US20200308534A1 - Recombinant uricase enzyme - Google Patents
Recombinant uricase enzyme Download PDFInfo
- Publication number
- US20200308534A1 US20200308534A1 US16/628,743 US201816628743A US2020308534A1 US 20200308534 A1 US20200308534 A1 US 20200308534A1 US 201816628743 A US201816628743 A US 201816628743A US 2020308534 A1 US2020308534 A1 US 2020308534A1
- Authority
- US
- United States
- Prior art keywords
- uricase
- utilis
- recombinant mutant
- substituted
- subject
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 108010092464 Urate Oxidase Proteins 0.000 title claims abstract description 383
- 241000235646 Cyberlindnera jadinii Species 0.000 claims abstract description 238
- LEHOTFFKMJEONL-UHFFFAOYSA-N Uric Acid Chemical compound N1C(=O)NC(=O)C2=C1NC(=O)N2 LEHOTFFKMJEONL-UHFFFAOYSA-N 0.000 claims abstract description 82
- 108010019160 Pancreatin Proteins 0.000 claims abstract description 66
- 229940055695 pancreatin Drugs 0.000 claims abstract description 66
- TVWHNULVHGKJHS-UHFFFAOYSA-N Uric acid Natural products N1C(=O)NC(=O)C2NC(=O)NC21 TVWHNULVHGKJHS-UHFFFAOYSA-N 0.000 claims abstract description 60
- 229940116269 uric acid Drugs 0.000 claims abstract description 60
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 53
- 239000000203 mixture Substances 0.000 claims abstract description 39
- 208000035475 disorder Diseases 0.000 claims abstract description 27
- 201000010099 disease Diseases 0.000 claims abstract description 26
- 201000001431 Hyperuricemia Diseases 0.000 claims abstract description 23
- 201000005569 Gout Diseases 0.000 claims abstract description 20
- 206010051364 Hyperuricosuria Diseases 0.000 claims abstract description 20
- -1 for example Chemical compound 0.000 claims abstract description 19
- 102220357239 c.151G>A Human genes 0.000 claims description 94
- 238000000034 method Methods 0.000 claims description 79
- 238000006467 substitution reaction Methods 0.000 claims description 77
- 230000035772 mutation Effects 0.000 claims description 69
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Chemical group OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 claims description 44
- 235000009582 asparagine Nutrition 0.000 claims description 44
- 229960001230 asparagine Drugs 0.000 claims description 44
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical group OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 claims description 37
- 235000004279 alanine Nutrition 0.000 claims description 36
- OFCNXPDARWKPPY-UHFFFAOYSA-N allopurinol Chemical group OC1=NC=NC2=C1C=NN2 OFCNXPDARWKPPY-UHFFFAOYSA-N 0.000 claims description 35
- 229960003459 allopurinol Drugs 0.000 claims description 35
- 239000008194 pharmaceutical composition Substances 0.000 claims description 31
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Natural products NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 claims description 24
- 230000014509 gene expression Effects 0.000 claims description 24
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 claims description 22
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical group C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 claims description 20
- 235000013922 glutamic acid Nutrition 0.000 claims description 20
- 239000004220 glutamic acid Substances 0.000 claims description 20
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 claims description 17
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 claims description 17
- 239000004471 Glycine Substances 0.000 claims description 16
- 239000004472 Lysine Substances 0.000 claims description 16
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 claims description 16
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 claims description 16
- 239000004473 Threonine Substances 0.000 claims description 16
- 125000003295 alanine group Chemical group N[C@@H](C)C(=O)* 0.000 claims description 16
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 claims description 16
- 229960000310 isoleucine Drugs 0.000 claims description 16
- 239000004474 valine Substances 0.000 claims description 16
- 239000013604 expression vector Substances 0.000 claims description 15
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 claims description 14
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 claims description 13
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 claims description 13
- 230000003424 uricosuric effect Effects 0.000 claims description 13
- 239000003064 xanthine oxidase inhibitor Substances 0.000 claims description 13
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 claims description 12
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 claims description 12
- 229940123769 Xanthine oxidase inhibitor Drugs 0.000 claims description 12
- 235000003704 aspartic acid Nutrition 0.000 claims description 12
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 claims description 12
- 125000000291 glutamic acid group Chemical group N[C@@H](CCC(O)=O)C(=O)* 0.000 claims description 12
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 claims description 12
- 241000588724 Escherichia coli Species 0.000 claims description 10
- 150000007523 nucleic acids Chemical group 0.000 claims description 10
- BQSJTQLCZDPROO-UHFFFAOYSA-N febuxostat Chemical compound C1=C(C#N)C(OCC(C)C)=CC=C1C1=NC(C)=C(C(O)=O)S1 BQSJTQLCZDPROO-UHFFFAOYSA-N 0.000 claims description 9
- 239000004475 Arginine Substances 0.000 claims description 8
- 239000002202 Polyethylene glycol Substances 0.000 claims description 8
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 claims description 8
- 125000000637 arginyl group Chemical group N[C@@H](CCCNC(N)=N)C(=O)* 0.000 claims description 8
- 125000000613 asparagine group Chemical group N[C@@H](CC(N)=O)C(=O)* 0.000 claims description 8
- 239000002775 capsule Substances 0.000 claims description 8
- 239000003937 drug carrier Substances 0.000 claims description 8
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 claims description 8
- 125000003630 glycyl group Chemical group [H]N([H])C([H])([H])C(*)=O 0.000 claims description 8
- 229920001223 polyethylene glycol Polymers 0.000 claims description 8
- 239000000843 powder Substances 0.000 claims description 8
- 125000001500 prolyl group Chemical group [H]N1C([H])(C(=O)[*])C([H])([H])C([H])([H])C1([H])[H] 0.000 claims description 8
- 125000003607 serino group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(O[H])([H])[H] 0.000 claims description 8
- 125000000341 threoninyl group Chemical group [H]OC([H])(C([H])([H])[H])C([H])(N([H])[H])C(*)=O 0.000 claims description 8
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 7
- 229960005101 febuxostat Drugs 0.000 claims description 6
- 239000007903 gelatin capsule Substances 0.000 claims description 6
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 claims description 6
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 claims description 6
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 claims description 6
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 claims description 6
- 229960003838 lesinurad Drugs 0.000 claims description 6
- FGQFOYHRJSUHMR-UHFFFAOYSA-N lesinurad Chemical compound OC(=O)CSC1=NN=C(Br)N1C(C1=CC=CC=C11)=CC=C1C1CC1 FGQFOYHRJSUHMR-UHFFFAOYSA-N 0.000 claims description 6
- 229960003081 probenecid Drugs 0.000 claims description 6
- DBABZHXKTCFAPX-UHFFFAOYSA-N probenecid Chemical compound CCCN(CCC)S(=O)(=O)C1=CC=C(C(O)=O)C=C1 DBABZHXKTCFAPX-UHFFFAOYSA-N 0.000 claims description 6
- 239000002083 C09CA01 - Losartan Substances 0.000 claims description 5
- 229960002529 benzbromarone Drugs 0.000 claims description 5
- WHQCHUCQKNIQEC-UHFFFAOYSA-N benzbromarone Chemical compound CCC=1OC2=CC=CC=C2C=1C(=O)C1=CC(Br)=C(O)C(Br)=C1 WHQCHUCQKNIQEC-UHFFFAOYSA-N 0.000 claims description 5
- KJJZZJSZUJXYEA-UHFFFAOYSA-N losartan Chemical compound CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C=2[N]N=NN=2)C=C1 KJJZZJSZUJXYEA-UHFFFAOYSA-N 0.000 claims description 5
- 229960004773 losartan Drugs 0.000 claims description 5
- 239000006186 oral dosage form Substances 0.000 claims description 5
- 239000006201 parenteral dosage form Substances 0.000 claims description 5
- 108020004705 Codon Proteins 0.000 claims description 4
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 claims description 4
- 239000002552 dosage form Substances 0.000 claims description 4
- 125000000404 glutamine group Chemical group N[C@@H](CCC(N)=O)C(=O)* 0.000 claims description 4
- 125000000741 isoleucyl group Chemical group [H]N([H])C(C(C([H])([H])[H])C([H])([H])C([H])([H])[H])C(=O)O* 0.000 claims description 4
- 125000001909 leucine group Chemical group [H]N(*)C(C(*)=O)C([H])([H])C(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 4
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 claims description 4
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 4
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 claims description 4
- COLNVLDHVKWLRT-QMMMGPOBSA-N phenylalanine group Chemical group N[C@@H](CC1=CC=CC=C1)C(=O)O COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 claims description 4
- 239000003826 tablet Substances 0.000 claims description 4
- 125000002987 valine group Chemical group [H]N([H])C([H])(C(*)=O)C([H])(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 4
- 229920003169 water-soluble polymer Polymers 0.000 claims description 4
- 239000008187 granular material Substances 0.000 claims description 3
- 239000008185 minitablet Substances 0.000 claims description 3
- 239000008188 pellet Substances 0.000 claims description 3
- 239000006207 intravenous dosage form Substances 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 41
- 238000011282 treatment Methods 0.000 description 35
- 102000004190 Enzymes Human genes 0.000 description 24
- 108090000790 Enzymes Proteins 0.000 description 24
- 229940088598 enzyme Drugs 0.000 description 24
- 241000699670 Mus sp. Species 0.000 description 20
- 210000002381 plasma Anatomy 0.000 description 20
- 210000004027 cell Anatomy 0.000 description 19
- 108090000623 proteins and genes Proteins 0.000 description 18
- 210000002700 urine Anatomy 0.000 description 17
- 150000001413 amino acids Chemical group 0.000 description 15
- 235000018102 proteins Nutrition 0.000 description 15
- 102000004169 proteins and genes Human genes 0.000 description 15
- 239000002773 nucleotide Substances 0.000 description 14
- 125000003729 nucleotide group Chemical group 0.000 description 14
- 239000003795 chemical substances by application Substances 0.000 description 10
- 238000002203 pretreatment Methods 0.000 description 10
- 241000282412 Homo Species 0.000 description 9
- 102220606961 Ras-related protein Rap-1b_Q25A_mutation Human genes 0.000 description 9
- 210000004369 blood Anatomy 0.000 description 9
- 239000008280 blood Substances 0.000 description 9
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 9
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 8
- POJWUDADGALRAB-UHFFFAOYSA-N allantoin Chemical compound NC(=O)NC1NC(=O)NC1=O POJWUDADGALRAB-UHFFFAOYSA-N 0.000 description 8
- 235000001014 amino acid Nutrition 0.000 description 8
- 238000003556 assay Methods 0.000 description 8
- 238000011534 incubation Methods 0.000 description 8
- 238000012423 maintenance Methods 0.000 description 8
- 239000011159 matrix material Substances 0.000 description 8
- 102200128135 rs61749665 Human genes 0.000 description 8
- 238000010521 absorption reaction Methods 0.000 description 7
- 210000001035 gastrointestinal tract Anatomy 0.000 description 7
- 102220026969 rs63751070 Human genes 0.000 description 7
- 102220093241 rs876661197 Human genes 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 6
- 238000002869 basic local alignment search tool Methods 0.000 description 6
- 239000000872 buffer Substances 0.000 description 6
- 210000000936 intestine Anatomy 0.000 description 6
- 102200046984 rs104894935 Human genes 0.000 description 6
- 102220450595 rs397508432 Human genes 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 241000282414 Homo sapiens Species 0.000 description 5
- 206010029148 Nephrolithiasis Diseases 0.000 description 5
- 102220571043 Protein CFAP210_L70E_mutation Human genes 0.000 description 5
- 206010003246 arthritis Diseases 0.000 description 5
- 238000002022 differential scanning fluorescence spectroscopy Methods 0.000 description 5
- 239000003814 drug Substances 0.000 description 5
- 235000013305 food Nutrition 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 102000039446 nucleic acids Human genes 0.000 description 5
- 108020004707 nucleic acids Proteins 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 102200030470 rs11164663 Human genes 0.000 description 5
- 102200086452 rs2230351 Human genes 0.000 description 5
- 102220223051 rs567617762 Human genes 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- LTQYPAVLAYVKTK-YFKPBYRVSA-N 5-Hydroxyisourate Natural products O=C1[C@]2(O)NC(O)=NC2=NC(=O)N1 LTQYPAVLAYVKTK-YFKPBYRVSA-N 0.000 description 4
- LTQYPAVLAYVKTK-UHFFFAOYSA-N 5-hydroxyisouric acid Chemical compound N1C(=O)NC2(O)C1=NC(=O)NC2=O LTQYPAVLAYVKTK-UHFFFAOYSA-N 0.000 description 4
- SUBDBMMJDZJVOS-UHFFFAOYSA-N 5-methoxy-2-{[(4-methoxy-3,5-dimethylpyridin-2-yl)methyl]sulfinyl}-1H-benzimidazole Chemical compound N=1C2=CC(OC)=CC=C2NC=1S(=O)CC1=NC=C(C)C(OC)=C1C SUBDBMMJDZJVOS-UHFFFAOYSA-N 0.000 description 4
