A (en) Modification of si and mg2si second phase in al alloys
CN110257659A (zh) 提高Al-Zn-Mg-Cu系合金熔体纯净度的方法