US20200276276A1 - PTH Prodrugs - Google Patents

PTH Prodrugs Download PDF

Info

Publication number
US20200276276A1
US20200276276A1 US16/118,155 US201716118155A US2020276276A1 US 20200276276 A1 US20200276276 A1 US 20200276276A1 US 201716118155 A US201716118155 A US 201716118155A US 2020276276 A1 US2020276276 A1 US 2020276276A1
Authority
US
United States
Prior art keywords
pth
poly
moiety
group
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/118,155
Other languages
English (en)
Inventor
Kennett Sprogøe
Felix Cleemann
Guillaume Maitro
Mathias Krusch
Thomas Wegge
Joachim Zettler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ascendis Pharma AS
Ascendis Pharma Bone Diseases AS
Original Assignee
Ascendis Pharma Bone Diseases AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ascendis Pharma Bone Diseases AS filed Critical Ascendis Pharma Bone Diseases AS
Assigned to ASCENDIS PHARMA BONE DISEASES A/S reassignment ASCENDIS PHARMA BONE DISEASES A/S ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ASCENDIS PHARMA A/S
Assigned to ASCENDIS PHARMA A/S reassignment ASCENDIS PHARMA A/S ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ASCENDIS PHARMA GMBH
Assigned to ASCENDIS PHARMA A/S reassignment ASCENDIS PHARMA A/S ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SPROGØE, KENNETT, DR.
Assigned to ASCENDIS PHARMA GMBH reassignment ASCENDIS PHARMA GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CLEEMANN, FELIX, DR., MAITRO, GUILLAUME, DR., KRUSCH, MATHIAS
Publication of US20200276276A1 publication Critical patent/US20200276276A1/en
Assigned to ASCENDIS PHARMA GMBH reassignment ASCENDIS PHARMA GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WEGGE, THOMAS, ZETTLER, JOACHIM
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/29Parathyroid hormone, i.e. parathormone; Parathyroid hormone-related peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/545Heterocyclic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/02Stomatological preparations, e.g. drugs for caries, aphtae, periodontitis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/14Drugs for dermatological disorders for baldness or alopecia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/18Drugs for disorders of the endocrine system of the parathyroid hormones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/18Drugs for disorders of the endocrine system of the parathyroid hormones
    • A61P5/20Drugs for disorders of the endocrine system of the parathyroid hormones for decreasing, blocking or antagonising the activity of PTH
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones

Definitions

  • the present invention relates to PTH prodrugs, pharmaceutical compositions comprising such PTH prodrugs and their uses.
  • Hypoparathyroidism is a rare endocrine disease with low serum calcium and inappropriately low (insufficient) circulating parathyroid hormone levels, most often in adults secondary to thyroid surgery. Standard treatment includes activated vitamin D analogues and calcium supplementation, which increases calcium and phosphorus absorption and serum levels at the expense of abnormally increased urinary calcium excretion. Hypoparathyroidism is the only major endocrine condition today, where the hormonal insufficiency in general is not treated by substitution of the missing hormone (PTH).
  • PTH missing hormone
  • hypoparathyroidism The prevalence of hypoparathyroidism has recently been systematically studied in Denmark, where a total of more than 2000 patients were identified giving a prevalence of ⁇ 24/100 000 inhabitants, among whom only a minority (2/100 000) had hypoparathyroidism due to non-surgical causes. These estimates are in agreement with recent data from the USA, showing a prevalence of the same magnitude for patients with chronic hypoparathyroidism.
  • Endogenous PTH is synthesized and secreted by the parathyroid glands and is the principal endocrine hormone regulating systemic calcium and phosphorus homeostasis.
  • Physiological actions of PTH include releasing calcium and phosphorus from bone, retaining calcium but not phosphorus in the kidney by increasing renal tubular reabsorption of calcium but decreasing renal tubular reabsorption of phosphate, and stimulating the renal production of active vitamin D (1,25(OH) 2 vitamin D3) which in turn enhances intestinal calcium and phosphorus absorption.
  • PTH When PTH is delivered intermittently, such as by current daily or multiple daily injections of PTH(1-84) or PTH(1-34) it acts on bone as an anabolic agent by preferentially activating osteoblasts over osteoclasts.
  • This anabolic effect of intermittent PTH exposure contrasts with the net bone catabolism that can occur with continuous exposure to PTH.
  • the anabolic potential of intermittent administration of PTH agonists has successfully been utilized for the treatment of osteoporosis, where bone turnover is usually high and bone mineral density (BMD) is low, whereas the converse is the case for hypoparathyroidism.
  • hypoparathyroidism A major complication of hypoparathyroidism is hypercalciuria, due to the lack of PTH dependent calcium reabsorption in the distal renal tubules. Hypercalciuria is associated with an increased risk of nephrocalcinosis, nephrolithiasis and kidney failure. According to the FDAs review of Natpara, daily injections of PTH failed to provide adequate control of urinary calcium excretion, due to the short half-life of this PTH agonist in the body.
  • unphysiological levels of PTH may be associated with hypercalcemia and hypocalcemia. Treatment with Natpara did not improve the incidence of these complications compared to placebo. This can in part be explained by the unfavorable PK of Natpara.
  • administration of the currently approved doses of Natpara results in greatly supraphysiological levels of PTH with a C max of 300 pg/ml, which returns to baseline at 12 hours. As a result patients are over treated in the initial phase following administration and under treated in the phase leading up to subsequent dosing.
  • hypocalcemia is associated with numerous symptoms, some of which can be life threatening, including: tetany; paresthesias; impaired cognition; loss of consciousness with convulsions (grand mal seizures); impaired kidney function; heart arrhythmias and fainting, and even heart failure.
  • PTH replacement therapy would be more physiologic if delivered by continuous infusion, such as using an insulin pump. This has for example been demonstrated by Winer et al. (J Pediatr, 2014, 165(3), 556-563), where pump delivery simultaneously normalized bone turnover markers and urine and serum mineral levels, whereas intermittent injection delivery did not.
  • PTH polypeptides have inherently short circulating half-lives because of rapid hepatic metabolism. The rapid clearance of the drug from the body prevents sufficient drug coverage throughout the dosing interval, despite initial supraphysiological drug levels.
  • Patients with hypoparathyroidism typically demonstrate an abnormally low rate of bone turnover resulting in increased bone mineral density, and as such the anabolic effects of PTH should be avoided when treating Hypoparathyroidism, and optimally treatment should normalize their rate of bone turnover, but not increase it to above the normal range, as has been demonstrated with daily treatment with PTH(1-34) and PTH(1-84).
  • the PTH prodrugs of the present invention exhibit a low residual activity of the prodrug and provide a sustained release of PTH.
  • administration of the PTH prodrugs of the present invention leads to a concurrent normalization of serum calcium and a reduction in serum phosphate and thus to an increased serum calcium to serum phosphate ratio compared to treatment with PTH1-84, the current standard of care.
  • no adverse effects on bone resorption and formation markers and overall bone health in the relevant animal model for the human condition were observed upon administration of physiological doses.
  • PTH prodrugs are capable of achieving a stable plasma profile of PTH which ensures physiological serum and urinary calcium levels or even lower than normal urinary calcium levels.
  • PTH refers to all PTH polypeptides, preferably from mammalian species, more preferably from human and mammalian species, more preferably from human and murine species, as well as their variants, analogs, orthologs, homologs, and derivatives and fragments thereof, that are characterized by raising serum calcium and renal phosphorus excretion, and lowering serum phosphorus and renal calcium excretion.
  • PTH also refers to all PTHrP polypeptides, such as the polypeptide of SEQ ID NO:121, that bind to and activate the common PTH/PTHrP1 receptor.
  • PTH refers to the PTH polypeptide of SEQ ID NO:51 as well as its variants, homologs and derivatives exhibiting essentially the same biological activity, i.e. raising serum calcium and renal phosphorus excretion, and lowering serum phosphorus and renal calcium excretion.
  • PTH refers to the following polypeptide sequences:
  • the term “PTH” refers to the sequence of SEQ ID:NOs 47, 48, 49, 50, 51, 52, 53, 54, 55, 107, 108, 109, 110, 111, 112, 113, 114 and 115. Even more preferably, the term “PTH” refers to the sequence of SEQ ID:NOs 50, 51, 52, 110, 111 and 112. In a particularly preferred embodiment the term “PTH” refers to the sequence of SEQ ID NO:51.
  • PTH polypeptide variant refers to a polypeptide from the same species that differs from a reference PTH or PTHrP polypeptide.
  • a reference is a PTH polypeptide sequence and has the sequence of SEQ ID NO:51.
  • differences are limited so that the amino acid sequence of the reference and the variant are closely similar overall and, in many regions, identical.
  • PTH polypeptide variants are at least 70%, 80%, 90%, or 95% identical to a reference PTH or PTHrP polypeptide, preferably to the PTH polypeptide of SEQ ID NO:51.
  • polypeptide having an amino acid sequence at least, for example, 95% “identical” to a query amino acid sequence it is intended that the amino acid sequence of the subject polypeptide is identical to the query sequence except that the subject polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the query amino acid sequence. These alterations of the reference sequence may occur at the amino (N-terminal) or carboxy terminal (C-terminal) positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence.
  • the query sequence may be an entire amino acid sequence of the reference sequence or any fragment specified as described herein.
  • the query sequence is the sequence of SEQ ID NO:51.
  • PTH polypeptide variants may be naturally occurring variants, such as naturally occurring allelic variants encoded by one of several alternate forms of a PTH or PTHrP occupying a given locus on a chromosome or an organism, or isoforms encoded by naturally occurring splice variants originating from a single primary transcript.
  • a PTH polypeptide variant may be a variant that is not known to occur naturally and that can be made by mutagenesis techniques known in the art.
  • N-terminus or C-terminus of a bioactive polypeptide may be deleted from the N-terminus or C-terminus of a bioactive polypeptide without substantial loss of biological function.
  • Such N- and/or C-terminal deletions are also encompassed by the term PTH polypeptide variant.
  • PTH polypeptide also encompasses all PTH and PTHrP polypeptides encoded by PTH and PTHrP analogs, orthologs, and/or species homologs. It is also recognized by one of ordinary skill in the art that PTHrP and PTHrP analogs bind to activate the common PTH/PTHrP1 receptor, so the term PTH polypeptide also encompasses all PTHrP analogs.
  • PTH analog refers to PTH and PTHrP of different and unrelated organisms which perform the same functions in each organism but which did not originate from an ancestral structure that the organisms' ancestors had in common.
  • analogous PTH and PTHrP arose separately and then later evolved to perform the same or similar functions.
  • analogous PTH and PTHrP polypeptides are polypeptides with quite different amino acid sequences but that perform the same biological activity, namely raising serum calcium and renal phosphorus excretion, and lowering serum phosphorus and renal calcium excretion.
  • PTH ortholog refers to PTH and PTHrP within two different species which sequences are related to each other via a common homologous PTH or PTHrP in an ancestral species, but which have evolved to become different from each other.
  • PTH homolog refers to PTH and PTHrP of different organisms which perform the same functions in each organism and which originate from an ancestral structure that the organisms' ancestors had in common.
  • homologous PTH polypeptides are polypeptides with quite similar amino acid sequences that perform the same biological activity, namely raising serum calcium and renal phosphorus excretion, and lowering serum phosphorus and renal calcium excretion.
  • PTH polypeptide homologs may be defined as polypeptides exhibiting at least 40%, 50%, 60%, 70%, 80%, 90% or 95% identity to a reference PTH or PTHrP polypeptide, preferably the PTH polypeptide of SEQ ID NO:51.
  • a PTH polypeptide according to the invention may be, for example: (i) one in which at least one of the amino acids residues is substituted with a conserved or non-conserved amino acid residue, preferably a conserved amino acid residue, and such substituted amino acid residue may or may not be one encoded by the genetic code; and/or (ii) one in which at least one of the amino acid residues includes a substituent group; and/or (iii) one in which the PTH polypeptide is fused with another compound, such as a compound to increase the half-life of the polypeptide (for example, polyethylene glycol); and/or (iv) one in which additional amino acids are fused to the PTH polypeptide, such as an IgG Fc fusion region polypeptide or leader or secretory sequence or a sequence which is employed for purification of the above form of the polypeptide or a pre-protein sequence.
  • PTH polypeptide fragment refers to any polypeptide comprising a contiguous span of a part of the amino acid sequence of a PTH or PTHrP polypeptide, preferably the polypeptide of SEQ ID NO:51.
  • a PTH polypeptide fragment comprises at least 6, such as at least 8, at least 10 or at least 17 consecutive amino acids of a PTH or PTHrP polypeptide, more preferably of the polypeptide of SEQ ID NO:51.
  • a PTH polypeptide fragment may additionally be described as sub-geniuses of PTH or PTHrP polypeptides comprising at least 6 amino acids, wherein “at least 6” is defined as any integer between 6 and the integer representing the C-terminal amino acid of a PTH or PTHrP polypeptide, preferably of the polypeptide of SEQ ID No:51.
  • PTH or PTHrP polypeptide fragments at least 6 amino acids in length, as described above, that are further specified in terms of their N-terminal and C-terminal positions.
  • PTH polypeptide fragment as individual species are all PTH or PTHrP polypeptide fragments, at least 6 amino acids in length, as described above, that may be particularly specified by a N-terminal and C-terminal position.
  • PTH also includes poly(amino acid) conjugates which have a sequence as described above, but having a backbone that comprises both amide and non-amide linkages, such as ester linkages, like for example depsipeptides.
  • Depsipeptides are chains of amino acid residues in which the backbone comprises both amide (peptide) and ester bonds.
  • side chain refers either to the moiety attached to the alpha-carbon of an amino acid moiety, if the amino acid moiety is connected through amine bonds such as in polypeptides, or to any carbon atom-comprising moiety attached to the backbone of a poly(amino acid) conjugate, such as for example in the case of depsipeptides.
  • PTH refers to polypeptides having a backbone formed through amide (peptide) bonds.
  • PTH includes the above-described variants, analogs, orthologs, homologs, derivatives and fragments of PTH and PTHrP, all references to specific positions within a reference sequence also include the equivalent positions in variants, analogs, orthologs, homologs, derivatives and fragments of a PTH or PTHrP moiety, even if not specifically mentioned.
  • random coil refers to a peptide or protein adopting/having/forming, preferably having, a conformation which substantially lacks a defined secondary and tertiary structure as determined by circular dichroism spectroscopy performed in aqueous buffer at ambient temperature, and pH 7.4.
  • ambient temperature is about 20° C., i.e. between 18° C. and 22° C., most preferably ambient temperature is 20° C.
  • the term “pharmaceutical composition” refers to a composition containing one or more active ingredients, for example a drug or a prodrug, here specifically the PTH prodrugs of the present invention, and optionally one or more excipients, as well as any product which results, directly or indirectly, from combination, complexation or aggregation of any two or more of the ingredients of the composition, or from dissociation of one or more of the ingredients, or from other types of reactions or interactions of one or more of the ingredients.
  • the pharmaceutical compositions of the present invention encompass any composition made by admixing one or more PTH prodrugs of the present invention and optionally a pharmaceutically acceptable excipient.
  • liquid composition refers to a mixture comprising water-soluble PTH prodrug and one or more solvents, such as water.
  • composition relates to a mixture comprising water-insoluble PTH prodrug, where for example the carrier Z′ is a hydrogel, and one or more solvents, such as water. Due to the water-insoluble polymer, the polymeric prodrug cannot dissolve and renders the prodrug in a particulate state.
  • dry composition means that a pharmaceutical composition is provided in a dry form. Suitable methods for drying are spray-drying and lyophilization, i.e. freeze-drying. Such dry composition of prodrug has a residual water content of a maximum of 10%, preferably less than 5% and more preferably less than 2%, determined according to Karl Fischer.
  • the pharmaceutical composition of the present invention is dried by lyophilization.
  • drug refers to a substance used in the treatment, cure, prevention, or diagnosis of a disease or used to otherwise enhance physical or mental well-being. If a drug is conjugated to another moiety, the moiety of the resulting product that originated from the drug is referred to as “biologically active moiety”.
  • the PTH prodrug of the present invention comprise a PTH moiety which is released from the PTH prodrug in the form of the drug PTH.
  • prodrug refers to a conjugate comprising a biologically active moiety reversibly and covalently connected to a specialized protective group through a reversible prodrug linker moiety which is a linker moiety comprising a reversible linkage with the biologically active moiety and wherein the specialized protective group alters or eliminates undesirable properties in the parent molecule. This also includes the enhancement of desirable properties in the drug and the suppression of undesirable properties.
  • the specialized non-toxic protective group is referred to as “carrier”.
  • a prodrug releases the reversibly and covalently bound biologically active moiety in the form of its corresponding drug.
  • a prodrug is a conjugate comprising a biologically active moiety which is covalently and reversibly conjugated to a carrier moiety via a reversible prodrug linker moiety, which covalent and reversible conjugation of the carrier to the reversible prodrug linker moiety is either directly or through a spacer.
  • Such conjugate releases the formerly conjugated biologically active moiety in the form of a free drug.
  • a “biodegradable linkage” or a “reversible linkage” is a linkage that is hydrolytically degradable, i.e. cleavable, in the absence of enzymes under physiological conditions (aqueous buffer at pH 7.4, 37° C.) with a half-life ranging from one hour to two months, preferably from one hour to one month. Accordingly, a stable linkage is a linkage having a half-life under physiological conditions (aqueous buffer at pH 7.4, 37° C.) of more than two months.
  • a “reversible prodrug linker moiety” is a moiety which is covalently conjugated to a biologically active moiety, such as PTH, through a reversible linkage and is also covalently conjugated to a carrier moiety, such as —Z or —Z′, wherein the covalent conjugation to said carrier moiety is either directly or through a spacer moiety, such as -L 2 -.
  • a carrier moiety such as —Z or —Z′
  • the linkage between —Z or —Z′ and -L 2 - is a stable linkage.
  • traceless prodrug linker means a reversible prodrug linker which upon cleavage releases the drug in its free form.
  • free form of a drug means the drug in its unmodified, pharmacologically active form.
  • excipient refers to a diluent, adjuvant, or vehicle with which the therapeutic, such as a drug or prodrug, is administered.
  • Such pharmaceutical excipient can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, including but not limited to peanut oil, soybean oil, mineral oil, sesame oil and the like. Water is a preferred excipient when the pharmaceutical composition is administered orally.
  • Saline and aqueous dextrose are preferred excipients when the pharmaceutical composition is administered intravenously. Saline solutions and aqueous dextrose and glycerol solutions are preferably employed as liquid excipients for injectable solutions.
  • Suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, mannitol, trehalose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the like.
  • the pharmaceutical composition can also contain minor amounts of wetting or emulsifying agents, pH buffering agents, like, for example, acetate, succinate, tris, carbonate, phosphate, HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid), MES (2-(N-morpholino)ethanesulfonic acid), or can contain detergents, like Tween, poloxamers, poloxamines, CHAPS, Igepal, or amino acids like, for example, glycine, lysine, or histidine.
  • pH buffering agents like, for example, acetate, succinate, tris, carbonate, phosphate, HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid), MES (2-(N-morpholino)ethanesulfonic acid)
  • detergents like Tween, poloxamers, poloxamines, CHAPS, Igepal, or amino acids like, for example,
  • the pharmaceutical composition can be formulated as a suppository, with traditional binders and excipients such as triglycerides.
  • Oral formulation can include standard excipients such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, etc.
  • Such compositions will contain a therapeutically effective amount of the drug or biologically active moiety, together with a suitable amount of excipient so as to provide the form for proper administration to the patient.
  • the formulation should suit the mode of administration.
  • reagent means a chemical compound which comprises at least one functional group for reaction with the functional group of another chemical compound or drug. It is understood that a drug comprising a functional group (such as a primary or secondary amine or hydroxyl functional group) is also a reagent.
  • moiety means a part of a molecule, which lacks one or more atom(s) compared to the corresponding reagent. If, for example, a reagent of the formula “H—X—H” reacts with another reagent and becomes part of the reaction product, the corresponding moiety of the reaction product has the structure “H—X—” or “—X—”, whereas each “—” indicates attachment to another moiety. Accordingly, a biologically active moiety is released from a prodrug as a drug.
  • sequence or chemical structure of a group of atoms is provided which group of atoms is attached to two moieties or is interrupting a moiety, said sequence or chemical structure can be attached to the two moieties in either orientation, unless explicitly stated otherwise.
  • a moiety “—C(O)N(R)—” can be attached to two moieties or interrupting a moiety either as “—C(O)N(R)—” or as “—N(R)C(O)—”.
  • a moiety “—C(O)N(R)—” can be attached to two moieties or interrupting a moiety either as “—C(O)N(R)—” or as “—N(R)C(O)—”.
  • a moiety “—C(O)N(R)—” can be attached to two moieties or interrupting a moiety either as “—C(O)N(R)—” or as “—N(R)C(O)—”.
  • the term “functional group” means a group of atoms which can react with other groups of atoms.
  • Functional groups include but are not limited to the following groups: carboxylic acid (—(C ⁇ O)OH), primary or secondary amine (—NH 2 , —NH—), maleimide, thiol (—SH), sulfonic acid (—(O ⁇ S ⁇ O)OH), carbonate, carbamate (—O(C ⁇ O)N ⁇ ), hydroxyl (—OH), aldehyde (—(C ⁇ O)H), ketone (—(C ⁇ O)—), hydrazine (>N—N ⁇ ), isocyanate, isothiocyanate, phosphoric acid (—O(P ⁇ O)OHOH), phosphonic acid (—O(P ⁇ O)OHH), haloacetyl, alkyl halide, acryloyl, aryl fluoride, hydroxylamine, disulfide, sulfonamides, sulfuric acid, vinyl
  • the invention also comprises their corresponding pharmaceutically or toxicologically acceptable salts, in particular their pharmaceutically utilizable salts.
  • the prodrugs of the present invention comprising acidic groups can be used according to the invention, for example, as alkali metal salts, alkaline earth metal salts or as ammonium salts. More precise examples of such salts include sodium salts, potassium salts, calcium salts, magnesium salts or salts with ammonia or organic amines such as, for example, ethylamine, ethanolamine, triethanolamine or amino acids.
  • Prodrugs of the present invention comprising one or more basic groups, i.e.
  • acids which can be protonated, can be present and can be used according to the invention in the form of their addition salts with inorganic or organic acids.
  • suitable acids include hydrogen chloride, hydrogen bromide, phosphoric acid, sulfuric acid, nitric acid, methanesulfonic acid, p-toluenesulfonic acid, naphthalenedisulfonic acids, oxalic acid, acetic acid, tartaric acid, lactic acid, salicylic acid, benzoic acid, formic acid, propionic acid, pivalic acid, diethylacetic acid, malonic acid, succinic acid, pimelic acid, fumaric acid, maleic acid, malic acid, sulfaminic acid, phenylpropionic acid, gluconic acid, ascorbic acid, isonicotinic acid, citric acid, adipic acid, and other acids known to the person skilled in the art.
  • the invention also includes, in addition to the salt forms mentioned, inner salts or betaines (zwitterions).
  • the respective salts can be obtained by customary methods which are known to the person skilled in the art like, for example by contacting these prodrugs with an organic or inorganic acid or base in a solvent or dispersant, or by anion exchange or cation exchange with other salts.
  • the present invention also includes all salts of the prodrugs of the present invention which, owing to low physiological compatibility, are not directly suitable for use in pharmaceuticals but which can be used, for example, as intermediates for chemical reactions or for the preparation of pharmaceutically acceptable salts.
  • pharmaceutically acceptable means a substance that does cause harm when administered to a patient and preferably means approved by a regulatory agency, such as the EMA (Europe) and/or the FDA (US) and/or any other national regulatory agency for use in animals, preferably for use in humans.
  • a regulatory agency such as the EMA (Europe) and/or the FDA (US) and/or any other national regulatory agency for use in animals, preferably for use in humans.
  • the term “about” in combination with a numerical value is used to indicate a range ranging from and including the numerical value plus and minus no more than 10% of said numerical value, more preferably no more than 8% of said numerical value, even more preferably no more than 5% of said numerical value and most preferably no more than 2% of said numerical value.
  • the phrase “about 200” is used to mean a range ranging from and including 200+/ ⁇ 10%, i.e. ranging from and including 180 to 220; preferably 200 +/ ⁇ 8%, i.e. ranging from and including 184 to 216; even more preferably ranging from and including 200+/ ⁇ 5%, i.e.
  • polymer means a molecule comprising repeating structural units, i.e. the monomers, connected by chemical bonds in a linear, circular, branched, crosslinked or dendrimeric way or a combination thereof, which may be of synthetic or biological origin or a combination of both. It is understood that a polymer may also comprise one or more other chemical group(s) and/or moiety/moieties, such as, for example, one or more functional group(s).
  • a soluble polymer has a molecular weight of at least 0.5 kDa, e.g.
  • the polymer is soluble, it preferable has a molecular weight of at most 1000 kDa, such as at most 750 kDa, such as at most 500 kDa, such as at most 300 kDa, such as at most 200 kDa, such as at most 100 kDa.
  • insoluble polymers such as hydrogels, no meaningful molecular weight ranges can be provided.
  • a protein is a polymer in which the amino acids are the repeating structural units, even though the side chains of each amino acid may be different.
  • polymeric means a reagent or a moiety comprising one or more polymer(s) or polymer moiety/moieties.
  • a polymeric reagent or moiety may optionally also comprise one or more other moiety/moieties, which are preferably selected from the group consisting of:
  • the molecular weight ranges, molecular weights, ranges of numbers of monomers in a polymer and numbers of monomers in a polymer as used herein refer to the number average molecular weight and number average of monomers, i.e. to the arithmetic mean of the molecular weight of the polymer or polymeric moiety and the arithmetic mean of the number of monomers of the polymer or polymeric moiety.
  • any integer given for “x” therefore corresponds to the arithmetic mean number of monomers.
  • Any range of integers given for “x” provides the range of integers in which the arithmetic mean numbers of monomers lies.
  • An integer for “x” given as “about x” means that the arithmetic mean numbers of monomers lies in a range of integers of x+/ ⁇ 10%, preferably x+/ ⁇ 8%, more preferably x +/ ⁇ 5% and most preferably x+/ ⁇ 2%.
  • number average molecular weight means the ordinary arithmetic mean of the molecular weights of the individual polymers.
  • water-soluble with reference to a carrier means that when such carrier is part of the PTH prodrug of the present invention at least 1 g of the PTH prodrug comprising such water-soluble carrier can be dissolved in one liter of water at 20° C. to form a homogeneous solution.
  • water-insoluble with reference to a carrier means that when such carrier is part of the PTH prodrug of the present invention less than 1 g of the PTH prodrug comprising such water-insoluble carrier can be dissolved in one liter of water at 20° C. to form a homogeneous solution.
  • hydrogel means a hydrophilic or amphiphilic polymeric network composed of homopolymers or copolymers, which is insoluble due to the presence of hydrogen bonds, ionic interactions and/or covalent chemical crosslinks.
  • the crosslinks provide the network structure and physical integrity.
  • thermogelling means a compound that is a liquid or a low viscosity solution having a viscosity of less than 500 cps at 25° C. at a shear rate of about 0.1/second at a low temperature, which low temperature ranges between about 0° C. to about 10° C., but which is a higher viscosity compound of less than 10000 cps at 25° C. at a shear rate of about 0.1/second at a higher temperature, which higher temperature ranges between about 30° C. to about 40° C., such as at about 37° C.
  • a PEG-based moiety or reagent in relation to a moiety or reagent means that said moiety or reagent comprises PEG.
  • a PEG-based moiety or reagent comprises at least 10% (w/w) PEG, such as at least 20% (w/w) PEG, such as at least 30% (w/w) PEG, such as at least 40% (w/w) PEG, such as at least 50% (w/w), such as at least 60 (w/w) PEG, such as at least 70% (w/w) PEG, such as at least 80% (w/w) PEG, such as at least 90% (w/w) PEG, such as at least 95%.
  • the remaining weight percentage of the PEG-based moiety or reagent are other moieties preferably selected from the following moieties and linkages:
  • PEG-based comprising at least X % PEG in relation to a moiety or reagent means that said moiety or reagent comprises at least X % (w/w) ethylene glycol units (—CH 2 CH 2 O—), wherein the ethylene glycol units may be arranged blockwise, alternating or may be randomly distributed within the moiety or reagent and preferably all ethylene glycol units of said moiety or reagent are present in one block; the remaining weight percentage of the PEG-based moiety or reagent are other moieties preferably selected from the following moieties and linkages:
  • hyaluronic acid-based comprising at least X % hyaluronic acid is used accordingly.
  • substituted means that one or more —H atom(s) of a molecule or moiety are replaced by a different atom or a group of atoms, which are referred to as “substituent”.
  • the one or more further optional substituents are independently of each other selected from the group consisting of halogen, —CN, —COOR x1 , —OR x1 , —C(O)R x1 , —C(O)N(R x1 R x1a ), —S(O) 2 N(R x1 R x1a ), —S(O)N(R x1 R x1a ), —S(O) 2 R x1 , —S(O)R x1 , —N(R x1 )S(O) 2 N(R x1a R x1b ), —SR x1 , —N(R x1 R x1a ), —NO 2 , —OC(O)R x1 , —N(R x1 )C(O)R x1a , —N(R x1 )S(O) 2 R x1
  • —R x1 , —R x1a , —R x1b are independently of each other selected from the group consisting of —H, -T 0 , C 1-50 alkyl, C 2-50 alkenyl, and C 2-50 alkynyl; wherein -T 0 , C 1-50 alkyl, C 2-50 alkenyl, and C 2-50 alkynyl are optionally substituted with one or more —R x2 , which are the same or different and wherein C 1-50 alkyl, C 2-50 alkenyl, and C 2-50 alkynyl are optionally interrupted by one or more groups selected from the group consisting of -T 0 -, —C(O)O—, —O—, —C(O)—, —C(O)N(R x3 )—, —S(O) 2 N(R x3 )—, —S(O)N(R x3 )—; —S(
  • the one or more further optional substituents are independently of each other selected from the group consisting of halogen, —CN, —COOR x1 , —OR x1 , —C(O)R x1 , —C(O)N(R x1 R x1a ), —S(O) 2 N(R x1 R x1a ), —S(O)N(R x1 R x1a ), —S(O) 2 R x1 , —S(O)R x1 , —N(R x1 )S(O) 2 N(R x1a R x1b ), —SR x1 , —N(R x1 R x1a ), —NO 2 , —OC(O)R x1 , —N(R x1 )C(O)R x1a , —N(R x1 )S(O) 2 R x1
  • each —R x1 , —R x1a , —R x1b , —R x3 , —R x3a is independently selected from the group consisting of —H, halogen, C 1-6 alkyl, C 2-6 alkenyl, and C 2-6 alkynyl; each T 0 is independently selected from the group consisting of phenyl, naphthyl, indenyl, indanyl, tetralinyl, C 3-10 cycloalkyl, 3- to 10-membered heterocyclyl, and 8- to 11-membered heterobicyclyl; wherein each T 0 is independently optionally substituted with one or more —R x2 , which are the same or different; each —R x2 is independently selected from the group consisting of halogen, —CN, oxo ( ⁇ O), —COOR x4 , —OR x4 , —C(O)R x4
  • the one or more further optional substituents are independently of each other selected from the group consisting of halogen, —CN, —COOR x1 , —OR x1 , —C(O)R x1 , —C(O)N(R x1 R x1a ), —S(O) 2 N(R x1 R x1a ), —S(O)N(R x1 R x1a ), —S(O) 2 R x1 , —S(O)R x1 , —N(R x1 )S(O) 2 N(R x1a R x1b ), —SR x1 , —N(R x1 R x1a ), —NO 2 , —OC(O)R x1 , —N(R x1 )C(O)R x1a , —N(R x1 )S(O) 2 R x
  • each —R x1 , —R x1a , —R x1b , —R x2 , R x3 , —R x3a is independently selected from the group consisting of —H, halogen, C 1-6 alkyl, C 2-6 alkenyl, and C 2-6 alkynyl; each T 0 is independently selected from the group consisting of phenyl, naphthyl, indenyl, indanyl, tetralinyl, C 3-10 cycloalkyl, 3- to 10-membered heterocyclyl, and 8- to 11-membered heterobicyclyl; wherein each T 0 is independently optionally substituted with one or more —R x2 , which are the same or different.
  • a maximum of 6 —H atoms of an optionally substituted molecule are independently replaced by a substituent, e.g. 5 —H atoms are independently replaced by a substituent, 4 —H atoms are independently replaced by a substituent, 3 —H atoms are independently replaced by a substituent, 2 —H atoms are independently replaced by a substituent, or 1 —H atom is replaced by a substituent.
  • interrupted means that a moiety is inserted between two carbon atoms or—if the insertion is at one of the moiety's ends—between a carbon or heteroatom and a hydrogen atom, preferably between a carbon and a hydrogen atom.
  • spacer refers to any moiety that is suitable to connect two moieties.
  • a spacer is selected from the group consisting of -T-, —C(O)O—, —O—, —C(O)—, —C(O)N(R y1 )—, —S(O) 2 N(R y1 )—, —S(O)N(R y1 )—, —S(O) 2 —, —S(O)—, —N(R y1 )S(O) 2 N(R y1a )—, —S—, —N(R y1 )—, —OC(OR y1 )(R y1a )—, —N(R y1 )C(O)N(R y1a )—, —OC(O)N(R y1 )—, C 1-50 alkyl, C 2-50 alkenyl, and C 2-50
  • —R y1 and —R y1a are independently of each other selected from the group consisting of —H, -T, C 1-50 alkyl, C 2-50 alkenyl, and C 2-50 alkynyl; wherein -T, C 1-50 alkyl, C 2-50 alkenyl, and C 2-50 alkynyl are optionally substituted with one or more —R y2 , which are the same or different, and wherein C 1-50 alkyl, C 2-50 alkenyl, and C 2-50 alkynyl are optionally interrupted by one or more groups selected from the group consisting of -T-, —C(O)O—, —O—, —C(O)—, —C(O)N(R y4 )—, —S(O) 2 N(R y4 )—, —S(O)N(R y4 )—, —S(O) 2 —, —S(O)—, —N(
  • each T is independently selected from the group consisting of phenyl, naphthyl, indenyl, indanyl, tetralinyl, C 3-10 cycloalkyl, 3- to 10-membered heterocyclyl, 8- to 11-membered heterobicyclyl, 8- to 30-membered carbopolycyclyl, and 8- to 30-membered heteropolycyclyl; wherein each T is independently optionally substituted with one or more —R y2 , which are the same or different;
  • each —R y2 is independently selected from the group consisting of halogen, —CN, oxo ( ⁇ O), —COOR y5 , —OR y5 , —C(O)R y5 , —C(O)N(R y5 R y5a ), —S(O) 2 N(R y5 R y5a ), —S(O)N(R y5 R y5a ), —S(O) 2 R y5 , —S(O)R y5 , —N(R y5 )S(O) 2 N(R y5a R y5b ), —SR y5 , —N(R y5 R y5a ), —NO 2 , —OC(O)R y5 , —N(R y5 )C(O)R y5a , —N(R y5 )S(O) 2 R y5
  • each —R y3 , —R y3a , —R y4 , —R y4a , —R y5 , —R y5a and —R y5b is independently selected from the group consisting of —H, and C 1-6 alkyl, wherein C 1-6 alkyl is optionally substituted with one or more halogen, which are the same or different.
  • the spacer is selected from -T-, —C(O)O—, —O—, —C(O)—, —C(O)N(R y1 )—, —S(O) 2 N(R y1 )—, —S(O)N(R y1 )—, —S(O) 2 —, —S(O)—, —N(R y1 )S(O) 2 N(R y1a )—, —S—, —N(R y1 )—, —OC(OR y1 )(R y1a )—, —N(R y1 )C(O)N(R y1a )—, —OC(O)N(R y1 )—, C 1-50 alkyl, C 2-50 alkenyl, and C 2-50 alkynyl; wherein -T-, C 1-20 alkyl, C 2-20 alkenyl,
  • —R y1 and —R y1a are independently of each other selected from the group consisting of —H, -T, C 1-10 alkyl, C 2-10 alkenyl, and C 2-10 alkynyl; wherein -T, C 1-10 alkyl, C 2-10 alkenyl, and C 2-10 alkynyl are optionally substituted with one or more —R y2 , which are the same or different, and wherein C 1-10 alkyl, C 2-10 alkenyl, and C 2-10 alkynyl are optionally interrupted by one or more groups selected from the group consisting of -T-, —C(O)O—, —O—, —C(O)—, —C(O)N(R y4 )—, —S(O) 2 N(R y4 )—, —S(O)N(R y4 )—, —S(O) 2 —, —S(O)—, —N(
  • each T is independently selected from the group consisting of phenyl, naphthyl, indenyl, indanyl, tetralinyl, C 3-10 cycloalkyl, 3- to 10-membered heterocyclyl, 8- to 11-membered heterobicyclyl, 8- to 30-membered carbopolycyclyl, and 8- to 30-membered heteropolycyclyl; wherein each T is independently optionally substituted with one or more —R y2 , which are the same or different; —R y2 is selected from the group consisting of halogen, —CN, oxo ( ⁇ O), —COOR y5 , —OR y5 , —C(O)R y5 , —C(O)N(R y5 R y5a ), —S(O) 2 N(R y5 R y5a ), —S(O)N(R y5 R y5a ), —
  • the spacer is selected from the group consisting of -T-, —C(O)O—, —O—, —C(O)—, —C(O)N(R y1 )—, —S(O) 2 N(R y1 )—, —S(O)N(R y1 )—, —S(O) 2 —, —S(O)—, —N(R y1 )S(O) 2 N(R y1a )—, —S—, —N(R y1 )—, —OC(OR y1 )(R y1a )—, —N(R y1 )C(O)N(R y1a )—, —OC(O)N(R y1 )—, C 1-50 alkyl, C 2-50 alkenyl, and C 2-50 alkynyl; wherein -T-, C 1-50 alkyl, C 2-50 alkeny
  • —R y1 and —R y1a are independently selected from the group consisting of —H, -T, C 1-10 alkyl, C 2-10 alkenyl, and C 2-10 alkynyl; each T is independently selected from the group consisting of phenyl, naphthyl, indenyl, indanyl, tetralinyl, C 3-10 cycloalkyl, 3- to 10-membered heterocyclyl, 8- to 11-membered heterobicyclyl, 8- to 30-membered carbopolycyclyl, and 8- to 30-membered heteropolycyclyl; each —R y2 is independently selected from the group consisting of halogen, and C 1-6 alkyl; and each —R y3 , —R y3a , —R y4 , —R y4a , —R y5 , —R y5a and —R y5b is independently of each other
  • C 1-4 alkyl alone or in combination means a straight-chain or branched alkyl moiety having 1 to 4 carbon atoms. If present at the end of a molecule, examples of straight-chain or branched C 1-4 alkyl are methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl and tert-butyl.
  • C 1-4 alkyl groups are —CH 2 —, —CH 2 —CH 2 —, —CH(CH 3 )—, —CH 2 —CH 2 —CH 2 —, —CH(C 2 H 5 )—, —C(CH 3 ) 2 —.
  • Each hydrogen of a C 1-4 alkyl carbon may optionally be replaced by a substituent as defined above.
  • a C 1-4 alkyl may be interrupted by one or more moieties as defined below.
  • C 1-6 alkyl alone or in combination means a straight-chain or branched alkyl moiety having 1 to 6 carbon atoms. If present at the end of a molecule, examples of straight-chain and branched C 1-6 alkyl groups are methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, 2-methylbutyl, 2,2-dimethylpropyl, n-hexyl, 2-methylpentyl, 3-methylpentyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl and 3,3-dimethylpropyl.
  • C 1-6 alkyl groups are —CH 2 —, —CH 2 —CH 2 —, —CH(CH 3 )—, —CH 2 —CH 2 —CH 2 —, —CH(C 2 H 5 )— and —C(CH 3 ) 2 —.
  • Each hydrogen atom of a C 1-6 carbon may optionally be replaced by a substituent as defined above.
  • a C 1-6 alkyl may be interrupted by one or more moieties as defined below.
  • C 1-10 alkyl means an alkyl chain having 1 to 10, 1 to 20 or 1 to 50 carbon atoms, respectively, wherein each hydrogen atom of the C 1-10 , C 1-20 or C 1-50 carbon may optionally be replaced by a substituent as defined above.
  • a C 1-10 or C 1-50 alkyl may be interrupted by one or more moieties as defined below.
  • C 2-6 alkenyl alone or in combination means a straight-chain or branched hydrocarbon moiety comprising at least one carbon-carbon double bond having 2 to 6 carbon atoms. If present at the end of a molecule, examples are —CH ⁇ CH 2 , —CH ⁇ CH—CH 3 , —CH 2 —CH ⁇ CH 2 , —CH ⁇ CHCH 2 —CH 3 and —CH ⁇ CH—CH ⁇ CH 2 . When two moieties of a molecule are linked by the C 2-6 alkenyl group, then an example for such C 2-6 alkenyl is —CH ⁇ CH—.
  • Each hydrogen atom of a C 2-6 alkenyl moiety may optionally be replaced by a substituent as defined above.
  • a C 2-6 alkenyl may be interrupted by one or more moieties as defined below.
  • C 2-10 alkenyl means a straight-chain or branched hydrocarbon moiety comprising at least one carbon-carbon double bond having 2 to 10, 2 to 20 or 2 to 50 carbon atoms.
  • Each hydrogen atom of a C 2-10 alkenyl, C 2-20 alkenyl or C 2-50 alkenyl group may optionally be replaced by a substituent as defined above.
  • a C 2-10 alkenyl, C 2-20 alkenyl or C 2-50 alkenyl may be interrupted by one or more moieties as defined below.
  • C 2-6 alkynyl alone or in combination means straight-chain or branched hydrocarbon moiety comprising at least one carbon-carbon triple bond having 2 to 6 carbon atoms. If present at the end of a molecule, examples are —C ⁇ CH, —CH 2 —C ⁇ CH, CH 2 —CH 2 —C ⁇ CH and CH 2 —C ⁇ C—CH 3 . When two moieties of a molecule are linked by the alkynyl group, then an example is —C ⁇ C—. Each hydrogen atom of a C 2-6 alkynyl group may optionally be replaced by a substituent as defined above. Optionally, one or more double bond(s) may occur. Optionally, a C 2-6 alkynyl may be interrupted by one or more moieties as defined below.
  • C 2-10 alkynyl C 2-20 alkynyl
  • C 2-50 alkynyl alone or in combination means a straight-chain or branched hydrocarbon moiety comprising at least one carbon-carbon triple bond having 2 to 10, 2 to 20 or 2 to 50 carbon atoms, respectively.
  • Each hydrogen atom of a C 2-10 alkynyl, C 2-20 alkynyl or C 2-50 alkynyl group may optionally be replaced by a substituent as defined above.
  • one or more double bond(s) may occur.
  • a C 2-10 alkynyl, C 2-20 alkynyl or C 2-50 alkynyl may be interrupted by one or more moieties as defined below.
  • a C 1-4 alkyl, C 1-6 alkyl, C 1-10 alkyl, C 1-20 alkyl, C 1-50 alkyl, C 2-6 alkenyl, C 2-10 alkenyl, C 2-20 alkenyl, C 2-50 alkenyl, C 2-6 alkynyl, C 2-10 alkynyl, C 2-20 alkenyl or C 2-50 alkynyl may optionally be interrupted by one or more moieties which are preferably selected from the group consisting of
  • C 3-10 cycloalkyl means a cyclic alkyl chain having 3 to 10 carbon atoms, which may be saturated or unsaturated, e.g. cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohexenyl, cycloheptyl, cyclooctyl, cyclononyl or cyclodecyl.
  • Each hydrogen atom of a C 3-10 cycloalkyl carbon may be replaced by a substituent as defined above.
  • the term “C 3-10 cycloalkyl” also includes bridged bicycles like norbornane or norbornene.
  • 8- to 30-membered carbopolycyclyl or “8- to 30-membered carbopolycycle” means a cyclic moiety of two or more rings with 8 to 30 ring atoms, where two neighboring rings share at least one ring atom and that may contain up to the maximum number of double bonds (aromatic or non-aromatic ring which is fully, partially or un-saturated).
  • a 8- to 30-membered carbopolycyclyl means a cyclic moiety of two, three, four or five rings, more preferably of two, three or four rings.
  • the term “3- to 10-membered heterocyclyl” or “3- to 10-membered heterocycle” means a ring with 3, 4, 5, 6, 7, 8, 9 or 10 ring atoms that may contain up to the maximum number of double bonds (aromatic or non-aromatic ring which is fully, partially or un-saturated) wherein at least one ring atom up to 4 ring atoms are replaced by a heteroatom selected from the group consisting of sulfur (including —S(O)—, —S(O) 2 —), oxygen and nitrogen (including ⁇ N(O)—) and wherein the ring is linked to the rest of the molecule via a carbon or nitrogen atom.
  • 3- to 10-membered heterocycles include but are not limited to aziridine, oxirane, thiirane, azirine, oxirene, thiirene, azetidine, oxetane, thietane, furan, thiophene, pyrrole, pyrroline, imidazole, imidazoline, pyrazole, pyrazoline, oxazole, oxazoline, isoxazole, isoxazoline, thiazole, thiazoline, isothiazole, isothiazoline, thiadiazole, thiadiazoline, tetrahydrofuran, tetrahydrothiophene, pyrrolidine, imidazolidine, pyrazolidine, oxazolidine, isoxazolidine, thiazolidine, isothiazolidine, thiadiazolidine, sulfolane, pyran, dihydropyran, tetra
  • the term “8- to 11-membered heterobicyclyl” or “8- to 11-membered heterobicycle” means a heterocyclic moiety of two rings with 8 to 11 ring atoms, where at least one ring atom is shared by both rings and that may contain up to the maximum number of double bonds (aromatic or non-aromatic ring which is fully, partially or un-saturated) wherein at least one ring atom up to 6 ring atoms are replaced by a heteroatom selected from the group consisting of sulfur (including —S(O)—, —S(O) 2 —), oxygen and nitrogen (including ⁇ N(O)—) and wherein the ring is linked to the rest of the molecule via a carbon or nitrogen atom.
  • Examples for an 8- to 11-membered heterobicycle are indole, indoline, benzofuran, benzothiophene, benzoxazole, benzisoxazole, benzothiazole, benzisothiazole, benzimidazole, benzimidazoline, quinoline, quinazoline, dihydroquinazoline, quinoline, dihydroquinoline, tetrahydroquinoline, decahydroquinoline, isoquinoline, decahydroisoquinoline, tetrahydroisoquinoline, dihydroisoquinoline, benzazepine, purine and pteridine.
  • 8- to 11-membered heterobicycle also includes spiro structures of two rings like 1,4-dioxa-8-azaspiro[4.5]decane or bridged heterocycles like 8-aza-bicyclo[3.2.1]octane.
  • Each hydrogen atom of an 8- to 11-membered heterobicyclyl or 8- to 11-membered heterobicycle carbon may be replaced by a substituent as defined below.
  • the term “8- to 30-membered heteropolycyclyl” or “8- to 30-membered heteropolycycle” means a heterocyclic moiety of more than two rings with 8 to 30 ring atoms, preferably of three, four or five rings, where two neighboring rings share at least one ring atom and that may contain up to the maximum number of double bonds (aromatic or non-aromatic ring which is fully, partially or unsaturated), wherein at least one ring atom up to 10 ring atoms are replaced by a heteroatom selected from the group of sulfur (including —S(O)—, —S(O) 2 —), oxygen and nitrogen (including ⁇ N(O)—) and wherein the ring is linked to the rest of a molecule via a carbon or nitrogen atom.
  • R is C 3-10 cycloalkyl or 3- to 10-membered heterocyclyl.
  • R x and R y form the following structure:
  • terminal alkyne means a moiety
  • halogen means fluoro, chloro, bromo or iodo. It is generally preferred that halogen is fluoro or chloro.
  • the present invention relates to a PTH prodrug or a pharmaceutically acceptable salt thereof comprising a conjugate D-L, wherein
  • -D has the sequence of SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:107, SEQ ID NO:108, SEQ ID NO:109, SEQ ID NO:110, SEQ ID NO:111, SEQ ID NO:112, SEQ ID NO:113, SEQ ID NO:114 or SEQ ID NO:115. More preferably -D has the sequence of SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:110, SEQ ID NO:111 or SEQ ID NO: 112.
  • -D has the sequence of SEQ ID NO:50.
  • -D has the sequence of SEQ ID NO:52.
  • -D has the sequence of SEQ ID NO: 110.
  • -D has the sequence of SEQ ID NO: 111.
  • -D has the sequence of SEQ ID NO: 112.
  • Most preferably -D has the sequence of SEQ ID NO:51.
  • the moiety -L 1 - is either conjugated to a functional group of the side chain of an amino acid residue of -D, to the N-terminal amine functional group or to the C-terminal carboxyl functional group of -D or to a nitrogen atom in the backbone polypeptide chain of -D.
  • Attachment to either the N-terminus or C-terminus can either be directly through the corresponding amine or carboxyl functional group, respectively, or indirectly wherein a spacer moiety is first conjugated to the amine or carboxyl functional group to which spacer moiety -L 1 - is conjugated.
  • the amino acid residue of PTH to which -L 1 - is conjugated comprises a functional group selected from the group consisting carboxylic acid, primary and secondary amine, maleimide, thiol, sulfonic acid, carbonate, carbamate, hydroxyl, aldehyde, ketone, hydrazine, isocyanate, isothiocyanate, phosphoric acid, phosphonic acid, haloacetyl, alkyl halide, acryloyl, aryl fluoride, hydroxylamine, sulfate, disulfide, vinyl sulfone, vinyl ketone, diazoalkane, oxirane, guanidine and aziridine.
  • a functional group selected from the group consisting carboxylic acid, primary and secondary amine, maleimide, thiol, sulfonic acid, carbonate, carbamate, hydroxyl, aldehyde, ketone, hydrazine, isocyanate, iso
  • the amino acid residue of PTH to which -L 1 - is conjugated comprises a functional group selected from the group consisting hydroxyl, primary and secondary amine and guanidine. Even more preferably the amino acid residue of PTH to which -L 1 - is conjugated comprises a primary or secondary amine functional group. Most preferably the amino acid residue of PTH to which -L 1 - is conjugated comprises a primary amine functional group.
  • the moiety -L 1 - is conjugated to a functional group of the side chain of an amino acid residue of PTH said amino acid residue is selected from the group consisting of proteinogenic amino acid residues and non-proteinogenic amino acid residues.
  • -L 1 - is conjugated to a functional group of the side chain of a non-proteinogenic amino acid residue of PTH. It is understood that such non-proteinogenic amino acid is not found in the sequence of native PTH or fragments thereof and that it may only be present in variants, analogs, orthologs, homologs and derivatives of PTH.
  • -L 1 - is conjugated to a functional group of the side chain of a proteinogenic amino acid residue of PTH.
  • said amino acid is selected from the group consisting of histidine, lysine, tryptophan, serine, threonine, tyrosine, aspartic acid, glutamic acid and arginine.
  • said amino acid is selected from the group consisting of lysine, aspartic acid, arginine and serine.
  • said amino acid is selected from the group consisting of lysine, arginine and serine.
  • -L 1 - is conjugated to a functional group of the side chain of a histidine of PTH.
  • -L 1 - is conjugated to a functional group of the side chain of a lysine of PTH.
  • -L 1 - is conjugated to a functional group of the side chain of a tryptophan of PTH.
  • -L 1 - is conjugated to a functional group of the side chain of a serine of PTH.
  • -L 1 - is conjugated to a functional group of the side chain of a threonine of PTH.
  • -L 1 - is conjugated to a functional group of the side chain of a tyrosine of PTH.
  • -L 1 - is conjugated to a functional group of the side chain of a aspartic acid of PTH.
  • -L 1 - is conjugated to a functional group of the side chain of a glutamic acid of PTH.
  • -L 1 - is conjugated to a functional group of the side chain of an arginine of PTH.
  • -L 1 - is conjugated to the N-terminal amine functional group of PTH, either directly through the corresponding amine functional group or indirectly wherein a spacer moiety is first conjugated to the amine functional group to which spacer moiety -L 1 - is conjugated.
  • -L 1 - is directly conjugated to the N-terminal amine functional group of PTH, preferably PTH 1-34, i.e. PTH having the sequence of SEQ ID NO:51.
  • N-terminal attachment of -L 1 - is advantageous, i.e. attachment of -L 1 - to the N-terminus of PTH, because it was found that such attachment site protects the N-terminus which is crucial for PTH activity.
  • the main metabolite formed from a PTH prodrug with N-terminal attachment of -L 1 - is PTH 1-33, i.e. the 33 N-terminal amino acids of PTH, which metabolite is known to be active.
  • -L 1 - is conjugated to the C-terminal functional group of PTH, either directly through the corresponding carboxyl functional group or indirectly wherein a spacer moiety is first conjugated to the carboxyl functional group to which spacer moiety -L 1 - is conjugated.
  • L- is directly conjugated to the N-terminal amine functional group of PTH.
  • the moiety -L 1 - can be connected to -D through any type of linkage, provided that it is reversible.
  • -L 1 - is connected to -D through a linkage selected from the group consisting of amide, ester, carbamate, acetal, aminal, imine, oxime, hydrazone, disulfide and acylguanidine.
  • -L 1 - is connected to -D through a linkage selected from the group consisting of amide, ester, carbamate and acylguanidin. It is understood that some of these linkages per se are not reversible, but that in the present invention neighboring groups comprised in -L 1 - render these linkage reversible.
  • -L 1 - is connected to -D through an ester linkage.
  • -L 1 - is connected to -D through a carbamate linkage.
  • -L 1 - is connected to -D through an acylguanidine.
  • -L 1 - is connected to -D through an amide linkage.
  • the moiety -L 1 - is a reversible prodrug linker from which the drug, i.e. PTH, is released in its free form, i.e. it is a traceless prodrug linker.
  • Suitable prodrug linkers are known in the art, such as for example the reversible prodrug linker moieties disclosed in WO 2005/099768 A2, WO 2006/136586 A2, WO 2011/089216 A1 and WO 2013/024053 A1, which are incorporated by reference herewith.
  • -L 1 - is a reversible prodrug linker as described in WO 2011/012722 A1, WO 2011/089214 A1, WO 2011/089215 A1, WO 2013/024052 A1 and WO 2013/160340 A1 which are incorporated by reference herewith.
  • a particularly preferred moiety -L 1 - is disclosed in WO 2009/095479 A2. Accordingly, in a preferred embodiment the moiety -L 1 - is of formula (II):
  • -L 1 - of formula (II) is substituted with one moiety -L 2 -Z or -L 2 -Z′.
  • Suitable 3- to 10-membered heterocycles formed by —R 3 /—R 3a of formula (II) together with the nitrogen atom to which they are attached are the following:
  • —R 1 or —R 1a of formula (II) is substituted with -L 2 -Z or -L 2 -Z′.
  • —R 2 or —R 2a of formula (II) is substituted with -L 2 -Z or -L 2 -Z′.
  • —R 3 or —R 3a of formula (II) is substituted with -L 2 -Z or -L 2 -Z′.
  • —R 4 of formula (II) is substituted with -L 2 -Z or -L 2 -Z′.
  • —R 5 or —R 5a of formula (II) is substituted with -L 2 -Z or -L 2 -Z′.
  • —R 6 of formula (II) is substituted with -L 2 -Z or -L 2 -Z′.
  • —R 7 or —R 7a of formula (II) is substituted with -L 2 -Z or -L 2 -Z′.
  • —R 8 or —R 8a of formula (II) is substituted with -L 2 -Z or -L 2 -Z′.
  • —R 9 or —R 9a of formula (II) is substituted with -L 2 -Z or -L 2 -Z′.
  • —R 10 is substituted with -L 2 -Z or -L 2 -Z′.
  • —R 11 is substituted with -L 2 -Z or -L 2 -Z′.
  • —X— of formula (II) is selected from the group consisting of —C(R 4 R 4a )—, —N(R 4 )— and —C(R 7 R 7a )—.
  • —X— of formula (II) is —C(R 4 R 4a )—.
  • —X— of formula (II) is —C(R 7 R 7a )—.
  • —R 7 of formula (II) is —NR 10 —(C ⁇ O)—R 11 .
  • —R 7a of formula (II) is selected from —H, methyl and ethyl. Most preferably —R 7a of formula (II) is —H.
  • —R 10 is selected from —H, methyl and ethyl. Most preferably —R 10 is methyl.
  • —R 11 is selected from —H, methyl and ethyl. Most preferably —R 11 is —H.
  • —R 11 is substituted with -L 2 -Z or -L 2 -Z′.
  • —X— of formula (II) is —N(R 4 )—.
  • —R 4 is selected from the group consisting of —H, methyl and ethyl.
  • —R 4 is —H.
  • X 1 of formula (II) is C.
  • ⁇ X 3 of formula (II) is ⁇ O.
  • —X 2 — of formula (II) is —C(R 8 R 8a )—.
  • —R 8 and —R 8a of formula (II) are independently selected from the group consisting of —H, methyl and ethyl. More preferably at least one of —R 8 and —R 8 of formula (II) is —H.
  • —R 1 and —R 1a of formula (II) are independently selected from the group consisting of —H, methyl and ethyl.
  • At least one of —R 1 and —R 1a of formula (II) is —H, more preferably both —R 1 and —R 1a of formula (II) are —H.
  • At least one of —R 1 and —R 1a of formula (II) is methyl, more preferably both —R 1 and —R 1a of formula (II) are methyl.
  • —R 2 and —R 2a of formula (II) are independently selected from the group consisting of —H, methyl and ethyl. More preferably, at least one of —R 2 and —R 2a of formula (II) is —H.
  • —R 3 and —R 3a of formula (II) are independently selected from the group consisting of —H, methyl, ethyl, propyl and butyl.
  • At least one of —R 3 and —R 3a of formula (II) is methyl, more preferably —R 3 of formula (II) is methyl and —R 3a of formula (II) is —H.
  • —R 3 and —R 3a of formula (II) are both —H.
  • -D is connected to -L 1 - through a nitrogen by forming an amide bond.
  • the moiety -L 1 - is of formula (IIa-i):
  • -L 1 - of formula (IIa-i) is substituted with one moiety -L 2 -Z or -L 2 -Z′.
  • —R 1 and —R 1a of formula (IIa-i) are independently selected from the group consisting of —H, methyl and ethyl. More preferably, at least one of —R 1 and —R 1a of formula (IIa-i) is —H. Even more preferably both —R 1 and —R 1a of formula (IIa-i) are —H.
  • —R 7 of formula (IIa-i) is —NR 10 —(C ⁇ O)—R 11 .
  • —R 7a of formula (II-i) is selected from —H, methyl and ethyl. Most preferably —R 7a of formula (II-i) is —H.
  • —R 10 of formula (IIa-i) is selected from —H, methyl and ethyl. Most preferably —R 10 of formula (IIa-i) is methyl.
  • —R 11 of formula (IIa-i) is selected from —H, methyl and ethyl. Most preferably —R 11 of formula (IIa-i) is —H.
  • —R 11 of formula (IIa-i) is substituted with -L 2 -Z or -L 2 -Z′.
  • —X 2 — of formula (IIa-i) is —C(R 8 R 8a )—.
  • —R 8 and —R 8a of formula (IIa-i) are independently selected from the group consisting of —H, methyl and ethyl. More preferably at least one of —R 8 and —R 8a of formula (IIa-i) is —H. Even more preferably both —R 8 and —R 8a of formula (IIa-i) are —H.
  • —R 2 and —R 2a of formula (IIa-i) are independently selected from the group consisting of —H, methyl and ethyl. More preferably, at least one of —R 2 and —R 2a of formula (IIa-i) is —H. Even more preferably both —R 2 and —R 2a of formula (IIa-i) are H.
  • —R 3 and —R 3a of formula (IIa-i) are independently selected from the group consisting of —H, methyl, ethyl, propyl and butyl. Even more preferably at least one of —R 3 and —R 3a of formula (IIa-i) is methyl.
  • —R 3 of formula (IIa-i) is —H and —R 3a of formula (IIa-i) is methyl.
  • -L 1 - of formula (IIa-ii) is substituted with one moiety -L 2 -Z or -L 2 -Z′.
  • —X 2 — of formula (IIa-ii) is —C(R 8 R 8a )—.
  • —R 8 and —R 8a of formula (IIa-ii) are independently selected from the group consisting of —H, methyl and ethyl. More preferably at least one of —R 8 and —R 8a of formula (IIa-ii) is —H. Even more preferably both —R 8 and —R 8a of formula (IIa-ii) are —H.
  • —R 3 and —R 3a of formula (IIa-ii) are independently selected from the group consisting of —H, methyl, ethyl, propyl and butyl. Even more preferably at least one of —R 3 and —R 3a of formula (IIa-ii) is methyl.
  • —R 3 of formula (IIa-ii) is —H and —R 3a of formula (IIa-ii) is methyl.
  • —R 10 of formula (IIa-ii) is selected from —H, methyl and ethyl. Most preferably —R 10 of formula (IIa-ii) is methyl.
  • —R 11 of formula (IIa-ii) is selected from —H, methyl and ethyl. Most preferably —R 11 of formula (IIa-ii) is —H.
  • —R 11 of formula (IIa-ii) is substituted with -L 2 -Z or -L 2 -Z′.
  • the moiety -L 1 - of formula (IIa-ii′) is not further substituted.
  • —X 2 — of formula (IIa-ii′) is —C(R 8 R 8a )—.
  • —R 8 and —R 8a of formula (IIa-ii′) are independently selected from the group consisting of —H, methyl and ethyl. More preferably at least one of —R 8 and —R 8a of formula (IIa-ii′) is —H. Even more preferably both —R 8 and —R 8a of formula (IIa-ii′) are —H.
  • —R 3 and —R 3a of formula (IIa-ii′) are independently selected from the group consisting of —H, methyl, ethyl, propyl and butyl. Even more preferably at least one of —R 3 and —R 3a of formula (IIa-ii′) is methyl.
  • —R 3 of formula (IIa-ii′) is —H and —R 3a of formula (IIa-ii′) is methyl.
  • —R 10 of formula (IIa-ii′) is selected from —H, methyl and ethyl. Most preferably —R 10 of formula (IIa-ii′) is methyl.
  • -L 1 - of formula (IIa-iii) is substituted with one moiety -L 2 -Z or -L 2 -Z′.
  • the moiety -L 1 - of formula (IIa-iii) is not further substituted.
  • the moiety -L 1 - of formula (IIa-iii′) is not further substituted.
  • -L 1 - of formula (IIb-i) is substituted with one moiety -L 2 -Z or -L 2 -Z′.
  • —R 1 and —R 1a of formula (IIb-i) are independently selected from the group consisting of —H, methyl and ethyl. More preferably, at least one of —R 1 and —R 1a of formula (IIb-i) is methyl. Even more preferably both —R 1 and —R 1a of formula (IIb-i) are methyl.
  • —R 4 of formula (IIb-i) is selected from the group consisting of —H, methyl and ethyl. More preferably, —R 4 of formula (IIb-i) is —H.
  • —X 2 — of formula (IIb-i) is —C(R 8 R 8a )—.
  • —R 8 and —R 8a of formula (IIb-i) are independently selected from the group consisting of —H, methyl and ethyl. More preferably at least one of —R 8 and —R 8a of formula (IIb-i) is —H. Even more preferably both —R 8 and —R a of formula (IIb-i) are —H.
  • —R 2 and —R 2a of formula (IIb-i) are independently selected from the group consisting of —H, methyl and ethyl. More preferably, at least one of —R 2 and —R 2a of formula (IIb-i) is —H. Even more preferably both —R 2 and —R 2a of formula (IIb-i) are H.
  • —R 3 and —R 3a of formula (IIb-i) are independently selected from the group consisting of —H, methyl, ethyl, propyl and butyl. Even more preferably at least one of —R 3 and —R 3a of formula (IIb-i) is —H. Even more preferably both —R 3 and —R 3a of formula (IIb-i) are —H.
  • -L 1 - of formula (IIb-ii) is substituted with one moiety -L 2 -Z or -L 2 -Z′.
  • —X 2 — of formula (IIb-ii) is —C(R 8 R 8a )—.
  • —R 8 and —R 8a of formula (IIb-ii) are independently selected from the group consisting of —H, methyl and ethyl. More preferably at least one of —R 8 and —R 8a of formula (IIb-ii) is —H. Even more preferably both —R 8 and —R 8a of formula (IIb-ii) are —H.
  • —R 2 and —R 2a of formula (IIb-ii) are independently selected from the group consisting of —H, methyl and ethyl. More preferably, at least one of —R 2 and —R 2a of formula (IIb-ii) is —H. Even more preferably both —R 2 and —R 2a of formula (IIb-ii) are H.
  • —R 3 and —R 3a of formula (IIb-ii) are independently selected from the group consisting of —H, methyl, ethyl, propyl and butyl. Even more preferably at least one of —R 3 and —R 3a of formula (IIb-ii) is —H. Even more preferably both —R 3 and —R 3a of formula (IIb-ii) are —H.
  • the moiety -L 1 - of formula (IIb-ii′) is not further substituted.
  • —X 2 — of formula (IIb-ii′) is —C(R 8 R 8a )—.
  • —R 8 and —R 8a of formula (IIb-ii′) are independently selected from the group consisting of —H, methyl and ethyl. More preferably at least one of —R 8 and —R 8a of formula (IIb-ii′) is —H. Even more preferably both —R 8 and —R 8a of formula (IIb-ii′) are —H.
  • —R 2 and —R 2a of formula (IIb-ii′) are independently selected from the group consisting of —H, methyl and ethyl. More preferably, at least one of —R 2 and —R 2a of formula (IIb-ii′) is —H. Even more preferably both —R 2 and —R 2a of formula (IIb-ii′) are H.
  • —R 3 and —R 3a of formula (IIb-ii′) are independently selected from the group consisting of —H, methyl, ethyl, propyl and butyl. Even more preferably at least one of —R 3 and —R 3a of formula (IIb-ii′) is —H. Even more preferably both —R 3 and —R 3a of formula (IIb-ii′) are —H.
  • -L 1 - of formula (IIb-iii) is substituted with one moiety -L 2 -Z or -L 2 -Z′.
  • the moiety -L 1 - of formula (IIb-iii) is not further substituted.
  • the moiety -L 1 - of formula (IIb-iii′) is not further substituted.
  • -L 1 - of formula (III) is substituted with one moiety -L 2 -Z or -L 2 -Z′.
  • alkyl as used herein includes linear, branched or cyclic saturated hydrocarbon groups of 1 to 8 carbons, or in some embodiments 1 to 6 or 1 to 4 carbon atoms.
  • alkoxy includes alkyl groups bonded to oxygen, including methoxy, ethoxy, isopropoxy, cyclopropoxy, cyclobutoxy, and similar.
  • alkenyl includes non-aromatic unsaturated hydrocarbons with carbon-carbon double bonds.
  • alkynyl includes non-aromatic unsaturated hydrocarbons with carbon-carbon triple bonds.
  • aryl includes aromatic hydrocarbon groups of 6 to 18 carbons, preferably 6 to 10 carbons, including groups such as phenyl, naphthyl, and anthracenyl.
  • heteroaryl includes aromatic rings comprising 3 to 15 carbons containing at least one N, O or S atom, preferably 3 to 7 carbons containing at least one N, O or S atom, including groups such as pyrrolyl, pyridyl, pyrimidinyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, quinolyl, indolyl, indenyl, and similar.
  • alkenyl, alkynyl, aryl or heteroaryl moieties may be coupled to the remainder of the molecule through an alkylene linkage.
  • the substituent will be referred to as alkenylalkyl, alkynylalkyl, arylalkyl or heteroarylalkyl, indicating that an alkylene moiety is between the alkenyl, alkynyl, aryl or heteroaryl moiety and the molecule to which the alkenyl, alkynyl, aryl or heteroaryl is coupled.
  • halogen includes bromo, fluoro, chloro and iodo.
  • heterocyclic ring refers to a 4 to 8 membered aromatic or non-aromatic ring comprising 3 to 7 carbon atoms and at least one N, O, or S atom.
  • Examples are piperidinyl, piperazinyl, tetrahydropyranyl, pyrrolidine, and tetrahydrofuranyl, as well as the exemplary groups provided for the term “heteroaryl” above.
  • suitable substituents are selected from the group consisting of alkyl, alkenyl, alkynyl, or an additional ring, each optionally further substituted.
  • Optional substituents on any group, including the above, include halo, nitro, cyano, —OR, —SR, —NR 2 , —OCOR, —NRCOR, —COOR, —CONR 2 , —SOR, —SO 2 R, —SONR 2 , —SO 2 NR 2 , wherein each R is independently alkyl, alkenyl, alkynyl, aryl or heteroaryl, or two R groups taken together with the atoms to which they are attached form a ring.
  • -L 1 - of formula (IV) is substituted with one moiety -L 2 -Z or -L 2 -Z′.
  • Alkyl “alkenyl”, and “alkynyl” include linear, branched or cyclic hydrocarbon groups of 1-8 carbons or 1-6 carbons or 1-4 carbons wherein alkyl is a saturated hydrocarbon, alkenyl includes one or more carbon-carbon double bonds and alkynyl includes one or more carbon-carbon triple bonds. Unless otherwise specified these contain 1-6 C.
  • Aryl includes aromatic hydrocarbon groups of 6-18 carbons, preferably 6-10 carbons, including groups such as phenyl, naphthyl, and anthracene
  • Heteroaryl includes aromatic rings comprising 3-15 carbons containing at least one N, O or S atom, preferably 3-7 carbons containing at least one N, O or S atom, including groups such as pyrrolyl, pyridyl, pyrimidinyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, quinolyl, indolyl, indenyl, and similar.
  • substituted means an alkyl, alkenyl, alkynyl, aryl, or heteroaryl group comprising one or more substituent groups in place of one or more hydrogen atoms.
  • Substituents may generally be selected from halogen including F, Cl, Br, and I; lower alkyl including linear, branched, and cyclic; lower haloalkyl including fluoroalkyl, chloroalkyl, bromoalkyl, and iodoalkyl; OH; lower alkoxy including linear, branched, and cyclic; SH; lower alkylthio including linear, branched and cyclic; amino, alkylamino, dialkylamino, silyl including alkylsilyl, alkoxysilyl, and arylsilyl; nitro; cyano; carbonyl; carboxylic acid, carboxylic ester, carboxylic amide, aminocarbonyl; aminoacyl; carbamate; urea;
  • -L 1 - of formula (V) is substituted with one moiety -L 2 -Z or -L 2 -Z′.
  • Suitable substituents for formulas (VI) are alkyl (such as C 1-6 alkyl), alkenyl (such as C 2-6 alkenyl), alkynyl (such as C 2-6 alkynyl), aryl (such as phenyl), heteroalkyl, heteroalkenyl, heteroalkynyl, heteroaryl (such as aromatic 4 to 7 membered heterocycle) or halogen moieties.
  • alkyl alkoxy, alkoxyalkyl, aryl, “alkaryl” and “aralkyl” mean alkyl radicals of 1-8, preferably 1-4 carbon atoms, e.g. methyl, ethyl, propyl, isopropyl and butyl, and aryl radicals of 6-10 carbon atoms, e.g. phenyl and naphthyl.
  • halogen includes bromo, fluoro, chloro and iodo.
  • -L 1 - of formula (VI) is substituted with one moiety -L 2 -Z or -L 2 -Z′.
  • alkyl shall be understood to include, e.g. straight, branched, substituted C 1-12 alkyls, including alkoxy, C 3-8 cycloalkyls or substituted cycloalkyls, etc.
  • substituted shall be understood to include adding or replacing one or more atoms contained within a functional group or compounds with one or more different atoms.
  • Substituted alkyls include carboxyalkyls, aminoalkyls, dialkylaminos, hydroxyalkyls and mercaptoalkyls; substituted cycloalkyls include moieties such as 4-chlorocyclohexyl; aryls include moieties such as napthyl; substituted aryls include moieties such as 3-bromo-phenyl; aralkyls include moieties such as toluyl; heteroalkyls include moieties such as ethylthiophene; substituted heteroalkyls include moieties such as 3-methoxythiophone; alkoxy includes moieties such as methoxy; and phenoxy includes moieties such as 3-nitrophenoxy. Halo-shall be understood to include fluoro, chloro, iodo and bromo.
  • -L 1 - of formula (VII) is substituted with one moiety -L 2 -Z or -L 2 -Z′.
  • -L 1 - of formula (VIII) is substituted with one moiety -L 2 -Z or -L 2 -Z′.
  • -L 1 - of formula (IX) is substituted with one moiety -L 2 -Z or -L 2 -Z′.
  • prodrugs of the present invention -L 2 - is a chemical bond or a spacer moiety.
  • -L 2 - is a chemical bond.
  • -L 2 - is a spacer moiety.
  • -L 2 - is preferably selected from the group consisting of -T-, —C(O)O—, —O—, —C(O)—, —C(O)N(R y1 )—, —S(O) 2 N(R y1 )—, —S(O)N(R y1 )—, —S(O) 2 —, —S(O)—, —N(R y1 )S(O) 2 N(R y1a )—, —S—, —N(R y1 )—, —OC(OR y1 )(R y1a )—, —N(R y1 )C(O)N(R y1a )—, —OC(O)N(R y1 )—, C 1-50 alkyl, C 2-50 alkenyl, and C 2-50 alkynyl;
  • —R y1 and —R y1a are independently of each other selected from the group consisting of —H, -T, C 1-50 alkyl, C 2-50 alkenyl, and C 2-50 alkynyl; wherein -T, C 1-50 alkyl, C 2-50 alkenyl, and C 2-50 alkynyl are optionally substituted with one or more —R y2 , which are the same or different, and wherein C 1-50 alkyl, C 2-50 alkenyl, and C 2-50 alkynyl are optionally interrupted by one or more groups selected from the group consisting of -T-, —C(O)O—, —O—, —C(O)—, —C(O)N(R y4 )—, —S(O) 2 N(R y4 )—, —S(O)N(R y4 )—, —S(O) 2 —, —S(O)—, —N(
  • -L 2 - is even more preferably selected from -T-, —C(O)O—, —O—, —C(O)—, —C(O)N(R y1 )—, —S(O) 2 N(R y1 )—, —S(O)N(R y1 )—, —S(O) 2 —, —S(O)—, —N(R y5 )S(O) 2 N(R y1a )—, —S—, —N(R y1 )—, —OC(OR y1 )(R y1a )—, —N(R y1 )C(O)N(R y1a )—, —OC(O)N(R y1 )—, C 1-50 alkyl, C 2-50 alkenyl, and C 2-50 alkynyl; wherein
  • —R y1 and —R y1a are independently of each other selected from the group consisting of —H, -T, C 1-10 alkyl, C 2-10 alkenyl, and C 2-10 alkynyl; wherein -T, C 1-10 alkyl, C 2-10 alkenyl, and C 2-10 alkynyl are optionally substituted with one or more —R y2 , which are the same or different, and wherein C 1-10 alkyl, C 2-10 alkenyl, and C 2-10 alkynyl are optionally interrupted by one or more groups selected from the group consisting of -T-, —C(O)O—, —O—, —C(O)—, —C(O)N(R y4 )—, —S(O) 2 N(R y4 )—, —S(O)N(R y4 )—, —S(O) 2 —, —S(O)—, —N(
  • -L 2 - is even more preferably selected from the group consisting of -T-, —C(O)O—, —O—, —C(O)—, —C(O)N(R y1 )—, —S(O) 2 N(R y1 )—, —S(O)N(R y1 )—, —S(O) 2 —, —S(O)—, —N(R y1 )S(O) 2 N(R y1a )—, —S—, —N(R y1 )—, —OC(OR y1 )(R y1a )—, —N(R y1 )C(O)N(R y1a )—, —OC(O)N(R y1 )—, C 1-50 alkyl, C 2-50 alkenyl, and C 2-50 alkyny
  • —R y1 and —R y1a are independently selected from the group consisting of —H, -T, C 1-10 alkyl, C 2-10 alkenyl, and C 2-10 alkynyl; each T is independently selected from the group consisting of phenyl, naphthyl, indenyl, indanyl, tetralinyl, C 3-10 cycloalkyl, 3- to 10-membered heterocyclyl, 8- to 11-membered heterobicyclyl, 8- to 30-membered carbopolycyclyl, and 8- to 30-membered heteropolycyclyl; each —R y2 is independently selected from the group consisting of halogen, and C 1-6 alkyl; and each —R y3 , —R y3a , —R y4 , —R y4a , —R y5 , —R y sa and —R y5b is independently of each
  • -L 2 - is a C 1-20 alkyl chain, which is optionally interrupted by one or more groups independently selected from —O—, -T- and —C(O)N(R y1 )—; and which C 1-20 alkyl chain is optionally substituted with one or more groups independently selected from —OH, -T and —C(O)N(R y6 R y6a ); wherein —R y1 , —R y6 , —R y6a are independently selected from the group consisting of H and C 1-4 alkyl and wherein T is selected from the group consisting of phenyl, naphthyl, indenyl, indanyl, tetralinyl, C 3-10 cycloalkyl, 3- to 10-membered heterocyclyl, 8- to 11-membered heterobicyclyl, 8- to 30-membered carbopolycyclyl, and 8- to 30-membered heteropoly
  • -L 2 - has a molecular weight in the range of from 14 g/mol to 750 g/mol.
  • -L 2 - comprises a moiety selected from
  • dashed lines indicate attachment to the rest of -L 2 -, -L 1 -, —Z and/or —Z′, respectively; and —R and —R a are independently of each other selected from the group consisting of —H, methyl, ethyl, propyl, butyl, pentyl and hexyl.
  • -L 2 - has a chain lengths of 1 to 20 atoms.
  • chain length refers to the number of atoms of -L 2 - present in the shortest connection between -L 1 - and —Z.
  • -L 2 - is of formula (i)
  • n of formula (i) is selected from the group consisting of 3, 4, 5, 6, 7, 8, and 9. Even more preferably n of formula (i) is 4, 5, 6, or 7. In one embodiment n of formula (i) is 4. In another embodiment n of formula (i) is 5. In another embodiment n of formula (i) is 6.
  • the moiety -L 1 -L 2 - is selected from the group consisting of
  • the moiety -L 1 -L 2 - is selected from the group consisting of
  • the moiety -L 1 -L 2 - is of formula (IIca-ii).
  • the moiety -L 1 -L 2 - is of formula (IIcb-iii).
  • the carrier —Z comprises a C 8-24 alkyl or a polymer.
  • —Z comprises a polymer, preferably a polymer selected from the group consisting of 2-methacryloyl-oxyethyl phosphoyl cholins, poly(acrylic acids), poly(acrylates), poly(acrylamides), poly(alkyloxy) polymers, poly(amides), poly(amidoamines), poly(amino acids), poly(anhydrides), poly(aspartamides), poly(butyric acids), poly(glycolic acids), polybutylene terephthalates, poly(caprolactones), poly(carbonates), poly(cyanoacrylates), poly(dimethylacrylamides), poly(esters), poly(ethylenes), poly(ethyleneglycols), poly(ethylene oxides), poly(ethyl phosphates), poly(ethyloxazolines), poly(glycolic acids), poly(hydroxyethyl acrylates), poly(hydroxyethyl-o
  • —Z has a molecular weight ranging from 5 to 200 kDa. Even more preferably, —Z has a molecular weight ranging from 8 to 100 kDa, even more preferably ranging from 10 to 80 kDa, even more preferably from 12 to 60, even more preferably from 15 to 40 and most preferably —Z has a molecular weight of about 20 kDa. In another equally preferred embodiment —Z has a molecular weight of about 40 kDa.
  • such water-soluble carrier —Z comprises a protein.
  • Preferred proteins are selected from the group consisting of carboxyl-terminal polypeptide of the chorionic gonadotropin as described in US 2012/0035101 A1 which are herewith incorporated by reference; albumin; XTEN sequences as described in WO 2011123813 A2 which are herewith incorporated by reference; proline/alanine random coil sequences as described in WO 2011/144756 A1 which are herewith incorporated by reference; proline/alanine/serine random coil sequences as described in WO 2008/155134 A1 and WO 2013/024049 A1 which are herewith incorporated by reference; and Fc fusion proteins.
  • —Z is a polysarcosine.
  • —Z comprises a poly(N-methylglycine).
  • —Z comprises a random coil protein moiety.
  • —Z comprises one random coil protein moiety.
  • —Z comprises two random coil proteins moieties.
  • —Z comprises three random coil proteins moieties.
  • —Z comprises four random coil proteins moieties.
  • —Z comprises five random coil proteins moieties.
  • —Z comprises six random coil proteins moieties.
  • —Z comprises seven random coil proteins moieties.
  • —Z comprises eight random coil proteins moieties.
  • such random coil protein moiety comprises at least 25 amino acid residues and at most 2000 amino acids. Even more preferably such random coil protein moiety comprises at least 30 amino acid residues and at most 1500 amino acid residues. Even more preferably such random coil protein moiety comprises at least 50 amino acid residues and at most 500 amino acid residues.
  • —Z comprises a random coil protein moiety of which at least 80%, preferably at least 85%, even more preferably at least 90%, even more preferably at least 95%, even more preferably at least 98% and most preferably at least 99% of the total number of amino acids forming said random coil protein moiety are selected from alanine and proline. Even more preferably, at least 10%, but less than 75%, preferably less than 65%, of the total number of amino acid residues of such random coil protein moiety are proline residues.
  • such random coil protein moiety is as described in WO 2011/144756 A1 which is hereby incorporated by reference in its entirety.
  • —Z comprises at least one moiety selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:51 and SEQ ID NO:61 as disclosed in WO2011/144756 which are hereby incorporated by reference.
  • a moiety comprising such random coil protein comprising alanine and proline will be referred to as “PA” or “PA moiety”.
  • —Z comprises a PA moiety.
  • —Z comprises a random coil protein moiety of which at least 80%, preferably at least 85%, even more preferably at least 90%, even more preferably at least 95%, even more preferably at least 98% and most preferably at least 99% of the total number of amino acids forming said random coil protein moiety are selected from alanine, serine and proline. Even more preferably, at least 4%, but less than 40% of the total number of amino acid residues of such random coil protein moiety are proline residues.
  • such random coil protein moiety is as described in WO 2008/155134 A1 which is hereby incorporated by reference in its entirety.
  • —Z comprises at least one moiety selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, SEQ ID NO:40, SEQ ID NO:42, SEQ ID NO:44, SEQ ID NO:46, SEQ ID NO:50, SEQ ID NO:52, SEQ ID NO:54 and SEQ ID NO:56 as disclosed in WO 2008/155134 A1, which are hereby incorporated by reference.
  • a moiety comprising such random coil protein moiety comprising alanine, serine and proline will be referred to as “PAS” or “PAS mo
  • —Z comprises a PAS moiety.
  • —Z comprises a random coil protein moiety of which at least 80%, preferably at least 85%, even more preferably at least 90%, even more preferably at least 95%, even more preferably at least 98% and most preferably at least 99% of the total number of amino acids forming said random coil protein moiety are selected from alanine, glycine and proline.
  • a moiety comprising such random coil protein moiety comprising alanine, glycine and proline will be referred to as “PAG” or “PAG moiety”.
  • —Z comprises a PAG moiety.
  • —Z comprises a random coil protein moiety of which at least 80%, preferably at least 85%, even more preferably at least 90%, even more preferably at least 95%, even more preferably at least 98% and most preferably at least 99% of the total number of amino acids forming said random coil protein moiety are selected from proline and glycine.
  • a moiety comprising such random coil protein moiety comprising proline and glycine will be referred to as “PG” or “PG moiety”.
  • such PG moiety comprises a moiety of formula (a-0)
  • p of formula (a-0) is selected from the group consisting of 1, 2 and 3.
  • q of formula (a-0) is selected from 0, 1 and 2.
  • the PG moiety comprises the sequence of SEQ ID:NO 122:
  • the PG moiety comprises the sequence of SEQ ID:NO 97 of formula (a-0-a)
  • —Z comprises a PG moiety.
  • —Z comprises a random coil protein moiety of which at least 80%, preferably at least 85%, even more preferably at least 90%, even more preferably at least 95%, even more preferably at least 98% and most preferably at least 99% of the total number of amino acids forming said random coil protein moiety are selected from alanine, glycine, serine, threonine, glutamate and proline.
  • such random coil protein moiety is as described in WO 2010/091122 A1 which is hereby incorporated by reference.
  • —Z comprises at least one moiety selected from the group consisting of SEQ ID NO:182, SEQ ID NO:183, SEQ ID NO:184; SEQ ID NO:185, SEQ ID NO:186, SEQ ID NO:187, SEQ ID NO:188, SEQ ID NO:189, SEQ ID NO:190, SEQ ID NO:191, SEQ ID NO:192, SEQ ID NO:193, SEQ ID NO:194, SEQ ID NO:195, SEQ ID NO:196, SEQ ID NO:197, SEQ ID NO:198, SEQ ID NO:199, SEQ ID NO:200, SEQ ID NO:201, SEQ ID NO:202, SEQ ID NO:203, SEQ ID NO:204, SEQ ID NO:205, SEQ ID NO:206, SEQ ID NO:207, SEQ ID NO:208, SEQ ID NO:209, SEQ ID NO:210, SEQ ID NO:211, SEQ ID NO:212, SEQ ID NO:213, SEQ ID NO:214, SEQ ID NO:186
  • a moiety comprising such random coil protein moiety comprising alanine, glycine, serine, threonine, glutamate and proline will be referred to as “XTEN” or “XTEN moiety” in line with its designation in WO 2010/091122 A1.
  • —Z comprises an XTEN moiety.
  • —Z comprises a fatty acid derivate.
  • Preferred fatty acid derivatives are those disclosed in WO 2005/027978 A2 and WO 2014/060512 A1 which are herewith incorporated by reference.
  • —Z is a hyaluronic acid-based polymer.
  • —Z is a carrier as disclosed in WO 2012/02047 A1 which is herewith incorporated by reference.
  • —Z is a carrier as disclosed in WO 2013/024048 A1 which is herewith incorporated by reference.
  • —Z is a PEG-based polymer, such as a linear, branched or multi-arm PEG-based polymer.
  • —Z is a linear PEG-based polymer.
  • —Z is a multi-arm PEG-based polymer.
  • —Z is a multi-arm PEG-based polymer having at least 4 PEG-based arms.
  • such multi-arm PEG-based polymer —Z is connected to a multitude of moieties -L 2 -L 1 -D, wherein each moiety -L 2 -L 1 -D is preferably connected to the end of an arm, preferably to the end of an arm.
  • such multi-arm PEG-based polymer —Z is connected to 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or 16 moieties -L 2 -L 1 -D.
  • Even more preferably such multi-arm PEG-based polymer —Z is connected to 2, 3, 4, 6 or 8 moieties -L 2 -L 1 -D.
  • multi-arm PEG-based polymer —Z is connected to 2, 4 or 6 moieties -L 2 -L 1 -D, even more preferably such multi-arm PEG-based polymer —Z is connected to 4 or 6 moieties -L 2 -L 1 -D, and most preferably such multi-arm PEG-based polymer —Z is connected to 4 moieties -L 2 -L 1 -D.
  • such multi-arm PEG-based polymer —Z is a multi-arm PEG derivative as, for instance, detailed in the products list of JenKem Technology, USA (accessed by download from http://www.jenkemusa.com/Pages/PEGProducts.aspx on Dec. 18, 2014), such as a 4-arm-PEG derivative, in particular a 4-arm-PEG comprising a pentaerythritol core, an 8-arm-PEG derivative comprising a hexaglycerin core, and an 8-arm-PEG derivative comprising a tripentaerythritol core.
  • the water-soluble PEG-based carrier —Z comprises a moiety selected from:
  • an 8-arm PEG Amine comprising a hexaglycerin core:
  • —Z is a branched PEG-based polymer.
  • —Z is a branched PEG-based polymer having one, two, three, four, five or six branching points.
  • —Z is a branched PEG-based polymer having one, two or three branching points.
  • —Z is a branched PEG-based polymer having one branching point.
  • —Z is a branched PEG-based polymer having two branching points.
  • —Z is a branched PEG-based polymer having three branching points.
  • a branching point is preferably selected from the group consisting of —N ⁇ , —CH ⁇ and >C ⁇ .
  • such branched PEG-based moiety —Z has a molecular weight of at least 10 kDa.
  • such branched moiety —Z has a molecular weight ranging from and including 10 kDa to 500 kDa, more preferably ranging from and including 10 kDa to 250 Da, even more preferably ranging from and including 10 kDa to 150 kDa, even more preferably ranging from and including 12 kDa to 100 kDa and most preferably ranging from and including 15 kDa to 80 kDa.
  • such branched moiety —Z has a molecular weight ranging from and including 10 kDa to 80 kDa. In one embodiment the molecular weight is about 10 kDa. In another embodiment the molecular weight of such branched moiety —Z is about 20 kDa. In another embodiment the molecular weight of such branched moiety —Z is about 30 kDa. In another embodiment the molecular weight of such a branched moiety —Z is about 40 kDa. In another embodiment the molecular weight of such a branched moiety —Z is about 50 kDa. In another embodiment the molecular weight of such a branched moiety —Z is about 60 kDa.
  • the molecular weight of such a branched moiety —Z is about 70 kDa. In another embodiment the molecular weight of such a branched moiety —Z is about 80 kDa. Most preferably, such branched moiety —Z has a molecular weight of about 40 kDa.
  • —Z or —Z′ comprises a moiety
  • —Z comprises an amide bond.
  • —Z comprises a moiety of formula (a)
  • BP a of formula (a) is —N ⁇ .
  • BP a of formula (a) is >C ⁇ .
  • BP a of formula (a) is —CR ⁇ .
  • —R is —H. Accordingly, a of formula (a) is 0.
  • —S a — of formula (a) is a chemical bond.
  • —S a — of formula (a) is selected from the group consisting of C 1-10 alkyl, C 2-10 alkenyl and C 2-10 alkynyl, which C 1-10 alkyl, C 2-10 alkenyl and C 2-10 alkynyl are optionally interrupted by one or more chemical groups selected from the group consisting of -T-, —C(O)O—, —O—, —C(O)—, —C(O)N(R 4 )—, —S(O) 2 N(R 4 )—, —S(O)N(R 4 )—, —S(O) 2 —, —S(O)—, —N(R 4 )S(O) 2 N(R 4a )—, —S—, —N(R 4 )—, —OC(OR 4 )(R 4a )—, —N(R 4 )C(O)N(R 4a )—, and —OC(OR 4
  • —S a — of formula (a) is selected from the group consisting of C 1-10 alkyl which is interrupted by one or more chemical groups selected from the group consisting of -T-, —C(O)N(R 4 )— and —O—.
  • —S a′ — of formula (a) is a chemical bond.
  • —S a′ — of formula (a) is selected from the group consisting of C 1-10 alkyl, C 2-10 alkenyl and C 2-10 alkynyl, which C 1-10 alkyl, C 2-10 alkenyl and C 2-10 alkynyl are optionally interrupted by one or more chemical groups selected from the group consisting of —C(O)O—, —O—, —C(O)—, —C(O)N(R 4 )—, —S(O) 2 N(R 4 )—, —S(O)N(R 4 )—, —S(O) 2 —, —S(O)—, —N(R 4 )S(O) 2 N(R 4a )—, —S—, —N(R 4 )—, —OC(OR 4 )(R 4a )—, —N(R 4 )C(O)N(R 4a )—, and —OC(O)N(
  • —S a′ — of formula (a) is selected from the group consisting of methyl, ethyl, propyl, butyl, which are optionally interrupted by one or more chemical groups selected from the group consisting of —O—, —C(O)— and —C(O)N(R 4 )—.
  • —S a′′ — of formula (a) is a chemical bond.
  • —S a′′ — of formula (a) is selected from the group consisting of C 1-10 alkyl, C 2-10 alkenyl and C 2-10 alkynyl, which C 1-10 alkyl, C 2-10 alkenyl and C 2-10 alkynyl are optionally interrupted by one or more chemical groups selected from the group consisting of —C(O)O—, —O—, —C(O)—, —C(O)N(R 4 )—, —S(O) 2 N(R 4 )—, —S(O)N(R 4 )—, —S(O) 2 —, —S(O)—, —N(R 4 )S(O) 2 N(R 4a )—, —S—, —N(R 4 )—, —OC(OR 4 )(R 4a )—, —N(R 4 )C(O)N(R 4a )—, and —OC(O)N(
  • —S a′′′ — of formula (a) is selected from the group consisting of methyl, ethyl, propyl, butyl, which are optionally interrupted by one or more chemical groups selected from the group consisting of —O—, —C(O)— and —C(O)N(R 4 )—.
  • —S a′′′ — of formula (a) is a chemical bond.
  • —S a′′′ — of formula (a) is selected from the group consisting of C 1-10 alkyl, C 2-10 alkenyl and C 2-10 alkynyl, which C 1-10 alkyl, C 2-10 alkenyl and C 2-10 alkynyl are optionally interrupted by one or more chemical groups selected from the group consisting of —C(O)O—, —O—, —C(O)—, —C(O)N(R 4 )—, —S(O) 2 N(R 4 )—, —S(O)N(R 4 )—, —S(O) 2 —, —S(O)—, —N(R 4 )S(O) 2 N(R 4a )—, —S—, —N(R 4 )—, —OC(OR 4 )(R 4a )—, —N(R 4 )C(O)N(R 4a )—, and —OC(O)N—,
  • —S a′′′ — of formula (a) is selected from the group consisting of methyl, ethyl, propyl, butyl, which are optionally interrupted by one or more chemical groups selected from the group consisting of —O—, —C(O)— and —C(O)N(R 4 )—.
  • —P a′ , —P a′′ and —P a′′′ of formula (a) independently comprise a polymer selected from the group consisting of 2-methacryloyl-oxyethyl phosphoyl cholins, poly(acrylic acids), poly(acrylates), poly(acrylamides), poly(alkyloxy) polymers, poly(amides), poly(amidoamines), poly(amino acids), poly(anhydrides), poly(aspartamides), poly(butyric acids), poly(glycolic acids), polybutylene terephthalates, poly(caprolactones), poly(carbonates), poly(cyanoacrylates), poly(dimethylacrylamides), poly(esters), poly(ethylenes), poly(ethyleneglycols), poly(ethylene oxides), poly(ethyl phosphates), poly(ethyloxazolines), poly(glycolic acids), poly(hydroxyethyl acrylates), poly(hydroxyethyl-oxazo
  • —P a , —P a′′ and —P a′′′ of formula (a) independently comprise a PEG-based moiety.
  • —P a′ , —P a′′ and —P a′′′ of formula (a) independently comprise a PEG-based moiety comprising at least 20% PEG, even more preferably at least 30%, even more preferably at least 40% PEG, even more preferably at least 50% PEG, even more preferably at least 60% PEG, even more preferably at least 70% PEG, even more preferably at least 80% PEG and most preferably at least 90% PEG.
  • —P a′ , —P a′′ and —P a′′′ of formula (a) independently have a molecular weight ranging from and including 5 kDa to 50 kDa, more preferably have a molecular weight ranging from and including 5 kDa to 40 kDa, even more preferably ranging from and including 7.5 kDa to 35 kDa, even more preferably ranging from and 7.5 to 30 kDa, even more preferably ranging from and including 10 to 30 kDa.
  • —P a′ , —P a′′ and —P a′′′ of formula (a) have a molecular weight of about 5 kDa.
  • —P a′ , —P a′′ and —P a′′′ of formula (a) have a molecular weight of about 7.5 kDa.
  • —P a′ , —P a′′ and —P a′′′ of formula (a) have a molecular weight of about 10 kDa.
  • —P a′ , —P a′′ and —P a′′′ of formula (a) have a molecular weight of about 12.5 kDa.
  • —P a′ , —P a′′ and —P a′′′ of formula (a) have a molecular weight of about 15 kDa.
  • —P a′ , —P a′′ and —P a′′′ of formula (a) have a molecular weight of about 20 kDa.
  • —Z comprises one moiety of formula (a).
  • —Z comprises two moieties of formula (a).
  • —Z comprises three moieties of formula (a).
  • —Z is a moiety of formula (a).
  • —Z comprises a moiety of formula (b)
  • n and p of formula (b) are the same integer.
  • m and p of formula (b) are about 450.
  • —Z is a moiety of formula (b).
  • the carrier —Z′ is a water-insoluble polymer, even more preferably a hydrogel.
  • such hydrogel comprises a polymer selected from the group consisting of 2-methacryloyl-oxyethyl phosphoyl cholins, poly(acrylic acids), poly(acrylates), poly(acrylamides), poly(alkyloxy) polymers, poly(amides), poly(amidoamines), poly(amino acids), poly(anhydrides), poly(aspartamides), poly(butyric acids), poly(glycolic acids), polybutylene terephthalates, poly(caprolactones), poly(carbonates), poly(cyanoacrylates), poly(dimethylacrylamides), poly(esters), poly(ethylenes), poly(ethyleneglycols), poly(ethylene oxides), poly(ethyl phosphates), poly(ethyloxazolines), poly(glycolic acids), poly(hydroxyethyl acrylates), poly(hydroxyethyl-oxazo
  • the carrier —Z′ is a hydrogel, it is preferably a hydrogel comprising PEG or hyaluronic acid. Most preferably such hydrogel comprises PEG.
  • the carrier —Z′ is a hydrogel as described in WO 2006/003014 A2, WO 2011/012715 A1 or WO 2014/056926 A1, which are herewith incorporated by reference in their entirety.
  • —Z′ is a polymer network formed through the physical aggregation of polymer chains, which physical aggregation is preferably caused by hydrogen bonds, crystallization, helix formation or complexation.
  • such polymer network is a thermogelling polymer.
  • the total mass of the PTH prodrug of the present invention is at least 10 kDa, such as at least 12 kDa, such as at least 15 kDa, such as at least 20 kDa or such as at least 30 kDa. It is preferred that the total mass of the PTH prodrug of the present invention is at most 250 kDa, such as at most 200 kDa, 180 kDa, 150 kDa or 100 kDa.
  • the PTH prodrug of the present invention is of formula (IIe-i):
  • -D is attached to the PTH prodrug of formula (IIe-i) through the N-terminal amine functional group of the PTH moiety.
  • PTH prodrug of the present invention is of formula (IIf-i):
  • -D is attached to the PTH prodrug of formula (IIf-i) through the N-terminal amine functional group of the PTH moiety.
  • the residual activity of the PTH prodrug of the present invention is less than 10%, more preferably less than 1%, even more preferably less than 0.1%, even more preferably less than 0.01%, even more preferably less than 0.001% and most preferably less than 0.0001%.
  • residual activity refers to the activity exhibited by the PTH prodrug of the present invention with the PTH moiety bound to a carrier in relation to the activity exhibited by the corresponding free PTH.
  • activity refers to binding to an activation of the PTH/PTHrP1 receptor resulting in activation of adenylate cyclase to generate cAMP, phospholipase C to generate intracellular calcium, or osteoblastic expression of RANKL (which binds to RANK (Receptor Activator of Nuclear Factor kB) on osteoclasts.
  • measuring the residual activity of the PTH prodrug of the present invention takes time during which a certain amount of PTH will be released from the PTH prodrug of the present invention and that such released PTH will distort the results measured for the PTH prodrug. It is thus accepted practice to test the residual activity of a prodrug with a conjugate in which the drug moiety, in this case PTH, is non-reversibly, i.e. stably, bound to a carrier, which as closely as possible resembles the structure of the PTH prodrug for which residual activity is to be measured.
  • a suitable assay for measuring PTH activity and the residual activity of the PTH prodrug of the present invention is for example measuring cAMP production from HEK293 cells over-expressing the PTH/PTHrP1 receptor (Hohenstein et al., Journal of Pharmaceutical and Biomedical Analysis, September 2014, 98: 345-350), or a cell-based assay to detect cyclicAMP release, detected by homogenous time-resolved fluorescence (HTRF) or ELISA, that has been validated according to ICHQ2(R1) (http://www.criver.com/files/pdfs/bps/bp_r_in_vitro_bioassays.aspx).
  • ICHQ2(R1) http://www.criver.com/files/pdfs/bps/bp_r_in_vitro_bioassays.aspx).
  • PTH prodrugs of the present invention are capable of achieving a stable plasma profile of PTH which ensures physiological serum and urinary calcium levels or even reduced urinary calcium levels.
  • the pharmacokinetic profile of a PTH prodrug of the present invention exhibits a peak to trough ratio of less than 4 within one injection interval.
  • injection interval refers to the time between two consecutive administrations of the pharmaceutical composition of the present invention.
  • peak to trough ratio refers to the ratio between the highest plasma concentration and the lowest plasma concentration of PTH released from the PTH prodrug of the present invention within the time period between two consecutive administrations to a non-human primate, preferably to a cynomolgus monkey.
  • the time period between two consecutive subcutaneous administrations is preferably at least 24 hours, such as 24 hours, 36 hours, 48 hours, 60 hours, 72 hours, every 84 hours, 96 hours, 108 hours, 120 hours, 132 hours, 144 hours, 156 hours, one week, two weeks, three weeks or four weeks.
  • the time period between two consecutive subcutaneous administrations is 24 hours.
  • the time period between two consecutive subcutaneous administrations is 48 hours.
  • the time period between two consecutive subcutaneous administrations is 72 hours.
  • the time period between two consecutive subcutaneous administrations is 96 hours.
  • the time period between two consecutive subcutaneous administrations is 120 hours.
  • the time period between two consecutive subcutaneous administrations is 144 hours.
  • the time period between two consecutive subcutaneous administrations is one week.
  • the peak to trough ratio measured in each administration interval is less than 4, preferably less than 3.8, more preferably less than 3.6, even more preferably less than 3.4, even more preferably less than 3.2, even more preferably less than 3, even more preferably less than 2.8, even more preferably less than 2.6, even more preferably less than 2.4, even more preferably less than 2.2 and most preferably less than 2.
  • Another aspect of the present invention is a pharmaceutical composition
  • a pharmaceutical composition comprising at least one PTH prodrug of the present invention and at least one excipient.
  • the pharmaceutical composition comprising at least one PTH prodrug of the present invention has a pH ranging from and including pH 3 to pH 8. More preferably, the pharmaceutical composition has a pH ranging from and including pH 4 to pH 6. Most preferably, the pharmaceutical composition has a pH ranging from and including pH 4 to pH 5.
  • the pharmaceutical composition comprising at least one PTH prodrug of the present invention and at least one excipient is a liquid or suspension formulation. It is understood that the pharmaceutical composition is a suspension formulation if the PTH prodrug of the present invention comprises a water-insoluble carrier —Z′.
  • the pharmaceutical composition comprising at least one PTH prodrug of the present invention and at least one excipient is a dry formulation.
  • Such liquid, suspension or dry pharmaceutical composition comprises at least one excipient.
  • Excipients used in parenteral formulations may be categorized as, for example, buffering agents, isotonicity modifiers, preservatives, stabilizers, anti-adsorption agents, oxidation protection agents, viscosifiers/viscosity enhancing agents, or other auxiliary agents. However, in some cases, one excipient may have dual or triple functions.
  • the at least one excipient comprised in the pharmaceutical composition of the present invention is selected from the group consisting of
  • the pharmaceutical composition comprising at least one PTH prodrug may be administered to a patient by various modes of administration, such as via topical, enteral or parenteral administration and by methods of external application, injection or infusion, including intraarticular, periarticular, intradermal, subcutaneous, intramuscular, intravenous, intraosseous, intraperitoneal, intrathecal, intracapsular, intraorbital, intravitreal, intratympanic, intravesical, intracardiac, transtracheal, subcuticular, subcapsular, subarachnoid, intraspinal, intraventricular, intrasternal injection and infusion, direct delivery to the brain via implanted device allowing delivery of the invention or the like to brain tissue or brain fluids (e.g., Ommaya Reservoir), direct intracerebroventricular injection or infusion, injection or infusion into brain or brain associated regions, injection into the subchoroidal space, retro-orbital injection and ocular instillation.
  • the pharmaceutical composition comprising at least one PTH prodrug is administered via
  • Subcutaneous injection is preferably done with a syringe and needle or with a pen injector, even more preferably with a pen injector.
  • Another aspect of the present invention is the use of the PTH prodrug or a pharmaceutically acceptable salt thereof or a pharmaceutical composition comprising at least one PTH prodrug of the present invention as a medicament.
  • Another aspect of the present invention is the PTH prodrug or a pharmaceutically acceptable salt thereof or the pharmaceutical composition comprising at least one PTH prodrug of the present invention for use in the treatment of a disease which can be treated with PTH.
  • said disease is selected from the group consisting of hypoparathyroidism, hyperphosphatemia, osteoporosis, fracture repair, osteomalacia, osteomalacia and osteoporosis in patients with hypophosphatasia, steroid-induced osteoporosis, male osteoporosis, arthritis, osteoarthritis, osteogenesis imperfect, fibrous dysplasia, rheumatoid arthritis, Paget's disease, humoral hypercalcemia associated with malignancy, osteopenia, periodontal disease, bone fracture, alopecia, chemotherapy-induced alopecia, and thrombocytopenia. Most preferably said disease is hypoparathyroidism.
  • the patient undergoing the method of treatment of the present invention is a mammalian patient, preferably a human patient.
  • Another aspect of the present invention is the use of the PTH prodrug or a pharmaceutically acceptable salt thereof or the pharmaceutical composition comprising at least one PTH prodrug of the present invention for the manufacture of a medicament for treating a disease which can be treated with PTH.
  • said disease is selected from the group consisting of hypoparathyroidism, hyperphosphatemia, osteoporosis, fracture repair, osteomalacia, osteomalacia and osteoporosis in patients with hypophosphatasia, steroid-induced osteoporosis, male osteoporosis, arthritis, osteoarthritis, osteogenesis imperfect, fibrous dysplasia, rheumatoid arthritis, Paget's disease, humoral hypercalcemia associated with malignancy, osteopenia, periodontal disease, bone fracture, alopecia, chemotherapy-induced alopecia, and thrombocytopenia. Most preferably said disease is hypoparathyroidism.
  • the disease to be treated with the PTH prodrug or a pharmaceutically acceptable salt thereof or the pharmaceutical composition comprising at least one PTH prodrug of the present invention occurs in a mammalian patient, preferably in a human patient.
  • a further aspect of the present invention is a method of treating, controlling, delaying or preventing in a mammalian patient, preferably a human patient, in need of the treatment of one or more diseases which can be treated with PTH, comprising the step of administering to said patient in need thereof a therapeutically effective amount of PTH prodrug or a pharmaceutically acceptable salt thereof or a pharmaceutical composition comprising PTH prodrug of the present invention.
  • the one or more diseases which can be treated with PTH is selected from the group consisting of hypoparathyroidism, hyperphosphatemia, osteoporosis, fracture repair, osteomalacia, osteomalacia and osteoporosis in patients with hypophosphatasia, steroid-induced osteoporosis, male osteoporosis, arthritis, osteoarthritis, osteogenesis imperfect, fibrous dysplasia, rheumatoid arthritis, Paget's disease, humoral hypercalcemia associated with malignancy, osteopenia, periodontal disease, bone fracture, alopecia, chemotherapy-induced alopecia, and thrombocytopenia. Most preferably said disease is hypoparathyroidism.
  • An additional aspect of the present invention is a method of administering the PTH prodrug, a pharmaceutically acceptable salt thereof or the pharmaceutical composition of the present invention, wherein the method comprises the step of administering the PTH prodrug, a pharmaceutically acceptable salt thereof or the pharmaceutical composition of the present invention via topical, enteral or parenteral administration and by methods of external application, injection or infusion, including intraarticular, periarticular, intradermal, subcutaneous, intramuscular, intravenous, intraosseous, intraperitoneal, intrathecal, intracapsular, intraorbital, intravitreal, intratympanic, intravesical, intracardiac, transtracheal, subcuticular, subcapsular, subarachnoid, intraspinal, intraventricular, intrasternal injection and infusion, intranasal, oral, transpulmonary and transdermal administration, direct delivery to the brain via implanted device allowing delivery of the invention or the like to brain tissue or brain fluids (e.g., Ommaya Reservoir), direct intracerebro
  • the present invention relates to a PTH prodrug or pharmaceutically acceptable salt thereof or a pharmaceutical composition of the present invention, for use in the treatment of hypoparathyroidism via subcutaneous injection.
  • PEG 2 ⁇ 20 kDa maleimide, Sunbright GL2-400MA and PEG 2 ⁇ 10 kDa maleimide, Sunbright GL2-200MA were purchased from NOF Europe N.V., Grobbendonk, Belgium.
  • S-Trityl-6-mercaptohexanoic acid was purchased from Polypeptide, France, France.
  • HATU was obtained from Merck Biosciences GmbH, Schwalbach/Ts, Germany.
  • Fmoc-N-Me-Asp(OBn)-OH was obtained from Peptide International Inc., Louisville, Ky., USA.
  • Fmoc-Aib-OH was purchased from Iris Biotech GmbH, Tredwitz, Germany. All other chemicals and reagents were purchased from Sigma Aldrich GmbH, Taufmün, Germany, unless a different supplier is mentioned.
  • Flash chromatography purifications were performed on an Isolera One system from Biotage AB, Sweden, using Biotage KP-Sil silica cartridges and n-heptane and ethyl acetate as eluents. Products were detected at 254 nm.
  • Ion exchange chromatography was performed using an Amersham Bioscience AEKTAbasic system equipped with a MacroCap SP cation exchanger column (Amersham Bioscience/GE Healthcare). 17 mM acetic acid pH 4.5 (solvent A) and 17 mM acetic acid, 1 M NaCl, pH 4.5 (solvent B) were used as mobile phases.
  • Size exclusion chromatography was performed using an Amersham Bioscience AEKTAbasic system equipped with HiPrep 26/10 desalting columns (Amersham Bioscience/GE Healthcare). 0.1% (v/v) acetic acid was used as mobile phase.
  • Analytical ultra-performance LC (UPLC)-MS was performed on a Waters Acquity system equipped with a Waters BEH300 C18 column (2.1 ⁇ 50 mm, 1.7 ⁇ m particle size, flow: 0.25 mL/min; solvent A: water containing 0.04% TFA (v/v), solvent B: acetonitrile containing 0.05% TFA (v/v)) coupled to a LTQ Orbitrap Discovery mass spectrometer from Thermo Scientific or coupled to a Waters Micromass ZQ.
  • Plasma total PTH(1-34) concentrations were determined by quantification of a signature peptide close to the N-terminus (sequence: IQLMHNLGK) and a C-terminal signature peptide (sequence: LQDVHNF) after plasma protein precipitation, followed by sequential digestion with Endoproteinase Lys-C (origin: Lysobacter enzymogenes) and Endoproteinase Glu-C(origin: Staphylococcus aureus V8) of the supernatant. Subsequently, analysis by reversed phase liquid chromatography and detection by mass spectrometry (RP-HPLC-MS) was performed.
  • RP-HPLC-MS mass spectrometry
  • Calibration standards of PTH(1-34) conjugate in blank plasma were prepared as follows: The PTH(1-34) conjugate formulation was pre-diluted with formulation buffer to aqueous standard solutions ranging from 5 to 300 ⁇ g/mL PTH(1-34) eq (concentration range 1) and 0.5 ⁇ g/mL to 100 ⁇ g/mL PTH(1-34) eq (concentration range 2), respectively. Each aqueous standard solution was then diluted 1:100 with thawed heparinized plasma to obtain concentration ranges from 50 to 3000 ng/mL PTH(1-34) eq (dilution with rat plasma of concentration range 1) and 5 to 1000 ng/mL PTH(1-34) eq (dilution with monkey plasma of concentration range 2).
  • Sample preparation volumes can be altered depending on the targeted signal response after sample preparation. Processing procedure of the protein precipitation is described here for the analysis of plasma samples originated in monkey species. Protein precipitation was carried out by addition of 200 ⁇ L of precooled (5-10° C.) methanol to 100 ⁇ L of the plasma sample. 180 ⁇ L of the supernatant were transferred into a new well-plate and evaporated to dryness (under a gentle nitrogen stream at 45° C.). 50 ⁇ L of reconstitution solvent (50 mM Tris 0.5 mM CaCl 2 buffer, adjusted to pH 8.0) were used to dissolve the residue. Proteolytic digestion was performed as follows:
  • the gradient system for the analysis of samples originated from rat plasma comprised a linear increase from 0.1% B to 40% B in 7 min.
  • the gradient system for the analysis of samples originated from monkey plasma comprised a linear increase from 8.0% B to 11.0% B in 6 min, followed by a linear increase to 26% B in 4 minutes.
  • Mass analysis was performed in multiple reaction monitoring (MRM) mode, monitoring the transitions m/z 437.2 to 131.0 and m/z 352.3 to 463.0.
  • Plasma total PTH(1-34) concentrations were determined by quantification of a signature peptide close to the N-terminus (sequence: IQLMHNLGK) and a C-terminal signature peptide (sequence: LQDVHNF) after plasma protein precipitation, followed by sequential digestion with Endoproteinase Lys-C(origin: Lysobacter enzymogenes) and Endoproteinase Glu-C(origin: Staphylococcus aureus V8) of the supernatant. Subsequently, analysis by reversed phase liquid chromatography and detection by mass spectrometry (RP-HPLC-MS) was performed.
  • RP-HPLC-MS mass spectrometry
  • Calibration standards of PTH(1-34) conjugate in blank heparinized plasma were prepared in concentration ranges from 50 to 3000 ng/mL PTH(1-34) eq (dilution with rat plasma) and 1 to 1000 ng/mL PTH(1-34) eq (dilution with monkey plasma).
  • Sample preparation volumes can be altered depending on the targeted signal response after sample preparation. Processing procedure of the protein precipitation is described here for the analysis of plasma samples originated in rat species. Protein precipitation was carried out by addition of 100 ⁇ L of precooled (5-10° C.) methanol to 50 ⁇ L of the plasma sample. 60 ⁇ L of the supernatant were transferred into a new well-plate and evaporated to dryness (under a gentle nitrogen stream at 45° C.). 60 ⁇ L of reconstitution solvent (50 mM Tris 0.5 mM CaCl 2 buffer, adjusted to pH 8.0) were used to dissolve the residue. Proteolytic digestion was performed as follows:
  • Plasma total PEG concentrations were determined by quantification of the polymeric part of PTH(1-34) conjugates after plasma protein precipitation and enzymatic digestion of the supernatant. Analysis by size exclusion chromatography and detection by mass spectrometry (SEC-MS) followed.
  • Calibration standards of PTH(1-34) conjugate in blank heparinized monkey plasma were prepared in concentration ranges from 50 to 1200 ng/mL PEG equivalents.
  • Restitution solvent 50 mM Tris 0.5 mM CaCl 2 buffer, adjusted to pH 8.0
  • Proteolytic digestion was performed as follows: 20 ⁇ g of Lys-C(order number 125-05061, Wako Chemicals GmbH, Neuss, Germany) were dissolved in 80 ⁇ L of 10 mM acetic acid. 3 ⁇ L of the Lys-C solution were added to each cavity and samples incubated for 15 hours at 37° C.
  • Linker reagent 1f was synthesized according to the following scheme:
  • N-methyl-N-Boc-ethylenediamine 1a was dried in high vacuum and used in the next reaction step without further purification.
  • Cleavage of the peptide from the resin and removal of protecting groups was achieved by adding 10 mL cleavage cocktail 100/3/3/2/1 (v/w/v/v/v) TFA/DTT/TES/water/thioanisole and agitating the suspension for 1 h at rt.
  • Crude 3 was precipitated in pre-cooled diethyl ether ( ⁇ 18° C.). The precipitate was dissolved in ACN/water and purified by RP-HPLC. The product fractions were freeze-dried.
  • Cleavage of the peptide from the resin and removal of protecting groups was achieved by adding 6 mL cleavage cocktail 100/3/3/2/1 (v/w/v/v/v) TFA/DTT/TES/water/thioanisole and agitating the suspension for 1 h at rt.
  • Crude 4 was precipitated in pre-cooled diethyl ether ( ⁇ 18° C.). The precipitate was dissolved in ACN/water and purified by RP-HPLC. The product fractions were freeze-dried.
  • Cleavage of the peptide from the resin and removal of protecting groups was achieved by adding 20 mL cleavage cocktail 100/3/3/2/1 (v/w/v/v/v) TFA/DTT/TES/water/thioanisole and agitating the suspension for 1 h at rt.
  • Crude 9 was precipitated in pre-cooled diethyl ether ( ⁇ 18° C.). The precipitate was dissolved in ACN/water and purified by RP-HPLC. The product fractions were freeze-dried.
  • Cleavage of the peptide from the resin and removal of protecting groups was achieved by adding 20 mL cleavage cocktail 100/3/3/2/1 (v/w/v/v/v) TFA/DTT/TES/water/thioanisole and shaking the suspension for 1 h at rt.
  • Crude 10 was precipitated in pre-cooled diethyl ether ( ⁇ 18° C.). The precipitate was dissolved in ACN/water and purified by RP-HPLC. The product fractions were freeze-dried.
  • 0.15 mL of a 0.5 M NaH 2 PO 4 buffer (pH 7.4) was added to 0.5 mL of a 20 mg/mL solution of thiol 5 (10 mg, 1.84 ⁇ mol) in 1/1 (v/v) acetonitrile/water containing 0.1% TFA (v/v).
  • the solution was incubated at rt for 10 min after which 238 ⁇ L of a 10 mg/mL solution of maleimide 11a (2.4 mg, 2.21 ⁇ mol) in 1/1 (v/v) acetonitrile/water containing 0.1% TFA (v/v) were added.
  • the solution was incubated for 20 min at rt. 10 ⁇ L TFA was added and the mixture was purified by RP-HPLC. The product fractions were freeze-dried to obtain 1b.
  • Conjugate 12 was synthesized as described for 11b by using thiol 6 (10 mg, 1.85 ⁇ mol) and maleimide 11a (2.4 mg, 2.21 ⁇ mol).
  • Conjugate 13 was synthesized as described for 11b by using thiol 7 (10 mg, 1.84 ⁇ mol) and maleimide 11a (2.4 mg, 2.21 ⁇ mol).
  • Conjugate 14 was synthesized as described for 11b by using thiol 8 (10 mg, 1.83 ⁇ mol) and maleimide 11a (2.4 mg, 2.21 ⁇ mol).
  • Conjugate 15 was synthesized as described for 11b by using thiol 10 (5.2 mg, 0.95 ⁇ mol) and maleimide 11a (1.23 mg, 1.14 ⁇ mol).
  • Conjugate 16 was purified by IEX followed by RP-HPLC using a linear gradient of solvent system A (water containing 0.1% AcOH v/v) and solvent system B (acetonitrile containing 0.1% AcOH v/v). The product containing fractions were freeze-dried.
  • Conjugate 17 was prepared as described for 16 by reaction of thiol 4 (15 mg, 3.53 ⁇ mol) and PEG 2 ⁇ 20 kDa maleimide (Sunbright GL2-400MA, 187 mg, 4.32 ⁇ mol).
  • Conjugate 18 was prepared as described for 16 by reaction of thiol 5 (37 mg, 8.40 ⁇ mol) and PEG 2 ⁇ 20 kDa maleimide (Sunbright GL2-400MA, 445 mg, 9.24 ⁇ mol). The reaction was quenched by addition of 50 ⁇ L TFA without prior addition of 2-mercaptoethanol. Conjugate 18 was purified by IEX followed by SEC for desalting. The product containing fractions were freeze-dried.
  • Conjugate 19 was prepared as described for 16 by reaction of thiol 7 (27 mg, 6.14 ⁇ mol) and PEG 2 ⁇ 20 kDa maleimide (Sunbright GL2-400MA, 325 mg, 7.50 ⁇ mol).
  • Conjugate 20 was prepared as described for 16 by reaction of thiol 9 (38 mg, 8.59 ⁇ mol) and PEG 2 ⁇ 20 kDa maleimide (Sunbright GL2-400MA, 455 mg, 9.45 ⁇ mol). The reaction was quenched by addition of 50 ⁇ L TFA without prior addition of 2-mercaptoethanol. Conjugate 20 was purified by IEX followed by SEC for desalting. The product containing fractions were freeze-dried.
  • Conjugate 21 was prepared as described for 16 by reaction of thiol 10 (34 mg, 7.58 ⁇ mol) and PEG 2 ⁇ 20 kDa maleimide (Sunbright GL2-400MA, 401 mg, 9.26 ⁇ mol).
  • Conjugates 11b, 12, 13, 14, and 15 were dissolved in pH 7.4 phosphate buffer (60 mM NaH 2 PO 4 , 3 mM EDTA, 0.01% Tween-20, adjusted to pH 7.4 by NaOH) containing 0.05 mg/mL pentafluorophenol as internal standard at a concentration of approximately 1 mg conjugate/mL.
  • the solutions were filtered sterile and incubated at 37° C. At time points, aliquots were withdrawn and analysed by RP-HPLC and ESI-MS. The fraction of released PTH at a particular time point was calculated from the ratio of UV peak areas of liberated PTH and PEG conjugate. The % released PTH was plotted against incubation time. Curve-fitting software was applied to calculate the corresponding half times of release.
  • Conjugates 18, 19, 20, and 21 were dissolved in pH 7.4 phosphate buffer (60 mM NaH 2 PO 4 , 3 mM EDTA, 0.01% Tween-20, adjusted to pH 7.4 by NaOH) containing 0.08 mg/mL pentafluorophenol as internal standard at a concentration of approximately 5 mg conjugate/mL.
  • the solutions were filtered sterile and incubated at 37° C. At time points, aliquots were withdrawn and analysed by RP-HPLC. The fraction of released PTH at a particular time point was calculated from the ratio of UV peak areas of liberated PTH and PEG conjugate. The % released PTH was plotted against incubation time. Curve-fitting software was applied to calculate the corresponding half times of release.
  • the residual PTH activity of permanently PEGylated conjugates 16 and 17 was quantified by measuring cAMP production from HEK293 cells over-expressing the PTH/PTHrP1 receptor (Hohenstein A, Hebell M, Zikry H, El Ghazaly M, Mueller F, Rohde, J. Development and validation of a novel cell-based assay for potency determination of human parathyroid hormone (PTH), Journal of Pharmaceutical and Biomedical Analysis September 2014, 98: 345-350).
  • PTH(1-34) from NIBSC National Institute for Biological Standards and Control, UK
  • IQLMHNLGK the N-terminal signature peptide
  • LQDVHNF C-terminal signature peptide
  • conjugate 19 is a suitable prodrug for sustained delivery of PTH.
  • Plasma PTH(1-34) concentrations were determined by quantification of the N-terminal signature peptide (sequence: IQLMHNLGK) and the C-terminal signature peptide (sequence: LQDVHNF) after LysC and GluC digestion as described in Materials and Methods.
  • TPTx Thyroparathyroidectomised Rats During a 28-Days Study with Daily Subcutaneous Injections with Conjugate 18 or PTH(1-84)
  • Serum calcium (sCa) and phosphorous (sP) levels in the animals were measured pre- and post-dose on days 1, 6, 12 and 27.
  • bone turnover markers P1NP and CTx were measured and bone quality assessed by ex vivo pQCT.
  • Results The average sCa in the TPTx rats pre-dosing at day 1 was 8.3 mg/dL compared to 10.9 mg/dL in the sham operated control rats. The sP values were 8.7 mg/dL and 5.9 mg/dL, respectively. Compound 18 given daily at 1.2 nmol/kg elevated sCa to near-normal levels while lowering sP within a few days of administration.
  • BMD bone mineral density
  • BMC bone mineral content
  • the four reactions were combined for workup.
  • the mixture was extracted with EtOAc (3 L), then the aqueous phase was extracted with EtOAc (2 L).
  • the organic layers were combined and washed with brine (1 L), then dried with anhydrous Na 2 SO 4 , filtered and concentrated in vacuum to give the crude product as yellow oil.
  • the crude product was purified by column chromatography on silica gel with petroleum ether/ethyl acetate to give compound 29c as a yellow solid.
  • Conjugate 31 was purified by IEX followed by RP-HPLC using a linear gradient of solvent system A (water containing 0.2% AcOH v/v) and solvent system B (acetonitrile containing 0.2% AcOH v/v). The product containing fractions were freeze-dried.
  • Conjugate 31 (11 mg) was dissolved in 1 vol % acetic acid in water (1.8 mL) at 0.5 mg PTHeq/mL.
  • Buffer exchange to pH 7.4 phosphate buffer 100 mM NaH 2 PO 4 , 10 mM L-methionine, 3 mM EDTA, 0.05% Tween-20, adjusted to pH 7.4 by NaOH) was performed by SEC chromatography.
  • the eluate was further diluted with phosphate buffer to reach a concentration of 0.1 mg PTHeq/mL.
  • the resulting solution was sterile filtered and incubated at 37° C. At time points, aliquots were withdrawn and analysed by RP-HPLC.
  • the fraction of released PTH at a particular time point was calculated from the ratio of UV peak areas of liberated PTH and PEG conjugate.
  • the % released PTH was plotted against incubation time. Curve-fitting software was applied to calculate the corresponding half times of release.
  • Na ⁇ ve cynomolgus monkeys (2-3.5 years, 2-5 kg) received daily subcutaneous administrations of 18 at dose levels of 0.2, 0.5 and 1.5 ⁇ g PTH/kg.
  • Blood samples were collected at; Day 1: pre-dose, 4 h, 8 h, 12 h, 18 h, and 24 h post-dose, at Day 8: pre-dose, at Day 14: predose, 8 h, and 12 h and at Day 28: 3 h, 6 h, 8 h, 12 h, 18 h, 24 h, 72 h, 168 h, and 336 h) and plasma was generated.
  • Total PTH plasma concentrations were determined by quantification of the N-terminal signature peptide (sequence: IQLMHNLGK) after LysC and GluC digestion as presented earlier in Materials and Methods.
  • Sprague-Dawley Crl:CD(SD) rats received daily subcutaneous administrations of 18 at dose levels of 10, 30 and 60 ⁇ g PTH/kg for 28 days.
  • a TK group containing of 9 males and 9 females per dose group was divided into 3 subgroups with 3 rats per subgroup. Blood samples were collected up to 28 days with 3 rats per sex, per sampling time point. Samples were collected at Day 1: pre-dose, 4 h, 8 h, 12 h, 18 h, and 24 h post-dose, and at Day 28: 3 h, 6 h, 8 h, 12 h, 18 h, 24 h, and 336 h and plasma was generated.
  • the total PTH plasma concentrations were determined by quantification of the N-terminal signature peptide (sequence: IQLMHNLGK) after LysC and GluC digestion as presented earlier in Materials and Methods.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Endocrinology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rheumatology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Diabetes (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Immunology (AREA)
  • Dermatology (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Toxicology (AREA)
  • Pain & Pain Management (AREA)
  • Hematology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicinal Preparation (AREA)
  • Marine Sciences & Fisheries (AREA)
US16/118,155 2016-03-01 2017-02-28 PTH Prodrugs Abandoned US20200276276A1 (en)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
EP16158048.5 2016-03-01
EP16158048 2016-03-01
EP16179294.0 2016-07-13
EP16179294 2016-07-13
EP16191484.1 2016-09-29
EP16191484 2016-09-29
EP17155839 2017-02-13
EP17155839.8 2017-02-13
PCT/EP2017/054550 WO2017148883A1 (fr) 2016-03-01 2017-02-28 Promédicaments de pth

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/054550 A-371-Of-International WO2017148883A1 (fr) 2016-03-01 2017-02-28 Promédicaments de pth

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US16/988,302 Continuation US20200376089A1 (en) 2016-03-01 2020-08-07 Pth prodrugs
US16/988,386 Continuation US20200360487A1 (en) 2016-03-01 2020-08-07 Pth prodrugs
US17/488,137 Continuation US20220008516A1 (en) 2016-03-01 2021-09-28 PTH Prodrugs

Publications (1)

Publication Number Publication Date
US20200276276A1 true US20200276276A1 (en) 2020-09-03

Family

ID=58185540

Family Applications (6)

Application Number Title Priority Date Filing Date
US16/118,155 Abandoned US20200276276A1 (en) 2016-03-01 2017-02-28 PTH Prodrugs
US16/988,386 Abandoned US20200360487A1 (en) 2016-03-01 2020-08-07 Pth prodrugs
US16/988,302 Abandoned US20200376089A1 (en) 2016-03-01 2020-08-07 Pth prodrugs
US17/488,137 Abandoned US20220008516A1 (en) 2016-03-01 2021-09-28 PTH Prodrugs
US18/053,693 Active US11793861B2 (en) 2016-03-01 2022-11-08 PTH prodrugs
US18/464,046 Pending US20240123038A1 (en) 2016-03-01 2023-09-08 PTH Prodrugs

Family Applications After (5)

Application Number Title Priority Date Filing Date
US16/988,386 Abandoned US20200360487A1 (en) 2016-03-01 2020-08-07 Pth prodrugs
US16/988,302 Abandoned US20200376089A1 (en) 2016-03-01 2020-08-07 Pth prodrugs
US17/488,137 Abandoned US20220008516A1 (en) 2016-03-01 2021-09-28 PTH Prodrugs
US18/053,693 Active US11793861B2 (en) 2016-03-01 2022-11-08 PTH prodrugs
US18/464,046 Pending US20240123038A1 (en) 2016-03-01 2023-09-08 PTH Prodrugs

Country Status (17)

Country Link
US (6) US20200276276A1 (fr)
EP (1) EP3423103A1 (fr)
JP (2) JP7059195B2 (fr)
KR (3) KR20230015517A (fr)
CN (2) CN109069659B (fr)
AU (4) AU2017227962C1 (fr)
BR (1) BR112018017091A2 (fr)
CA (1) CA3015585A1 (fr)
IL (2) IL301616A (fr)
MA (2) MA45809A (fr)
MX (2) MX2018009938A (fr)
MY (1) MY196308A (fr)
NZ (1) NZ745318A (fr)
RU (1) RU2747316C2 (fr)
SG (1) SG11201806092TA (fr)
WO (1) WO2017148883A1 (fr)
ZA (1) ZA201805705B (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200360487A1 (en) * 2016-03-01 2020-11-19 Ascendis Pharma Bone Diseases A/S Pth prodrugs
US11590207B2 (en) 2016-09-29 2023-02-28 Ascendis Pharma Bone Diseases A/S Dosage regimen for a controlled-release PTH compound
US11759504B2 (en) 2016-09-29 2023-09-19 Ascendis Pharma Bone Diseases A/S PTH compounds with low peak-to-trough ratios

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6946182B2 (ja) 2014-10-22 2021-10-06 エクステンド バイオサイエンシズ インコーポレーテッドExtend Biosciences, Inc 治療用ビタミンdコンジュゲート
WO2016065052A1 (fr) 2014-10-22 2016-04-28 Extend Biosciences, Inc. Conjugués insuline vitamine d
AU2017336253B2 (en) 2016-09-29 2023-02-23 Ascendis Pharma Growth Disorders A/S Combination therapy with controlled-release CNP agonists
MA46428A (fr) * 2016-09-29 2019-08-07 Ascendis Pharma Bone Diseases As Schéma posologique incrémentiel dans des composés de pth à libération contrôlée
JP2021516222A (ja) * 2018-03-16 2021-07-01 ザ ジェネラル ホスピタル コーポレイション 副甲状腺ホルモンポリペプチドコンジュゲートおよびその使用方法
MA52662A (fr) * 2018-03-28 2021-02-17 Ascendis Pharma Oncology Div A/S Conjugués d'il-2
AU2019270464A1 (en) * 2018-05-18 2020-11-19 Ascendis Pharma Bone Diseases A/S Starting dose of PTH conjugates
WO2020160118A1 (fr) 2019-01-29 2020-08-06 Shire-Nps Pharmaceuticals, Inc. Variantes d'hormone parathyroïdienne
KR20210130751A (ko) * 2019-02-11 2021-11-01 아센디스 파마 본 디지즈 에이/에스 Pth 접합체의 액체 약학 제제
US20230174605A1 (en) 2020-06-03 2023-06-08 Ascendis Pharma Oncology Division A/S Il-2 sequences and uses thereof
WO2021263040A1 (fr) * 2020-06-26 2021-12-30 Shire-Nps Pharmaceuticals, Inc. Formulations de pepticorps stables
EP4192508A1 (fr) 2020-08-05 2023-06-14 Ascendis Pharma A/S Conjugués comprenant des lieurs réversibles et leurs utilisations
WO2024094673A1 (fr) 2022-11-02 2024-05-10 Ascendis Pharma Bone Diseases A/S Régime de traitement à base de pth comprenant deux composés pth

Family Cites Families (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5744444A (en) * 1989-10-27 1998-04-28 Haemopep Pharma Gmbh HPTH-fragment-(1-37), the preparation thereof, medicaments containing same and the use thereof
US5567439A (en) 1994-06-14 1996-10-22 Fuisz Technologies Ltd. Delivery of controlled-release systems(s)
MY120063A (en) 1997-12-09 2005-08-30 Lilly Co Eli Stabilized teriparatide solutions
US6624142B2 (en) 1997-12-30 2003-09-23 Enzon, Inc. Trimethyl lock based tetrapartate prodrugs
US20050124537A1 (en) 2000-04-27 2005-06-09 Amgen Inc. Modulators of receptors for parathyroid hormone and parathyroid hormone-related protein
EP1477496A4 (fr) 2002-02-01 2006-08-02 Chugai Pharmaceutical Co Ltd Pth a liaison peg ou derive de pth a liaison peg
US6559293B1 (en) 2002-02-15 2003-05-06 Transform Pharmaceuticals, Inc. Topiramate sodium trihydrate
US7122189B2 (en) 2002-08-13 2006-10-17 Enzon, Inc. Releasable polymeric conjugates based on aliphatic biodegradable linkers
US7332164B2 (en) 2003-03-21 2008-02-19 Enzon Pharmaceuticals, Inc. Heterobifunctional polymeric bioconjugates
EP1620118B1 (fr) 2003-04-08 2014-06-18 Yeda Research And Development Co., Ltd. Medicaments pegyles reversibles
JP4133570B2 (ja) * 2003-05-15 2008-08-13 アルパイン株式会社 ナビゲーション装置
US7690003B2 (en) 2003-08-29 2010-03-30 Fuller Jeffrey C System and method for increasing data throughput using thread scheduling
AU2004273573B2 (en) * 2003-09-19 2010-04-22 Novo Nordisk A/S Albumin-binding derivatives of therapeutic peptides
CN1657540A (zh) * 2004-02-18 2005-08-24 中国人民解放军军事医学科学院基础医学研究所 人甲状旁腺素(1-34)的聚乙二醇化衍生物,含有它们的药物组合物及用途
US8377917B2 (en) * 2004-03-23 2013-02-19 Complex Biosystems Gmbh Polymeric prodrug with a self-immolative linker
MXPA06012980A (es) 2004-05-10 2007-06-12 Nastech Pharm Co Composiciones y metodos para el suministro mucosal mejorado de la hormona paratiroidea.
US7968085B2 (en) 2004-07-05 2011-06-28 Ascendis Pharma A/S Hydrogel formulations
CN1597697A (zh) * 2004-07-19 2005-03-23 中国药科大学 一种人的甲状旁腺素1-34肽相关肽-Pro-Pro-[Arg11]]hPTH(1-34)-Pro-Pro
US20060069021A1 (en) 2004-08-13 2006-03-30 Nastech Pharmaceutical Company Inc. Compositions and methods for intranasal administration of inactive analogs of PTH or inactivated preparations of PTH or PTH analogs
EP1799759A1 (fr) 2004-08-30 2007-06-27 Lunamed Inc. Formulations a liberation controlee d'acide 4-phenylbutyrique utilisees dans des traitements
GB2427360A (en) 2005-06-22 2006-12-27 Complex Biosystems Gmbh Aliphatic prodrug linker
CN1298386C (zh) 2005-08-31 2007-02-07 上海交通大学 甲状旁腺激素缓释微球的制备方法
US8450269B2 (en) 2006-02-03 2013-05-28 Prolor Biotech Ltd. Long-acting growth hormone and methods of producing same
CA2680690A1 (fr) 2006-03-15 2007-09-20 Alza Corporation Appareil et procede d'administration transdermique d'agents hormonaux parathyroidiens destines a traiter ou prevenir l'osteopenie
NO325064B1 (no) * 2006-07-06 2008-01-28 Tandberg Telecom As Kommunikasjonsklient
CA2662978A1 (fr) 2006-09-15 2008-03-20 Enzon Pharmaceuticals, Inc. Segments de liaison biodegradables a base d'ester encombre pour distribution d'oligonuclotides
EP2084183B1 (fr) * 2006-10-13 2010-05-26 Eli Lilly & Company Pht pégylés en tant que modulateurs du récepteur pht et leurs utilisations
US8101729B2 (en) 2007-03-19 2012-01-24 Henry Joseph Niemczyk Pegylated amino acid derivatives and the process to synthesize the same
ES2583002T3 (es) 2007-04-09 2016-09-16 The Board Of Trustees Of The University Of Arkansas Proteínas de fusión de un dominio de enlazamiento a colágeno y hormona paratiroidea
KR101631323B1 (ko) 2007-06-21 2016-06-17 엑스엘-프로테인 게엠베하 증가된 생체내 및/또는 시험관내 안정성을 갖는 생물학적 활성 단백질
US20090016985A1 (en) 2007-07-11 2009-01-15 Enzon Pharmaceuticals, Inc. Polymeric drug delivery system containing a multi-substituted aromatic moiety
EP2052736A1 (fr) 2007-10-26 2009-04-29 Nycomed Danmark ApS Formulations d'hormones parathyroïdiennes et leurs utilisations
JP5588354B2 (ja) * 2008-02-01 2014-09-10 アセンディス ファーマ エー/エス 自己切断可能なリンカーを含むプロドラッグ
SI3050576T1 (sl) * 2008-04-29 2021-08-31 Ascendis Pharma Endocrinology Division A/S Spojine pegiliranega rekombinantnega humanega rastnega hormona
WO2009143412A2 (fr) 2008-05-23 2009-11-26 Enzon Pharmaceuticals, Inc. Systèmes polymères contenant un lieur disulfure intracellulaire libérable pour la délivrance d’oligonucléotides
WO2009156481A1 (fr) 2008-06-25 2009-12-30 Ascendis Pharma As Bnp pégylé
JP2012500284A (ja) 2008-08-19 2012-01-05 フェリング ベスローテン フェンノートシャップ ペプチド性pth受容体アゴニスト
WO2010091122A1 (fr) 2009-02-03 2010-08-12 Amunix, Inc. Polypeptides recombinants étendus et compositions les comprenant
WO2011012723A1 (fr) 2009-07-31 2011-02-03 Ascendis Pharma As Compositions injectables à libération prolongée contenant un promédicament du pramipexole
DK2459171T3 (en) 2009-07-31 2017-09-25 Sanofi Aventis Deutschland Long-acting insulin composition
EP2459228B1 (fr) 2009-07-31 2020-03-04 Sanofi-Aventis Deutschland GmbH Promédicament comprenant un conjugué insuline-lieur
US9173953B2 (en) 2009-07-31 2015-11-03 Ascendis Pharma As Prodrugs containing an aromatic amine connected by an amido bond to a linker
WO2011012721A1 (fr) 2009-07-31 2011-02-03 Ascendis Pharma As Promédicaments de pramipexole liés à un support
RU2554854C9 (ru) 2009-07-31 2017-02-03 Асцендис Фарма Ас Биоразлагаемые нерастворимые в воде гидрогели на основе полиэтиленгликоля
EP2485767A1 (fr) 2009-10-06 2012-08-15 Ascendis Pharma A/S Promédicaments à base de palipéridone liée à un support
WO2011073234A2 (fr) * 2009-12-15 2011-06-23 Ascendis Pharma As Composition d'hormone de croissance
WO2011082368A2 (fr) 2009-12-31 2011-07-07 Enzon Pharmaceuticals, Inc Conjugués polymères de composés contenant un groupement amine aromatique comprenant un lieur d'urée libérable
EP2525830B1 (fr) 2010-01-22 2016-05-11 Ascendis Pharma A/S Liens de promédicaments à base de dipeptides pour médicament contenant des amines aliphatiques
US20130030359A1 (en) 2010-01-22 2013-01-31 Ascendis Pharma A/S Dipeptide-based prodrug linkers for aromatic amine-containing drugs
US9561285B2 (en) 2010-01-22 2017-02-07 Ascendis Pharma As Carrier-linked carbamate prodrug linkers
US20110229580A1 (en) 2010-03-22 2011-09-22 Indian Institute of Technology Bombay, School of Biosciences and Bioengineering Compositions and methods for nano-in-micro particles
EP2552967A4 (fr) 2010-04-02 2014-10-08 Amunix Operating Inc Protéines de fusion liantes, conjugués protéines de fusion liantes-médicaments, conjugués xten-médicaments et procédés pour les préparer et les utiliser
JP5977229B2 (ja) 2010-05-05 2016-08-24 プロリンクス リミテッド ライアビリティ カンパニー 巨大分子共役体からの徐放
DK2566334T3 (en) 2010-05-05 2018-07-23 Prolynx Llc MANAGED PHARMACEUTICAL RELEASE FROM SOLID CARRIERS
MX358161B (es) 2010-05-13 2018-08-06 The General Hospital Corp Star Analogos de hormona paratiroidea y usos para los mismos.
ES2691642T3 (es) 2010-05-21 2018-11-28 Xl-Protein Gmbh Polipéptidos de enrollamiento al azar de prolina/alanina biosintéticos y sus usos
US8865220B2 (en) 2010-06-14 2014-10-21 Kaohsiung Medical University Method for controlled release of parathyroid hormone from encapsulated poly(lactic-glycolic)acid microspheres
WO2012002047A1 (fr) 2010-06-30 2012-01-05 Necソフト株式会社 Procédé de détermination d'attributs, dispositif de détermination d'attributs, programme, support d'enregistrement et système de détermination d'attributs
US20120040320A1 (en) 2010-08-13 2012-02-16 Nadeau Daniel A Injection Simulation Device and Methods Thereof
EP2438930A1 (fr) 2010-09-17 2012-04-11 Sanofi-Aventis Deutschland GmbH Promédicaments comprenant un conjugué de liaison d'exendine
WO2013024049A1 (fr) 2011-08-12 2013-02-21 Ascendis Pharma A/S Promédicaments liés à un excipient protéique
EP2741778A1 (fr) 2011-08-12 2014-06-18 Ascendis Pharma A/S Promédicaments liés à des excipients polymériques hyperbranchés
JP6092867B2 (ja) 2011-08-12 2017-03-08 アセンディス ファーマ エー/エス 担体連結しているトレプロスチニルプロドラッグ
WO2013024051A1 (fr) 2011-08-12 2013-02-21 Ascendis Pharma A/S Composition à libération prolongée de prostacycline
EP2741744A1 (fr) 2011-08-12 2014-06-18 Ascendis Pharma A/S Promédicaments reliés à des supports comprenant des liaisons ester carboxylique réversibles
WO2013036857A1 (fr) 2011-09-07 2013-03-14 Prolynx Llc Coupleurs au sulfone
RU2014118642A (ru) 2011-10-12 2015-11-20 Асцендис Фарма Офтальмолоджи Дивижн А/С Предотвращение и лечение глазных нарушений
US8883862B2 (en) 2012-01-12 2014-11-11 Kaohsiung Medical University Method for controlled release of parathyroid hormone from cross-linked hyaluronic acid hydrogel
WO2013160340A1 (fr) 2012-04-25 2013-10-31 Ascendis Pharma A/S Promédicaments de médicaments comprenant des groupes hydroxyle
US9457096B2 (en) 2012-07-06 2016-10-04 Consejo Nacional De Investigaciones Cientificas Y Tecnicas (Concet) Protozoan variant-specific surface proteins (VSP) as carriers for oral drug delivery
WO2014033540A2 (fr) * 2012-08-28 2014-03-06 The Governors Of The University Of Alberta Parathormone, insuline, et peptides associés conjugués à des fractions de ciblage osseux, et procédés de fabrication et d'utilisation de ceux-ci
JP6271566B2 (ja) 2012-10-11 2018-01-31 アセンディス ファーマ エー/エス ヒドロゲルプロドラッグ
CN104755104A (zh) * 2012-10-11 2015-07-01 阿森迪斯药物股份有限公司 诊断、预防和治疗关节疾病
JP2015533132A (ja) 2012-10-11 2015-11-19 アセンディス ファーマ オフサルモロジー ディヴィジョン エー/エス 眼状態を処置するためのvegf中和プロドラッグ
EP2908845A1 (fr) 2012-10-17 2015-08-26 Novo Nordisk Health Care AG Acides aminés acylés par un acide gras pour l'administration d'hormone de croissance
CA2891949C (fr) 2012-12-07 2021-03-23 Ascendis Pharma A/S Promedicaments prostanoides lies a un support
GB201303771D0 (en) 2013-03-04 2013-04-17 Midatech Ltd Nanoparticles peptide compositions
AU2014257745B2 (en) 2013-04-22 2018-10-04 Ascendis Pharma A/S Hydrogel-linked prodrugs releasing modified drugs
US20150065423A1 (en) 2013-08-30 2015-03-05 Perosphere, Inc. Rapid acting injectable formulations
CA2925190C (fr) 2013-10-08 2021-10-12 Ascendis Pharma A/S Groupe protecteur comprenant une etiquette de purification
EP2868326A1 (fr) 2013-11-04 2015-05-06 Université Pierre et Marie Curie (Paris 6) Peptides inhibiteurs de l'interaction TEAD/YAP-TAZ
EP3193941B1 (fr) 2014-08-06 2024-05-22 Ascendis Pharma A/S Promédicaments comprenant un liant de type aminoalkylglycine
JP6946182B2 (ja) 2014-10-22 2021-10-06 エクステンド バイオサイエンシズ インコーポレーテッドExtend Biosciences, Inc 治療用ビタミンdコンジュゲート
SG10202011002WA (en) 2015-01-09 2020-12-30 Ascendis Pharma Growth Disorders As Cnp prodrugs
US20200276276A1 (en) * 2016-03-01 2020-09-03 Ascendis Pharma Bone Diseases A/S PTH Prodrugs
WO2018060312A1 (fr) * 2016-09-29 2018-04-05 Ascendis Pharma Bone Diseases A/S Composés de pth ayant un faible rapport entre le pic et le niveau minimum
AU2017336253B2 (en) * 2016-09-29 2023-02-23 Ascendis Pharma Growth Disorders A/S Combination therapy with controlled-release CNP agonists
EP4275677A3 (fr) * 2016-09-29 2024-01-10 Ascendis Pharma Bone Diseases A/S Schéma posologique pour composé pth à libération controlée
MA46428A (fr) * 2016-09-29 2019-08-07 Ascendis Pharma Bone Diseases As Schéma posologique incrémentiel dans des composés de pth à libération contrôlée
TW201832783A (zh) 2016-12-02 2018-09-16 法商賽諾菲公司 包含glp-1/胰高血糖素雙重激動劑、連接子和透明質酸的接合物
AU2019270464A1 (en) 2018-05-18 2020-11-19 Ascendis Pharma Bone Diseases A/S Starting dose of PTH conjugates
KR20210130751A (ko) * 2019-02-11 2021-11-01 아센디스 파마 본 디지즈 에이/에스 Pth 접합체의 액체 약학 제제
CA3161101A1 (fr) 2020-01-13 2021-07-22 Kennett Sprogoe Traitement de l'hypoparathyroidisme

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200360487A1 (en) * 2016-03-01 2020-11-19 Ascendis Pharma Bone Diseases A/S Pth prodrugs
US20200376089A1 (en) * 2016-03-01 2020-12-03 Ascendis Pharma Bone Diseases A/S Pth prodrugs
US11793861B2 (en) 2016-03-01 2023-10-24 Ascendis Pharma Bone Diseases A/S PTH prodrugs
US11590207B2 (en) 2016-09-29 2023-02-28 Ascendis Pharma Bone Diseases A/S Dosage regimen for a controlled-release PTH compound
US11759504B2 (en) 2016-09-29 2023-09-19 Ascendis Pharma Bone Diseases A/S PTH compounds with low peak-to-trough ratios
US11857603B2 (en) 2016-09-29 2024-01-02 Ascendis Pharma Bone Diseases A/S PTH compounds with low peak-to-trough ratios
US11890326B2 (en) 2016-09-29 2024-02-06 Ascendis Pharma Bone Diseases A/S Controlled-release PTH compound
US11918628B2 (en) 2016-09-29 2024-03-05 Ascendis Pharma Bone Diseases A/S Controlled-release PTH compound

Also Published As

Publication number Publication date
IL301616A (en) 2023-05-01
US20220008516A1 (en) 2022-01-13
CA3015585A1 (fr) 2017-09-08
AU2020286303B2 (en) 2022-07-21
CN115025239A (zh) 2022-09-09
AU2022256158A9 (en) 2023-09-28
MY196308A (en) 2023-03-24
RU2747316C2 (ru) 2021-05-04
KR20210147085A (ko) 2021-12-06
AU2017227962C1 (en) 2021-05-13
AU2022256158A1 (en) 2022-12-08
MA45809A (fr) 2019-01-09
WO2017148883A1 (fr) 2017-09-08
US20200360487A1 (en) 2020-11-19
JP2022068210A (ja) 2022-05-09
US20230121525A1 (en) 2023-04-20
BR112018017091A2 (pt) 2019-01-02
KR102331820B1 (ko) 2021-11-29
US20240123038A1 (en) 2024-04-18
RU2018134135A3 (fr) 2020-04-01
AU2020286303C1 (en) 2023-03-02
CN109069659A (zh) 2018-12-21
MX2022015755A (es) 2023-01-19
AU2023285850A1 (en) 2024-01-18
EP3423103A1 (fr) 2019-01-09
IL260756B2 (en) 2023-09-01
SG11201806092TA (en) 2018-08-30
NZ745318A (en) 2023-01-27
IL260756B1 (en) 2023-05-01
CN109069659B (zh) 2022-04-19
US11793861B2 (en) 2023-10-24
MX2018009938A (es) 2019-03-14
KR102524255B1 (ko) 2023-04-20
AU2017227962B2 (en) 2020-11-12
JP7059195B2 (ja) 2022-04-25
KR20230015517A (ko) 2023-01-31
AU2017227962A1 (en) 2018-08-09
RU2018134135A (ru) 2020-04-01
KR20180118197A (ko) 2018-10-30
ZA201805705B (en) 2019-06-26
IL260756A (fr) 2018-09-20
AU2022256158B2 (en) 2023-09-28
US20200376089A1 (en) 2020-12-03
JP2019513127A (ja) 2019-05-23
MA45277A (fr) 2019-01-09
AU2020286303A1 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
US11793861B2 (en) PTH prodrugs
US11857603B2 (en) PTH compounds with low peak-to-trough ratios
US11918628B2 (en) Controlled-release PTH compound
US20190224329A1 (en) Incremental Dose Finding in Controlled-Release PTH Compounds
NZ785623A (en) PTH Prodrugs

Legal Events

Date Code Title Description
AS Assignment

Owner name: ASCENDIS PHARMA BONE DISEASES A/S, DENMARK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ASCENDIS PHARMA A/S;REEL/FRAME:053320/0024

Effective date: 20200709

Owner name: ASCENDIS PHARMA A/S, DENMARK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SPROGOEE, KENNETT, DR.;REEL/FRAME:053319/0305

Effective date: 20200602

Owner name: ASCENDIS PHARMA GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CLEEMANN, FELIX, DR.;MAITRO, GUILLAUME, DR.;KRUSCH, MATHIAS;SIGNING DATES FROM 20200524 TO 20200702;REEL/FRAME:053319/0092

Owner name: ASCENDIS PHARMA A/S, DENMARK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ASCENDIS PHARMA GMBH;REEL/FRAME:053319/0450

Effective date: 20200709

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: ASCENDIS PHARMA GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WEGGE, THOMAS;ZETTLER, JOACHIM;SIGNING DATES FROM 20200625 TO 20200701;REEL/FRAME:064736/0758