- POJWUDADGALRAB-PVQJCKRUSA-N Allantoin Natural products NC(=O)N[C@@H]1NC(=O)NC1=O POJWUDADGALRAB-PVQJCKRUSA-N 0.000 description 4
- 108020004414 DNA Proteins 0.000 description 4
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- 108010068701 Pegloticase Proteins 0.000 description 4
- 241000288906 Primates Species 0.000 description 4
- 229960000458 allantoin Drugs 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 239000012636 effector Substances 0.000 description 4
- 239000012634 fragment Substances 0.000 description 4
- 230000000869 mutational effect Effects 0.000 description 4
- 108010084837 rasburicase Proteins 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229940124597 therapeutic agent Drugs 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 208000000913 Kidney Calculi Diseases 0.000 description 3
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229920002125 Sokalan® Polymers 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 230000023445 activated T cell autonomous cell death Effects 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000008030 elimination Effects 0.000 description 3
- 238000003379 elimination reaction Methods 0.000 description 3
- 229940053603 elitek Drugs 0.000 description 3
- 230000002255 enzymatic effect Effects 0.000 description 3
- 230000029142 excretion Effects 0.000 description 3
- 230000002496 gastric effect Effects 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 230000030279 gene silencing Effects 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 230000000968 intestinal effect Effects 0.000 description 3
- 238000001990 intravenous administration Methods 0.000 description 3
- 229920000831 ionic polymer Polymers 0.000 description 3
- 208000018937 joint inflammation Diseases 0.000 description 3
- 229940120535 krystexxa Drugs 0.000 description 3
- MJIHNNLFOKEZEW-UHFFFAOYSA-N lansoprazole Chemical compound CC1=C(OCC(F)(F)F)C=CN=C1CS(=O)C1=NC2=CC=CC=C2N1 MJIHNNLFOKEZEW-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- YNWDKZIIWCEDEE-UHFFFAOYSA-N pantoprazole sodium Chemical compound [Na+].COC1=CC=NC(CS(=O)C=2[N-]C3=CC=C(OC(F)F)C=C3N=2)=C1OC YNWDKZIIWCEDEE-UHFFFAOYSA-N 0.000 description 3
- 229920001451 polypropylene glycol Polymers 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000006432 protein unfolding Effects 0.000 description 3
- 229940126409 proton pump inhibitor Drugs 0.000 description 3
- 239000000612 proton pump inhibitor Substances 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 230000001954 sterilising effect Effects 0.000 description 3
- 238000004659 sterilization and disinfection Methods 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- 229940005267 urate oxidase Drugs 0.000 description 3
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 2
- 108091006112 ATPases Proteins 0.000 description 2
- 102000057290 Adenosine Triphosphatases Human genes 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 241000233866 Fungi Species 0.000 description 2
- 108010070675 Glutathione transferase Proteins 0.000 description 2
- 102100029100 Hematopoietic prostaglandin D synthase Human genes 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 208000001145 Metabolic Syndrome Diseases 0.000 description 2
- DUQGREMIROGTTD-UHFFFAOYSA-N Monuron-TCA Chemical compound OC(=O)C(Cl)(Cl)Cl.CN(C)C(=O)NC1=CC=C(Cl)C=C1 DUQGREMIROGTTD-UHFFFAOYSA-N 0.000 description 2
- 229920002319 Poly(methyl acrylate) Polymers 0.000 description 2
- 102100021904 Potassium-transporting ATPase alpha chain 1 Human genes 0.000 description 2
- 108010083204 Proton Pumps Proteins 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 2
- 206010045170 Tumour lysis syndrome Diseases 0.000 description 2
- 201000000690 abdominal obesity-metabolic syndrome Diseases 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 201000001509 acute urate nephropathy Diseases 0.000 description 2
- 208000026935 allergic disease Diseases 0.000 description 2
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 230000001684 chronic effect Effects 0.000 description 2
- 208000020832 chronic kidney disease Diseases 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 229960000633 dextran sulfate Drugs 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 239000012154 double-distilled water Substances 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 102000037865 fusion proteins Human genes 0.000 description 2
- 108020001507 fusion proteins Proteins 0.000 description 2
- 230000002757 inflammatory effect Effects 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 230000007794 irritation Effects 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000002502 liposome Substances 0.000 description 2
- 208000030159 metabolic disease Diseases 0.000 description 2
- 230000002580 nephropathic effect Effects 0.000 description 2
- 201000002674 obstructive nephropathy Diseases 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- 210000000496 pancreas Anatomy 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 2
- 230000002797 proteolythic effect Effects 0.000 description 2
- 230000004144 purine metabolism Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 229960003329 sulfinpyrazone Drugs 0.000 description 2
- MBGGBVCUIVRRBF-UHFFFAOYSA-N sulfinpyrazone Chemical compound O=C1N(C=2C=CC=CC=2)N(C=2C=CC=CC=2)C(=O)C1CCS(=O)C1=CC=CC=C1 MBGGBVCUIVRRBF-UHFFFAOYSA-N 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- 208000010380 tumor lysis syndrome Diseases 0.000 description 2
- 208000019808 uric acid nephrolithiasis Diseases 0.000 description 2
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- 102220491520 Acid ceramidase_V97G_mutation Human genes 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 102220583903 Cellular tumor antigen p53_V97A_mutation Human genes 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- 241000282324 Felis Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 206010018634 Gouty Arthritis Diseases 0.000 description 1
- 101000878605 Homo sapiens Low affinity immunoglobulin epsilon Fc receptor Proteins 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- 208000009625 Lesch-Nyhan syndrome Diseases 0.000 description 1
- 102100038007 Low affinity immunoglobulin epsilon Fc receptor Human genes 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- IQPSEEYGBUAQFF-UHFFFAOYSA-N Pantoprazole Chemical compound COC1=CC=NC(CS(=O)C=2NC3=CC=C(OC(F)F)C=C3N=2)=C1OC IQPSEEYGBUAQFF-UHFFFAOYSA-N 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 241000006364 Torula Species 0.000 description 1
- 208000035317 Total hypoxanthine-guanine phosphoribosyl transferase deficiency Diseases 0.000 description 1
- 229940116731 Uricosuric agent Drugs 0.000 description 1
- LXKFVPKKRVKNIJ-MCDZGGTQSA-N [K].C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O Chemical compound [K].C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O LXKFVPKKRVKNIJ-MCDZGGTQSA-N 0.000 description 1
- 239000003070 absorption delaying agent Substances 0.000 description 1
- BZKPWHYZMXOIDC-UHFFFAOYSA-N acetazolamide Chemical compound CC(=O)NC1=NN=C(S(N)(=O)=O)S1 BZKPWHYZMXOIDC-UHFFFAOYSA-N 0.000 description 1
- 229960000571 acetazolamide Drugs 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009858 acid secretion Effects 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009056 active transport Effects 0.000 description 1
- 238000011374 additional therapy Methods 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 229940024606 amino acid Drugs 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 239000006047 digesta Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- SUBDBMMJDZJVOS-DEOSSOPVSA-N esomeprazole Chemical compound C([S@](=O)C1=NC2=CC=C(C=C2N1)OC)C1=NC=C(C)C(OC)=C1C SUBDBMMJDZJVOS-DEOSSOPVSA-N 0.000 description 1
- 229960004770 esomeprazole Drugs 0.000 description 1
- KWORUUGOSLYAGD-YPPDDXJESA-N esomeprazole magnesium Chemical compound [Mg+2].C([S@](=O)C=1[N-]C2=CC=C(C=C2N=1)OC)C1=NC=C(C)C(OC)=C1C.C([S@](=O)C=1[N-]C2=CC=C(C=C2N=1)OC)C1=NC=C(C)C(OC)=C1C KWORUUGOSLYAGD-YPPDDXJESA-N 0.000 description 1
- YMTINGFKWWXKFG-UHFFFAOYSA-N fenofibrate Chemical compound C1=CC(OC(C)(C)C(=O)OC(C)C)=CC=C1C(=O)C1=CC=C(Cl)C=C1 YMTINGFKWWXKFG-UHFFFAOYSA-N 0.000 description 1
- 229960002297 fenofibrate Drugs 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 210000004211 gastric acid Anatomy 0.000 description 1
- 230000027119 gastric acid secretion Effects 0.000 description 1
- 210000001914 gastric parietal cell Anatomy 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000010363 gene targeting Methods 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 244000144993 groups of animals Species 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000002440 hepatic effect Effects 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 230000013632 homeostatic process Effects 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 210000003000 inclusion body Anatomy 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 210000001503 joint Anatomy 0.000 description 1
- 210000005067 joint tissue Anatomy 0.000 description 1
- 208000017169 kidney disease Diseases 0.000 description 1
- 230000003907 kidney function Effects 0.000 description 1
- 229960003174 lansoprazole Drugs 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 239000008297 liquid dosage form Substances 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 210000004379 membrane Anatomy 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229940112641 nexium Drugs 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 229960000381 omeprazole Drugs 0.000 description 1
- HXNFUBHNUDHIGC-UHFFFAOYSA-N oxypurinol Chemical compound O=C1NC(=O)N=C2NNC=C21 HXNFUBHNUDHIGC-UHFFFAOYSA-N 0.000 description 1
- 229960005019 pantoprazole Drugs 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229960001376 pegloticase Drugs 0.000 description 1
- 239000002953 phosphate buffered saline Substances 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 229920001464 poly(sodium 4-styrenesulfonate) Polymers 0.000 description 1
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- 229940070017 potassium supplement Drugs 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 229940032668 prevacid Drugs 0.000 description 1
- 229940089505 prilosec Drugs 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 229940061276 protonix Drugs 0.000 description 1
- 229960000424 rasburicase Drugs 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 102200001997 rs121908107 Human genes 0.000 description 1
- 102220284500 rs1557107543 Human genes 0.000 description 1
- 102220028518 rs199469669 Human genes 0.000 description 1
- 102220182616 rs550609502 Human genes 0.000 description 1
- 102220058321 rs730881995 Human genes 0.000 description 1
- 102220058322 rs730882023 Human genes 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 239000008299 semisolid dosage form Substances 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 210000000813 small intestine Anatomy 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 1
- 239000007909 solid dosage form Substances 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000011146 sterile filtration Methods 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 210000001179 synovial fluid Anatomy 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000002485 urinary effect Effects 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 238000009777 vacuum freeze-drying Methods 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0012—Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
- C12N9/0044—Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on other nitrogen compounds as donors (1.7)
- C12N9/0046—Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on other nitrogen compounds as donors (1.7) with oxygen as acceptor (1.7.3)
- C12N9/0048—Uricase (1.7.3.3)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/185—Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
- A61K31/19—Carboxylic acids, e.g. valproic acid
- A61K31/195—Carboxylic acids, e.g. valproic acid having an amino group
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/4164—1,3-Diazoles
- A61K31/4178—1,3-Diazoles not condensed 1,3-diazoles and containing further heterocyclic rings, e.g. pilocarpine, nitrofurantoin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/4196—1,2,4-Triazoles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/425—Thiazoles
- A61K31/426—1,3-Thiazoles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/519—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/43—Enzymes; Proenzymes; Derivatives thereof
- A61K38/44—Oxidoreductases (1)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/14—Fungi; Culture media therefor
- C12N1/16—Yeasts; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y107/00—Oxidoreductases acting on other nitrogenous compounds as donors (1.7)
- C12Y107/03—Oxidoreductases acting on other nitrogenous compounds as donors (1.7) with oxygen as acceptor (1.7.3)
- C12Y107/03003—Factor-independent urate hydroxylase (1.7.3.3), i.e. uricase
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- the invention relates generally to methods and compositions for treating diseases or disorders associated with an elevated amount of uric acid, and, more particularly, the invention relates to recombinant mutant Candida utilis uricases and methods using, and compositions containing, such uricases for treating diseases or disorders associated with an elevated amount of uric acid.
- Uric acid is the final oxidation product of purine metabolism in humans and higher primates.
- Uricase, or urate oxidase is an enzyme that degrades uric acid into allantoin and carbon dioxide. Due to mutational silencing, humans and higher primates lack a functional uricase gene. Therefore, unlike certain other mammals, humans have lost the capacity to metabolize uric acid by hepatic uricase due to mutational silencing of the enzyme. Although humans produce large quantities of uric acid, the majority of the uric acid is excreted in urine. Nevertheless, increased production and/or decreased excretion of uric acid can result in high levels of uric acid in blood (hyperuricemia) and urine (hyperuricosuria). Hyperuricemia and hyperuricosuria can result, for example, as in inflammatory arthritis due to urate deposits in joints and cutaneous tissue.
- Gout is a condition that affects an estimated 8 million Americans and is characterized by recurring attacks of joint inflammation (arthritis).
- the joint inflammation is precipitated by deposits of uric acid crystals in the joint fluid (synovial fluid) and joint lining (synovial lining).
- Intense joint inflammation occurs as white blood cells engulf the uric acid crystals and release inflammatory chemicals, causing pain, heat, and redness of the joint tissues.
- Chronic gout can additionally lead to decreased kidney function and kidney stones.
- Functional uricase enzymes can be found in a wide range of organisms, including animals, plants, bacteria and fungi, and, as such, exogenous uricase has been used in the treatment of diseases or disorders associated with an elevated amount of uric acid.
- Clinically approved uricases include Krystexxa® (pegloticase), which has been approved for the treatment of chronic refractory gout, and Elitek® (rasburicase), which has been approved for tumor lysis syndrome.
- the invention is based, in part, upon the discovery of recombinant uricase enzymes that are active in humans and have greater stability and/or activity than naturally occurring enzymes.
- the recombinant enzymes of the invention exhibit improved stability against proteolytic digestion by pancreatin (a collection of enzymes secreted by the pancreas) compared to naturally occurring versions of the enzyme.
- the recombinant enzymes of the invention may have greater specific activity than a wild type uricase enzyme.
- the recombinant enzymes described herein may be suitable for oral administration, and therefore potentially safer and more tolerable than the commercially available, injectable forms of uricase (e.g., Krystexxa® and Elitek®), because it is contemplated that the enzymes will remain active within the intestines and will not be absorbed through the intestinal wall.
- uricase e.g., Krystexxa® and Elitek®
- the invention provides a recombinant mutant Candida utilis uricase enzyme that comprises at least one (for example, one, two, three, four, five, six, seven or eight) mutation(s) at a position corresponding to wild type C.
- utilis uricase of SEQ ID NO: 1 wherein the at least one mutation is selected from: (a) at position 180, isoleucine is substituted by valine or alanine (I180V or I180A), (b) at position 165, tyrosine is substituted by phenylalanine (Y165F), (c) at position 190, valine is substituted by glycine or alanine (V190G or V190A), (d) at position 51, glutamic acid is substituted by lysine (E51K), (e) at position 244, glutamine is substitute by lysine (Q244K), (f) at position 132, isoleucine is substituted by arginine or asparagine (I132R or I132N
- the recombinant mutant C. utilis uricase enzyme comprises at least one mutation selected from: I180V, I180A, Y165F, V190G, V190A, E51K, Q244K, I132R, V97I, E92N, A87G, D142E, G44A, G128P, A236N, K208A, N213A, S140T, Y253Q, and A84S.
- the uricase enzyme comprises at least one mutation selected from: I180V, I180A, Y165F, V190G, E51K, Q244K, I132R, V97I, E92N, A87G, D142E, and G44A.
- the uricase enzyme comprises at least one mutation selected from: I180V, I180A, Y165F, V190G, E51K, I132R, and G44A. In certain other embodiments, the uricase enzyme comprises at least one mutation selected from: I180V, I180A, Y165F, E51K, I132R, and G44A. In certain other embodiments, the uricase enzyme comprises at least one mutation selected from: I180V, I180A, Y165F, V190G, E51K, Q244K, and I132R.
- the invention provides a recombinant mutant C. utilis uricase enzyme comprising at least one (for example, one, two, three, four, five, or six) mutation(s) at a position corresponding to wild type C. utilis uricase of SEQ ID NO: 1, wherein the at least one mutation is present at a position selected from position 180, position 165, position 190, position 51, position 132, and position 44.
- one or more mutations may be conservative substitutions relative to wild type C. utilis uricase of SEQ ID NO: 1
- one or more mutations may be non-conservative substitutions relative to wild type C. utilis uricase of SEQ ID NO: 1.
- the invention provides a recombinant mutant C. utilis uricase enzyme comprising at least one (for example, one, two, three, four, or five) mutation(s) at a position corresponding to wild type C. utilis uricase of SEQ ID NO: 1, wherein the at least one mutation is present at a position selected from position 180, position 165, position 51, position 132, and position 44.
- one or more mutations may be conservative substitutions relative to wild type C. utilis uricase of SEQ ID NO: 1
- one or more mutations may be non-conservative substitutions relative to wild type C. utilis uricase of SEQ ID NO: 1.
- the invention provides a recombinant mutant C. utilis uricase comprising at least one (for example, one, two, three, four, or five) mutation(s) at a position corresponding to wild type C. utilis uricase of SEQ ID NO: 1, wherein the at least one mutation is present at a position selected from position 180, position 165, position 190, position 51, position 244, and position 132.
- one or more mutations may be conservative substitutions relative to wild type C. utilis uricase of SEQ ID NO: 1
- one or more mutations may be non-conservative substitutions relative to wild type C. utilis uricase of SEQ ID NO: 1.
- the uricase comprises two, three, four, five, six, seven, or eight mutations.
- the uricase comprises the following substitutions (i) I180V, Y165F, E51K, I132R, and G44A, (ii) I180A, Y165F, E51K, I132R, and G44A, (iii) I180V, Y165F, V190G, E51K, I132R, and G44A, (iv) I180A, Y165F, V190G, E51K, I132R, and G44A, (v) I180V and Y165F, or (vi) I180V, Y165F, V190G, E51K, Q244K, and I132R, either alone or in combination with other substitutions.
- the invention provides a recombinant mutant C. utilis uricase enzyme comprising three substitutions listed in a given row of TABLE 1 hereinbelow. In certain embodiments, the invention provides a recombinant mutant C. utilis uricase enzyme comprising five substitutions listed in a given row of TABLE 2 hereinbelow.
- the invention provides a recombinant mutant C. utilis uricase having a half-life of at least 35 minutes in the presence of pancreatin, e.g., a half-life of 35-200 minutes in the presence of pancreatin, for example, under the conditions set forth in Example 1.
- any of the foregoing recombinant mutant Candida utilis uricases may, for example, have 5-50 fold, 10-40 fold, 10-30 fold, 20-40 fold, or 20-30 fold, higher stability in the presence of pancreatin, compared to the wild-type uricase.
- the uricase may, for example, be more stable at a pH less than about 6.5 compared to the template (or reference) wild-type uricase.
- any of the foregoing recombinant mutant Candida utilis uricases may, for example, be conjugated to a water soluble polymer, e.g., polyethylene glycol (PEG).
- PEG polyethylene glycol
- the uricase in any of the foregoing recombinant mutant C. utilis uricase enzymes, the uricase is isolated.
- the invention provides an isolated nucleic acid comprising a nucleotide sequence encoding any one of the foregoing uricase enzymes.
- the nucleotide sequence is codon optimized for expression in a host cell, e.g., an Escherichia coli cell.
- the invention also provides an expression vector that comprises any one of the foregoing nucleotide sequences.
- the invention provides host cells, e.g., Escherichia coli cells, comprising one or more of the foregoing expression vectors.
- the invention provides a pharmaceutical composition
- a pharmaceutical composition comprising any one of the foregoing recombinant mutant C. utilis uricase enzymes and at least one pharmaceutically acceptable carrier and/or an excipient.
- the enzyme may be in a soluble form or in a crystal form.
- the composition may comprise a pH increasing agent. It is contemplated that the pharmaceutical composition may, for example, be formulated as an oral dosage form or a parenteral dosage form. In certain embodiments, the composition is a formulated as a powder, granulate, pellet, micropellet, or a minitablet.
- the composition is encapsulated in a capsule, e.g., a hydroxypropyl methylcellulose (HPMC) capsule, soft gelatin capsule, or a hard gelatin capsule, or the composition is formulated as a tablet dosage form.
- a capsule e.g., a hydroxypropyl methylcellulose (HPMC) capsule, soft gelatin capsule, or a hard gelatin capsule
- HPMC hydroxypropyl methylcellulose
- the invention provides a method of treating a disease or disorder associated with an elevated amount of uric acid in a subject in need thereof.
- the disease or disorder is associated with an elevated amount of uric acid in plasma or urine of the subject.
- the method comprises administering to the subject an effective amount of any of the uricase enzymes or compositions described herein, to treat the disease or disorder in the subject.
- the invention provides a method of treating hyperuricemia and/or hyperuricosuria in a subject in need thereof.
- the method comprises administering to the subject an effective amount of any of the uricase enzymes or compositions described herein, to treat the hyperuricemia and/or hyperuricosuria in the subject.
- the invention provides a method of treating gout in a subject in need thereof.
- the method comprises administering to the subject an effective amount of any of the uricase enzymes or compositions described herein, to treat the gout in the subject.
- the recombinant mutant C. utilis uricase is administered in combination with a xanthine oxidase inhibitor (e.g., allopurinol or febuxostat), a uricosuric (e.g., probenecid, benzbromarone, losartan or lesinurad), or a combination thereof.
- a xanthine oxidase inhibitor e.g., allopurinol or febuxostat
- a uricosuric e.g., probenecid, benzbromarone, losartan or lesinurad
- FIG. 1A is a SDS-PAGE gel depicting pancreatin, wild-type C. utilis uricase (His-UO), and wild-type C. utilis uricase following a 90 minute incubation with pancreatin.
- FIG. 1B is a line graph depicting wild-type C. utilis uricase activity as measured by loss of substrate uric acid concentration following incubation of wild-type C. utilis uricase with pancreatin for the indicated time points. Uric acid concentration is measured by absorbance at 298 nm.
- FIG. 2A is a line graph depicting the activity of the indicated mutant C. utilis uricases in the presence of pancreatin. Data from two independent preparations are depicted for each uricase. Activity values are normalized to the activity in presence of pancreatin at time zero.
- FIG. 2B is a line graph demonstrating the reproducibility across each preparation for the data depicted in FIG. 2A .
- FIG. 3 is a line graph depicting the activity of the R2_V79, R2_15, R2_V16 and R2_Parent mutant C. utilis uricases following incubation with pancreatin for the indicated time-points. Activity values are normalized to the activity in presence of pancreatin at time zero.
- FIG. 4 shows protein unfolding as determined by differential scanning fluorimetry (DSF) for wild-type C. utilis uricase and the indicated mutant C. utilis uricase enzymes.
- FIG. 5 is an SDS-PAGE gel showing the R2_V17, R2_V4 and R2_V79 mutant C. utilis uricases following incubation with pancreatin for the indicated timepoints.
- FIG. 6 is an SDS-PAGE gel showing the wild-type C. utilis uricase and R2_V17 mutant C. utilis uricase following incubation with pancreatin for the indicated timepoints.
- FIG. 7 is a bar graph showing the pancreatin stability of the indicated mutant C. utilis uricases relative to wild-type.
- R2 mutant C. utilis uricases described in Example 1 each containing five substitutions (right), and mutant C. utilis uricases described in Example 2, each containing a single substitution (left and middle), are depicted.
- FIG. 8 is a waterfall chart showing the pancreatin stability of the mutant C. utilis uricases described in Example 2, each containing a single substitution, relative to wild-type. Enzymes are ordered relative to their effect on stability.
- FIG. 9A is a bar graph showing the plasma urate levels (mg/dL) in Uricase knockout (UrOxKO) mice with severe hyperuricemia.
- Mean (SEM) of pre-treatment plasma urate levels was measured in samples collected on day 7 after removal of maintenance dose of allopurinol
- treatment plasma urate level was measured in samples collected on day 7 after administration of 50 mg/L of allopurinol, 150 mg/L of allopurinol, or 150 mg/day mutant C. utilis uricase, respectively
- post-treatment plasma urate levels are shown.
- FIG. 9B is a bar graph showing the urine uric acid levels (mg/dL) in UrOxKO mice with severe hyperuricosuria. Uric acid levels were measured in 24-hour urine samples collected during the last 3 days of pre-treatment and treatment periods, as indicated.
- the invention is based, in part, upon the discovery of recombinant uricase enzymes that are active in humans and have greater stability and/or activity than naturally occurring enzymes.
- the recombinant enzymes of the invention exhibit improved stability against proteolytic digestion by pancreatin (a collection of enzymes secreted by the pancreas) compared to naturally occurring versions of the enzyme.
- the recombinant enzymes of the invention may have greater specific activity than a wild type uricase enzyme.
- the recombinant enzymes described herein may be suitable for oral administration, and therefore potentially safer and more tolerable than the commercially available, injectable forms of uricase (e.g., Krystexxa® and Elitek®), because it is contemplated that the enzymes will remain active within the intestines and will not be absorbed through the intestinal wall because the size of the recombinant enzyme would preclude passive absorption, and no receptor has been identified for active transport of the enzyme from the intestine.
- uricase e.g., Krystexxa® and Elitek®
- Uric acid also known as urate
- Uricase also known as urate oxidase or UrOx
- UrOx degrades uric acid into allantoin by catalyzing the following reaction:
- C. utilis uricase is a homo-tetrameric enzyme that does not require a metal atom or an organic co-factor for catalysis.
- the amino acid sequence of wild type C. utilis uricase is as follows:
- An exemplary nucleotide sequence encoding the wild type C. utilis uricase is as follows:
- the invention provides a family of recombinant mutant Candida utilis uricase enzymes that, for example, are useful in treating disorders associated with elevated levels of uric acid in a subject, for example, disorders associated with elevated levels of uric acid in plasma of the subject.
- the recombinant mutant C. utilis uricase enzymes described herein have higher stability compared to the wild-type C. utilis uricase, e.g., higher stability in the presence of pancreatin compared to the wild-type C. utilis uricase, and are therefore better suited for oral delivery and activity in the intestines than wild-type C. utilis uricase.
- wild-type C. utilis uricase refers a C.
- utilis uricase having the amino acid sequence of SEQ ID NO: 1, or a functional fragment thereof that can catalyze the oxidation of uric acid to 5-hydroxyisourate.
- functional fragment is understood to be a protein fragment of wild type C. utilis uricase of SEQ ID NO: 1 that has at least 50%, 60%, 70%, 80%, 90%, 95%, or 98% of the activity of wild type C. utilis uricase to catalyze the conversion of uric acid to 5-hydroxyisourate and/or allantoin.
- the invention provides a recombinant mutant Candida utilis uricase enzyme that comprises at least one (for example, one, two, three, four, five, six, seven or eight) mutation(s) at a position corresponding to wild type C.
- utilis uricase of SEQ ID NO: 1 wherein the at least one mutation is selected from: (a) at position 180, isoleucine is substituted by valine or alanine (I180V or I180A), (b) at position 165, tyrosine is substituted by phenylalanine (Y165F), (c) at position 190, valine is substituted by glycine or alanine (V190G or V190A), (d) at position 51, glutamic acid is substituted by lysine (E51K), (e) at position 244, glutamine is substitute by lysine (Q244K), (f) at position 132, isoleucine is substituted by arginine or asparagine (I132R or I132N
- the recombinant mutant C. utilis uricase enzyme comprises at least one mutation selected from: I180V, I180A, Y165F, V190G, V190A, E51K, Q244K, I132R, V97I, E92N, A87G, D142E, G44A, G128P, A236N, K208A, N213A, S140T, Y253Q, and A84S.
- the uricase enzyme comprises at least one mutation selected from: I180V, I180A, Y165F, V190G, E51K, Q244K, I132R, V97I, E92N, A87G, D142E, and G44A.
- the uricase enzyme comprises at least one mutation selected from: I180V, I180A, Y165F, V190G, E51K, I132R, and G44A. In certain other embodiments, the uricase enzyme comprises at least one mutation selected from: I180V, I180A, Y165F, E51K, I132R, and G44A. In certain other embodiments, the uricase enzyme comprises at least one mutation selected from: I180V, I180A, Y165F, V190G, E51K, Q244K, and I132R.
- the invention provides a recombinant mutant C. utilis uricase enzyme comprising at least one (for example, one, two, three, four, five, or six) mutation(s) at a position corresponding to wild type C. utilis uricase of SEQ ID NO: 1, wherein the at least one mutation is present at a position selected from position 180, position 165, position 190, position 51, position 132, and position 44.
- one or more mutations may be conservative substitutions relative to wild type C. utilis uricase of SEQ ID NO: 1
- one or more mutations may be non-conservative substitutions relative to wild type C. utilis uricase of SEQ ID NO: 1.
- the invention provides a recombinant mutant C. utilis uricase enzyme comprising at least one (for example, one, two, three, four, or five) mutation(s) at a position corresponding to wild type C. utilis uricase of SEQ ID NO: 1, wherein the at least one mutation is present at a position selected from position 180, position 165, position 51, position 132, and position 44.
- one or more mutations may be conservative substitutions relative to wild type C. utilis uricase of SEQ ID NO: 1
- one or more mutations may be non-conservative substitutions relative to wild type C. utilis uricase of SEQ ID NO: 1.
- conservative substitution refers to a substitution with a structurally similar amino acid.
- conservative substitutions may include those within the following groups: Ser and Cys; Leu, Ile, and Val; Glu and Asp; Lys and Arg; Phe, Tyr, and Trp; and Gln, Asn, Glu, Asp, and His.
- Conservative substitutions may also be defined by the BLAST (Basic Local Alignment Search Tool) algorithm, the BLOSUM substitution matrix (e.g., BLOSUM 62 matrix), or the PAM substitution:p matrix (e.g., the PAM 250 matrix).
- Non conservative substitutions are amino acid substitutions that are not conservative substitutions.
- the invention provides a recombinant mutant C. utilis uricase comprising at least one (for example, one, two, three, four, five, or six) mutation(s) at a position corresponding to wild type C. utilis uricase of SEQ ID NO: 1, wherein the at least one mutation is present at a position selected from position 180, position 165, position 190, position 51, position 244, and position 132.
- one or more mutations may be conservative substitutions relative to wild type C. utilis uricase of SEQ ID NO: 1
- one or more mutations may be non-conservative substitutions relative to wild type C. utilis uricase of SEQ ID NO: 1.
- the uricase comprises two, three, four, five, six, seven, or eight mutations.
- the uricase comprises the following substitutions (i) I180V, Y165F, E51K, I132R, and G44A, (ii) I180A, Y165F, E51K, I132R, and G44A, (iii) I180V, Y165F, V190G, E51K, I132R, and G44A, (iv) I180A, Y165F, V190G, E51K, I132R, and G44A, (v) I180V and Y165F, or (vi) I180V, Y165F, V190G, E51K, Q244K, and I132R, either alone or in combination with other substitutions.
- the invention provides a recombinant mutant C. utilis uricase enzyme comprising three substitutions listed in a given row of TABLE 1.
- the invention provides a recombinant mutant C. utilis uricase comprising five substitutions listed in a given row of TABLE 2.
- a recombinant mutant Candida utilis uricase disclosed herein may, for example, have higher specific activity than wild-type C. utilis uricase of SEQ ID NO.: 1.
- a recombinant mutant C. utilis uricase may have from 5 to 50 fold higher specific activity than the wild-type C. utilis uricase.
- the uricase has from about 5 to about 50, from about 5 to about 40, from about 5 to about 30, from about 5 to about 20, from about 5 to about 10, from about 10 to about 50, from about 10 to about 40, from about 10 to about 30, from about 10 to about 20, from about 20 to about 50, from about 20 to about 40, from about 20 to about 30, from about 30 to about 50, from about 30 to about 40, from about 40 to about 50, about 5, about 10, about 20, about 30, about 40, or about 50 fold higher specific activity than wild-type C. utilis uricase.
- the recombinant mutant Candida utilis uricase disclosed herein may, for example, have higher stability, e.g., higher stability in the presence of pancreatin, compared to the wild-type C. utilis uricase.
- a recombinant mutant C. utilis uricase may have from 5 to 50 fold higher stability in the presence of pancreatin compared to the wild-type C. utilis uricase.
- the uricase has from about 5 to about 50, from about 5 to about 40, from about 5 to about 30, from about 5 to about 20, from about 5 to about 10, from about 10 to about 50, from about 10 to about 40, from about 10 to about 30, from about 10 to about 20, from about 20 to about 50, from about 20 to about 40, from about 20 to about 30, from about 30 to about 50, from about 30 to about 40, from about 40 to about 50, about 5, about 10, about 20, about 30, about 40, or about 50 fold higher stability in the presence of pancreatin compared to the wild-type C. utilis uricase.
- the recombinant mutant Candida utilis uricase may, for example, have a half-life of at least 35 minutes in the presence of pancreatin.
- the uricase has a half-life of at least from about 35 to about 200 minutes, from about 35 to about 175 minutes, from about 35 to about 150 minutes, from about 35 to about 125 minutes, from about 35 to about 100 minutes, from about 35 to about 75 minutes, from about 35 to about 50 minutes, from about 50 to about 200 minutes, from about 50 to about 175 minutes, from about 50 to about 150 minutes, from about 50 to about 125 minutes, from about 50 to about 100 minutes, from about 50 to about 75 minutes, from about 75 to about 200 minutes, from about 75 to about 175 minutes, from about 75 to about 150 minutes, from about 75 to about 125 minutes, from about 75 to about 100 minutes, from about 100 to about 200 minutes, from about 100 to about 175 minutes, from about 100 to about 150 minutes, from about 100 to about 125 minutes, from about 125 to about 200 minutes, from about 100 to about 175 minutes,
- Uricase stability or half-life may be measured by any method known in the art, including absorption based assays or SDS-PAGE as described in Example 1. Uricase half-life in the presence of pancreatin will depend upon the experimental conditions in which the half-life is measured, including, e.g., the concentration of pancreatin. In certain embodiments, the half-life of a disclosed recombinant mutant Candida utilis uricase in the presence of pancreatin is measured in the presence of 20 ng/ ⁇ L or 80 ng/ ⁇ L pancreatin, e.g., pancreatin available from Sigma-Aldrich (Cat No. P7545).
- a recombinant mutant Candida utilis uricase enzyme disclosed herein may, for example, have higher stability at a pH less than about 6.5 compared to the wild-type C. utilis uricase.
- a recombinant mutant C. utilis uricase may have from 5 to 50 fold higher stability in the presence of pancreatin compared to the wild-type C. utilis uricase.
- the uricase enzyme has from about 5 to about 50, from about 5 to about 40, from about 5 to about 30, from about 5 to about 20, from about 5 to about 10, from about 10 to about 50, from about 10 to about 40, from about 10 to about 30, from about 10 to about 20, from about 20 to about 50, from about 20 to about 40, from about 20 to about 30, from about 30 to about 50, from about 30 to about 40, from about 40 to about 50, about 5, about 10, about 20, about 30, about 40, or about 50 fold higher stability at a pH less than about 6.5 compared to the wild-type C. utilis uricase.
- Uricase stability or half-life may be measured by any method known in the art, including absorption based assays or SDS-PAGE as described in Example 1.
- the invention further provides a recombinant mutant C. utilis uricase that comprises the following substitutions: Y165F, I180V, G44A, E51K, and I132R, e.g., a recombinant mutant C. utilis uricase comprising the following amino acid sequence, e.g., a recombinant mutant uricase referred to as R2_V17 herein:
- the invention further provides a recombinant mutant C. utilis uricase that comprises the following substitutions: Y165F, I180V, E51K, V97I, and A236N, e.g., a recombinant mutant C. utilis uricase comprising the following amino acid sequence, e.g., a recombinant mutant uricase referred to as R2_V4 herein:
- the invention further provides a recombinant mutant C. utilis uricase that comprises the following substitutions: Y165F, I180V, I132R, Q217L, and P285S, e.g., a recombinant mutant C. utilis uricase comprising the following amino acid sequence, e.g., a recombinant mutant uricase referred to as R2_V79 herein:
- the invention further provides a recombinant mutant C. utilis uricase that comprises the following substitutions: Y165F, I180V, E51K, V97I, and I196L, e.g., a recombinant mutant C. utilis uricase comprising the following amino acid sequence, e.g., a recombinant mutant uricase referred to as R2_V47 herein:
- the invention further provides a recombinant mutant C. utilis uricase that comprises the following substitutions: Y165F, I180V, E51K, D142E, and Q217L, e.g., a recombinant mutant C. utilis uricase comprising the following amino acid sequence, e.g., a recombinant mutant uricase referred to as R2_V39 herein:
- the invention further provides a recombinant mutant C. utilis uricase that has at least 90%, 95%, 96%, 97%, 98%, or 99% sequence identity to a C. utilis uricase disclosed herein, and has at least 60% specific activity and/or 5 fold higher stability as wild type C. utilis uricase.
- Sequence identity may be determined in various ways that are within the skill in the art, e.g., using publicly available computer software such as BLAST, BLAST-2, ALIGN or Megalign (DNASTAR) software.
- BLAST Basic Local Alignment Search Tool
- analysis using the algorithm employed by the programs blastp, blastn, blastx, tblastn and tblastx (Karlin et al., (1990) PROC. NATL.
- the search parameters for histogram, descriptions, alignments, expect i.e., the statistical significance threshold for reporting matches against database sequences
- cutoff, matrix and filter are at the default settings.
- the default scoring matrix used by blastp, blastx, tblastn, and tblastx is the BLOSUM62 matrix (Henikoff et al., (1992) PROC. NATL. ACAD. SCI. USA 89:10915-10919, fully incorporated by reference).
- a disclosed recombinant mutant C. utilis uricase may be modified, engineered or chemically conjugated.
- a disclosed recombinant mutant C. utilis uricase can be conjugated to an effector agent using standard in vitro conjugation chemistries. If the effector agent is a polypeptide, the uricase enzyme can be chemically conjugated to the effector or joined to the effector as a fusion protein. Construction of fusion proteins is within ordinary skill in the art.
- a disclosed recombinant mutant C. utilis uricase can be modified with a moiety that improves its stabilization and/or retention in circulation, e.g., in blood, serum, or other tissues.
- a disclosed recombinant mutant C. utilis uricase enzyme may be conjugated to a polymer, e.g., a substantially non-antigenic polymer, such as a polyalkylene oxide or a polyethylene oxide.
- utilis uricase enzyme is conjugated to a water soluble polymer, e.g., a hydrophilic polyvinyl polymer, e.g., polyvinylalcohol or polyvinylpyrrolidone.
- a water soluble polymer e.g., a hydrophilic polyvinyl polymer, e.g., polyvinylalcohol or polyvinylpyrrolidone.
- polymers include polyalkylene oxide homopolymers such as polyethylene glycol (PEG) or polypropylene glycols, polyoxyethylenated polyols, copolymers thereof and block copolymers thereof.
- Additional useful polymers include polyoxyalkylenes such as polyoxyethylene, polyoxypropylene, and block copolymers of polyoxyethylene and polyoxypropylene, polymethacrylates, carbomers, and branched or unbranched polysaccharides.
- DNA molecules encoding a uricase enzyme can be chemically synthesized using the sequence information provided herein.
- Synthetic DNA molecules can be ligated to other appropriate nucleotide sequences, including, e.g., expression control sequences, to produce conventional gene expression constructs encoding the desired uricase enzyme.
- Nucleic acids encoding desired uricase enzymes can be incorporated (ligated) into expression vectors, which can be introduced into host cells through conventional transfection or transformation techniques. Transformed host cells can be grown under conditions that permit the host cells to express the genes that encode the uricase enzyme.
- Nucleic acids encoding recombinant mutant C. utilis uricases of the invention may be generated by mutating a nucleotide sequence encoding the wild type C. utilis uricase, e.g., SEQ ID NO: 7 disclosed herein, using methods known in the art. Furthermore, in certain embodiments, nucleic acids encoding recombinant mutant C. utilis uricases of the invention may be codon optimized for expression in a heterologous cell, e.g., an E. coli cell, using methods known in the art.
- an exemplary nucleotide sequence encoding a recombinant mutant C. utilis uricase that comprises the following substitutions: Y165F, I180V, G44A,
- E51K, and I132R e.g., a recombinant mutant C. utilis uricase referred to as R2_V17 herein, is as follows:
- An exemplary nucleotide sequence encoding a recombinant mutant C. utilis uricase that comprises the following substitutions: Y165F, I180V, E51K, V97I, and A236N, e.g., a recombinant mutant C. utilis uricase referred to as R2_V4 herein, is as follows:
- An exemplary nucleotide sequence encoding a recombinant mutant C. utilis uricase that comprises the following substitutions: Y165F, I180V, I132R, Q217L, and P285S, e.g., a recombinant mutant C. utilis uricase referred to as R2_V79 herein, is as follows:
- An exemplary nucleotide sequence encoding a recombinant mutant C. utilis uricase that comprises the following substitutions: Y165F, I180V, E51K, V97I, and I196L, e.g., a recombinant mutant C. utilis uricase referred to as R2_V47 herein, is as follows:
- An exemplary nucleotide sequence encoding a recombinant mutant C. utilis uricase that comprises the following substitutions: Y165F, I180V, E51K, D142E, and Q217L, e.g., a recombinant mutant C. utilis uricase referred to as R2_V39 herein, is as follows:
- a gene is to be expressed in E. coli , it can be cloned into an expression vector by positioning the engineered gene downstream from a suitable bacterial promoter, e.g., Trp or Tac, and a prokaryotic signal sequence.
- a suitable bacterial promoter e.g., Trp or Tac
- the expressed secreted protein accumulates in refractile or inclusion bodies, and can be harvested after disruption of the cells by French press or sonication.
- the refractile bodies then are solubilized, and the proteins refolded and cleaved by methods known in the art.
- a uricase enzyme can be produced by growing (culturing) a host cell transfected with an expression vector encoding such uricase enzyme, under conditions that permit expression of the uricase enzyme. Following expression, the uricase enzyme can be harvested and purified or isolated using techniques known in the art, e.g., affinity tags such as glutathione-S-transferase (GST) and histidine tags.
- affinity tags such as glutathione-S-transferase (GST) and histidine tags.
- a recombinant uricase enzyme described herein preferably is combined with a pharmaceutically acceptable carrier.
- pharmaceutically acceptable refers to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
- pharmaceutically acceptable carrier refers to buffers, carriers, and excipients suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
- Pharmaceutically acceptable carriers include any of the standard pharmaceutical carriers, such as a phosphate buffered saline solution, water, emulsions (e.g., such as an oil/water or water/oil emulsions), and various types of wetting agents.
- the compositions also can include stabilizers and preservatives.
- Pharmaceutically acceptable carriers include buffers, solvents, dispersion media, coatings, isotonic and absorption delaying agents, and the like, that are compatible with pharmaceutical administration. The use of such media and agents for pharmaceutically active substances is known in the art.
- the uricase enzymes can be formulated, or co-administered (either at the same time or sequentially), for example, by an enteral route (e.g., orally), with a pH increasing agent, for example, a protein pump inhibitor (PPI), to enhance the stability of the uricase enzyme, for example, in an acidic environment, for example, in the gastrointestinal tract.
- a pH increasing agent for example, a protein pump inhibitor (PPI)
- PPI protein pump inhibitor
- Proton pump inhibitors are a group of drugs whose main action is pronounced and long-lasting reduction of gastric acid production.
- Proton pump inhibitors act by blocking the hydrogen/potassium adenosine triphosphatase enzyme system (the H + /K + ATPase, or more commonly just gastric proton pump) of the gastric parietal cell.
- the proton pump is the terminal stage in gastric acid secretion, being directly responsible for secreting H + ions into the gastric lumen, making it an ideal target for inhibiting acid secretion.
- proton pump inhibitors examples include: Omeprazole (brand names: LOSEC®, PRILOSEC®, ZEGERID®); Lansoprazole (brand names: PREVACID®, ZOTON®, INHIBITOL®); Esomeprazole (brand names: NEXIUM®); and Pantoprazole (brand names: PROTONIX®, SOMAC®PANTOLOC®).
- compositions containing a recombinant uricase enzyme disclosed herein can be presented in a dosage unit form and can be prepared by any suitable method.
- a pharmaceutical composition should be formulated to be compatible with its intended route of administration.
- the pharmaceutical compositions may be in a variety of forms. These include, for example, liquid, semi-solid and solid dosage forms, such as liquid solutions, dispersions or suspensions, tablets, pills, powders, liposomes and suppositories. The preferred form will depend upon the intended mode of administration and therapeutic application.
- compositions preferably are formulated for administration enterally (for example, orally), such compositions can be administered by a parenteral mode (e.g., intravenous, subcutaneous, intraperitoneal, or intramuscular injection).
- parenteral administration e.g., intravenous, subcutaneous, intraperitoneal, or intramuscular injection.
- parenteral administration e.g., intravenous, subcutaneous, intraperitoneal, or intramuscular injection.
- parenteral administration e.g., intravenous, subcutaneous, intraperitoneal, or intramuscular injection.
- the composition can be formulated as a solution, microemulsion, dispersion, liposome, or other ordered structure suitable for stable storage at high concentration.
- Sterile injectable solutions can be prepared by incorporating an agent described herein in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization.
- dispersions are prepared by incorporating an agent described herein into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above.
- the preferred methods of preparation are vacuum drying and freeze drying that yield a powder of an agent described herein plus any additional desired ingredient from a previously sterile-filtered solution thereof.
- the proper fluidity of a solution can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants.
- Prolonged absorption of injectable compositions can be brought about by including in the composition an agent that delays absorption, for example, monostearate salts and gelatin.
- a pharmaceutical formulation that is sterile. Sterilization can be accomplished by any suitable method, e.g., filtration through sterile filtration membranes. Where the composition is lyophilized, filter sterilization can be conducted prior to or following lyophilization and reconstitution.
- a disclosed composition comprises a polyionic reagent which may, e.g., coat the uricase (e.g., the composition comprises a polyionic coating).
- exemplary polyionic reagents include PSS (poly(Sodium 4-styrenesulfonate), PAA (poly Acrylic acid sodium salt), PMG (poly(methylene-co-guanidine) hydrochloride), DS (dextran sulfate), PMA (poly(methyl acrylate)), or PVS (polyvinylsiloxane).
- the recombinant uricase enzymes disclosed herein can be used to treat various diseases or disorders associated with an elevated amount of uric acid in a subject.
- “elevated amount of uric acid in a subject” may refer to an elevated amount of uric acid in a body fluid (e.g., blood, plasma, serum, or urine), tissue and/or cell in a subject, relative to a subject without the disease or disorder.
- uric acid concentrations between 2.4-6 mg/dL for females and 3.4-7.2 mg/dL for males are considered normal by the Clinical Mayo Reference laboratory.
- the invention provides a method of treating a disease or disorder associated with an elevated amount of uric acid in a subject.
- the disease or disorder is associated with an elevated amount of uric acid in plasma of the subject.
- the method comprises administering to the subject an effective amount of a disclosed recombinant uricase, either alone or in a combination with another therapeutic agent to treat the disease or disorder in the subject.
- effective amount refers to the amount of an active agent (e.g., a recombinant uricase of the present invention) sufficient to effect beneficial or desired results.
- An effective amount can be administered in one or more administrations, applications or dosages and is not intended to be limited to a particular formulation or administration route.
- the method comprises orally administering to the subject an effective amount of a disclosed recombinant uricase, either alone or in a combination with another therapeutic agent to treat the disease or disorder in the subject. It is contemplated that, in certain embodiments, the orally administered recombinant uricase may avoid passive absorption in the intestine due to its size, and if metabolized, the novel recombinant uricase of the present invention orally administered with food would be metabolized in a manner similar to that of any other ingested protein.
- treat means the treatment of a disease in a subject, e.g., in a human. This includes: (a) inhibiting the disease, i.e., arresting its development; and (b) relieving the disease, i.e., causing regression of the disease state.
- subject and “patient” refer to an organism to be treated by the methods and compositions described herein. Such organisms preferably include, but are not limited to, mammals (e.g., murines, simians, equines, bovines, porcines, canines, felines, and the like), and more preferably includes humans.
- diseases or disorders associated with an elevated amount of uric acid include a metabolic disorder, e.g., metabolic syndrome, hyperuricemia, gout (e.g., gouty arthritis), Lesch-Nyhan syndrome, cardiovascular disease, diabetes, hypertension, renal disease, metabolic syndrome, uric acid nephrolithiasis (or kidney stones (see Wiederledge et al. (2011), Clin. Rev. Bone. Miner. Metab., 9(3-4):207-217 (“Uric acid nephrolithiasis is characteristically a manifestation of a systemic metabolic disorder. It has a prevalence of about 10% among all stone formers, the third most common type of kidney stone in the industrialized world.))), tumor lysis syndrome, and hyperuricosuria.
- a metabolic disorder e.g., metabolic syndrome, hyperuricemia, gout (e.g., gouty arthritis), Lesch-Nyhan syndrome, cardiovascular disease, diabetes, hypertension, renal disease, metabolic syndrome, uric acid
- the methods and compositions described herein can be used alone or in combination with other therapeutic agents and/or modalities.
- administered “in combination,” as used herein, is understood to mean that two (or more) different treatments are delivered to the subject during the course of the subject's affliction with the disorder, such that the effects of the treatments on the patient overlap at a point in time.
- the delivery of one treatment is still occurring when the delivery of the second begins, so that there is overlap in terms of administration. This is sometimes referred to herein as “simultaneous” or “concurrent delivery.”
- the delivery of one treatment ends before the delivery of the other treatment begins. In certain embodiments of either case, the treatment is more effective because of combined administration.
- the second treatment is more effective, e.g., an equivalent effect is seen with less of the second treatment, or the second treatment reduces symptoms to a greater extent, than would be seen if the second treatment were administered in the absence of the first treatment, or the analogous situation is seen with the first treatment.
- delivery is such that the reduction in a symptom, or other parameter related to the disorder is greater than what would be observed with one treatment delivered in the absence of the other.
- the effect of the two treatments can be partially additive, wholly additive, or greater than additive.
- the delivery can be such that an effect of the first treatment delivered is still detectable when the second is delivered.
- a method or composition described herein is administered in combination with one or more additional therapies selected from a xanthine-oxidase inhibitor (e.g., allopurinol, TEI-6720 (2-(3-cyano-4-isobutoxyphenyl)-4-methyl-5-thiazolecarboxylic acid), febuxostat (2-[3-cyano-4-isobutoxyphenyl]-4-methylthiazole-5-carboxylic acid), oxypurinol, or pteridylaldehyde), a uricosuric (e.g., probenecid, lesinurad, sulfinpyrazone, sulfinpyrazone, or fenofibrate), ethylenediaminetetraacetic acid, acetazolamide, a potassium supplement, and any combination thereof.
- a xanthine-oxidase inhibitor e.g., allopurinol, TEI-6720 (2-
- compositions are described as having, including, or comprising specific components, or where processes and methods are described as having, including, or comprising specific steps, it is contemplated that, additionally, there are compositions of the present invention that consist essentially of, or consist of, the recited components, and that there are processes and methods according to the present invention that consist essentially of, or consist of, the recited processing steps.
- an element or component is said to be included in and/or selected from a list of recited elements or components, it should be understood that the element or component can be any one of the recited elements or components, or the element or component can be selected from a group consisting of two or more of the recited elements or components.
- This example describes the design and testing of recombinant mutant Candida utilis uricases with improved pancreatin stability.
- mutant C. utilis uricases were designed each with three amino acid substitutions relative to the wild-type sequence.
- the mutant C. utilis uricases are indicated as R1_V1-R1_V95.
- DNA fragments encoding the 95 mutant C. utilis uricases were cloned into a rhamanose pD861-NH expression vector (ATUM, Newark, Calif.) that encodes a N-terminal His-tag. All constructs were confirmed by sequencing. Following expression in Escherichia coli cells, each recombinant mutant C. utilis uricase enzyme was bound to a Ni-NTA column and eluted in a buffer containing 25 mM Tris-HCl pH 8.0, 100 mM NaCl, 200 mM imidazole, and 50% (v/v) glycerol.
- pancreatin Sigma-Aldrich Cat No. P7545; which converts at least 25 times its weight of potato starch into soluble carbohydrates in 5 minutes in water at 40° C., digests at least 25 times its weight of casein in 60 minutes at pH 7.5 at 40° C., and releases at least 2 microequivalents of acid per minute per mg pancreatin from olive oil at pH 9.0 at 37° C.
- pancreatin stability 25 ng/ ⁇ L of uricase was incubated with 20 ng/ ⁇ L of pancreatin at 37° C. for up to 200 minutes.
- the assay was performed in simulated intestinal fluid (SIF) buffer (50 mM potassium phosphate, pH 6.8) in 96 well plates. Following incubation with pancreatin for the indicated time points, enzymatic activity was monitored using an absorption based assay. Uric acid has a strong absorbance at 293 nm, and the enzymatic oxidation of uric acid to 5-hydroxyisourate by uricase results in a corresponding drop in 293 nm absorbance over time.
- SIF simulated intestinal fluid
- Results for C. utilis uricase mutants with the most improved pancreatin stability were confirmed over multiple protein preparations.
- Representative data for wild type C. utilis uricase is depicted in FIG. 1
- representative data for a subset of mutant C. utilis uricases is depicted in FIG. 2 .
- TABLE 3 depicts the amino acid substitutions for the 95 recombinant mutant C. utilis uricases, as well as the specific activity ( ⁇ M/minute per 1.2 ng/ ⁇ l of uricase), pancreatin stability (half-life, minutes) and expression yield ( ⁇ g/ml) for each enzyme. “nd” indicates that activity and stability measurements were not determined due to insufficient expression yield.
- TABLE 4 depicts the amino acid substitutions for the 95 mutant C. utilis uricases, as well as the specific activity ( ⁇ M/minute per 1.2 ng/ ⁇ l of uricase), pancreatin stability (half-life, minutes) and expression yield ( ⁇ g/ml) for each enzyme.
- Pancreatin stability was assayed at 80 ng/ ⁇ L soluble pancreatin. “nd” indicates that activity and stability measurements were not determined due to insufficient expression yield.
- pancreatin stability data for a subset of the mutant C. utilis uricases is depicted in FIG. 3 .
- a subset of mutant C. utilis uricases were further tested for thermal stability by differential scanning fluorimetry (DSF).
- DSF is a method to evaluate thermal stability by heating a protein in the presence of a fluorescent dye which will increase its fluorescence upon binding to the exposed hydrophobic interior of the protein after protein unfolding. Protein unfolding curves are depicted in FIG. 4 .
- R2_V17 has the highest melting temperature among those tested, with a 5° C. increase relative to wild type uricase.
- FIG. 5 shows the analysis of R2_V17, R2_V4, and R2_V79 C. utilis uricase enzymes by SDS-PAGE following incubation of 144 ng/ ⁇ L of uricase with 80 ng/ ⁇ L of pancreatin in SIF buffer at 37° C. for the indicated time points.
- FIG. 6 shows the analysis of wild type and R2_V17 C. utilis uricase enzymes by SDS-PAGE following incubation of 100 ng/ ⁇ L of uricase with 320 ng/ ⁇ L of pancreatin in SIF buffer at 37° C. for the indicated time points.
- the results from the SDS-PAGE analysis are consistent with the activity assay data.
- the R2_V17, R2_V4 and R2_V79 mutants show increased stability in the presence of pancreatin relative to wild type.
- This example describes the testing of individual substitutions included in the recombinant mutant Candida utilis uricases described in Example 1.
- Example 1 Among the various substitutions included in the mutant Candida utilis uricases described in Example 1, a set of individual substitutions were selected for testing by protein modeling tools. In certain instances, conservative substitutions were tested along with the original substitution that was identified in Example 1. In total, 51 mutant C. utilis uricases, each with one amino acid substitution relative to the wild-type sequence, were designed and tested. The 51 mutant C. utilis uricases containing one amino acid substitution are indicated by the individual substitution in TABLE 5. The mutant C. utilis uricases were tested in a pancreatin stability assay along with a subset of the mutant C. utilis uricases described in Example 1. The subset of mutant C. utilis uricases described in Example 1 that were tested, containing five substitutions, are as set forth in TABLE 3. Results are summarized in TABLE 5, FIG. 7 , and FIG. 8 .
- TABLE 5 depicts the amino acid substitutions for the mutant C. utilis uricases, as well as the specific activity ( ⁇ M/minute per 1.2 ⁇ M of uricase), pancreatin stability (half-life, minutes. ⁇ SEM), and expression yield ( ⁇ g/ml) for each enzyme.
- Pancreatin stability was assayed at 40 ng/ ⁇ L soluble pancreatin. “nd” indicates that activity and stability measurements were not determined due to insufficient expression yield.
- An expression vector comprising a codon-optimized nucleic acid sequence of SEQ ID NO: 13, which encodes a mutant Candida utilis uricase, was expressed in E. coli , and the expressed recombinant mutant uricase was isolated and purified.
- ALLO allopurinol
- ALLO allopurinol
- the maintenance dose of 150 mg/L ALLO was removed.
- the plasma urate levels were measured in plasma samples collected on day 7 after removal of the maintenance dose of ALLO, and urine uric acid levels were measured in 24-hour urine samples collected during the last 3 days of the pre-treatment period.
- Plasma urate levels and urine uric acid levels were measured following the Liquick Cor-UA 30 plus protocol by Cormay, Poland (Liquick Cor-UA 30 plus, kit size 5 ⁇ 30 ml, Cat. No. 2-260.
- mice treated with the recombinant mutant uricase (n 8) orally received approximately 62 mg/day (or 1,500 U/day) recombinant mutant uricase mixed with food (spray dried powder of 25% Uricase and 75% trehalose, mixed with 3.5 g food).
- the plasma urate levels were measured in blood samples collected from the mice on day 7 of treatment with recombinant mutant uricase, ALLO 150 mg/L, and ALLO 50 mg/L, respectively, and urine uric acid levels were measured in 24-hour urine samples collected during the last 3 days of the treatment period.
- plasma urate levels were measured in blood samples collected from the mice on day 7 after termination of treatment with recombinant mutant uricase, ALLO 150 mg/L, and ALLO 50 mg/L, respectively.
- the assay for urine uric acid was performed according to the manufacturer's instructions (Liquick Cor-UA 30 plus protocol by Cormay, Poland (Liquick Cor-UA 30 plus, kit size 5 ⁇ 30 ml, Cat. No. 2-260)). For example, urine samples were diluted 1:4, 1:9, or 1:14 depending on groups of animals and the time of collection. To prevent precipitation of salts of uric acid, 1 drop of NaOH (500 g/L) was added to the collection tube before collection of a 24-hour specimen.
- Plasma urate levels were also measured according to manufacturer's instructions (Liquick Cor-UA 30 plus protocol). Urate levels in the blood samples were measured without dilution or diluted 1:1 with double-distilled water (ddH 2 O).
- hyperuricemia i.e., excess of uric acid in the blood
- hyperuricosuria i.e., the presence of excessive amounts of uric acid in the urine
- SEM standard of mean
- digesta the semifluid mass into which food is converted by gastric secretion and which passes from the stomach into the small intestine
- GIT gastrointestinal tract
- Embodiments disclosed herein include embodiments P1 to P53, as provided in the numbered embodiments of the disclosure:
- Embodiment P1 A recombinant mutant Candida utilis uricase comprising at least one (for example, one, two, three, four, five, six, seven or eight) mutation(s) at a position corresponding to wild type C. utilis uricase of SEQ ID NO: 1, wherein the at least one mutation is selected from: (a) at position 180, isoleucine is substituted by valine or alanine (I180V or I180A), (b) at position 165, tyrosine is substituted by phenylalanine (Y165F), (c) at position 190, valine is substituted by glycine or alanine (V190G or V190A), (d) at position 51, glutamic acid is substituted by lysine (E51K), (e) at position 244, glutamine is substitute by lysine (Q244K), (f) at position 132, isoleucine is substituted by arginine or asparagine (I132R or I132N), (
- Embodiment P2 The recombinant mutant C. utilis uricase of embodiment P1, wherein the uricase comprises at least one mutation selected from: I180V, I180A, Y165F, V190G, V190A, E51K, Q244K, I132R, V97I, E92N, A87G, D142E, G44A, G128P, A236N, K208A, N213A, S140T, Y253Q, and A84S.
- Embodiment P3 The recombinant mutant C. utilis uricase of embodiment P1 or P2, wherein the uricase comprises at least one mutation selected from: I180V, I180A, Y165F, V190G, E51K, Q244K, I132R, V97I, E92N, A87G, D142E, and G44A.
- Embodiment P4 The recombinant mutant C. utilis uricase of any one of embodiments P1-P3, wherein the uricase comprises at least one mutation selected from: I180V, I180A, Y165F, V190G, E51K, I132R, and G44A.
- Embodiment P5 The recombinant mutant C. utilis uricase of any one of embodiments P1-P4, wherein the uricase comprises at least one mutation selected from: I180V, I180A, Y165F, E51K, I132R, and G44A.
- Embodiment P6 The recombinant mutant C. utilis uricase of any one of embodiments P1-P5, wherein the uricase comprises at least one mutation selected from: I180V, I180A, Y165F, V190G, E51K, Q244K, and I132R.
- Embodiment P7 A recombinant mutant Candida utilis uricase comprising at least one (for example, one, two, three, four, five, or six) mutation(s) at a position corresponding to wild type C. utilis uricase of SEQ ID NO: 1, wherein the at least one mutation is present at a position selected from position 180, position 165, position 190, position 51, position 132, and position 44.
- Embodiment P8 A recombinant mutant Candida utilis uricase comprising at least one (for example, one, two, three, four, or five) mutation(s) at a position corresponding to wild type C. utilis uricase of SEQ ID NO: 1, wherein the at least one mutation is present at a position selected from position 180, position 165, position 51, position 132, and position 44.
- Embodiment P9 A recombinant mutant Candida utilis uricase comprising at least one (for example, one, two, three, four, five, or six) mutation(s) at a position corresponding to wild type C. utilis uricase of SEQ ID NO: 1, wherein the at least one mutation is present at a position selected from position 180, position 165, position 190, position 51, position 244, and position 132.
- Embodiment P10 The recombinant mutant C. utilis uricase of any one of embodiments P1-P9, wherein the uricase comprises two, three, four, five, six, seven, or eight mutations.
- Embodiment P11 The recombinant mutant C. utilis uricase of any one of embodiments P1-P10, wherein the uricase comprises the following substitutions: I180V, Y165F, E51K, I132R, and G44A.
- Embodiment P12 The recombinant mutant C. utilis uricase of any one of embodiments P1-P10, wherein the uricase comprises the following substitutions: I180A, Y165F, E51K, I132R, and G44A.
- Embodiment P13 The recombinant mutant C. utilis uricase of any one of embodiments P1-P10, wherein the uricase comprises the following substitutions: I180V, Y165F, V190G, E51K, I132R, and G44A.
- Embodiment P14 The recombinant mutant C. utilis uricase of any one of embodiments P1-P10, wherein the uricase comprises the following substitutions: I180A, Y165F, V190G, E51K, I132R, and G44A.
- Embodiment P15 The recombinant mutant C. utilis uricase of any one of embodiments P1-P10, wherein the uricase comprises the following substitutions: I180V and Y165F.
- Embodiment P16 The recombinant mutant C. utilis uricase of any one of embodiments P1-P10, wherein the uricase comprises the following substitutions: I180V, Y165F, V190G, E51K, Q244K, and I132R.
- Embodiment P17 A recombinant mutant C. utilis uricase comprising a substitution listed in TABLE 1 or TABLE 2.
- Embodiment P18 A recombinant mutant Candida utilis uricase having a half-life of at least 35 minutes in the presence of pancreatin.
- Embodiment P19 The recombinant mutant C. utilis uricase of embodiment P17, wherein the half-life is 35-200 minutes in the presence of pancreatin.
- Embodiment P20 The recombinant mutant C. utilis uricase of any one of embodiments P1-P19, wherein the uricase has 5-50 fold higher stability in the presence of pancreatin, compared to the wild-type uricase.
- Embodiment P21 The recombinant mutant C. utilis uricase of embodiment P20, wherein the uricase has 20-30 fold higher stability in the presence of pancreatin, compared to the wild-type uricase.
- Embodiment P22 The recombinant mutant C. utilis uricase of any one of embodiments P1-P21, wherein the uricase is isolated.
- Embodiment P23 The recombinant mutant C. utilis uricase of any one of embodiments P1-P22, wherein the uricase is conjugated to a water soluble polymer.
- Embodiment P24 The recombinant mutant C. utilis uricase of embodiment P23, wherein the uricase is conjugated to polyethylene glycol (PEG).
- PEG polyethylene glycol
- Embodiment P25 An expression vector comprising a nucleic acid sequence encoding the recombinant mutant C. utilis uricase of any one of embodiments P1-P24.
- Embodiment P26 The expression vector of embodiment P25, wherein the nucleic acid sequence encoding the recombinant mutant uricase is codon optimized for expression in a heterologous cell.
- Embodiment P27 The expression vector of embodiment P26, wherein the heterologous cell is Escherichia coli.
- Embodiment P28 A cell comprising the expression vector of any one of embodiments P25-P27.
- Embodiment P29 The cell of embodiment 28, wherein the cell is Escherichia coli.
- Embodiment P30 A pharmaceutical composition comprising the recombinant mutant C. utilis uricase of any one of embodiments P1-P24.
- Embodiment P31 The pharmaceutical composition of embodiment P30, further comprising a pharmaceutically acceptable carrier and/or an excipient.
- Embodiment P32 The pharmaceutical composition of embodiment P30 or P31, wherein the composition is formulated as an oral dosage form or a parenteral dosage form.
- Embodiment P33 The pharmaceutical composition of embodiment P32, wherein the composition is formulated as an oral dosage form.
- Embodiment P34 The pharmaceutical composition of any one of embodiments P30-P33, wherein the composition is a formulated as a powder, granulate, pellet, micropellet, or a minitablet.
- Embodiment P35 The pharmaceutical composition of any one of embodiments P30-P34, wherein the composition is encapsulated in a capsule or formulated as a tablet dosage form.
- Embodiment P36 The pharmaceutical composition of embodiment P35, wherein the capsule is a hydroxypropyl methylcellulose (HPMC) capsule, soft gelatin capsule, or a hard gelatin capsule.
- HPMC hydroxypropyl methylcellulose
- Embodiment P37 The pharmaceutical composition of embodiment P32, wherein the composition is formulated as a parenteral dosage form.
- Embodiment P38 The pharmaceutical composition of embodiment P37, wherein the composition is formulated as an intravenous dosage form.
- Embodiment P39 A method of treating a disease or disorder associated with an elevated amount of uric acid in a subject in need thereof, the method comprising administering to the subject an effective amount of the recombinant mutant C. utilis uricase of any one of embodiments P1-P24, thereby treating the disease or disorder in the subject.
- Embodiment P40 The method of embodiment P39, wherein the disease or disorder is associated with an elevated amount of uric acid in plasma of the subject.
- Embodiment P41 A method of treating hyperuricemia in a subject in need thereof, the method comprising administering to the subject an effective amount of the recombinant mutant C. utilis uricase of any one of embodiments P1-P24, thereby treating hyperuricemia in the subject.
- Embodiment P42 A method of treating gout in a subject in need thereof, the method comprising administering to the subject an effective amount of the recombinant mutant C. utilis uricase of any one of embodiments P1-P24, thereby to treat gout in the subject.
- Embodiment P43 A method of treating hyperuricemia in a subject in need thereof, the method comprising administering to the subject an effective amount of the pharmaceutical composition of any one of embodiments P30-P38, thereby to treat hyperuricemia in the subject.
- Embodiment P44 A method of treating gout in a subject in need thereof, the method comprising administering to the subject an effective amount of the pharmaceutical composition of any one of embodiments P30-P38, thereby to treat gout in the subject.
- Embodiment P45 The method of any one of embodiments P39-P44, wherein the recombinant mutant C. utilis uricase is administered in combination with a xanthine oxidase inhibitor, a uricosuric, or a combination thereof.
- Embodiment P46 The method of embodiment P45, wherein the xanthine oxidase inhibitor is selected from allopurinol and febuxostat.
- Embodiment P47 The method of embodiment P45, wherein the uricosuric is selected from probenecid, benzbromarone, losartan and lesinurad.
- Embodiment P48 A method of treating hyperuricosuria in a subject in need thereof, the method comprising administering to the subject an effective amount of the recombinant mutant C. utilis uricase of any one of embodiments P1-P24, thereby treating hyperuricosuria in the subject.
- Embodiment P49 A method of treating hyperuricosuria in a subject in need thereof, the method comprising administering to the subject an effective amount of the pharmaceutical composition of any one of embodiments P30-P38, thereby to treat hyperuricosuria in the subject.
- Embodiment P50 The method of embodiment P48 or P49, wherein the recombinant mutant C. utilis uricase is administered in combination with a xanthine oxidase inhibitor, a uricosuric, or a combination thereof.
- Embodiment P51 The method of embodiment P48 or P49, wherein the recombinant mutant C. utilis uricase is administered subsequent to administration of a xanthine oxidase inhibitor, a uricosuric, or a combination thereof.
- Embodiment P52 The method of embodiment P50 or P51, wherein the xanthine oxidase inhibitor is selected from allopurinol and febuxostat.
- Embodiment P53 The method of embodiment P50 or P51, wherein the uricosuric is selected from probenecid, benzbromarone, losartan and lesinurad.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Epidemiology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Molecular Biology (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Immunology (AREA)
- Botany (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Hematology (AREA)
- Diabetes (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Enzymes And Modification Thereof (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Medicinal Preparation (AREA)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US16/628,743 US20200308534A1 (en) | 2017-07-07 | 2018-07-06 | Recombinant uricase enzyme |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201762529726P | 2017-07-07 | 2017-07-07 | |
| US201862678511P | 2018-05-31 | 2018-05-31 | |
| PCT/US2018/041015 WO2019010369A1 (en) | 2017-07-07 | 2018-07-06 | RECOMBINANT ENZYME URICASE |
| US16/628,743 US20200308534A1 (en) | 2017-07-07 | 2018-07-06 | Recombinant uricase enzyme |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20200308534A1 true US20200308534A1 (en) | 2020-10-01 |
Family
ID=64951239
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/628,743 Abandoned US20200308534A1 (en) | 2017-07-07 | 2018-07-06 | Recombinant uricase enzyme |
| US16/674,325 Active US10815461B2 (en) | 2017-07-07 | 2019-11-05 | Recombinant uricase enzyme |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/674,325 Active US10815461B2 (en) | 2017-07-07 | 2019-11-05 | Recombinant uricase enzyme |
Country Status (8)
| Country | Link |
|---|---|
| US (2) | US20200308534A1 (enExample) |
| EP (1) | EP3655527A4 (enExample) |
| JP (2) | JP2020530282A (enExample) |
| CN (1) | CN111373034A (enExample) |
| AU (1) | AU2018297309A1 (enExample) |
| CA (1) | CA3069197A1 (enExample) |
| IL (1) | IL271813A (enExample) |
| WO (1) | WO2019010369A1 (enExample) |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN112646790A (zh) * | 2019-10-11 | 2021-04-13 | 上海君实生物医药科技股份有限公司 | 改进的尿酸酶及其用于治疗高尿酸血症的方法 |
| EP4110283A4 (en) * | 2020-02-25 | 2024-02-28 | Synlogic Operating Company, Inc. | Recombinant bacteria engineered to treat diseases associated with uric acid and methods of use thereof |
| KR20230110281A (ko) | 2020-11-03 | 2023-07-21 | 프로탈릭스 리미티드 | 변형된 유리카제(uricase) 및 이의 용도 |
| CN114480320B (zh) * | 2022-02-28 | 2024-01-16 | 复旦大学 | 重组夜猴尿酸酶及其应用 |
| CN118497162B (zh) * | 2024-05-24 | 2025-05-16 | 广东少和生物科技有限公司 | 黑酵母菌尿酸氧化酶及其突变体和应用 |
| CN119876071B (zh) * | 2025-03-12 | 2025-10-21 | 开平牵牛生化制药有限公司 | 低免疫原性的高活性人源尿酸氧化酶突变体 |
| CN119876069B (zh) * | 2025-03-12 | 2025-10-21 | 开平牵牛生化制药有限公司 | 具有高活性且免疫原性弱化的人源尿酸氧化酶突变体 |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110171268A1 (en) * | 2008-03-24 | 2011-07-14 | Althea Technologies, Inc. | Uricase compositions and methods of use |
Family Cites Families (26)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3462313B2 (ja) * | 1995-08-24 | 2003-11-05 | キッコーマン株式会社 | 変異型ウリカーゼ、変異型ウリカーゼ遺伝子、新規な組み換え体dna及び変異型ウリカーゼの製造法 |
| US6783965B1 (en) | 2000-02-10 | 2004-08-31 | Mountain View Pharmaceuticals, Inc. | Aggregate-free urate oxidase for preparation of non-immunogenic polymer conjugates |
| PT1588716E (pt) | 1998-08-06 | 2011-05-25 | Mountain View Pharmaceuticals | Conjugados de peg-urato oxidase e sua utiliza??o |
| US6913915B2 (en) | 2001-08-02 | 2005-07-05 | Phoenix Pharmacologics, Inc. | PEG-modified uricase |
| US20050049166A1 (en) * | 2003-08-29 | 2005-03-03 | Huang Tsao-Chin Clare | Enzyme-based cleaning composition and method of use |
| GB0326676D0 (en) * | 2003-11-15 | 2003-12-17 | Astrazeneca Ab | Protein |
| CN1980687B (zh) * | 2004-02-09 | 2015-05-13 | 人类基因科学公司 | 清蛋白融合蛋白 |
| JP2008506785A (ja) | 2004-07-21 | 2008-03-06 | フロリダ大学 リサーチファウンデーション インコーポレイティッド | インスリン抵抗性の治療及び予防のための組成物及び方法 |
| JP5033177B2 (ja) | 2006-04-12 | 2012-09-26 | サビエント ファーマセウティカルズ インク. | 陽イオン界面活性剤によるタンパク質の精製 |
| CN101390969A (zh) * | 2008-11-03 | 2009-03-25 | 中国人民解放军军事医学科学院生物工程研究所 | 降低血液中尿酸浓度的药物 |
| CN101875922B (zh) * | 2009-04-30 | 2012-02-22 | 重庆医科大学 | 一种重组苛求芽孢杆菌胞内尿酸酶及其聚乙二醇修饰与应用 |
| PL398781A1 (pl) | 2009-06-25 | 2012-11-19 | Savient Pharmaceuticals, Inc. | Sposoby i zestawy do prognozowania ryzyka wystapienia reakcji na wlew oraz zaniku odpowiedzi której posrednicza przeciwciala poprzez monitorowanie kwasu moczowego w surowicy podczas terapii z zastosowaniem pegylowanej urykazy |
| CN109706217B (zh) * | 2010-02-05 | 2022-12-09 | 新英格兰生物实验室公司 | 高保真性限制性内切核酸酶 |
| CN102586315A (zh) * | 2012-02-21 | 2012-07-18 | 章泽人 | 一种低尿酸分泌量益生菌及其制备方法 |
| EP2986720B1 (en) * | 2013-04-17 | 2017-09-06 | Council of Scientific & Industrial Research | Uricase mutants |
| CN104342415A (zh) * | 2014-07-08 | 2015-02-11 | 吉林省金梓源生物科技有限公司 | 一种重组尿酸酶的制备方法 |
| TW201618773A (zh) * | 2014-08-11 | 2016-06-01 | 艾森塔製藥公司 | Btk抑制劑、pi3k抑制劑、jak-2抑制劑、及/或cdk4/6抑制劑的治療組合物 |
| CN106554948B (zh) | 2015-09-29 | 2019-06-25 | 上海生物制品研究所有限责任公司 | 突变型尿酸酶、peg修饰的突变型尿酸酶及其应用 |
| EP4445955A3 (en) | 2016-03-11 | 2025-01-08 | Cartesian Therapeutics, Inc. | Formulations and doses of pegylated uricase |
| EP3538135A4 (en) | 2016-11-11 | 2020-07-29 | Horizon Pharma Rheumatology LLC | POLYTHERAPIES OF PREDNISONE AND URICASE MOLECULES AND THEIR USES |
| CN110612122A (zh) | 2017-03-11 | 2019-12-24 | 西莱克塔生物科技公司 | 与用抗炎剂和包含免疫抑制剂之合成纳米载体进行的组合治疗相关的方法和组合物 |
| CN107308452A (zh) * | 2017-05-29 | 2017-11-03 | 钟术光 | 一种稳定生物活性材料的组合物的制备方法 |
| GB201713732D0 (en) * | 2017-08-25 | 2017-10-11 | Alta Innovations Ltd | Tat expression system |
| CN109223707B (zh) | 2018-09-13 | 2020-12-08 | 中国药科大学 | 一种尿酸酶外用凝胶制剂、其制备方法及用途 |
| CN109846909B (zh) * | 2019-01-31 | 2022-03-22 | 武汉康复得生物科技股份有限公司 | 可在肠道中催化尿酸降解的组合物及其制备方法和应用 |
| CA3139550A1 (en) * | 2019-05-10 | 2020-11-19 | Peg-Bio Biopharm Co., Ltd. (Chongqing) | Polyethylene glycol-modified urate oxidase |
-
2018
- 2018-07-06 CA CA3069197A patent/CA3069197A1/en active Pending
- 2018-07-06 AU AU2018297309A patent/AU2018297309A1/en not_active Abandoned
- 2018-07-06 US US16/628,743 patent/US20200308534A1/en not_active Abandoned
- 2018-07-06 CN CN201880054605.5A patent/CN111373034A/zh active Pending
- 2018-07-06 JP JP2020500057A patent/JP2020530282A/ja active Pending
- 2018-07-06 WO PCT/US2018/041015 patent/WO2019010369A1/en not_active Ceased
- 2018-07-06 EP EP18827590.3A patent/EP3655527A4/en not_active Withdrawn
-
2019
- 2019-11-05 US US16/674,325 patent/US10815461B2/en active Active
-
2020
- 2020-01-02 IL IL271813A patent/IL271813A/en unknown
-
2023
- 2023-07-03 JP JP2023109386A patent/JP2023126877A/ja active Pending
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20110171268A1 (en) * | 2008-03-24 | 2011-07-14 | Althea Technologies, Inc. | Uricase compositions and methods of use |
Non-Patent Citations (1)
| Title |
|---|
| Protein Sequence Search Results by STIC, for "SEQ ID NO: 1" in GenCore version 6.4.2, on 07/18/2022, 3 pages of PDF. * |
Also Published As
| Publication number | Publication date |
|---|---|
| IL271813A (en) | 2020-02-27 |
| US10815461B2 (en) | 2020-10-27 |
| JP2020530282A (ja) | 2020-10-22 |
| AU2018297309A1 (en) | 2020-01-30 |
| EP3655527A1 (en) | 2020-05-27 |
| WO2019010369A1 (en) | 2019-01-10 |
| JP2023126877A (ja) | 2023-09-12 |
| CA3069197A1 (en) | 2019-01-10 |
| US20200071681A1 (en) | 2020-03-05 |
| EP3655527A4 (en) | 2021-06-16 |
| CN111373034A (zh) | 2020-07-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10815461B2 (en) | Recombinant uricase enzyme | |
| KR102076348B1 (ko) | 사람 아르기나제 및 부위-지향성 페길화된 사람 아르기나제 및 그의 용도 | |
| CN110078814A (zh) | 修饰的fgf-21多肽及其用途 | |
| JP7404510B2 (ja) | ポリエチレングリコール修飾尿酸オキシダーゼ | |
| JP2008542418A (ja) | 自己免疫疾患及び移植片拒絶反応を治療するためのIdeSプロテイナーゼ(化膿連鎖球菌由来)の使用 | |
| CN114438048B (zh) | 尿酸氧化酶制剂及其应用 | |
| US20250243475A1 (en) | Methods and compositions for treating congenital sucrase-isomaltase deficiency | |
| CN105693864A (zh) | 一种三聚体trail蛋白及其应用 | |
| US20210309984A1 (en) | ChiA Enzyme | |
| CN117603934B (zh) | 一种尿酸酶的纯化方法 | |
| CN113018424A (zh) | Cst1在预防和/或治疗肝脏免疫失调疾病中的应用 | |
| EP3762399A1 (en) | Affinity purification of glycoside-cleaving enzymes | |
| CN102532300B (zh) | 干扰素α突变体及其聚乙二醇衍生物 | |
| US20220378886A1 (en) | Methods of treating hyperoxaluria | |
| WO2025002334A1 (zh) | 尿酸氧化酶及其聚乙二醇化缀合物的稳定剂及其药物用途 | |
| CN101265467A (zh) | 一种定点引入非天然氨基酸的突变尿酸氧化酶及其制备方法 | |
| US20090176702A1 (en) | Use of long-acting recombinant human soluble tumor necrosis factor alpha receptor in manufacture of a medicament for the treatment and/or prophylaxis of hepatic failure | |
| WO1999004017A1 (fr) | Staphylokinase recombinante et sa souche manipulee pour une expression elevee | |
| CN102558337B (zh) | 干扰素α突变体及其聚乙二醇衍生物 | |
| CN120192390A (zh) | 基于ai设计的镇痛活性肽csk和csc及其制备方法和应用 | |
| TW201116292A (en) | Agent for prevention or treatment of inflammatory bowel diseases | |
| TW202029967A (zh) | 用於治療用途之經工程改造之靈長目動物胱胺酸/半胱胺酸降解酵素 | |
| CN105441453A (zh) | 一种聚乙二醇修饰trail重组蛋白的制备方法 | |
| CN102584980A (zh) | 干扰素α突变体及其聚乙二醇衍生物 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: ALLENA PHARMACEUTICALS, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ATUM;REEL/FRAME:053274/0916 Effective date: 20200717 Owner name: ATUM, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GOVINDARAJAN, SRIDHAR;WELCH, MARK;REEL/FRAME:053274/0973 Effective date: 20200715 Owner name: ALLENA PHARMACEUTICALS, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DESHPANDE, ADITI R.;GRUJIC, DANICA;REEL/FRAME:053275/0019 Effective date: 20200716 |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
| STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |