US20210208333A1 - Radiation curable compositions for coating optical fiber via alternative oligomers and the coatings produced therefrom - Google Patents

Radiation curable compositions for coating optical fiber via alternative oligomers and the coatings produced therefrom Download PDF

Info

Publication number
US20210208333A1
US20210208333A1 US17/056,902 US201817056902A US2021208333A1 US 20210208333 A1 US20210208333 A1 US 20210208333A1 US 201817056902 A US201817056902 A US 201817056902A US 2021208333 A1 US2021208333 A1 US 2021208333A1
Authority
US
United States
Prior art keywords
viscosity
radiation curable
curable composition
acrylate
oligomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/056,902
Other languages
English (en)
Inventor
Kangtai Ren
Paulus Antonius Maria Steeman
Mark PEPELS
Johan Franz Gradus Antonius Jansen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Netherlands BV
Original Assignee
Covestro Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covestro Netherlands BV filed Critical Covestro Netherlands BV
Priority to US17/056,902 priority Critical patent/US20210208333A1/en
Assigned to DSM IP ASSETS B.V. reassignment DSM IP ASSETS B.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JANSEN, JOHAN FRANZ GRADUS ANTONIUS, REN, KANGTAI, PEPELS, Mark, STEEMAN, PAULUS ANTONIUS MARIA
Assigned to MS HOLDING B.V. reassignment MS HOLDING B.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DSM IP ASSETS B.V.
Assigned to COVESTRO (NETHERLANDS) B.V. reassignment COVESTRO (NETHERLANDS) B.V. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: MS HOLDING B.V.
Publication of US20210208333A1 publication Critical patent/US20210208333A1/en
Assigned to COVESTRO (NETHERLANDS) B.V. reassignment COVESTRO (NETHERLANDS) B.V. CHANGE OF CORPORATE ADDRESS Assignors: COVESTRO (NETHERLANDS) B.V.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/067Polyurethanes; Polyureas
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/1065Multiple coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/24Catalysts containing metal compounds of tin
    • C08G18/244Catalysts containing metal compounds of tin tin salts of carboxylic acids
    • C08G18/246Catalysts containing metal compounds of tin tin salts of carboxylic acids containing also tin-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/34Carboxylic acids; Esters thereof with monohydroxyl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4825Polyethers containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/758Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing two or more cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7621Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring being toluene diisocyanate including isomer mixtures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C09D175/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02395Glass optical fibre with a protective coating, e.g. two layer polymer coating deposited directly on a silica cladding surface during fibre manufacture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2150/00Compositions for coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02004Optical fibres with cladding with or without a coating characterised by the core effective area or mode field radius

Definitions

  • the present invention relates generally to methods of coating optical fibers, the radiation curable coatings suitable for use on optical fibers that are manufactured using high-speed, low-helium, and/or high temperature drawing, and the optical fibers produced therefrom.
  • Optical fibers have been used in a variety of applications and have several advantages over other media. For example, data can be transmitted over optical fibers at a higher data rate than over wires. Optical fibers are also lighter and more flexible than wires. Thus, optical fibers, especially those made from glass, are often used in the telecommunication industry for data transmission. However, if left unprotected, optical fibers are unsuitable for field use because of the fragility of the thin glass strand across which optical signals are transmitted. In addition to their susceptibility to physical damage, uncoated optical fibers would also be negatively impacted by moisture contact. As a result, surface coatings have long-since been applied to optical fibers for protection and to ensure a high-level of performance.
  • optical fibers are frequently coated with two or more superposed radiation-curable coatings immediately after the fiber is produced by drawing.
  • the coating which directly contacts the optical fiber is called the “inner primary coating” and an overlaying coating is called the “outer primary coating.”
  • the inner primary coating is also called simply the “primary coating” and the outer primary coating is called a “secondary coating.”
  • Inner primary coatings are typically formulated to possess a significantly lower modulus than secondary coatings.
  • the relatively soft inner primary coating provides resistance to microbending which results in added attenuation of the signal transmission (i.e. signal loss) of the coated optical fiber and is therefore undesirable.
  • Microbends are microscopic curvatures in the optical fiber involving local axial displacements of a few micrometers and spatial wavelengths of a few millimeters. Microbends can be induced by thermal stresses and/or mechanical lateral forces. Coatings can provide lateral force protection that protect the optical fiber from microbending, but as coating thickness decreases the amount of protection provided decreases. The relationship between coatings and protection from lateral stress that leads to microbending is discussed, for example, in D. Gloge, “Optical-fiber packaging and its influence on fiber straightness and loss”, Bell System Technical Journal , Vol.
  • Optical fiber secondary coating compositions generally comprise, before cure, a mixture of ethylenically-unsaturated compounds, often consisting of one or more oligomers which are dissolved or dispersed in liquid ethylenically-unsaturated diluents and photoinitiators.
  • the coating composition is typically applied to the optical fiber in liquid form and then exposed to actinic radiation to effect cure.
  • Primary coatings preferably possess a higher refractive index than the cladding of the associated optical fiber, in order to allow them to strip errant optical signals away from the core of the optical fiber.
  • Primary coatings often are the cured product of a mixture of ethylenically-unsaturated compounds, including large quantities of typically urethane acrylate oligomers with a with a backbone derived from polypropylene glycol (PPG).
  • Primary coatings should maintain adequate adhesion to the glass fiber during thermal and hydrolytic aging, yet (if needed) is capable of being strippable therefrom for splicing purposes.
  • the primary coating typically has a thickness in the range of 20-50 ⁇ m (e.g., about 25 or 32.5 ⁇ m), thinner thickness in the range of 15-25 ⁇ m for 200 ⁇ m fibers.
  • the primary coating typically has a thickness that is less than about 40 ⁇ m, although other thicknesses may be used.
  • the primary coating is typically applied to the glass fiber and subsequently cured.
  • Various additives that enhance one or more properties of the primary coating can also be present, including antioxidants, adhesion promoters, inhibitors, photosensitizers, carrier surfactants, tackifiers, catalysts, stabilizers, surface agents, and optical brighteners.
  • Secondary coatings are the outer coatings.
  • the secondary coating is, for example, the polymerization product of a coating composition whose molecules become highly crosslinked when polymerized.
  • the secondary coating typically has a high in situ modulus (e.g., greater than about 800 MPa at 25° C., more preferably from between about 1 GPa to about 3 GPa) and a high T g (e.g., greater than about 50° C.).
  • the in situ secondary modulus is preferably greater than about 1000 MPa.
  • Secondary coatings often possess a thickness that is less than about 40 ⁇ m.
  • Fiber optic coatings typically are applied using one of two processes: wet-on-wet (WOW) and wet-on-dry (WOD).
  • WOD wet-on-wet
  • the fiber passes first through a primary coating application, which is cured via exposure to ultraviolet (UV) radiation.
  • UV ultraviolet
  • the fiber then passes through a secondary coating application, which is subsequently cured by similar means.
  • the fiber passes through both the primary and secondary coating applications, whereupon the fiber proceeds to the curing step.
  • a wet-on-wet process the curing lamps between primary and secondary coating application are omitted.
  • UV lamps with broadband mercury spectra are commonly used in the industry, due to their high intensity and broad emission spectrum to ensure rapid and full cure of such radiation curable coatings.
  • UV-LED light emitting diodes
  • a method for attempting to alleviate this problem involves increasing the rate at which a freshly drawn glass fiber may be cooled via the application of fluids with a higher heat transfer coefficient than ambient air, such as nitrogen or helium.
  • Helium is known to be effective as it has a particularly high heat transfer coefficient.
  • the amount of helium required for cooling glass fibers increases exponentially with increasing draw speed, such that there exist physical limitations to the amount which can be applied in a finite cooling tube space for a defined period of time.
  • the high cost of helium makes it an expensive input during the fiber production process.
  • An exponentially increasing requirement for such a costly variable would quickly offset the value of any productivity gains realized by the increased throughput achieved by a higher line speed.
  • additional solutions are needed.
  • an unmet need exists to provide optical fiber coatings, especially PPG-free primary coatings, which exhibit superior processability at higher temperatures. Such higher temperatures may be introduced primarily via faster line processing speeds, reduced helium input, or both. Further, an unmet need exists to provide optical fiber coatings which are both sufficiently thermally resistive, and simultaneously are also being able to maintain or exceed existing coating performance levels the industry has come to expect. Such an improved primary coating may, in addition to being processable at higher line speeds or with lower helium input, also need to be fast curing, exhibit sufficient glass adhesion, and contribute to excellent microbend resistance by possessing a low modulus.
  • FIG. 1 schematically depicts a cross section of an optical fiber according to embodiments described herein;
  • FIG. 2 is a cross-sectional view taken along the line A-A and illustrates a configuration for one example embodiment of the optical fiber of FIG. 1 ;
  • FIG. 3 shows the curve fitting of an embodiment of the present invention (Example 2) in order to establish the Tg, rheo values according to the procedure specified herein.
  • FIG. 4 illustrates the relative thermal sensitivity of two embodiments of the present invention vs. a comparative example, when each composition's steady-state viscosity is plotted as a function of temperature between 25° C. and 85° C.
  • FIG. 5 depicts, for various compositions according to the present invention, as well as various comparative examples, a plot showing each composition's steady-state viscosity at 25° C., as well as each composition's viscosity ratio between 25° C. and 55° C.
  • FIG. 6 depicts, for various compositions according to the present invention, as well as various comparative examples, a plot showing each composition's steady-state viscosity at 85° C., as well as each composition's viscosity ratio between 25° C. and 85° C.
  • a first aspect is a coated optical fiber, including an optical fiber portion, the optical fiber portion itself further including a glass core and a cladding layer in contact with and surrounding said glass core; and a coating portion, said coating portion further including a primary coating layer in contact with and surrounding said cladding layer; and a secondary coating layer in contact with and surrounding said primary coating layer.
  • the primary coating layer is a cured product of a radiation curable composition
  • a radiation curable composition comprising a urethane acrylate oligomer which is a product of reactants, said reactants comprising an isocyanate, a polyol that is not substantially derived from, or substantially free from a polypropylene glycol, and an acrylate monomer; a reactive diluent monomer; and a free-radical photoinitiator;
  • the radiation curable composition possesses a first viscosity at 25° Celsius (C), a second viscosity at 55° C., and a third viscosity at 85° C., wherein the radiation curable composition is a liquid at each of the first viscosity, the second viscosity, and the third viscosity, and wherein the ratio of the first viscosity to the third viscosity is less than 18, or less than 13, or less than 12, or less than 11, or from 5 to 20, or from 7 to 18, or from 7 to
  • a second aspect is a radiation curable composition for coating an optical fiber including a reactive oligomer comprising at least one polymerizable group, wherein said reactive oligomer is not substantially derived from polypropylene glycol; a reactive diluent monomer;
  • the radiation curable composition possesses a liquid glass transition temperature (Tg,rheo), a first viscosity at 25° Celsius (C) ( ⁇ 25 ), a second viscosity at 55° C. ( ⁇ 55 ), and a third viscosity at 85° C.
  • Tg,rheo liquid glass transition temperature
  • C first viscosity at 25° Celsius
  • ⁇ 55 second viscosity at 55° C.
  • Tg,rheo of the radiation curable composition is less than ⁇ 74° C., or less than ⁇ 80° C., or less than ⁇ 85° C., or less than ⁇ 90° C., or less than ⁇ 100° C., or less than ⁇ 105° C., or from ⁇ 120 to ⁇ 83.6° C., or from ⁇ 113 to ⁇ 83° C., or from ⁇ 106 to ⁇ 83° C., wherein Tg,rheo is determined by fitting equation (8) to experimental viscosity versus temperature data for the radiation curable composition:
  • ⁇ ⁇ ( T ) / ⁇ 25 10 ( - 562.5 / ( 62.5 - T g , rheo ) * ( T - 25 ) 37.5 + T - T g , rheo ) ,
  • ⁇ (T) is the viscosity (in Pa ⁇ s) of the composition at temperature, T (in ° C.).
  • Further embodiments of the second aspect of the invention prescribe varying viscosity ratios of the composition, whether between the first viscosity and the second viscosity, or the first viscosity and the third viscosity. Yet further embodiments of the second aspect prescribe various steady-state viscosity values (at a shear rate of 10/second). Still further embodiments describe various chemical constituents, ratios, quantities, and types that may be incorporated into the compositions according to the present invention.
  • a third aspect of the invention is a coated optical fiber comprising a primary coating, wherein the primary coating is the cured product of the radiation curable composition according to any of the embodiments of the second aspect.
  • a fourth aspect of the invention is a method for producing a coated optical fiber comprising the steps of drawing a glass optical fiber through a draw tower; applying a primary coating composition onto the surface of the glass optical fiber; optionally, imparting a dose of UV light sufficient to at least partially cure said primary coating composition; applying a secondary coating composition to the primary coating composition; exposing the primary coating composition and the secondary coating composition to at least one radiation source capable of emitting ultraviolet radiation to affect curing of said primary coating composition and said secondary coating composition, to form a cured primary coating on the surface of the optical fiber, and a cured secondary coating on the surface of the cured primary coating; wherein the primary coating composition comprises a reactive oligomer comprising at least one polymerizable group, wherein said reactive oligomer is not substantially derived from polypropylene glycol; a reactive diluent monomer; a photoinitiator; and optionally, one or more additives; wherein the radiation curable composition possesses a liquid glass transition temperature (Tg,rheo), a
  • Tg,rheo of the radiation curable composition is less than ⁇ 74° C., or less than ⁇ 80° C., or less than ⁇ 85° C., or less than ⁇ 90° C., or less than ⁇ 100° C., or less than ⁇ 105° C., or from ⁇ 120 to ⁇ 83.6° C., or from ⁇ 113 to ⁇ 83° C., or from ⁇ 106 to ⁇ 83° C., wherein Tg,rheo is determined by fitting equation (8) to experimental viscosity versus temperature data for the radiation curable composition:
  • ⁇ ⁇ ( T ) / ⁇ 25 10 ( - 562.5 / ( 62.5 - T g , rheo ) * ( T - 25 ) 37.5 + T - T g , rheo ) ,
  • ⁇ (T) is the viscosity (in Pa ⁇ s) of the composition at temperature, T (in ° C.).
  • Another embodiment of the fourth aspect describes optical fiber coating processes according to one or more of the following conditions: at a draw speed of greater than 1500 m/min, or greater than 1700 m/min, or greater than 2000 m/min, or greater than 2500 m/min, or greater than 3000 m/min, and less than 5000 m/min, or less than 4000 m/min, or less than 3100 m/min; or under the application of no helium, or the application of helium at a flow rate of less than 20 standard liters per minute (SLM), or less than 10 SLM, or less than 5 SLM, or from 1 to 20 SLM, or from 1 to 10 SLM, or from 1 to 5 SLM, or from 5 to 20 SLM, or from 5 to 10 SLM.
  • SLM standard liters per minute
  • a fifth aspect of the invention is an optical fiber cable, wherein the optical fiber comprises at least one optical fiber according to the first or third aspects of the invention, wherein the optical fiber is the cured product of a composition according to the second aspect of the invention, and/or wherein the optical fiber was coated according to the fourth aspect of the invention.
  • a first embodiment of the current invention is a coated optical fiber, including an optical fiber portion, the optical fiber portion itself further including a glass core and a cladding layer in contact with and surrounding said glass core; and a coating portion, said coating portion further including a primary coating layer in contact with and surrounding said cladding layer; and a secondary coating layer in contact with and surrounding said primary coating layer.
  • the primary coating layer is a cured product of a radiation curable composition
  • a radiation curable composition comprising a urethane acrylate oligomer which is a product of reactants, said reactants comprising an isocyanate, a polyol, and an acrylate monomer; a reactive diluent monomer; and a free-radical photoinitiator;
  • the radiation curable composition possesses a first viscosity at 25° Celsius (C), a second viscosity at 55° C., and a third viscosity at 85° C.
  • the radiation curable composition is a liquid at each of the first viscosity, the second viscosity, and the third viscosity, and wherein the ratio of the first viscosity to the third viscosity is less than 18, or less than 13, or less than 12, or less than 11, or from 5 to 20, or from 7 to 18, or from 7 to 15, or from 7 to 13, or from 7 to 12.
  • FIG. 1 is a side view of fiber 10 as discussed herein.
  • FIG. 2 is a cross-sectional view of fiber 10 an example of the result of the coated fiber described herein.
  • the optical fiber 10 comprises a core 11 , a cladding 12 , a primary coating 13 contacting and surrounding the outer annular cladding region, and a secondary coating 14 .
  • the outer diameter of the core 11 is Di and the outer diameter of the cladding 12 is Dz.
  • the primary coating 13 is a typical primary coating that has an in situ (or on-fiber) tensile modulus of less than 1.5 MPa, or less than 1.2 MPa, or as low as 0.35 MPa, 0.3 MPa, or 0.25 MPa, and in other embodiments not more than 0.2 MPa.
  • Methods for describing in-situ modulus are well-known in the art and are described in, inter alia, U.S. Pat. Nos.
  • the cured primary coating 13 has an in-situ glass transition temperature less than ⁇ 35° C., or less than ⁇ 40° C., or less than ⁇ 45° C., and in other embodiments not more than ⁇ 50° C.
  • a primary coating with a low in situ modulus reduces the microbending which is the coupling mechanism between the modes propagating in the fiber.
  • a low in situ glass transition temperature ensures that the in-situ modulus of the primary coating will remain low even when the fiber is deployed in very cold environments. The microbending performance will therefore be stable with temperature, resulting in low mode coupling in all situations.
  • the secondary coating 14 is in contact with and surrounds the primary coating 13 .
  • the secondary coating 14 has an in situ tensile modulus of greater than 800 MPa, or greater than 1110 MPa, or greater than 1300 MPa, or greater than 1400 MPa, or greater than 1500 MPa.
  • a secondary coating with a high in situ modulus reduces the microbending which is the coupling mechanism between the modes propagating in the fiber.
  • core 11 comprises pure silica glass (SiO 2 ) or silica glass with one or more dopants that increase the index of refraction of the glass core relative to pure, undoped silica glass.
  • Suitable dopants for increasing the index of refraction of the core include, without limitation, GeO 2 , Al 2 O 3 , P 2 O 5 , TiO 2 , ZrO 2 , Nb 2 O 5 , Ta 2 O 5 , and/or combinations thereof.
  • the cladding 12 may comprise pure silica glass (SiO 2 ), silica glass with one or more dopants which increase the index of refraction (e.g., GeO 2 , Al 2 O 3 , P 2 O 5 , TiO 2 , ZrO 2 , Nb 2 O 5 and/or Ta 2 O 5 ), such as when the cladding is “up-doped,” or silica glass with a dopant which decreases the index of refraction, such as fluorine, such as when the inner cladding is “down-doped”, so long as the maximum relative refractive index [ ⁇ 1MAX ] of the core 11 is greater than the maximum relative refractive index [ ⁇ 4MAX ] of the cladding 12 .
  • cladding 12 is pure silica glass.
  • the coated optical fiber possesses a mode-field diameter from 8 to 10 ⁇ m at a wavelength of 1310 nm, or a mode-field diameter from 9 to 13 ⁇ m at a wavelength of 1550 nm, and/or an effective area between 20 and 200 ⁇ m 2 .
  • Such fibers may be single mode and/or large-effective area fibers, given the expected demand for coating processes for these fibers that utilize higher line or processing speeds.
  • other fiber types, such as multimode fibers may be used as well.
  • the primary coating 13 preferably has a higher refractive index than the cladding 12 of the optical fiber 10 , in order to allow it to strip errant optical signals away from the core of optical fiber.
  • an exemplary transmission optical fiber 10 may have refractive index values at a wavelength of 1550 nm for the core and cladding of 1.447 and 1.436, respectively; as such, it is desirable that the refractive index of primary coating 13 be greater than 1.44 at 1550 nm.
  • the primary coating 13 maintains adequate adhesion to the glass fiber during thermal and hydrolytic aging, yet (if needed) is capable of being strippable therefrom for splicing purposes.
  • the primary coating 13 typically has a thickness in the range of 20-50 ⁇ m (e.g., about 25 or 32.5 ⁇ m), thinner thickness in the range of 15-25 ⁇ m for 200 ⁇ m fibers.
  • Coating 13 is a primary coating, which normally is applied directly to the glass fiber.
  • Coating 13 is preferably formed from a soft crosslinked polymer material having a low in situ modulus and a low in situ T g
  • the primary coating 13 preferably has a thickness that is less than about 40 ⁇ m, more preferably between about 20 to about 40 ⁇ m, most preferably between about 20 to about 30 ⁇ m.
  • Primary coating 13 is typically applied to the glass fiber and subsequently cured, as will be described in more detail herein below.
  • Various additives that enhance one or more properties of the primary coating can also be present, including antioxidants, adhesion promoters, PAG compounds, photosensitizers, carrier surfactants, tackifiers, catalysts, stabilizers, surface agents, and optical brighteners of the types described above.
  • suitable primary coating compositions may include, without limitation, about 10 to 95 weight percent, or from 10 to 90 weight percent, or from about 25 to about 75 weight percent of one or more urethane acrylate oligomers; about 10 to about 65 weight percent, more preferably from about 25 to about 65 weight percent of one or more monofunctional ethylenically unsaturated monomers; about 0 to about 10 weight percent of one or more multifunctional ethylenically unsaturated monomers; about 1 to about 5 weight percent of one or more photoinitiators; about 0.5 to about 1.5 pph of one or more antioxidants; optionally about 0.5 to about 1.5 pph of one or more adhesion promoters; optionally about 0.1 to about 10 pph PAG compound; and about 0.01 to about 0.5 pph of one or more stabilizers.
  • Coating 14 is the outer coating, and it serves the traditional purpose of a “secondary coating.”
  • the outer coating material 14 is, for example, the polymerization product of a coating composition whose molecules become highly crosslinked when polymerized.
  • coating 14 has a high in situ modulus (e.g., greater than about 800 MPa at 25° C.) and a high T g (e.g., greater than about 50° C.).
  • the in situ secondary modulus is preferably greater than about 1000 MPa, more preferably greater than about 1100 MPa and most preferably greater than about 1200 MPa. According to some preferred embodiments, the in situ secondary modulus is greater than 1200 MPa.
  • the in situ secondary modulus is between about 1000 MPa and about 8000 MPa, more preferably between about 1200 MPa and about 5000 MPa, and most preferably between about 1500 MPa and about 3000 MPa.
  • the in situ T g of the secondary coating is preferably between about 50° C. and about 120° C., more preferably between about 50° C. and about 100° C.
  • the secondary coating 14 has a thickness that is less than about 40 ⁇ m, more preferably between about 20 to about 40 ⁇ m, most preferably between about 20 to about 30 ⁇ m.
  • Outer coatings are typically applied to the previously coated fiber (either with or without prior curing) and subsequently cured, as will be described in more detail herein below.
  • Various additives that enhance one or more properties of the coating can also be present, including antioxidants, PAG compounds, photosensitizers, catalysts, lubricants, low molecular weight non-crosslinking resins, stabilizers, surfactants, surface agents, slip additives, waxes, micronized-polytetrafluoroethylene, etc.
  • the secondary coating may also include an ink, as is well known in the art.
  • compositions for the secondary or outer coating 14 include, without limitation, about 0 to 70 weight percent of one or more urethane acrylate oligomers; about 45 to about 95 weight percent of one or more multifunctional ethylenically unsaturated monomers; about 0 to about 10 weight percent of one or more monofunctional ethylenically unsaturated monomers; about 1 to about 5 weight percent of one or more photoinitiators; about 0 to about 5 pph of one or more slip additives; and about 0.5 to about 1.5 pph of one or more antioxidants.
  • a second aspect is a radiation curable composition for coating an optical fiber comprising, relative to the total weight of the entire radiation curable composition:
  • ⁇ ⁇ ( T ) / ⁇ 25 10 ( - 562.5 / ( 62.5 - T g , rheo ) * ( T - 25 ) 37.5 + T - T g , rheo ) ,
  • ⁇ (T) is the viscosity (in Pa ⁇ s) of the composition at temperature, T (in ° C.).
  • Radiation curable primary compositions for coating optical fibers according to the second aspect of the present invention contain at least two ethylenically unsaturated polymerizable compounds, including at least one reactive diluent monomer and a radiation curable oligomer, as well as one or more photoinitiators, and an optional additive package.
  • Such components described below may be used in radiation curable compositions according to any of the aspects of the present invention, including coatings used in the optical fibers according to the first aspect, the compositions of the second aspect, and the like.
  • the ethylenically unsaturated polymerizable compounds can contain one or more than one reactive olefinic double bond. They may be low molecular weight (monomeric) or high molecular weight (oligomeric) compounds.
  • Typical examples of lower molecular weight monomers containing one double bond are alkyl or hydroxyalkyl acrylates or methacrylates, for example methyl, ethyl, butyl, 2-phenoxy ethyl, 2-ethylhexyl, and 2-hydroxyethyl acrylate, isobornyl acrylate, methyl and ethyl methacrylate, lauryl-acrylate, ethoxylated nonyl-phenol acrylate, and diethylene-glycol-ethyl-hexyl acylate (DEGEHA).
  • alkyl or hydroxyalkyl acrylates or methacrylates for example methyl, ethyl, butyl, 2-phenoxy ethyl, 2-ethylhexyl, and 2-hydroxyethyl acrylate, isobornyl acrylate, methyl and ethyl methacrylate, lauryl-acrylate, ethoxylated nonyl-phenol
  • these monomers are acrylonitrile, acrylamide, methacrylamide, N-substituted (meth)acrylamides, vinyl esters such as vinyl acetate, styrene, alkylstyrenes, halostyrenes, N-vinylpyrrolidone, N-vinyl caprolactam, vinyl chloride and vinylidene chloride.
  • Examples of monomers containing more than one double bond are ethylene glycol diacrylate, propylene glycol diacrylate, tripropylene glycol diacrylate, neopentyl glycol diacrylate, hexamethylene glycol diacrylate, bisphenol A diacrylate, 4,4′-bis(2-acryloyloxyethoxy)diphenylpropane, trimethylolpropane triacrylate, pentaerythritol triacrylate and tetraacrylate, vinyl acrylate, divinyl benzene, divinyl succinate, diallyl phthalate, triallyl phosphate, triallyl isocyanurate or tris(2-acryloylethyl)isocyanurate.
  • the reactive diluent monomer component is present in an amount, relative to the entire weight of the composition, of from about 5 wt. % to about 90 wt. %, or from about 10 wt. % to about 90 wt. %, or from about 10 wt. % to about 80 wt. %., or from about 10 wt. % to about 60 wt. %.
  • optical fiber coating materials comprise as a reactive oligomer component.
  • An oligomer is a molecule of intermediate relative molecular mass, the structure of which comprises a plurality of units derived, actually or conceptually, from molecules of lower relative molecular mass.
  • an “oligomer” possesses a number average molecular weight (Mn) from 600 g/mol to 20,000 g/mol, as measured by size exclusion chromatography (SEC) calibrated with a polystyrene standard in tetrahydrofuran.
  • Mn number average molecular weight
  • Such components typically include a urethane acrylate oligomer comprising an acrylate group, urethane groups and a backbone.
  • the backbone is derived from a polyol which has been reacted with an isocyanate, such as a diisocyanate, a polyisocyanate, and a hydroxyalkylacrylate.
  • suitable polyols are polyether polyols, polyester polyols, polycarbonate polyols, polycaprolactone polyols, acrylic polyols, and other polyols.
  • Preferred are polyesters, polytetramethylene ethers, and polyoxypropyleneglycols. These polyols may be used either individually or in combinations of two or more.
  • the reactive oligomer which is preferably a urethane acrylate oligomer, is not substantially derived from polypropylene glycol (PPG).
  • PPG polypropylene glycol
  • a reactive oligomer is considered to be “not substantially derived” from polypropylene glycol if less than or equal to 90 wt. % of all polyols used in the synthesis of the reactive oligomer are not polypropylene glycol (PPG).
  • the urethane acrylate oligomer does not contain a compound derived from a polypropylene glycol (PPG).
  • PPG polypropylene glycol
  • a compound derived from a polypropylene glycol includes an endcapped PPG, such as an EO-endcapped PPG.
  • an oligomer is deemed to be “substantially free” from a substance if the reactants used to create it contain less than 1% by weight, relative to the weight of all reactants used to synthesize such oligomer, of such substance. In a preferred embodiment, the oligomer is substantially free from polypropylene glycol.
  • Inventors currently hypothesize that high-performing, oxidative degradation-resistant coatings may be created if a polyol is selected such that the number of tertiary carbons in the non-functionalized polyol are limited. Unreacted PPG itself is estimated to possess a tertiary carbon content of approximately 17.2 mol/kg, whereas other polyols are known to have a lower number. Specifically, pTGL possesses roughly 11.6 mol/kg, DBC possesses 10.3 mol/kg, and polyester roughly 7.0 mol/kg.
  • the reactive oligomer is the reaction product of reactants including a polyol, wherein the unreacted polyol contains a tertiary carbon content of less than 17.2 mol/kg, or less than 15 mol/kg, or less than 12 mol/kg, or from 5 mol/kg to 15 mol/kg, or from 6 mol/kg to 15 mol/kg, or from 7 mol/kg to 12 mol/kg.
  • the reactive oligomer is a copolymer which is the reaction product of reactants including multiple polyols, wherein the average tertiary carbon content of all polyols used, by weight fraction, is less than 17.2 mol/kg, or less than 15 mol/kg, or less than 12 mol/kg, or from 5 mol/kg to 15 mol/kg, or from 6 mol/kg to 15 mol/kg, or from 7 mol/kg to 12 mol/kg.
  • a block copolymer means a portion of an oligomer or polymer, comprising many constitutional units, wherein at least one constitutional unit comprises a feature that is not present in adjacent portions.
  • mono-, di-, and tri-block copolymers refer to the average amount of a particular block present in the oligomer.
  • the particular block refers to a polyester or polyether block, which is derived from one or more of the polyols, such as polyether polyols, as described elsewhere herein.
  • the block to which a mono-, di-, and/or tri-block copolymer refers is a polyester or polyether block which is derived from one or more of the polyols described elsewhere herein.
  • a monoblock copolymer may be described as a copolymer having only an average of around 1, or from about 0.9 to less than 1.5 units of a particular block, such as a polyester or a polyether block.
  • a diblock copolymer may be described as a copolymer having an average of around 2, or from at least 1.5 to less than 2.5 units of a particular block, such as a polyester or a polyether block.
  • a triblock copolymer may be described as a copolymer having an average of around 3, or from at least 2.5 to less than 3.5 units of a particular block, such as a polyester or a polyether block.
  • the number of polyether units in a given oligomer may be determined by the number of polyester or polyether polyol molecules utilized in the synthesis of a single oligomer.
  • polyether polyols are polyethylene glycol, polytetramethylene glycol, polyhexamethylene glycol, polyheptamethylene glycol, polydecamethylene glycol, and polyether diols obtained by ring-opening copolymerization of two or more ion-polymerizable cyclic compounds.
  • cyclic ethers such as ethylene oxide, isobutene oxide, tetrahydrofuran, 2-methyltetrahydrofuran, 3-methyltetrahydrofuran, dioxane, trioxane, tetraoxane, cyclohexene oxide, styrene oxide, epichlorohydrin, isoprene monoxide, vinyl oxetane, vinyl tetrahydrofuran, vinyl cyclohexene oxide, phenyl glycidyl ether, butyl glycidyl ether, and glycidyl benzoate.
  • cyclic ethers such as ethylene oxide, isobutene oxide, tetrahydrofuran, 2-methyltetrahydrofuran, 3-methyltetrahydrofuran, dioxane, trioxane, tetraoxane, cyclohexene oxide, styrene oxide, epic
  • combinations of two or more ion-polymerizable cyclic compounds include combinations for producing a binary copolymer such as tetrahydrofuran and 2-methyltetrahydrofuran, tetrahydrofuran and 3-methyltetrahydrofuran, and tetrahydrofuran and ethylene oxide; and combinations for producing a ternary copolymer such as a combination of tetrahydrofuran, 2-methyltetrahydrofuran, and ethylene oxide, a combination of tetrahydrofuran, butene-1-oxide, and ethylene oxide, and the like.
  • the ring-opening copolymers of these ion-polymerizable cyclic compounds may be either random copolymers or block copolymers.
  • polyether polyols include products commercially available under the trademarks, for example, PTMG1000, PTMG2000 (manufactured by Mitsubishi Chemical Corp.), PEG#1000 (manufactured by Nippon Oil and Fats Co., Ltd.), PTG650 (SN), PTG1000 (SN), PTG2000 (SN), PTG3000, PTGL1000, PTGL2000 (manufactured by Hodogaya Chemical Co., Ltd.), PEG400, PEG600, PEG1000, PEG1500, PEG2000, PEG4000, PEG6000 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and Pluronics (by BASF).
  • the oligomer comprises a backbone derived from a polyester polyol, such as a polyester diol.
  • Polyester diols obtained by reacting a polyhydric alcohol and a polybasic acid are given as examples of the polyester polyols.
  • the polyhydric alcohol ethylene glycol, polyethylene glycol, tetramethylene glycol, polytetramethylene glycol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,9-nonanediol, 2-methyl-1,8-octanediol, and the like can be given.
  • the polybasic acid phthalic acid, dimer acid, isophthalic acid, terephthalic acid, maleic acid, fumaric acid, adipic acid, sebasic acid, and the like can be given.
  • polyester polyol compounds are commercially available under the trademarks such as MPD/IPA500, MPD/IPA1000, MPD/IPA2000, MPD/TPA500, MPD/TPA1000, MPD/TPA2000, Kurapol A-1010, A-2010, PNA-2000, PNOA-1010, and PNOA-2010 (manufactured by Kuraray Co., Ltd.).
  • polycarbonate polyols polycarbonate of polytetrahydrofuran, poly(hexanediol carbonate), poly(nonanediol carbonate), poly(3-methyl-1,5-pentamethylene carbonate), and the like can be given.
  • DN-980, DN-981 manufactured by Nippon Polyurethane Industry Co., Ltd.
  • Priplast 3196, 3190, 2033 manufactured by Unichema
  • PNOC-2000, PNOC-1000 manufactured by Kuraray Co., Ltd.
  • PLACCEL CD220, CD210, CD208, CD205 manufactured by Daicel Chemical Industries, Ltd.
  • PC-THF-CD manufactured by BASF
  • Polycaprolactone diols obtained by reacting e-caprolactone and a diol compound are given as examples of the polycaprolactone polyols having a melting point of 0° C. or higher.
  • the diol compound are ethylene glycol, polyethylene glycol, tetramethylene glycol, polytetramethylene glycol, 1,2-polybutylene glycol, 1,6-hexanediol, neopentyl glycol, 1,4-cyclohexanedimethanol, 1,4-butanediol, and the like.
  • PLACCEL 240 PLACCEL 240, 230, 230ST, 220, 220ST, 220NP1, 212, 210, 220N, 210N, L230AL, L220AL, L220PL, L220PM, L212AL (all manufactured by Daicel Chemical Industries, Ltd.), Rauccarb 107 (by Enichem), and the like.
  • polyols ethylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, polyoxyethylene bisphenol A ether, polyoxypropylene bisphenol A ether, polyoxyethylene bisphenol F ether, polyoxypropylene bisphenol F ether, and the like can be given.
  • polyols containing polytetramethylene glycol and copolymer glycols of butyleneoxide and ethyleneoxide are used.
  • the number average molecular weight derived from the hydroxyl number of these polyols is usually from about 50 to about 15,000, and preferably from about 1,000 to about 8,000.
  • molecular weight refers to a number average molecular weight, as specified in grams/mol (g/mol), as determined by SEC calibrated with a polystyrene standard.
  • polyisocyanate used for the oligomer are 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3-xylylene diisocyanate, 1,4-xylylene diisocyanate, 1,5-naphthalene diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, 3,3′-dimethyl-4,4′-diphenylmethane diisocyanate, 4,4′-diphenylmethane diisocyanate, 3,3′-dimethylphenylene diisocyanate, 4,4′-biphenylene diisocyanate, 1,6-hexane diisocyanate, isophorone diisocyanate, methylenebis(4-cyclohexylisocyanate), 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4 trimethylhexamethylene diisocyanate, hexamethylene
  • polyisocyanate compounds may be used either individually or in combinations of two or more.
  • Preferred polyisocyanates are isophorone diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4 trimethylhexamethylene diisocyanate and hexamethylene diisocyanate, 2,4-tolylene diisocyanate, and 2,6-tolylene diisocyanate.
  • hydroxyl group-containing (meth)acrylate used in the oligomer examples include, (meth)acrylates derived from (meth)acrylic acid and epoxy and (meth)acrylates comprising alkylene oxides, more in particular, 2-hydroxy ethyl (meth)acrylate, 2-hydroxypropylacrylate, 2-hydroxy-3-oxyphenyl(meth)acrylate, and hydroxyethylcaprolactoneacrylate.
  • Acrylate functional groups are preferred over methacrylates.
  • the ratio of polyol, polyisocyanate, and hydroxyl group-containing (meth)acrylate used for preparing the urethane (meth)acrylate is determined so that about 1.1 to about 3 equivalents of an isocyanate group included in the polyisocyanate and about 0.1 to about 1.5 equivalents of a hydroxyl group included in the hydroxyl group-containing (meth)acrylate are used for one equivalent of the hydroxyl group included in the glycol.
  • a urethanization catalyst such as copper naphthenate, cobalt naphthenate, zinc naphthenate, di-n-butyl tin dilaurate, triethylamine, and triethylenediamine-2-methyltriethyleneamine, is usually used in an amount from about 0.01 to about 1 wt. % of the total amount of the reactant.
  • the reaction is carried out at a temperature from about 10 to about 90° C., and preferably from about 30 to about 80° C.
  • the number average molecular weight (Mn) of the urethane (meth)acrylate used in the composition of the present invention is preferably in the range from about 600 to about 20,000, and more preferably from about 2,200 to about 10,000, as measured by as measured by size exclusion chromatography (SEC) calibrated with a polystyrene standard in tetrahydrofuran. If the Mn of the urethane (meth)acrylate is less than about 100, the resin composition tends to solidify; on the other hand, if the Mn becomes larger than about 20,000, the viscosity of the composition becomes high, making handling of the composition difficult.
  • Particularly preferred for inner primary coatings are oligomers having an Mn between about 2,200 and about 5,500.
  • oligomers that can be used include polyester (meth)acrylate, epoxy (meth)acrylate, polyamide (meth)acrylate, siloxane polymer having a (meth)acryloyloxy group, a reactive polymer obtained by reacting (meth)acrylic acid and a copolymer of glycidyl methacrylate and other polymerizable monomers, and the like.
  • Particularly preferred are bisphenol A based acrylate oligomers such as alkoxylated bisphenol-A-diacrylate and diglycidyl-bisphenol-A-diacrylate.
  • curable oligomers or polymers may be added to the liquid curable resin composition of the present invention to the extent that the characteristics of the liquid curable resin composition are not adversely affected.
  • Preferred oligomers are polyether-based acrylate oligomers, polycarbonate acrylate oligomers, polyester acrylate oligomers, alkyd acrylate oligomers and acrylated acrylic oligomers. More preferred are the urethane-containing oligomers thereof. Also preferred are polyether urethane acrylate oligomers and urethane acrylate oligomers using blends of the above polyols, and particularly preferred are aliphatic polyether urethane acrylate oligomers.
  • the term “aliphatic” refers to a wholly aliphatic polyisocyanate used.
  • urethane-free acrylate oligomers such as urethane-free acrylated acrylic oligomers, urethane-free polyester acrylate oligomers and urethane-free alkyd acrylate oligomers may also be used.
  • high molecular weight (oligomeric) polyunsaturated compounds are acrylated epoxy resins, acrylated polyethers, and acrylated polyesters.
  • unsaturated oligomers are unsaturated polyester resins, which are usually prepared from maleic acid, phthalic acid and one or more diols and which have molecular weights of greater than about 500. Unsaturated oligomers of this type are also known as prepolymers.
  • Typical examples of unsaturated compounds are esters of ethylenically unsaturated carboxylic acids and polyols or polyepoxides, and polymers containing ethylenically unsaturated groups in the chain or in side groups, including unsaturated polyesters, polyamides and copolymers thereof, polybutadiene and butadiene copolymers, polyisoprene and isoprene copolymers, polymers and copolymers containing (meth)acrylic groups in side-chains, as well as mixtures of one or more than one such polymer.
  • unsaturated carboxylic acids are acrylic acid, methacrylic acid, crotonic acid, itaconic acid, cinnamic acid, unsaturated fatty acids such as linolenic acid or oleic acid.
  • Suitable polyols are aromatic, aliphatic and cycloaliphatic polyols.
  • Aromatic polyols are typically hydroquinone, 4,4′-dihydroxydiphenyl, 2,2-bis(4-hydroxyphenyl)propane, as well as novolacs and cresols.
  • Polyepoxides include those based on the cited polyols, for instance on the aromatic polyols and epichlorohydrin.
  • suitable polyols are polymers and copolymers which contain hydroxyl groups in the polymer chain or in side groups, for example polyvinyl alcohol and copolymers thereof or hydroxyalkyl polymethacrylates or copolymers thereof.
  • Other suitable polyols are oligoesters carrying hydroxyl end groups.
  • Illustrative examples of aliphatic and cycloaliphatic polyols are alkylenediols containing for example 2 to 12 carbon atoms, including ethylene glycol, 1,2- or 1,3-propanediol, 1,2-, 1,3- or 1,4-butanediol, pentanediol, hexanediol, octanediol, dodecanediol, diethylene glycol, triethylene glycol, polyethylene glycols having molecular weights of for instance 200 to 1500, 1,3-cyclopentanediol, 1,2-, 1,3- or 1,4-cyclohexanediol, 1,4-dihydroxymethylcyclohexane, glycerol, tris(-hydroxyethyl)amine, trimethylolethane, trimethylolpropane, pentaerythritol, dipentaerythritol and sorbitol.
  • the polyols may be esterified partially or completely with one or with different unsaturated carboxylic acids, in which case the free hydroxyl groups of the partial esters may be modified, for example etherified, or esterified with other carboxylic acids.
  • esters are: trimethylolpropane triacrylate, trimethylolethane triacrylate, trimethylolpropane trimethacrylate, trimethylolethane trimethacrylate, tetramethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol diacrylate, pentaerythritol diacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol diacrylate, dipentaerythritol triacrylate, dipentaerythritol tetraacrylate, dipentaerythritol pentacrylate, dipentaerythrito
  • the reactive oligomer which is an ethylenically unsaturated polymerizable oligomer preferably comprises, or consists, or consists essentially of urethane acrylate oligomers.
  • the reactive oligomer possesses at least one polymerizable group, although in a preferred embodiment the reactive oligomer is difunctional; i.e., it possesses on average between 1.5 to 2.5 reactive groups per molecule.
  • One or more of the aforementioned ethylenically unsaturated oligomers can be employed in compositions according to the present invention in any suitable amount and may be chosen singly or in combination of one or more of the types enumerated herein.
  • the ethylenically unsaturated oligomer component is present in an amount, relative to the entire weight of the composition, of from about 5 wt. % to about 90 wt. %, or from about 10 wt. % to about 90 wt. %, or from about 10 wt. % to about 80 wt. %.
  • a large quantity of the ethylenically unsaturated oligomer should be employed to maximize the viscosity of the composition for a given configuration for high temperature resistance, such as, relative to the total weight of the composition, at least 50 wt. %, or at least 55 wt. %, or at least 60 wt. %, or at least 65 wt. %, or at least 70 wt. %, or from 45-85 wt. %, or from 55 to 80 wt. %, or from 60 to 85 wt. %, or from 60 to 80 wt. %.
  • the liquid radiation curable resin for coating an optical fiber of the present invention includes a free-radical photoinitiator component.
  • the photoinitiator is a compound that chemically changes due to the action of light or the synergy between the action of light and the electronic excitation of a sensitizing dye to produce at least one of a radical, an acid, and a base.
  • the free-radical photoinitiator is an acylphosphine oxide photoinitiator.
  • Acylphosphine oxide photoinitiators are disclosed for example in U.S. Pat. Nos. 4,324,744, 4,737,593, 5,942,290, 5,534,559, 6,020,529, 6,486,228, and 6,486,226.
  • acylphosphine oxide photoinitiators are bisacylphosphine oxides (BAPO) or monoacylphosphine oxides (MAPO).
  • the bisacylphosphine oxide photoinitiators are of the formula I:
  • R 50 is C 2 -C 10 alkyl, cyclohexyl or phenyl which is unsubstituted or is substituted by 1 to 4 C 1 -C 4 alkyl, Cl or Br.
  • R 50 is C 3 -C 8 alkyl, cyclohexyl or phenyl which is unsubstituted or is substituted in the 2-, 3-, 4- or 2,5-positions by C 1 -C 4 alkyl.
  • R 50 is C 4 -C 12 alkyl or cyclohexyl
  • R 51 and R 52 are each independently of the other C 1 -C 8 alkyl or C 1 -C 8 alkoxy
  • R 53 is hydrogen or C 1 -C 8 alkyl.
  • R 51 and R 52 are C 1 -C 4 alkyl or C 1 -C 4 alkoxy
  • R 53 is hydrogen or C 1 -C 4 alkyl.
  • R 51 and R 52 are methyl or methoxy and R 53 is hydrogen or methyl.
  • R 51 , R 52 and R 53 are methyl.
  • R 51 , R 52 and R 53 are methyl and R 54 is hydrogen.
  • R 50 is C 3 -C 8 alkyl.
  • R 51 and R 52 are methoxy
  • R 53 and R 54 are hydrogen and R 50 is isooctyl.
  • R 50 is isobutyl.
  • R 50 is phenyl.
  • the present bisacylphosphine oxide photoinitiator is for example bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide (CAS#162881-26-7) or is bis(2,4,6-trimethylbenzoyl)-(2,4-bis-pentyloxyphenyl)phosphine oxide.
  • the monoacylphosphine oxide photoinitiators are of the formula II:
  • compositions according to the present invention may also employ further photoinitiators, for example ⁇ -hydroxy ketone photoinitiators of the formula III:
  • ⁇ -hydroxy ketone photoinitiators that are of interest are those in which R 11 and R 12 independently of one another are hydrogen, C 1 -C 6 alkyl or phenyl or R 11 and R 12 , together with the carbon atom to which they are attached, form a cyclohexyl ring, R 13 is OH, and R 14 is hydrogen, C 1 -C 12 alkyl, C 1 -C 12 alkoxy, —OCH 2 CH 2 O 15 , —C(CH 3 ) ⁇ CH 2 or is
  • suitable as the ⁇ -hydroxy ketone photoinitiators are those in which R 11 and R 12 independently of one another are methyl or ethyl or R 11 and R 12 , together with the carbon atom to which they are attached, form a cyclohexyl ring, R 13 is hydrogen and R 14 is hydrogen, C 1 -C 4 alkyl, C 1 -C 4 alkoxy or —OCH 2 CH 2 OH.
  • R 14 is
  • suitable ⁇ -hydroxy ketone photoinitiators are ⁇ -hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropanone, 2-hydroxy-2-methyl-1-(4-isopropylphenyl)propanone, 2-hydroxy-2-methyl-1-(4-dodecylphenyl)propanone, 2-Hydroxy-1- ⁇ 4-[4-(2-hydroxy-2-methyl-propionyl)-benzyl]-phenyl ⁇ -2-methyl-propan-1-one and 2-hydroxy-2-methyl-1-[(2-hydroxyethoxy)phenyl]propanone.
  • the present ⁇ -hydroxy ketone photoinitiator is for example ⁇ -hydroxycyclohexylphenyl ketone or 2-hydroxy-2-methyl-1-phenyl-1-propanone.
  • Straight or branched chain alkyl is for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, isooctyl, hexyl, heptyl, octyl, nonyl, decyl or dodecyl.
  • alkoxy or alkylthio are of the same straight or branched chains.
  • Photoinitiators according to the present invention may be employed singularly or in combination of one or more as a blend.
  • Suitable photoinitiator blends are for example disclosed in U.S. Pat. No. 6,020,528 and U.S. Pat. app. No. 60/498,848.
  • the present PI (photoinitiator) blends are for example a mixture of bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide (CAS#162881-26-7) and 2,4,6,-trimethylbenzoylethoxyphenylphosphine oxide (CAS#84434-11-7) in ratios by weight of about 1:11, 1:10, 1:9, 1:8 or 1:7.
  • Another especially suitable PI blend is a mixture of bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide, 2,4,6,-trimethylbenzoylethoxyphenylphosphine oxide and 2-hydroxy-2-methyl-1-phenyl-1-propanone (CAS#7473-98-5) in weight ratios of for instance about 3:1:15 or 3:1:16 or 4:1:15 or 4:1:16.
  • Another suitable PI blend is a mixture of bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide and 2-hydroxy-2-methyl-1-phenyl-1-propanone in weight ratios of for instance about 1:3, 1:4 or 1:5.
  • the present acylphosphine oxide PI or PI blend is present in the radiation-curable compositions from about 0.2 to about 10% by weight, based on the weight of the composition.
  • the PI or PI blend is present from about 0.5 to about 8%, about 1 to about 7%, or about 2, 3, 4, 5 or 6% by weight based on the weight of the radiation-curable composition.
  • photoinitiators are for or example, other mono- or bisacylphosphinoxides such as diphenyl-2,4,6-trimethylbenzoylphosphine oxide or bis(2,6-dimethoxybenzoyl)-2,4,4-trimethylpentylphosphineoxide; ⁇ -hydroxyketones, such as 1-hydroxycyclohexylphenylketone or 2-hydroxy-1-[4-(2-hydroxyethoxy)phenyl]-2-methyl-1-propanone; ⁇ -aminoketones, such as 2-methyl-1-[4-(methylthio)phenyl]-2-(4-morpholinyl)-1-propanone, 2-benzyl-2-(dimethylamino)-1-[4-(4-morpholinyl)phenyl]-1-butanone, 2-(4-methylbenzyl-2-(dimethylamino)-1-[4-(4-morpholinyl)phenyl]-1-butanone, 2-(4
  • Suitable photoinitiators employed according to this invention, with or without acylphosphine oxide photoinitiators, are for example oxime esters as disclosed in U.S. Pat. No. 6,596,445.
  • a suitable oxime ester photoinitiator is for example:
  • Suitable photoinitiators according to this invention are for example phenyl glyoxalates, for example as disclosed in U.S. Pat. No. 6,048,660.
  • Y is C 1 -C 12 alkylene, cyclohexlyene, C 2 -C 40 alkylene interrupted one or more times by cyclohexylene, O, S, or NR 30 , and R 30 is hydrogen, C 1 -C 12 alkyl or phenyl, preferably Y is CH 2 CH 2 —O—CH 2 CH 2 .
  • the free-radical photoinitiator component is present in an amount, relative to the entire weight of the composition, of from about 0.1 wt. % to about 10 wt. %, more preferably from about 0.1 wt. % to about 5 wt. %, more preferably from about 1 wt. % to about 5 wt. %.
  • Additives are also typically added to optical fiber coatings to achieve certain desirable characteristics such as improved shelf life, improved coating oxidative and hydrolytic stability, and the like.
  • desirable additives There are many different types of desirable additives, and the invention discussed herein is not intended to be limited by these, nevertheless they are included in the envisioned embodiments since they have desirable effects.
  • thermal inhibitors which are intended to prevent premature polymerization, examples being hydroquinone, hydroquinone derivatives, p-methoxyphenol, beta-naphthol or sterically hindered phenols, such as 2,6-di(tert-butyl)-p-cresol.
  • the shelf life in the dark can be increased, for example, by using copper compounds, such as copper naphthenate, copper stearate or copper octoate, phosphorus compounds, for example triphenylphosphine, tributylphosphine, triethyl phosphite, triphenyl phosphite or tribenzyl phosphite, quaternary ammonium compounds, such as tetramethylammonium chloride or trimethylbenzylammonium chloride.
  • copper compounds such as copper naphthenate, copper stearate or copper octoate
  • phosphorus compounds for example triphenylphosphine, tributylphosphine, triethyl phosphite, triphenyl phosphite or tribenzyl phosphite
  • quaternary ammonium compounds such as tetramethylammonium chloride or trimethylbenzylammonium chloride.
  • paraffin or similar wax-like substances can be added; these migrate to the surface on commencement of the polymerization because of their low solubility in the polymer and form a transparent surface layer which prevents the ingress of air. It is likewise possible to apply an oxygen barrier layer.
  • UV absorbers for example well known commercial UV absorbers of the hydroxyphenylbenzotriazole, hydroxyphenyl-benzophenone, oxalamide or hydroxyphenyl-s-triazine type. It is possible to use individual such compounds or mixtures thereof, with or without the use of sterically hindered relatively non-basic amine light stabilizers (HALS). Sterically hindered amines are for example based on 2,2,6,6-tetramethylpiperidine. UV absorbers and sterically hindered amines are for example:
  • 2-(2-Hydroxyphenyl)-2H-benzotriazoles for example known commercial hydroxyphenyl-2H-benzotriazoles and benzotriazoles as disclosed in, U.S. Pat. Nos. 3,004,896; 3,055,896; 3,072,585; 3,074,910; 3,189,615; 3,218,332; 3,230,194; 4,127,586; 4,226,763; 4,275,004; 4,278,589; 4,315,848; 4,347,180; 4,383,863; 4,675,352; 4,681,905, 4,853,471; 5,268,450; 5,278,314; 5,280,124; 5,319,091; 5,410,071; 5,436,349; 5,516,914; 5,554,760; 5,563,242; 5,574,166; 5,607,987, 5,977,219 and 6,166,218 such as 2-(2-hydroxy-5-methylphenyl)-2H-benzotriazole
  • 2-Hydroxybenzophenones for example the 4-hydroxy, 4-methoxy, 4-octyloxy, 4-decyloxy, 4-dodecyloxy, 4-benzyloxy, 4,2′,4′-trihydroxy and 2′-hydroxy-4,4′-dimethoxy derivatives.
  • Esters ofsubstituted and unsubstituted benzoic acids as for example 4-tert-butylphenyl salicylate, phenyl salicylate, octylphenyl salicylate, dibenzoyl resorcinol, bis(4-tert-butylbenzoyl) resorcinol, benzoyl resorcinol, 2,4-di-tert-butylpheny 3,5-di-tert-butyl-4-hydroxybenzoate, hexadecyl 3,5-di-tert-butyl-4-hydroxybenzoate, octadecyl 3,5-di-tert-butyl-4-hydroxybenzoate, 2-methyl-4,6-di-tert-butylphenyl 3,5-di-tert-butyl-4-hydroxybenzoate.
  • accelerators coinitiators and autoxidizers such as thiols, thioethers, disulfides and phosphines, as are described, for example, in EP-A-438 123 and GB-A-2 180 358.
  • the photopolymerization can also be accelerated by the addition of photosensitizers, which shift or broaden the spectral sensitivity.
  • photosensitizers which shift or broaden the spectral sensitivity.
  • aromatic carbonyl compounds such as benzophenone derivatives, thioxanthone derivatives, anthraquinone derivatives and 3-acylcoumarin derivatives, and also 3-(aroylmethylene)thiazolines, and also eosine, rhodamine and erythrosine dyes.
  • non-aromatic carbonyl compounds may be used.
  • An example of a non-aromatic carbonyl is dimethoxy anthracene.
  • the curing procedure can be assisted, in particular, by compositions which are pigmented (for example with titanium dioxide), and also by adding a component which forms free radicals under thermal conditions, for example an azo compound such as 2,2′-azobis(4-methoxy-2,4-dimethylvaleronitrile), a triazene, a diazo sulfide, a pentazadiene or a peroxy compound, such as a hydroperoxide or peroxycarbonate, for example t-butyl hydroperoxide, as described in U.S. Pat. No. 4,753,817. Further suitable for this purpose include benzopinacol compounds.
  • a component which forms free radicals under thermal conditions for example an azo compound such as 2,2′-azobis(4-methoxy-2,4-dimethylvaleronitrile), a triazene, a diazo sulfide, a pentazadiene or a peroxy compound, such as a hydroperoxide or peroxycarbonate,
  • novel compositions can also include a photo reducible dye, for example xanthene, benzoxanthene, benzothioxanthene, thiazine, pyronine, porphyrin or acridine dyes, and/or a trihalomethyl compound which can be cleaved by radiation.
  • a photo reducible dye for example xanthene, benzoxanthene, benzothioxanthene, thiazine, pyronine, porphyrin or acridine dyes, and/or a trihalomethyl compound which can be cleaved by radiation.
  • Thick and pigmented coatings can also contain glass microbeads or powdered glass fibers, as described in U.S. Pat. No. 5,013,768, for example.
  • One or more of the aforementioned additives can be employed in compositions according to the present invention in any suitable amount and may be chosen singly or in combination of one or more of the types enumerated herein.
  • the additive component is present in an amount, relative to the entire weight of the composition, of from about 0.01 wt. % to about 5 wt. %, more preferably from about 0.1 wt. % to about 2 wt. %.
  • the one or more of the aforementioned additives are included in an amount from about 1 wt. % to about 5 wt. %.
  • viscosity ratio is a measure of the steady-state shear viscosity (at a shear rate of 10 s ⁇ 1 ) of the same composition at two different temperatures, wherein the first temperature is lower than the second temperature.
  • viscosity along with all qualifiers (such as “first viscosity,” “second viscosity,” or “third viscosity,” etc.) shall be assumed to mean the steady-state shear viscosity at a shear rate of 10 s ⁇ 1 , and all units shall be expressed in terms of Pascal seconds unless otherwise noted.
  • the viscosity ratio is the composition's viscosity at 25° C. divided by that same composition's viscosity at 55° C. In another embodiment, the viscosity ratio is the composition's viscosity at 25° C. divided by that same composition's viscosity at 85° C.
  • 55° C. is chosen because it is an operating temperature at which existing primary coating compositions have been observed to fail. It is believed that 85° C.
  • compositions possessing viscosity ratios below select values may be sufficiently thermally resistive to be suitable in high draw speed/low helium coating processes.
  • the composition possesses a ratio of the viscosity at 25° C. to the viscosity at 85° C. of less than 18, or less than 13, or less than 12, or less than 11, or from 5 to 20, or from 7 to 18, or from 7 to 15, or from 7 to 13, or from 7 to 12.
  • the above values and ratios may be exact, or alternatively reference an approximation of each stated value (i.e. ⁇ 5%, or “about” each value).
  • the composition possesses a ratio of the viscosity at 25° C. to the viscosity at 55° C. of 3 to 5.5, or from 3.1 to 5, or from 3.2 to 5, or from 3.2 to 4.5.
  • the above values and ratios may be exact, or alternatively reference an approximation of each stated value (i.e. ⁇ 5%, or “about” each value).
  • the composition will be characterized by an undesirably marked sensitivity to changes in temperature, which will result in inferior glass application and/or curing performance under high-temperature/high-speed processing. Therefore, the composition should be tuned according to the methods described herein to ensure that the viscosity ratio is as low as possible, whilst maintaining viability as an optical fiber coating.
  • a primary coating composition should also possess a sufficiently high viscosity at higher operating temperatures, such as 55° C. That is, the primary coating must exhibit both a sufficiently low slope in terms of the temperature/viscosity relationship, but also an appropriately high “y-intercept” as well.
  • a primary coating composition which possesses a sufficiently low viscosity ratio i.e. relatively temperature insensitive or temperature/viscosity independent
  • an additional constraint upon thermally resistant primary coating compositions according to the current invention is that such compositions should possess a viscosity at the fiber application temperature of at least 0.01 pascal seconds (Pa ⁇ s), or greater than 0.10 Pa ⁇ s, or less than 20 Pa ⁇ s, or less than 1 Pa ⁇ s, or between about 0.01 Pa ⁇ s to about 20 Pa ⁇ s, or between about 0.01 Pa ⁇ s to about 1 Pa ⁇ s, or from about 0.03 Pa ⁇ s to about 1 Pa ⁇ s, or from about 0.03 Pa ⁇ s to about 0.8 Pa ⁇ s, or from about 0.03 Pa ⁇ s to about 0.5 Pa ⁇ s, or from about 0.03 Pa ⁇ s to about 0.4 Pa ⁇ s, or from about 0.05 Pa ⁇ s to about 1 Pa ⁇ s, or from about 0.05 Pa ⁇ s to about 0.5 Pa ⁇ s, or from about 0.1 Pa ⁇ s to about 1 Pa ⁇ s, or from about 0.1 Pa ⁇ s to about 0.8 Pa ⁇ s.
  • the application temperature is 55° C
  • the viscosity of the composition is between 0.03 to 6 Pa ⁇ s, or from 0.05 to 5 Pa ⁇ s, or from 0.1 to 3 Pa ⁇ s. In a preferred embodiment, where the application temperature is 85 degrees Celsius, the viscosity of the composition is between 0.01 to 2 Pa ⁇ s, or from 0.03 to 1.5 Pa ⁇ s, or from 0.05 to 1 Pa ⁇ s. In a preferred embodiment, where the application temperature is 25 degrees Celsius, meanwhile, the viscosity of the composition is between 0.1 to 20 Pa ⁇ s, or from 0.5 to 15 Pa ⁇ s, or from 1 to 10 Pa ⁇ s.
  • the viscosity of the composition at room temperature may also be a suitable indicator as to whether it will possess an appropriate flow resistance at a specified application temperature. Compositions that possess a viscosity that is too low at room temperature will more likely be insufficiently viscous at an application temperature. Therefore, in an embodiment, the viscosity of the primary coating composition, when measured at 25° C.
  • the curve flattening effect of primary coating compositions of the present invention are also discovered herein to be associated with various other coating properties.
  • Inventors have discovered that there exists a correlation between properties such as a composition's dielectric constant, its refractive index, its liquid glass transition temperature, and such composition's relative heat sensitivity (or insensitivity).
  • properties such as a composition's dielectric constant, its refractive index, its liquid glass transition temperature, and such composition's relative heat sensitivity (or insensitivity).
  • Inventors have discovered that there exists a strong correlation between a coating composition's liquid glass transition temperature and its viscosity ratio; that is, the lower the liquid glass transition temperature of the composition selected, the more temperature insensitive it becomes (as reflected by its relative ability to resist changes in viscosity as it is heated).
  • ⁇ (T) is the relaxation time of the glass transition of the polymeric material at temperature T
  • ⁇ (T ref ) the relaxation time of the glass transition of the polymeric material at a reference temperature T ref
  • C 1 and C 2 are constants.
  • ⁇ (T) is the viscosity of the liquid at temperature T (as used herein, T is expressed in degrees Celsius unless otherwise noted)
  • ⁇ (T g ) the viscosity at the glass transition temperature T g as determined with DSC
  • the constant C 1 has a fixed value of 15
  • C 2 is a fitting parameter that varies over a limited range of values between 35 and 45.
  • the WLF equation for the liquid resin viscosity follows the same temperature dependence as the relaxation time of the glass transition, with a similar value of C 1 and a slightly lower value for C 2 .
  • the glass transition of the liquid resin (Tg,rheo) can be determined from the resin viscosity versus temperature which is especially useful when data from DSC are not available. Given the limited range of C 2 values found when using actual T g data from DSC this means that the glass transition temperature as determined from rheology agrees with the values from DSC within at most ⁇ 5° C., which is herein considered to be an acceptable accuracy.
  • the uncured liquid optical fiber coating resin formulations according to this invention have a lower temperature sensitivity of the resin viscosity in comparison with state of the art resin formulations, as measured from the ratios ⁇ (25° C.)/ ⁇ (55° C.) and/or ⁇ (25° C.)/ ⁇ (85° C.).
  • the universal WLF equation with T g -rheo as reference temperature (3) and the equivalent equation with 25° C. as reference temperature (4) can, by including equations (5) and (6), be combined into a single free parameter equation for fitting Tg,rheo to the relative viscosity curve at reference temperature 25° C.:
  • a low oligomer Tg, rheo can be obtained by selecting building blocks (polyol, isocyanate and acrylate end-cap) with a low glass transition temperature. Since the diol typically has the lowest glass transition temperature, in an embodiment it is preferred to select PPG-free diols with number average molecular weight of 4000 g/mol or more—especially if it is desired to simultaneously assure a sufficiently high initial viscosity value—and combine these with an adequate molar ratio of (di-)isocyanates to target mono-, di- or a higher number of polyol blocks containing polyether-urethane-acrylate oligomers.
  • the radiation curable composition contains at least 50 wt. % of a reactive oligomer component, or at least 55 wt. % of a reactive oligomer component, or at least 60 wt. %, or at least 65 wt. %, or at least 70 wt. %, or from 45-85 wt. %, or from 55 to 80 wt. %, or from 60 to 85 wt. %, or from 60 to 80 wt. %.
  • a third aspect of the invention is a coated optical fiber comprising a primary coating, wherein the primary coating is the cured product of the radiation curable composition according to any of the embodiments of the second aspect.
  • a fourth aspect of the invention is a method for producing a coated optical fiber comprising the steps of drawing a glass optical fiber through a draw tower; applying a primary coating composition onto the surface of the glass optical fiber; optionally, imparting a dose of UV light sufficient to at least partially cure said primary coating composition; applying a secondary coating composition to the primary coating composition; exposing the primary coating composition and the secondary coating composition to at least one radiation source capable of emitting ultraviolet radiation to affect curing of said primary coating composition and said secondary coating composition, to form a cured primary coating on the surface of the optical fiber, and a cured secondary coating on the surface of the cured primary coating; wherein the primary coating composition comprises a reactive oligomer comprising at least one polymerizable group, wherein said reactive oligomer is not substantially derived from polypropylene glycol; a reactive diluent monomer; a photoinitiator; and optionally, one or more additives; wherein the radiation curable composition possesses a liquid glass transition temperature (Tg,rheo), a
  • T g ,rheo of the radiation curable composition is less than ⁇ 74° C., or less than ⁇ 80° C., or less than ⁇ 85° C., or less than ⁇ 90° C., or less than ⁇ 100° C., or less than ⁇ 105° C., or from ⁇ 120 to ⁇ 83.6° C., or from ⁇ 113 to ⁇ 83° C., or from ⁇ 106 to ⁇ 83° C., wherein T g ,rheo is determined by fitting equation (8) to experimental viscosity versus temperature data for the radiation curable composition:
  • ⁇ (T) is the viscosity (in Pa ⁇ s) of the composition at temperature, T (in ° C.).
  • Another embodiment of the fourth aspect describes optical fiber coating processes according to one or more of the following conditions: at a draw speed of greater than 1500 m/min, or greater than 1700 m/min, or greater than 2000 m/min, or greater than 2500 m/min, or greater than 3000 m/min, and less than 5000 m/min, or less than 4000 m/min, or less than 3100 m/min; or under the application of no helium, or the application of helium at a flow rate of less than 20 standard liters per minute (SLM), or less than 10 SLM, or less than 5 SLM, or from 1 to 20 SLM, or from 1 to 10 SLM, or from 1 to 5 SLM, or from 5 to 20 SLM, or from 5 to 10 SLM.
  • SLM standard liters per minute
  • a fifth aspect of the invention is an optical fiber cable, wherein the optical fiber comprises at least one optical fiber according to the first or third aspects of the invention, wherein the optical fiber is the cured product of a composition according to the second aspect of the invention, and/or wherein the optical fiber was coated according to the fourth aspect of the invention.
  • compositions of the current invention can be formulated via the selection of components specified above herein, and further readily tuned by those of ordinary skill in the art to which this invention applies by following the formulation guidelines herein, as well as by extrapolating from the general approaches taken in the embodiments illustrated in the examples below. The following such examples further illustrate the invention but, of course, should not be construed as in any way limiting its scope.
  • Tables 1A, 1B, and 1C describes the various components of the compositions used in the present examples.
  • Table 2 describes the relative amounts of the reagents described in Tables 1A, 1B, and 1C which were used to synthesize the oligomers used in the present examples.
  • the relevant polyol (Polycerin DCB-4000 for Oligomer 1, PTGL-4000 for Oligomer 2), after measured to ensure the quantities specified in Table 2 above, was added under a dry air blanket to a clean and dry flask, followed by the specified quantities of the inhibitor (BHT Food Grade).
  • the specified quantity of the isocyanate component Desmodur W was added, after which the specified quantity of acrylic acid was then added. These reagents were mixed and stirred for about 10 minutes, with the temperature being monitored to ensure that no increase was observed.
  • the specified quantity of the relevant catalyst DBTDL was added to the same flask and mixed for approximately an additional 15 minutes. The resulting mixture was then reacted at 60° C. for 2 hours in a heating mantle.
  • the quantity of isocyanate (NCO) content was measured by a potentiometric titrator to ensure it was within 10% of the value of the theoretical isocyanate content that would be derivable for each oligomer from the quantities specified in Table 2 above.
  • the appropriate amount of the acrylate endcapper (SR495) was added to each oligomer and diluent SR504 as specified in Table 2, after which the resulting mixture was reacted for another 2 hours at 70° C.
  • the isocyanate content was checked via potentiometric titration; if the isocyanate content was beyond 10% of the theoretical value, the mixture was placed back in the reaction chamber in 15-minute additional increments (again at 70° C.) and checked again, with this step repeated until the isocyanate content fell to within the desired range. Finally, the resulting synthesized oligomer was cooled slowly and discharged for use in the experiments described elsewhere herein.
  • polyester resin was made using the reagents listed in Table 1C.
  • a 2-L reactor vessel fitted with a thermometer, a stirrer and a distillation device for the removal of water formed during the synthesis was filled with 591.3 g dimer fatty diol (1.04 mol) and 436.8 g dimer fatty acid (0.78 mol). Stirring was then applied and a light nitrogen flow was passed over the reaction mixture while the temperature was raised to 2200C. The temperature was maintained at 220° C. until no additional water was released.
  • the acid value which was measured titrimetrically according to ISO 2114, is given as the mass of potassium hydroxide (KOH) in milligrams that is required to neutralize one gram of the tested substance and is used as a measure of the concentration of carboxylic acid groups present.
  • KOH potassium hydroxide
  • OHT or the hydroxyl value, which was measured titrimetrically according to ISO 4629, is the mass of potassium hydroxize (KOH) in milligrams that is required to neutralize one gram of the tested substance and is used as a measured of the concentration of hydroxyl groups present.
  • KOH potassium hydroxize
  • polyester resin was used as a non-PPG derived polyol in the synthesis of oligomer 3 in the quantities specified in Table 2 above.
  • Such polyester resin was added under a nitrogen blanket to a clean and dry flask, followed by the specified quantities of the inhibitor (BHT Food Grade).
  • the specified quantity of the IPDI was added, after which the specified quantity of acrylic acid was then added.
  • These reagents were mixed and stirred for about 15 minutes.
  • the specified quantity of the relevant catalyst DBTDL was added to the same flask and mixed isothermally for 1 hour. The resulting mixture was then reacted at 600C for 2 hours in an oil bath.
  • the quantity of isocyanate (NCO) content was measured by a potentiometric titrator to ensure it was within 10% of the value of the theoretical isocyanate content that would be derivable for each oligomer from the quantities specified in Table 2 above.
  • the appropriate amount of hydroxy ethyl acrylate was added to the oligomer.
  • the nitrogen blanket was exchanged for a dry air blanket, after which the resulting mixture was reacted for 1 hour at 85° C.
  • the isocyanate content was checked via potentiometric titration; If the NCO content was lower than 0.05, the reaction was considered finished. If the NCO content was higher than 0.05 the appropriate amount of additional HEA was added and checked again after 1 hour.
  • the resulting synthesized oligomer 3 was cooled slowly and discharged for use in the experiments described elsewhere herein.
  • a PPG-containing oligomer was synthesized for comparative purposes.
  • the relevant polyol Arcol Polyol PPG 2000
  • the specified quantity of the inhibitor BHT Food Grade
  • the specified quantity of the isocyanate components Mondur TDS Grade II
  • the specified quantity of acrylic acid and 2-ethyl hexanol was then added.
  • These reagents were mixed and stirred for about 15 minutes.
  • the specified quantities of the DBTDL catalyst was added to the same flask and mixed for approximately an additional 15 minutes. The resulting mixture was then reacted at 600C for 1 hour in a heating mantle.
  • the quantity of isocyanate (NCO) content was measured by a potentiometric titrator to ensure it was within 10% of the value of the theoretical isocyanate content that would be derivable for each oligomer from the quantities specified in Table 2 above.
  • the appropriate amount of hydroxy ethyl acrylate was added to each oligomer, after which the resulting mixture was reacted for 1 hour at 85° C.
  • the isocyanate content was checked via potentiometric titration; if the isocyanate content was beyond 10% of the theoretical value, the mixture was placed back in the reaction chamber in 15-minute additional increments (again at 850C) and checked again, with this step repeated until the isocyanate content fell to within the desired range.
  • mixtures of oligomer, monomer(s) and photo-initiator were weighed in non-transparent polypropylene cups at 10-20 g scale.
  • the mixing was performed at room temperature in a so-called speed-mixer (Brand Hauschild type DAC 150FVZ) for 5 minutes at 3000-3500 rpm.
  • the temperature during mixing increased by a maximum of 10° C. If the (solid) photo-initiator was not completely dissolved visually, the mixing procedure was repeated. Samples were stored in the same cups.
  • liquid glass transition temperature of each sample was also determined by using the calculation method described herein.
  • An Anton Paar type Physica MCR501 instrument was used for these experiments.
  • This rheometer was equipped with a C-PTD200 temperature controller device consisting of a Peltier cooler/heater for use with concentric cylinder and double-gap measuring systems.
  • the so-called double gap DG26.7 system was used as the measurement geometry.
  • a disposable plastic pipette (7 ml) was used to load the liquid into the sample cylinder of the double-gap geometry at room temperature, holding the geometry under an angle of about 45 degrees. This was used to prevent the inclusion of large air-bubbles in the double-gap geometry.
  • ⁇ (T) is the viscosity of the composition at temperature, T, and ⁇ 25 is the first viscosity.
  • ⁇ (T) means the entirety of the viscosity data measured between 20° C. and 90° C., from which the viscosity at 25° C. (725) is used as the reference value.
  • a non-linear regression fit was applied to determine the value of Tg, rheo that provided the best overall fit of the calculated WLF fit to the experimental data. This was implemented in a Microsoft Excel® sheet using the Solver add-in. The results for each of the examples and comparative examples are depicted in Table 3 below.
  • FIG. 3 illustrates the curve fit (Example 2 is depicted) in order to establish the Tg, rheo values per the aforementioned procedure and equations.
  • the data points represented by circles illustrate the experimentally-obtained values, whereas the fit equation is represented by the dashed line.
  • compositions according to various aspects of the present invention exhibit desirable values for thermal sensitivity, as determined by the viscosity ratio
  • Tg of the material Tg, rheo
  • Tg, rheo liquid Tg of the material
  • Tg, rheo liquid Tg of the material
  • their performance herein illustrates their suitability as at least a precursor composition for use in optical fiber coating applications wherein an increased amount of thermal stress is placed upon the applied coating, as photoinitiators and additives are not expected to significantly affect temperature sensitivity.
  • Such increased thermal stresses could be induced by, for example, line speeds which are increased versus commercially standard values, or via the reduction or elimination of the amount of cooling (via helium flow or otherwise) fluid that is applied to the composition during the coating process.
  • Examples 1-6 exhibited superior temperature resistivity (as evidenced by the recorded Tg, rheo values from Table 3) than Comparative Examples 1-3, each of which utilized a PPG-containing oligomer. This evidences that certain “non-traditional” oligomers can be used to develop superior coatings for high-speed and/or low helium optical fiber coating applications. Similarly, each of Examples 1-6 performed comparably to (Example 3) or better than (Examples 1-2 and 4-6) the best known commercially-available primary coating compositions for optical fiber to Inventors in terms of temperature resistivity, as evidenced by the Tg, rheo values reported in Table 3.
  • FIGS. 4 through 6 The results are further graphically illustrated in FIGS. 4 through 6 .
  • FIG. 4 the performance advantage of at least two compositions according to aspects of the current invention (Examples 2 and 5) are depicted relative to one comparative coating composition (Comparative example 5), when each composition's viscosity is plotted as a function of temperature between 25° C. and 85° C.
  • Examples 2 and 5 may be considered superior candidates for use in optical fiber coating processes which induce increased thermal stresses upon the coating, as evidenced by their relatively higher measured viscosity values at an elevated (potentially operating) temperature of 85° C.
  • FIG. 5 and FIG. 6 a depiction is provided of, on the x-axis, the steady state shear viscosity (at 25° C. in FIG. 5 and at 85° C. in FIG. 6 ) of each composition, versus, on the y-axis, each composition's viscosity ratio (whether between 25° C./55° C. in FIG. 5 , or between 25° C./85° C. in FIG. 6 ).
  • wt. % means the amount by mass of a particular constituent relative to the entire liquid radiation curable composition into which it is incorporated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Paints Or Removers (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Polyurethanes Or Polyureas (AREA)
US17/056,902 2018-06-01 2018-12-03 Radiation curable compositions for coating optical fiber via alternative oligomers and the coatings produced therefrom Abandoned US20210208333A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/056,902 US20210208333A1 (en) 2018-06-01 2018-12-03 Radiation curable compositions for coating optical fiber via alternative oligomers and the coatings produced therefrom

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862679383P 2018-06-01 2018-06-01
US17/056,902 US20210208333A1 (en) 2018-06-01 2018-12-03 Radiation curable compositions for coating optical fiber via alternative oligomers and the coatings produced therefrom
PCT/US2018/063595 WO2019231492A1 (en) 2018-06-01 2018-12-03 Radiation curable compositions for coating optical fiber via alternative oligomers and the coatings produced therefrom

Publications (1)

Publication Number Publication Date
US20210208333A1 true US20210208333A1 (en) 2021-07-08

Family

ID=64901087

Family Applications (2)

Application Number Title Priority Date Filing Date
US17/056,902 Abandoned US20210208333A1 (en) 2018-06-01 2018-12-03 Radiation curable compositions for coating optical fiber via alternative oligomers and the coatings produced therefrom
US17/056,951 Active 2040-11-08 US11952453B2 (en) 2018-06-01 2018-12-03 Radiation curable compositions for coating optical fiber and the coatings produced therefrom

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/056,951 Active 2040-11-08 US11952453B2 (en) 2018-06-01 2018-12-03 Radiation curable compositions for coating optical fiber and the coatings produced therefrom

Country Status (7)

Country Link
US (2) US20210208333A1 (enrdf_load_stackoverflow)
EP (2) EP3802453A1 (enrdf_load_stackoverflow)
JP (2) JP7218385B2 (enrdf_load_stackoverflow)
KR (2) KR20210018337A (enrdf_load_stackoverflow)
CN (3) CN116239949B (enrdf_load_stackoverflow)
BR (2) BR112020024440A2 (enrdf_load_stackoverflow)
WO (2) WO2019231492A1 (enrdf_load_stackoverflow)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11952453B2 (en) 2018-06-01 2024-04-09 Covestro (Netherlands) B.V Radiation curable compositions for coating optical fiber and the coatings produced therefrom

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114207063B (zh) * 2019-07-31 2023-07-25 科思创(荷兰)有限公司 具有多功能长臂低聚物的涂覆光纤用辐射固化组合物
CN115777077A (zh) 2020-06-30 2023-03-10 科思创(荷兰)有限公司 光纤涂料的粘度指数改进剂
TWI763366B (zh) * 2021-03-12 2022-05-01 和碩聯合科技股份有限公司 扭力傳感器
CN114644879B (zh) * 2022-03-10 2022-11-11 吉林大学 一种抗空蚀、防污、防腐多功能涂料及涂层
CN116218347B (zh) * 2022-06-24 2024-02-06 国家电投集团科学技术研究院有限公司 一种抗空蚀面漆及其制备方法和应用
CN119534725B (zh) * 2025-01-22 2025-04-04 聚光科技(杭州)股份有限公司 气相色谱柱控温装置和方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6298189B1 (en) * 1996-11-08 2001-10-02 Dsm N.V. Radiation-curable optical glass fiber coating compositions, coated optical glass fibers, and optical glass fiber assemblies

Family Cites Families (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL105044C (enrdf_load_stackoverflow) 1956-12-14
US3004896A (en) 1956-12-14 1961-10-17 Geigy Ag J R Ultra-violet light-absorbing composition of matter
US3055896A (en) 1959-06-11 1962-09-25 American Cyanamid Co Aminohydroxyphenylbenzotriazoles and triazine derivatives thereof
US3072585A (en) 1960-01-13 1963-01-08 American Cyanamid Co Vinylbenzyloxy phenylbenzotriazoles
US3074910A (en) 1960-11-17 1963-01-22 Hercules Powder Co Ltd Stabilization of polyolefins with a nickel phenolate of a bis(p-alkyl phenol) monosulfide and an o-hydroxy phenyl benzotriazole
BE630549A (enrdf_load_stackoverflow) 1961-06-16
US3230194A (en) 1961-12-22 1966-01-18 American Cyanamid Co 2-(2'-hydroxy-5'-tertiary-octylphenyl)-benzotriazole and polyolefins stabilized therewith
US4127586A (en) 1970-06-19 1978-11-28 Ciba-Geigy Corporation Light protection agents
US4278589A (en) 1978-06-26 1981-07-14 Ciba-Geigy Corporation 2-[2-Hydroxy-3,5-di-(α,α-dimethylbenzyl)phenyl]-2H-benzotriazole and stabilized compositions
US4226763A (en) 1978-06-26 1980-10-07 Ciba-Geigy Corporation 2-[2-Hydroxy-3,5-di-(.alpha.,α-dimethylbenzyl)-phenyl]-2H-benzotriazole and stabilized compositions
US4275004A (en) 1978-06-26 1981-06-23 Ciba-Geigy Corporation High caustic coupling process for preparing substituted 2-nitro-2'-hydroxyazobenzenes
DE2830927A1 (de) 1978-07-14 1980-01-31 Basf Ag Acylphosphinoxidverbindungen und ihre verwendung
US4315848A (en) 1979-05-10 1982-02-16 Ciba-Geigy Corporation 2-[2-Hydroxy-3,5-di-(α,α-dimethylbenzyl)-phenyl]-2H-benzotriazole and stabilized compositions
US4347180A (en) 1979-05-16 1982-08-31 Ciba-Geigy Corporation High caustic coupling process for preparing substituted 2-nitro-2'-hydroxyazobenzenes
US4383863A (en) 1979-12-17 1983-05-17 Ciba-Geigy Corporation 2-[2-Hydroxy-3,5-di-tert-octylphenyl]-2H-benzotriazole in stabilized photographic compositions
US4853471A (en) 1981-01-23 1989-08-01 Ciba-Geigy Corporation 2-(2-Hydroxyphenyl)-benztriazoles, their use as UV-absorbers and their preparation
US4474830A (en) 1982-12-29 1984-10-02 At&T Bell Laboratories Multiple coating of fibers
JPS61113649A (ja) 1984-11-07 1986-05-31 Adeka Argus Chem Co Ltd 耐光性の改善された高分子材料組成物
DE3443221A1 (de) 1984-11-27 1986-06-05 ESPE Fabrik pharmazeutischer Präparate GmbH, 8031 Seefeld Bisacylphosphinoxide, ihre herstellung und verwendung
US4675352A (en) 1985-01-22 1987-06-23 Ciba-Geigy Corporation Liquid 2-(2-hydroxy-3-higher branched alkyl-5-methyl-phenyl)-2H-benzotriazole mixtures, stabilized compositions and processes for preparing liquid mixtures
GB2180358B (en) 1985-07-16 1989-10-04 Mead Corp Photosensitive microcapsules and their use on imaging sheets
US4940645A (en) 1985-07-16 1990-07-10 The Mead Corporation Imaging material employing photosensitive microcapsules containing tertiary amines as coinitiators
DE3612442A1 (de) 1986-04-12 1987-10-22 Bayer Ag Verfahren zur herstellung von uv-gehaerteten deckend pigmentierten beschichtungen
US4851165A (en) 1987-09-02 1989-07-25 American Telephone And Telegraph Company At&T Bell Laboratories Methods of and apparatus for coating optical fiber
US4782129A (en) * 1988-01-04 1988-11-01 Desoto, Inc. Acrylated polyurethanes based on polyoxytetramethylene glycol chain extended with substituted diacids
US4962992A (en) 1989-05-15 1990-10-16 At&T Bell Laboratories Optical transmission media and methods of making same
US5104433A (en) 1989-05-15 1992-04-14 At&T Bell Laboratories Method of making optical fiber
US5013768A (en) 1989-12-19 1991-05-07 Dai Nippon Toryo Co., Ltd. Photopolymerizable coating composition and process for forming a coating having a stereoscopic pattern
DE69112852T2 (de) 1990-01-16 1996-05-15 Showa Denko Kk Polymerisationsinitiator verwendbar in der Nähe von Infrarot.
DE4007428A1 (de) 1990-03-09 1991-09-12 Hoechst Ag Photopolymerisierbares gemisch und daraus hergestelltes aufzeichnungsmaterial
DE4027770A1 (de) * 1990-09-01 1992-03-05 Basf Lacke & Farben Fluessige, strahlenhaertbare ueberzugsmasse fuer die beschichtung von glasoberflaechen
US5278314A (en) 1991-02-12 1994-01-11 Ciba-Geigy Corporation 5-thio-substituted benzotriazole UV-absorbers
US5280124A (en) 1991-02-12 1994-01-18 Ciba-Geigy Corporation 5-sulfonyl-substituted benzotriazole UV-absorbers
US5319091A (en) 1992-11-24 1994-06-07 Phillips Petroleum Company Process for sulfur containing derivatives of hydroxyphenyl/benzotriazoles
US5268450A (en) 1992-11-24 1993-12-07 Phillips Petroleum Company Compositions comprising sulfur-containing derivatives of hydroxyphenylbenzotriazole and process therefor
ZA941879B (en) 1993-03-18 1994-09-19 Ciba Geigy Curing compositions containing bisacylphosphine oxide photoinitiators
US5574166A (en) 1995-04-19 1996-11-12 Ciba-Geigy Corporation Crystalline form of 2-(2-hydroxy-3-α-cumyl-5-tert-octylphenyl)-2H-benzotriazole
CH691970A5 (de) 1996-03-04 2001-12-14 Ciba Sc Holding Ag Alkylphenylbisacylphosphinoxide und Photoinitiatormischungen.
US5949940A (en) 1997-05-27 1999-09-07 Corning Incorporated Enhanced ribbon strippability using coating additives
SG53043A1 (en) 1996-08-28 1998-09-28 Ciba Geigy Ag Molecular complex compounds as photoinitiators
US5977219A (en) 1997-10-30 1999-11-02 Ciba Specialty Chemicals Corporation Benzotriazole UV absorbers having enhanced durability
US6166218A (en) 1996-11-07 2000-12-26 Ciba Specialty Chemicals Corporation Benzotriazole UV absorbers having enhanced durability
WO1998033761A1 (en) 1997-01-30 1998-08-06 Ciba Specialty Chemicals Holding Inc. Non-volatile phenylglyoxalic esters
JPH11106448A (ja) * 1997-10-07 1999-04-20 Jsr Corp 液状硬化性樹脂組成物およびその硬化物
FR2773799B1 (fr) 1998-01-22 2000-02-18 Elf Aquitaine Exploration Prod Synthese de disulfures et polysulfures organiques
US6110593A (en) * 1998-05-21 2000-08-29 Dsm N.V. Radiation-curable optical fiber primary coating system
SG77689A1 (en) 1998-06-26 2001-01-16 Ciba Sc Holding Ag New o-acyloxime photoinitiators
US6323255B1 (en) 1998-09-30 2001-11-27 Dsm N.V. Radiation-curable composition
SE9904080D0 (sv) 1998-12-03 1999-11-11 Ciba Sc Holding Ag Fotoinitiatorberedning
WO2001005724A2 (en) 1999-07-20 2001-01-25 Dsm N.V. Radiation curable resin composition
EP1070682A1 (en) 1999-07-20 2001-01-24 Dsm N.V. Radiation curable resin composition
US6638616B2 (en) * 1999-10-15 2003-10-28 Dsm N.V. Radiation-curable compositions comprising oligomers having an alkyd backbone
EP1106627B1 (en) 1999-12-08 2003-10-29 Ciba SC Holding AG Novel phosphine oxide photoinitiator systems and curable compositions with low color
JP4029563B2 (ja) 1999-12-09 2008-01-09 大日本インキ化学工業株式会社 光ファイバー被覆用樹脂組成物及び光ファイバー若しくはユニット
US6775451B1 (en) 1999-12-30 2004-08-10 Corning Incorporated Secondary coating composition for optical fibers
US6438306B1 (en) * 2000-04-07 2002-08-20 Dsm N.V. Radiation curable resin composition
JP3741196B2 (ja) 2000-04-24 2006-02-01 信越化学工業株式会社 液状放射線硬化型樹脂組成物並びに光ファイバ用被覆組成物及び光ファイバ
US6584263B2 (en) 2000-07-26 2003-06-24 Corning Incorporated Optical fiber coating compositions and coated optical fibers
US7706659B2 (en) 2000-11-22 2010-04-27 Dsm Ip Assets B.V. Coated optical fibers
EP1209132A1 (en) 2000-11-22 2002-05-29 Dsm N.V. Coated optical fibers, primary coating composition, method for curing, as well as an assembly and a method for measuring
US6916855B2 (en) 2000-11-22 2005-07-12 Dsm Ip Assets B.V. Radiation curable compositions
US7067564B2 (en) * 2000-11-22 2006-06-27 Dsm Ip Assets B.V. Coated optical fibers
EP1370499A2 (en) * 2000-12-29 2003-12-17 DSM IP Assets B.V. Non-crystal-forming oligomers for use in radiation-curable fiber optic coatings
JP2002220550A (ja) 2001-01-26 2002-08-09 Jsr Corp 光ファイバ被覆用硬化性樹脂組成物およびその硬化物
US20030123839A1 (en) 2001-07-27 2003-07-03 Chou Kevin Y. Low modulus, high tensile strength optical fiber coating
US6869981B2 (en) 2001-09-21 2005-03-22 Corning Incorporated Optical fiber coatings with pressure sensitive adhesive characteristics
US6689463B2 (en) 2001-12-18 2004-02-10 Corning Incorporated Secondary coating composition for optical fibers
JP2003277453A (ja) * 2002-03-27 2003-10-02 Jsr Corp 液状硬化性樹脂組成物
JP4571368B2 (ja) 2002-03-29 2010-10-27 日油株式会社 重合性化合物の製造方法
ES2390275T3 (es) 2002-04-24 2012-11-08 Prysmian S.P.A. Fibra óptica
US20040022511A1 (en) * 2002-04-24 2004-02-05 Eekelen Jan Van Coated optical fibers
EP1497380B1 (en) 2002-04-24 2014-01-15 DSM IP Assets B.V. Radiation curable coating composition for optical fiber with reduced attenuation loss
CN100358822C (zh) * 2002-10-07 2008-01-02 普里斯曼电缆及系统能源有限公司 具有固化聚合物涂层的光纤
JP4280062B2 (ja) * 2002-11-27 2009-06-17 関西ペイント株式会社 耐食性に優れる金属塗装方法
JP3900279B2 (ja) 2003-01-16 2007-04-04 信越化学工業株式会社 液状放射線硬化型樹脂組成物、光ファイバ用被覆組成物及び光ファイバ
US7715675B2 (en) 2003-07-18 2010-05-11 Corning Incorporated Optical fiber coating system and coated optical fiber
KR100579007B1 (ko) * 2003-08-13 2006-05-12 주식회사 루밴틱스 대전 방지 특성을 가진 광섬유 코팅용 광경화형 고분자수지 조성물
JP4143508B2 (ja) * 2003-09-17 2008-09-03 Jsr株式会社 液状硬化性樹脂組成物
US7109252B2 (en) 2003-11-25 2006-09-19 Bomar Specialties Company TMXDI-based oligomer and formulations containing it
JP4568516B2 (ja) 2004-03-18 2010-10-27 Jsr株式会社 液状硬化性樹脂組成物
US8242202B2 (en) 2004-03-15 2012-08-14 Dsm Ip Assets B.V. Curable liquid resin composition
JP5209310B2 (ja) * 2005-05-12 2013-06-12 日本化薬株式会社 感光性樹脂組成物、その硬化物及びそれを含有するフィルム
US7272289B2 (en) 2005-09-30 2007-09-18 Corning Incorporated Low bend loss optical fiber
US8093322B2 (en) 2005-10-27 2012-01-10 Corning Incorporated Non-reactive additives for fiber coatings
US20080085947A1 (en) * 2006-10-10 2008-04-10 Ward Jeanette L Radiation curable matrix composition
CN101535204B (zh) 2006-12-14 2012-04-04 帝斯曼知识产权资产管理有限公司 光纤用d1369d可辐射固化次级涂层
JP5022752B2 (ja) 2007-03-29 2012-09-12 Jsr株式会社 液状硬化性樹脂組成物
CN102439101B (zh) * 2009-04-23 2015-11-25 普睿司曼股份公司 具有单涂层的光纤
BR112012008214B1 (pt) * 2009-10-09 2019-11-19 Dsm Ip Assets Bv composição de revestimento primário de fibra ótica curável por radiação e fibra ótica revestida com a referida composição
JP2011158580A (ja) 2010-01-29 2011-08-18 Jsr Corp 光ファイバテープ層形成用液状硬化性樹脂組成物および光ファイバテープ心線
JP2012056823A (ja) 2010-09-13 2012-03-22 Jsr Corp 光ファイバ素線の最外層被覆用液状硬化性樹脂組成物及び光ファイバ素線
EP2756339A1 (en) 2011-09-16 2014-07-23 Corning Incorporated Few mode optical fibers for mode division multiplexing
CN103992462B (zh) 2013-02-17 2016-06-01 上海飞凯光电材料股份有限公司 聚氨酯缔合型增稠剂的制备方法及应用
US9057814B2 (en) 2013-03-28 2015-06-16 Corning Incorporated Large effective area fiber with low bending losses
US9057817B2 (en) 2013-04-15 2015-06-16 Corning Incorporated Low diameter optical fiber
US9383511B2 (en) 2013-05-02 2016-07-05 Corning Incorporated Optical fiber with large mode field diameter and low microbending losses
US9128245B2 (en) 2013-05-17 2015-09-08 Corning Incorporated Low cost, fast curing optical fiber coatings
JP6076478B2 (ja) * 2013-06-27 2017-02-08 旭化成株式会社 ポリイソシアネート組成物及びその製造方法、ブロックポリイソシアネート組成物及びその製造方法、樹脂組成物、硬化性樹脂組成物、並びに硬化物
US9810838B2 (en) 2013-09-12 2017-11-07 Corning Incorporated Fiber coatings with low young's modulus and high tear strength
EP3140333B1 (en) * 2014-05-05 2019-02-27 Resinate Materials Group, Inc. Polyester polyols from thermoplastic polyesters and dimer fatty acids
RU2714072C2 (ru) 2014-08-17 2020-02-11 ДСМ АйПи АССЕТС Б.В. Покрытия для оптического волокна, отверждаемые монохроматическим актиничным излучением
JP2017007896A (ja) 2015-06-23 2017-01-12 住友電気工業株式会社 光ファイバ及び光ファイバテープ心線
TW201726826A (zh) * 2015-11-16 2017-08-01 藍色立方體有限責任公司 底漆塗層
EP3876012B1 (en) 2016-05-25 2025-09-10 Corning Optical Communications LLC High fiber density, low bend loss optical fiber cable
JP6750463B2 (ja) 2016-11-07 2020-09-02 住友電気工業株式会社 光ファイバ心線
US10884182B2 (en) * 2017-06-02 2021-01-05 Dsm Ip Assets B.V. Thermally resistant radiation curable coatings for optical fiber
KR20210018337A (ko) 2018-06-01 2021-02-17 디에스엠 아이피 어셋츠 비.브이. 광섬유 코팅용 방사선 경화성 조성물 및 이로부터 제조된 코팅
CN113165971A (zh) * 2018-12-03 2021-07-23 Ms控股有限公司 用于涂布光纤的填充式可辐射固化组合物以及由其产生的涂层

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6298189B1 (en) * 1996-11-08 2001-10-02 Dsm N.V. Radiation-curable optical glass fiber coating compositions, coated optical glass fibers, and optical glass fiber assemblies

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11952453B2 (en) 2018-06-01 2024-04-09 Covestro (Netherlands) B.V Radiation curable compositions for coating optical fiber and the coatings produced therefrom

Also Published As

Publication number Publication date
CN112437761B (zh) 2023-01-20
CN116239949A (zh) 2023-06-09
EP3802453A1 (en) 2021-04-14
CN112203995A (zh) 2021-01-08
JP2021525817A (ja) 2021-09-27
CN112437761A (zh) 2021-03-02
CN112203995B (zh) 2023-02-21
WO2019231492A1 (en) 2019-12-05
US20210208334A1 (en) 2021-07-08
JP7295887B2 (ja) 2023-06-21
BR112020024440A2 (pt) 2021-03-23
CN116239949B (zh) 2024-07-05
US11952453B2 (en) 2024-04-09
JP2021526174A (ja) 2021-09-30
JP7218385B2 (ja) 2023-02-06
WO2019231491A1 (en) 2019-12-05
KR20210018338A (ko) 2021-02-17
BR112020024462A2 (pt) 2021-03-16
EP3802452A1 (en) 2021-04-14
KR20210018337A (ko) 2021-02-17

Similar Documents

Publication Publication Date Title
US11256028B2 (en) Thermally resistant radiation curable coatings for optical fiber
US20210208333A1 (en) Radiation curable compositions for coating optical fiber via alternative oligomers and the coatings produced therefrom
US20220017773A1 (en) Filled radiation curable compositions for coating optical fiber and the coatings produced therefrom
US11932571B2 (en) Radiation curable compositions for coating optical fiber with enhanced high-speed processability
JP7618588B2 (ja) 強化された高速加工性を備えた光ファイバーをコーティングするための放射線硬化性組成物

Legal Events

Date Code Title Description
AS Assignment

Owner name: DSM IP ASSETS B.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:REN, KANGTAI;STEEMAN, PAULUS ANTONIUS MARIA;PEPELS, MARK;AND OTHERS;SIGNING DATES FROM 20201208 TO 20201209;REEL/FRAME:054607/0456

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

AS Assignment

Owner name: MS HOLDING B.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DSM IP ASSETS B.V.;REEL/FRAME:056726/0106

Effective date: 20201211

AS Assignment

Owner name: COVESTRO (NETHERLANDS) B.V., NETHERLANDS

Free format text: CHANGE OF NAME;ASSIGNOR:MS HOLDING B.V.;REEL/FRAME:056756/0513

Effective date: 20210527

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: COVESTRO (NETHERLANDS) B.V., NETHERLANDS

Free format text: CHANGE OF CORPORATE ADDRESS;ASSIGNOR:COVESTRO (NETHERLANDS) B.V.;REEL/FRAME:059546/0570

Effective date: 20220114

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION