US20200046565A1 - Reduced-Pressure, Linear-Wound Treatment Systems - Google Patents
Reduced-Pressure, Linear-Wound Treatment Systems Download PDFInfo
- Publication number
- US20200046565A1 US20200046565A1 US16/596,424 US201916596424A US2020046565A1 US 20200046565 A1 US20200046565 A1 US 20200046565A1 US 201916596424 A US201916596424 A US 201916596424A US 2020046565 A1 US2020046565 A1 US 2020046565A1
- Authority
- US
- United States
- Prior art keywords
- bolster body
- reduced pressure
- bolster
- pressure
- closing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000007789 sealing Methods 0.000 claims abstract description 89
- 210000002615 epidermis Anatomy 0.000 claims abstract description 33
- 238000000034 method Methods 0.000 claims abstract description 11
- 239000000463 material Substances 0.000 claims description 90
- 210000001519 tissue Anatomy 0.000 claims description 34
- 239000012530 fluid Substances 0.000 claims description 16
- 239000006260 foam Substances 0.000 claims description 13
- 238000011179 visual inspection Methods 0.000 claims description 9
- 230000008878 coupling Effects 0.000 claims description 4
- 238000010168 coupling process Methods 0.000 claims description 4
- 238000005859 coupling reaction Methods 0.000 claims description 4
- 238000000926 separation method Methods 0.000 claims 7
- 206010052428 Wound Diseases 0.000 description 131
- 208000027418 Wounds and injury Diseases 0.000 description 131
- 206010033675 panniculitis Diseases 0.000 description 18
- 210000004304 subcutaneous tissue Anatomy 0.000 description 18
- 239000000853 adhesive Substances 0.000 description 9
- 230000001070 adhesive effect Effects 0.000 description 9
- 238000007920 subcutaneous administration Methods 0.000 description 7
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 6
- 239000011800 void material Substances 0.000 description 6
- 239000011324 bead Substances 0.000 description 5
- 229920001296 polysiloxane Polymers 0.000 description 5
- 238000001356 surgical procedure Methods 0.000 description 5
- 230000000007 visual effect Effects 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 238000005452 bending Methods 0.000 description 4
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 229920001971 elastomer Polymers 0.000 description 4
- 230000035876 healing Effects 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000002560 therapeutic procedure Methods 0.000 description 4
- 208000002847 Surgical Wound Diseases 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000000806 elastomer Substances 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 208000034693 Laceration Diseases 0.000 description 2
- 206010030113 Oedema Diseases 0.000 description 2
- 210000004207 dermis Anatomy 0.000 description 2
- 210000003414 extremity Anatomy 0.000 description 2
- 210000000416 exudates and transudate Anatomy 0.000 description 2
- 239000000416 hydrocolloid Substances 0.000 description 2
- 239000000017 hydrogel Substances 0.000 description 2
- 238000007443 liposuction Methods 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 229920002943 EPDM rubber Polymers 0.000 description 1
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 229920001247 Reticulated foam Polymers 0.000 description 1
- 206010040880 Skin irritation Diseases 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000003522 acrylic cement Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 210000000577 adipose tissue Anatomy 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 210000000617 arm Anatomy 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 210000000038 chest Anatomy 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000002316 cosmetic surgery Methods 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 239000013536 elastomeric material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 210000003722 extracellular fluid Anatomy 0.000 description 1
- 238000009950 felting Methods 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 239000006261 foam material Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 229920002681 hypalon Polymers 0.000 description 1
- -1 i.e. Substances 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229920002529 medical grade silicone Polymers 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000002324 minimally invasive surgery Methods 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 229920001021 polysulfide Polymers 0.000 description 1
- 239000005077 polysulfide Substances 0.000 description 1
- 150000008117 polysulfides Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 239000013464 silicone adhesive Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 230000036556 skin irritation Effects 0.000 description 1
- 231100000475 skin irritation Toxicity 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/00051—Accessories for dressings
- A61F13/00059—Accessories for dressings provided with visual effects, e.g. printed or colored
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/02—Adhesive bandages or dressings
- A61F13/0276—Apparatus or processes for manufacturing adhesive dressings or bandages
- A61F13/0289—Apparatus or processes for manufacturing adhesive dressings or bandages manufacturing of adhesive dressings
-
- A61F13/00017—
-
- A61F13/00029—
-
- A61F13/00034—
-
- A61F13/00038—
-
- A61F13/00068—
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/01—Non-adhesive bandages or dressings
- A61F13/01008—Non-adhesive bandages or dressings characterised by the material
- A61F13/01017—Non-adhesive bandages or dressings characterised by the material synthetic, e.g. polymer based
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/01—Non-adhesive bandages or dressings
- A61F13/01021—Non-adhesive bandages or dressings characterised by the structure of the dressing
- A61F13/01029—Non-adhesive bandages or dressings characterised by the structure of the dressing made of multiple layers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/01—Non-adhesive bandages or dressings
- A61F13/01034—Non-adhesive bandages or dressings characterised by a property
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/01—Non-adhesive bandages or dressings
- A61F13/01034—Non-adhesive bandages or dressings characterised by a property
- A61F13/01038—Flexibility, stretchability or elasticity
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/02—Adhesive bandages or dressings
- A61F13/0203—Adhesive bandages or dressings with fluid retention members
- A61F13/0206—Adhesive bandages or dressings with fluid retention members with absorbent fibrous layers, e.g. woven or non-woven absorbent pads or island dressings
- A61F13/0209—Adhesive bandages or dressings with fluid retention members with absorbent fibrous layers, e.g. woven or non-woven absorbent pads or island dressings comprising superabsorbent material
-
- A61F13/0216—
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/02—Adhesive bandages or dressings
- A61F13/0203—Adhesive bandages or dressings with fluid retention members
- A61F13/022—Adhesive bandages or dressings with fluid retention members having more than one layer with different fluid retention characteristics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/02—Adhesive bandages or dressings
- A61F13/0203—Adhesive bandages or dressings with fluid retention members
- A61F13/0223—Adhesive bandages or dressings with fluid retention members characterized by parametric properties of the fluid retention layer, e.g. absorbency, wicking capacity, liquid distribution
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/02—Adhesive bandages or dressings
- A61F13/023—Adhesive bandages or dressings wound covering film layers without a fluid retention layer
- A61F13/0243—Adhesive bandages or dressings wound covering film layers without a fluid retention layer characterised by the properties of the skin contacting layer, e.g. air-vapor permeability
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/05—Bandages or dressings; Absorbent pads specially adapted for use with sub-pressure or over-pressure therapy, wound drainage or wound irrigation, e.g. for use with negative-pressure wound therapy [NPWT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F15/00—Auxiliary appliances for wound dressings; Dispensing containers for dressings or bandages
- A61F15/008—Appliances for wound protecting, e.g. avoiding contact between wound and bandage
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H1/00—Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
- A61H1/008—Apparatus for applying pressure or blows almost perpendicular to the body or limb axis, e.g. chiropractic devices for repositioning vertebrae, correcting deformation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/42—Use of materials characterised by their function or physical properties
- A61L15/60—Liquid-swellable gel-forming materials, e.g. super-absorbents
-
- A61M1/0023—
-
- A61M1/0088—
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/71—Suction drainage systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/90—Negative pressure wound therapy devices, i.e. devices for applying suction to a wound to promote healing, e.g. including a vacuum dressing
- A61M1/91—Suction aspects of the dressing
- A61M1/915—Constructional details of the pressure distribution manifold
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/90—Negative pressure wound therapy devices, i.e. devices for applying suction to a wound to promote healing, e.g. including a vacuum dressing
- A61M1/91—Suction aspects of the dressing
- A61M1/917—Suction aspects of the dressing specially adapted for covering whole body parts
-
- H05K999/99—
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F2013/00089—Wound bandages
- A61F2013/00119—Wound bandages elastic
- A61F2013/00131—Wound bandages elastic elasticity distribution
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F2013/00089—Wound bandages
- A61F2013/00119—Wound bandages elastic
- A61F2013/00131—Wound bandages elastic elasticity distribution
- A61F2013/00136—Wound bandages elastic elasticity distribution anisotropy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F2013/00089—Wound bandages
- A61F2013/0017—Wound bandages possibility of applying fluid
- A61F2013/00174—Wound bandages possibility of applying fluid possibility of applying pressure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F2013/00089—Wound bandages
- A61F2013/00182—Wound bandages with transparent part
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F2013/00089—Wound bandages
- A61F2013/00246—Wound bandages in a special way pervious to air or vapours
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F2013/00089—Wound bandages
- A61F2013/0028—Wound bandages applying of mechanical pressure; passive massage
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F2013/00361—Plasters
- A61F2013/00365—Plasters use
- A61F2013/00536—Plasters use for draining or irrigating wounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F2013/00361—Plasters
- A61F2013/00365—Plasters use
- A61F2013/0054—Plasters use for deep wounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F2013/00361—Plasters
- A61F2013/00727—Plasters means for wound humidity control
- A61F2013/00748—Plasters means for wound humidity control with hydrocolloids or superabsorbers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/90—Negative pressure wound therapy devices, i.e. devices for applying suction to a wound to promote healing, e.g. including a vacuum dressing
- A61M1/91—Suction aspects of the dressing
- A61M1/916—Suction aspects of the dressing specially adapted for deep wounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/70—General characteristics of the apparatus with testing or calibration facilities
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2207/00—Methods of manufacture, assembly or production
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2210/00—Anatomical parts of the body
- A61M2210/10—Trunk
- A61M2210/1007—Breast; mammary
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2210/00—Anatomical parts of the body
- A61M2210/10—Trunk
- A61M2210/1021—Abdominal cavity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
Definitions
- Provisional Patent Application Ser. No. 61/057,802 entitled “Reduced-Pressure Dressing Assembly For Use in Applying a Closing Force,” filed May 30, 2008; U.S. Provisional Patent Application Ser. No. 61/057,803, entitled “Reduced-Pressure, Linear-Wound Treatment System,” filed May 30, 2008; U.S. Provisional Patent Application Ser. No. 61/057,800, entitled “Reduced-Pressure, Compression System and Apparatus for use on a Curved Body Part,” filed, May 30, 2008; U.S. Provisional Patent Application Ser. No.
- the present invention relates generally to medical treatment systems, and more particularly, to reduced-pressure wound treatment systems suitable for use with linear wounds, such as surgical wounds.
- Surgical procedures involve acute wounds, e.g., an incision or linear wound, in the skin and related tissue.
- linear wounds are also caused by trauma.
- the linear wound is closed using a mechanical apparatus, such as staples, suture, or adhesives, and then the wound is merely covered with a dry, sterile bandage. Often the bandage must be removed to view the wound to monitor the wound's progress and to check for infection or other issues. Unless otherwise indicated, as used herein, “or” does not require mutual exclusivity.
- a system for treating a linear wound on a patient includes a closing dressing bolster for placing on the patient's epidermis over the linear wound and a sealing subsystem for providing a seal over the closing dressing bolster and the patient.
- the system further includes a reduced-pressure subsystem for delivering a reduced pressure to the sealing subsystem.
- the sealing subsystem and reduced pressure subsystem are operable to deliver reduced pressure to the closing dressing bolster.
- the closing dressing bolster is operable under reduced pressure to develop an inward closing realized at the linear wound.
- the system may be see through and may provide a compressive force.
- a system for treating a linear wound on a patient includes a closing dressing bolster for placing on the patient's epidermis over the linear wound and a sealing subsystem for providing a seal over the closing dressing bolster and the patient.
- the system further includes a reduced-pressure subsystem for delivering reduced pressure to the sealing subsystem.
- the sealing subsystem and reduced pressure subsystem are operable to deliver reduced pressure to the closing dressing bolster.
- the closing dressing bolster, sealing subsystem, and reduced pressure subsystem are operable, under reduced pressure, to develop a compressive force and an inward closing realized at the linear wound and to deliver a reduced pressure to the linear wound.
- a system for treating a linear wound on a patient includes a closing dressing bolster for placing on the patient's epidermis over the linear wound.
- the closing dressing bolster includes a bolster body formed from a bolster material and formed with a first portion and a second portion.
- the bolster body includes a wound placement area and the first portion is on one side of the wound placement area and the second portion is on the other side of the wound placement area.
- the bolster body has a first closing member formed on the first portion of the bolster body and a second closing member formed on the second portion of the bolster body.
- the system further includes a sealing subsystem for providing a seal over the closing dressing bolster and the patient.
- the sealing subsystem includes an over-drape that extends over the closing dressing bolster and a sealing apparatus for providing a seal between a patient's epidermis and the over-drape.
- the system further includes a reduced-pressure subsystem for delivering reduced pressure to the sealing subsystem.
- the reduced-pressure subsystem includes a reduced-pressure source for providing reduced pressure, a reduced-pressure interface coupled to the sealing subsystem, and a reduced-pressure delivery conduit for providing reduced pressure from the reduced-pressure source to the reduced-pressure interface.
- the sealing subsystem and reduced pressure subsystem are operable to deliver reduced pressure to the closing dressing bolster.
- the closing dressing bolster, sealing subsystem, and reduced-pressure subsystem are operable to develop a compressive force and an inward closing realized at the linear wound and to deliver a reduced pressure to the linear wound.
- a method of manufacturing a system for treating a linear wound on a patient includes the steps of providing a closing dressing bolster for placing on the patient's epidermis over the linear wound so that a closing force is developed when placed under reduced pressure.
- the method of manufacturing further includes the steps of providing an over-drape for placing over the closing dressing bolster; providing a reduced-pressure interface for coupling to the over-drape and the closing dressing bolster; and providing a reduced-pressure delivery conduit for coupling the reduced-pressure source and the reduced-pressure interface.
- FIG. 1 is a schematic, perspective view, with a portion in cross section, of an illustrative embodiment of a system for treating a linear wound on a patient;
- FIG. 2 is a schematic, perspective view of an illustrative embodiment of a closing dressing bolster for use in treating a linear wound on a patient;
- FIG. 3A is a schematic cross-section of an illustrative embodiment of a system for treating a linear wound on a patient
- FIG. 3B is a schematic cross-section of a detail from FIG. 3A ;
- FIG. 3C is a schematic cross-section of a detail from FIG. 3A ;
- FIG. 4A is a schematic, perspective view of an illustrative embodiment of a closing dressing bolster for use in treating a linear wound on a patient;
- FIG. 4B is a partially exploded, perspective view of the closing dressing bolster of FIG. 4A showing one illustrative embodiment of a tubing connector;
- FIG. 4C is a cross-section of the closing dressing bolster of FIG. 4A ;
- FIG. 4D is a detail of the closing dressing bolster of FIG. 4C ;
- FIG. 5 is a schematic, perspective view of an illustrative embodiment of a closing dressing bolster for use in treating a linear wound on a patient;
- FIG. 6 is a schematic cross-section of a portion of an illustrative embodiment of a system for treating a linear wound on a patient
- FIG. 7 is a schematic cross-section of an illustrative embodiment of a portion of a system for treating a linear wound on a patient.
- FIG. 8 is a schematic, perspective view, with a portion in cross section, of an illustrative embodiment of a system for treating damaged subcutaneous tissue that allows the wound to be seen from a point external to the system.
- a reduced-pressure system 10 for treating a linear wound 12 such as a laceration or, more typically, an incision 14 is presented.
- the reduced-pressure system 10 may hold or support peri-incisional tissue, enhance tensile strength of the incision 14 ; compress subcutaneous tissue 20 ; remove interstitial fluid, which may help reduce or eliminate edema; and isolate the linear wound 12 from infectious sources.
- the reduced-pressure system 10 may be particularly well suited for use with at-risk patients, e.g., obese patients, diabetic patients, smokers, etc.
- the linear wound 12 may extend to different depths, in this example the incision 14 extends through epidermis 16 , dermis 18 , and into the subcutaneous tissue 20 .
- An damaged subcutaneous tissue 22 includes, in this illustration, a subcutaneous void 24 or dead space.
- the linear wound 12 may have any number of closing devices employed on the linear wound, e.g., mechanical closing devices (suture, staples, clamps, etc.), adhesives, bonding, etc.
- the wound may be or include a graft.
- the reduced-pressure system 10 may include a dressing assembly 40 , which may be placed over the linear wound 12 and used with reduced pressure to supply a directed force, which may include a compressive force 42 or a closing force 44 (or an inward force with respect to an outer edge of the dressing assembly).
- the dressing assembly 40 may include a closing dressing bolster 46 that under reduced pressure develops the directed force, e.g., the compressive forces 42 or the closing forces 44 .
- the closing dressing bolster 46 may be formed with a bolster body 50 .
- the closing dressing bolster 46 is preferably made from a material that allows flexing and yet is rigid enough to deliver a closing force.
- the bolster body 50 may include a first closing member 52 and a second closing member 54 . Additional closing members, such as members 56 , 58 , 60 , and 62 may be included.
- a sealing subsystem 70 and a reduced-pressure subsystem 90 cooperate with the closing dressing bolster 46 to develop the directed force, e.g., the closing force 44 or the compressive force 42 .
- the closing dressing bolster 46 may be made from a material that helps to distribute reduced pressure to the linear wound 12 , provides the compressive force 42 , and, through the closing members, e.g., closing member 56 , provides a closing force 44 —preferably a force that is substantially within the plane of the epidermis 16 .
- the material for the closing dressing bolster 46 is preferably translucent or see through to an extent that light may pass through allowing one to view the linear wound 12 through the bolster material from a point external to the reduced-pressure system 10 .
- the material from which the closing dressing bolster 46 may be formed is further described below.
- the reduced-pressure system 10 may allow wound color, shades of color, wound edge, or other features to be perceived visually from a point external the reduced-pressure system 10 .
- the color, shades of color, nature of the wound edge, or other features may be determined by a healthcare provider without requiring removal of the dressing assembly 40 and thereby may avoid the increased risk of complications and pain of a dressing change. As such, the expense of another a dressing assembly 40 or part of thereof may also be avoided.
- the reduced-pressure system 10 may also provide the compressive force 42 to the linear wound 12 and that force may help the linear wound 12 , subcutaneous tissue 22 , or subcutaneous void 24 to heal and may stabilize the linear wound 12 against shear.
- the reduced-pressure system 10 may also help remove exudates from the linear wound 12 and may help close the void 24 .
- the sealing subsystem 70 may include the sealing member 72 .
- the sealing member 72 has a first side 74 and a second, inward-facing side 76 .
- a portion of the sealing member 72 may extend beyond the closing dressing bolster 46 , e.g., beyond edge 48 , to form a flap, or a drape extension 77 , which has a first side 78 and a second, inward-facing side 79 .
- the sealing member 72 may be any material that provides a fluid seal that allows reduced pressure to be held.
- the sealing member may, for example, be an impermeable or semi-permeable, elastomeric material. “Elastomeric” means having the properties of an elastomer. It generally refers to a polymeric material that has rubber-like properties.
- elastomers have elongation rates greater than 100% and a significant amount of resilience.
- the resilience of a material refers to the material's ability to recover from an elastic deformation.
- elastomers may include, but are not limited to, natural rubbers, polyisoprene, styrene butadiene rubber, chloroprene rubber, polybutadiene, nitrile rubber, butyl rubber, ethylene propylene rubber, ethylene propylene diene monomer, chlorosulfonated polyethylene, polysulfide rubber, polyurethane, EVA film, co-polyester, and silicones.
- sealing member materials include a silicone drape, 3M Tegaderm® drape, acrylic drape (such as one available from Avery Dennison), or an incise drape.
- a sealing apparatus 80 may be used to help provide a fluid seal between the drape extension 77 and the patient's epidermis 16 .
- the sealing apparatus 80 may be an adhesive 82 that is applied to the second, inward-facing side 79 of the flap extension 77 to provide such a seal against the epidermis 16 .
- the sealing apparatus 80 may be used to hold the sealing member 72 against the patient's epidermis 16 or another layer, such as a gasket or additional sealing member.
- the sealing apparatus 80 may take numerous forms.
- the sealing apparatus 80 may be a medically acceptable, pressure-sensitive adhesive that extends about a periphery of the sealing member 72 .
- the reduced-pressure subsystem 90 includes a reduced-pressure source 92 , or therapy unit.
- the reduced-pressure source 92 provides reduced pressure.
- the reduced-pressure source 92 may be any device for supplying reduced pressure, such as a vacuum pump, wall suction, or other source. While the amount and nature of reduced pressure applied to a tissue will typically vary according to the application, reduced pressure will typically be between ⁇ 5 mm Hg and ⁇ 500 mm Hg and more typically between ⁇ 100 mm Hg and ⁇ 300 mm Hg. In one embodiment, the reduced pressure is held around ⁇ 200 mm Hg.
- the reduced-pressure source 92 for convenience and mobility purposes, may be a battery-operated unit that is capable of providing a continuous and intermittent reduced pressure.
- the reduced-pressure source 92 may include a canister 94 , or reservoir, and may be provided with windows 96 to allow the patient or healthcare provider to view the fill status of the canister 94 .
- the reduced-pressure subsystem 90 further includes a reduced-pressure delivery conduit 98 , or medical tubing, which if fluidly coupled to a reduced-pressure interface 100 , such as a port 102 .
- the reduced-pressure delivery conduit 98 and the reduced-pressure interface 100 allow reduced pressure to be delivered into the sealing subsystem 70 .
- reduced pressure generally refers to a pressure less than the ambient pressure at a linear wound 12 , tissue site, or treatment site that is being subjected to treatment. In most cases, this reduced pressure will be less than the atmospheric pressure at which the patient is located. Alternatively, reduced pressure may be less than a hydrostatic pressure at the tissue site. Unless otherwise indicated, values of pressure stated herein are gauge pressures. Reduced pressure delivered may be constant or varied (patterned or random) and may be delivered continuously or intermittently. Although the terms “vacuum” and “negative pressure” may be used to describe the pressure applied to the tissue site, the actual pressure applied to the tissue site may be more than the pressure normally associated with a complete vacuum. Consistent with the use herein, an increase in reduced pressure or vacuum pressure typically refers to a relative reduction in absolute pressure.
- the closing dressing bolster 46 may be made from a polymer and is preferably a soft polymer.
- the closing dressing bolster 46 is a material having a durometer of 50 Shore A, but other materials and characteristics are possible.
- the closing dressing bolster 46 and the bolster body 50 may be made of a see-through material, as is a sealing member 72 , in order to allow the color, shades of color, wound edges, or other features of the linear wound 12 to be viewed from a point external to the reduced-pressure system 10 (see FIG. 6 ).
- a color change, or change in the shade of a color, of the linear wound 12 can signify the onset of infection or other issues, and such visual cues provide useful information to the healthcare provider.
- the bolster body 50 may be made from a flexible closing bolster material, e.g., a soft polymer, a medical grade silicone, or other suitable material.
- the closing dressing bolster 46 may be extruded, pour molded, injection molded, blow molded, or formed by other manufacturing techniques. “Flexible” means able to move enough to generate the inward closing force.
- the closing dressing bolster 46 is shown with a plurality of apertures 64 formed on a second, inward-facing side or surface 49 of a second wall 55 , or bottom wall, of the bolster body 50 .
- the apertures 64 are formed under a center portion 66 , and in particular, near center line 68 of the bolster body 50 .
- a detail showing one aperture 64 is shown in FIG. 3C .
- a first wall 53 , or top wall, and the second wall 55 are coupled in a spaced relationship to form a hollow region or central compartment 57 .
- the apertures 64 facilitate the transmission of reduced pressure by the bolster body 50 to the linear wound 12 .
- Additional apertures in various patterns may be provided in the bolster body 50 to facilitate communication of reduced pressure to the patient's epidermis 16 , and, in particular, to the linear wound 12 .
- One or more apertures, such as aperture 65 may be formed on a first side 47 of the first wall 53 of the bolster body 50 .
- Closing members 52 , 54 , 56 , 58 , 60 , and 62 are shown on the second, inward-facing side 49 .
- Closing members 52 , 56 , and 58 are on a first lateral side of the center portion 66 and closing members 54 , 60 , and 62 are on a second lateral side of the center portion 66 .
- an oblique surface 69 has an angle formed with respect to an imaginary plane extending vertically (vertical for the orientation shown in FIG. 2 ).
- the oblique surface 69 which is opposite a surface 63 , is shown making an angle 61 with respect to a reference vertical plane 59 formed at the apex of the oblique surface 69 .
- the closing dressing bolster 46 In operation, when treatment is desired, the closing dressing bolster 46 is placed over the linear wound 12 with the center portion 66 over the linear wound 12 proximate a center wound area 45 . If the closing dressing bolster 46 is not pre-manufactured with the sealing member 72 applied on the first side 47 , then the sealing member 72 is applied over the first side 47 of the closing dressing bolster 46 and beyond the closing dressing bolster 46 to form the flap extension or drape extension 77 .
- the drape extension 77 is either taped down or an adhesive 82 is applied to provide a fluid seal between the sealing member 72 and the patient's epidermis 16 .
- Fluid seal or “seal,” means a seal adequate to hold reduced pressure at the desired site given the particular reduced-pressure subsystem involved.
- the reduced-pressure subsystem 90 is fluidly coupled to the sealing subsystem 70 through the reduced-pressure interface 100 .
- the reduced-pressure source 92 is activated and develops and delivers reduced pressure through the reduced-pressure delivery conduit 98 to the reduced-pressure interface 100 .
- the reduced-pressure source 92 delivers reduced pressure to the sealing subsystem 70 and reduced pressure causes the closing dressing bolster 46 to develop the compressive force 42 .
- the geometry of the closing dressing bolster 46 may cause a bending moment to develop about the center portion 66 and thereby cause the closing members 52 , 54 , 56 , 58 , 60 , and 62 to develop a resultant force downward and inward (for the orientation shown). This action produces the directed force, e.g., the compressive force 42 or the closing force 44 . These forces may be experienced at or near the linear wound 12 .
- Each of the oblique surfaces 69 between adjacent closing members, 58 and 56 , 56 and 52 , 52 and 54 , 54 and 60 , and 60 and 62 form part of a triangle-shaped ridge, each having an apex: first apex 67 , second apex 71 , central apex 75 , third apex 83 , and fourth apex 85 .
- the central compartment 57 is evacuated until some or all of the apexes 67 , 71 , 75 , 83 , and 85 encounter the first wall 53 .
- Reduced pressure is also delivered from the central compartment 57 through apertures 64 and may provide a force urging the apexes higher, or trying to make the angle associated with each apex smaller.
- the closing members 52 , 54 , 56 , 58 , 60 , and 62 are urged toward the center line 68 and, through friction against the patient's epidermis from the closing members 52 , 54 , 56 , 58 , 60 , and 62 , the closing force is developed on the patient's epidermis.
- the compressive force may be developed as the first wall 53 and second wall 55 are pulled by reduced pressure toward the patient or in the direction going from the first wall 53 to the second wall 55 .
- the closing dressing bolster 146 has a bolster body 150 formed with a first closing member 152 and a second closing member 154 .
- a third closing member 156 and a fourth closing member 158 are also shown.
- the closing members 152 and 156 are formed on a first side or first portion 153 which is one side of a center plane 168 , or center portion, and may extend the longitudinal length of the closing dressing bolster 146 .
- the closing members 154 and 158 are formed on a second portion or side 155 , which is on the other side of the center plane 168 .
- a central trough area 157 may help the bolster body 150 to flex in that region as a bending moment is developed under reduced pressure.
- the bending moment helps to press the closing members 152 , 154 , 156 , and 158 into the patient's epidermis and may provide the directed force, e.g., the compressive force and closing force directed towards the central wound area (e.g., area 45 in FIG. 1 ).
- the shape of the bolster body 150 in this illustrative embodiment has been chosen for strength and ease in extruding from a material, e.g., silicone, and so that the bolster body 150 collapses or moves in a desired way to develop the directed force, e.g., the compressive or closing forces.
- the closing dressing bolster 146 may be made of a see-through or at least partially transparent material so that the closing dressing bolster 146 may help the color, shades of color, wound edge, or other features of the linear wound underneath the closing dressing bolster 146 be viewed from a point exterior to a system utilizing the closing dressing bolster 146 .
- a tubing connector 199 may be used to provide reduced pressure to the closing dressing bolster.
- the tubing connector 199 is sized and configured to mate with central trough area 157 on the closing dressing bolster 146 .
- the tubing connector 199 is fluidly coupled to a reduced-pressure delivery conduit 198 whereby reduced pressure is delivered to the closing dressing bolster 146 .
- Apertures 151 allow reduced pressure to communicate inside the closing dressing bolster 146 .
- an aperture 164 may be formed in a portion of the closing dressing bolster 146 to help communicate reduced pressure to the linear wound below.
- the bolster body 150 has been extruded with a central compartment 123 and a plurality of compartments. Six of the plurality of compartments 111 , 113 , 115 , 117 , 119 , and 121 are formed on the first portion 153 . The central compartment 123 is formed substantially adjacent to the central trough 157 . Six of the plurality of compartments 125 , 127 , 129 , 131 , 133 , 135 , and 137 are formed on the second portion 155 . In this embodiment, only the central compartment 123 receives reduced pressure and does so through apertures 151 .
- the plurality of compartments e.g., compartments 111 , 113 , 115 , 117 , 119 , 121 , 125 , 127 , 129 , 131 , 133 , 135 , and 137 , are formed using a first wall 139 (or top wall), a second wall 141 (or bottom wall), and a plurality of web members 143 .
- the plurality of compartments provides strength to keep the first wall 139 from collapsing against the second wall 141 , except that a lower portion 145 of the central trough 157 is designed to collapse under reduced pressure against a shelf portion 161 of the central compartment 123 .
- first closing member 152 and second closing member 154 are spaced apart and sized and configured to provide a treatment trough 163 .
- the treatment trough 163 may have a dome-cutout 165 and oblique walls 167 .
- the first closing member 152 is formed on a first lateral portion with respect to the center plane 168
- the second closing member 154 is formed on a second lateral portion with respect to the center plane 168 .
- the reduced pressure As reduced pressure is delivered to apertures 151 , the reduced pressure enters the central compartment 123 and is delivered through aperture 164 into the treatment trough 163 .
- the reduced pressure causes the lower portion 145 of the central trough 157 to collapse and touch the shelf portion 161 of the central compartment 123 .
- reduced pressure in the treatment trough 163 pulls the oblique walls 169 towards each other.
- One or more of these actions causes the bolster body 150 to flex, or bend, about the center plane 168 and thereby urges the closing members towards the center plane 168 .
- the plurality of compartments preferably do not collapse and continue to provide strength.
- the closing dressing bolster 146 inward, i.e., in the direction going from the first wall 139 to the second wall 141 , and a compressive force is developed.
- the closing dressing bolster 246 includes a bolster body 250 formed with a first closing member 252 on a first side 253 , or first lateral side, and a second closing member 254 on a second side 255 , or second lateral side.
- the first and second closing members 252 and 254 have oblique walls that angle up (for orientation shown) toward the wicking material holder 236 .
- an overlay piece 265 may cover and hold the closing members 252 and 254 .
- a gap between closing members 252 and 254 forms a wicking-material holder 236 that holds a wicking material 238 .
- the shape of the wicking material 238 and the substance of the wicking material 238 may be operable to help keep an underlying linear wound (e.g., linear wound 12 in FIG. 1 ) dry and clean.
- the materials that may be used for the wicking material 238 include hydrophobic materials, hydrophilic materials, and all the materials listed elsewhere that may be used for a shaped dressing bolster 532 described below (see FIG. 8 ).
- the overlay piece 265 and closing members 252 and 254 may be made of a see-through material that allows the closing dressing bolster 246 to be used with a system that allows a healthcare provider to view the color, shades of color, wound edges, or other features of the linear wound beneath the closing dressing bolster 246 from a point external to the closing dressing bolster 246 (see FIG. 6 for an example) and external to the system.
- the closing dressing bolster 246 may develop a bending moment under reduced pressure causing the lower portion of the first closing member 252 and the lower portion of the second closing member 254 to press downward (for the orientation shown) and inward on the patient's epidermis causing both a compressive force or a closing force towards the linear wound.
- Reduced pressure delivered to the wicking-material holder 236 may move the first closing member 252 and the second closing member 254 closer together and thereby provide the closing force.
- the closing dressing bolster 246 is sized and configured so that the wicking material 238 may be in contact with the linear wound and thereby helps to remove any fluids that might have emanated from the linear wound. Any such fluids would be delivered to a reduced-pressure interface and then be delivered by a reduced-pressure conduit to a canister under the influence of a reduced-pressure source.
- the illustrative closing dressing bolsters 46 , 146 , and 246 presented above may provide for the visual determination of the color, shades of color, wound edge, or other features of the wound from a location external to the closing dressing bolster. This feature is also possible with other types of dressings as will now be discussed.
- FIG. 6 a portion of a reduced-pressure treatment system 310 is shown.
- the reduced-pressure treatment system 310 includes a see-through dressing assembly 340 , which has a bolster body 350 .
- the bolster body 350 may be made of any number of materials, such as a bolster mesh or bolster foam, provided that the spacing of pores on the foam (non-opaque foam) or between structural elements of the material allow for sufficient light to pass through the material such that the color, shades of color, wound edge, or other features of a linear wound 312 can be seen from a point external to the reduced-pressure treatment system 310 , e.g., can be seen in a line of sight location shown by reference numeral 384 .
- the bolster body 350 may be formed from silicone or porous foam, e.g., a GranuFoam® material available from Kinetic Concepts, Inc. of San Antonio, Tex. The pore size and density may be varied to help provide the see-through characteristic.
- a window 386 such as a window made of see-through silicone, may be placed over a portion of the bolster material such that when reduced pressure is provided to the bolster body 350 and the window 386 is compressed down further on the bolster material, the linear wound 312 becomes visible through the window 386 from a point exterior to the bolster body 350 and the system 310 .
- a patient or healthcare provider may see the linear wound 312 on a line of sight 388 .
- clear beads may be used as or included within bolster body 350 .
- the beads may be arranged within the bolster body so that under negative pressure, the beads come together over the wound allowing the patient or healthcare provider to see through to the wound from a point exterior or external to the bolster body 350 and the system 310 .
- the body bolster 350 may be a mesh material that the beads can displace as they come together under reduced pressure.
- a window can be made such than when reduced pressure is removed from the bolster body 350 , a biased portion moves aside allowing one to view the linear wound 312 .
- two portions of the bolster body 350 may overlap as reduced pressure compresses the two portions, but when reduced pressure is removed, the portions separate and allow a clear view of the linear wound.
- numerous visual inspection devices may be used to allow the color and other characteristics of the wound to be visually detected.
- the visual inspection device may be a see-through bolster and a see-through sealing member, a window 386 , a bolster material that allows adequate light to pass, a plurality of clear beads, or a moveable portion of a bolster that allows visual inspection when not under reduced pressure.
- the bolster body 350 is shown covered by a sealing member 372 that extends beyond the bolster body 350 , e.g., beyond edge 348 , to form a drape extension 377 .
- the drape extension 377 may be sealed to form a fluid seal between the sealing member 372 and a patient's epidermis 314 using a sealing apparatus 380 , such as a drape tape 383 or other sealing device.
- the system 410 includes a dressing assembly 440 .
- the dressing assembly 440 includes a dressing bolster 446 , which has a dressing body 450 .
- the dressing body 450 may be formed with two portions: the first side, or first lateral portion 453 , and a second side, or second lateral portion 455 .
- the first portion 453 and second portion 455 may be integrally connected or may be two separate pieces.
- the first portion 453 is formed with closing members 452 and 456 .
- the second portion 455 is formed with closing members 454 and 460 .
- the closing members 452 , 454 , 456 , and 460 develop both a compressive force and a closing force towards the linear wound 412 .
- the dressing body 450 is shown covered by a sealing member 472 that is sealed with a sealing apparatus 480 to provide a seal against a patient's epidermis 416 .
- a first wall 437 on the first portion 453 and a second wall 439 on the second portion 455 together may form a wicking-material holder 436 for holding a wicking material 438 .
- the wicking material 438 may be held against the linear wound 412 to help to remove any fluids, e.g., exudates, when the dressing assembly 440 is place under reduced pressure.
- an illustrative see-through wound treatment system 510 is presented that allows a healthcare provider to view a treatment site, e.g., linear wound 512 , area wound, a portion of intact epidermis 514 , etc., and may provide a compressive force.
- the see-through wound treatment system 510 may provide for the treatment of subcutaneous damaged tissue and may allow the treatment site to be viewed from a place external to the see-through wound treatment system 510 .
- the see-through wound treatment system 510 is shown in a peri-incisional region around the linear wound 512 , which is through the epidermis 514 , dermis 516 , and reaching into a hypodermis, or subcutaneous tissue 518 .
- the subcutaneous tissue 518 may include numerous tissue types, such as fatty tissue or muscle.
- a damaged subcutaneous tissue site 520 is shown extending out from the linear wound 512 and includes, in this instance, a subcutaneous defect, dead space, or void 522 .
- the damaged subcutaneous tissue site 520 may be caused by surgical procedures, such as liposuction.
- the damaged subcutaneous tissue site 520 may include voids, such as the void 522 , open spaces, and various defects that can be troublesome for a number of reasons, such as fluid accumulation that may result in edema.
- the linear wound 512 may be closed using any closing device or technique, such as staples, sutures, or adhesive, but is shown in this illustrative embodiment with a staple 513 .
- the see-through wound treatment system 510 may be used for treating an area and, in particular, may be used for treating a subcutaneous tissue site 520 and the tissue around subcutaneous tissue site 520 , but the see-through wound treatment system 510 may also be used to treat the more limited area of a linear wound 512 .
- the see-through wound treatment system 510 includes a dressing assembly 530 , which includes the shaped dressing bolster 532 , a sealing subsystem 560 , and a reduced-pressure subsystem 580 .
- the see-through wound treatment system 510 may develop the directed force, which may include a net compressive force, represented by reference numerals 524 , that is realized in the subcutaneous tissue site 520 .
- the shaped dressing bolster 532 may be shaped and configured to allow the compressive force 524 to be distributed fairly evenly over the patient's epidermis 514 . Otherwise, if there are areas of substantially increased force as compared to other areas on the epidermis 514 , skin irritation may result.
- the directed force may also include the closing force, or inward force, i.e., a force towards an interior portion of the dressing assembly 530 .
- the closing force is represented by reference numerals 526 .
- the closing force 526 remains substantially within the plane of the epidermis 514 . In other words, the closing force 526 operates mainly within the epidermis 514 .
- the see-through wound treatment system 510 is operable to deliver reduced pressure to the linear wound 512 and, depending on the phase of healing and the nature of the linear wound 512 , through the linear wound 512 such that reduced pressure is realized at the level of any subcutaneous voids 522 to help approximate—bring together—the tissues in that region as well as to help remove any air or any other fluids.
- the dressing assembly 530 includes the shaped dressing bolster 532 that has a first side 534 and a second, inward-facing side 536 .
- the shaped dressing bolster 532 may be sized and shaped to substantially match the estimated area of the damaged subcutaneous tissue site 520 although a larger or smaller size may be used in different applications.
- the shaped dressing bolster 532 has an edge 538 .
- the shaped dressing bolster 532 may be made of a number of different medical bolster materials, i.e., materials suitable for use in medical applications and that may be made sterile.
- the shaped dressing bolster 532 is made from a medical bolster material that is a manifold material.
- the shaped dressing bolster 532 is made from bolster material that is a porous and permeable foam-like material and, more particularly, a reticulated, open-cell polyurethane or polyether foam that allows good permeability of wound fluids while under reduced pressure.
- foam material that has been used is the VAC® GranuFoam® material available from Kinetic Concepts, Inc. (KCI) of San Antonio, Tex. Any material or combination of materials may be used for the bolster material provided that the bolster material is operable to distribute, or manifold, reduced pressure.
- the term “manifold” as used herein generally refers to a substance or structure that is provided to assist in applying reduced pressure to, delivering fluids to, or removing fluids from a tissue site.
- the bolster material may also be a combination or layering of materials; for example, a first bolster layer of hydrophilic foam may be disposed adjacent to a second bolster layer of hydrophobic foam to form the bolster material.
- the term “fluid” as used herein generally refers to gas or liquid, but may also include any other flowable material, including but not limited to gels, colloids, and foams.
- the reticulated pores of the Granufoam® material which are typically in the range of about 400 to 600 microns, are helpful in carrying out the manifold function, but other materials may be used.
- the density of the medical bolster material e.g., Granufoam® material, is typically in the range of about 1.3 lb/ft 3 -1.6 lb/ft 3 (20.8 kg/m 3 -25.6 kg/m 3 ).
- a material with a higher density (smaller pore size) than Granufoam® material may be desirable in some situations.
- the Granufoam® material or similar material with a density greater than 1.6 lb/ft 3 (25.6 kg/m 3 ) may be used.
- the Granufoam® material or similar material with a density greater than 2.0 lb/ft 3 (32 kg/m 3 ) or 5.0 lb/ft 3 (80.1 kg/m 3 ) or even more may be used.
- the bolster material may be a reticulated foam that is later felted to thickness of about 1 ⁇ 3 the foam's original thickness.
- GranuFoam® material or a Foamex® technical foam www.foamex.com.
- ionic silver to the bolster material in a microbonding process
- Foamex® technical foam www.foamex.com
- the bolster material may be isotropic or anisotropic depending on the exact orientation of the directed force that is desired during reduced pressure.
- the bolster material may be made anisotropic by adding filaments, felting a portion, adding adhesive selectively, etc.
- the bolster material could be a bio-absorbable material.
- the sealing subsystem 560 includes a sealing member 562 , or drape, which is analogous to the sealing member 72 .
- the sealing member 562 may be coupled to the shaped dressing bolster 532 .
- the sealing member 562 and shaped dressing bolster 532 may be coupled using adhesives, such as an acrylic adhesive, silicone adhesive, hydrogel, hydrocolloid, etc.
- the sealing member 562 and the shaped dressing bolster 532 may be bonded by heat bonding, ultrasonic bonding, and radio frequency bonding, etc.
- the coupling may occur in patterns or completely. Structure may be added to the bond to make the sealing member 562 behave anisotropically in a desired direction, i.e., to make an anisotropic drape material.
- An anisotropic drape material helps the dressing assembly 530 to primarily move in a given direction, i.e., only about a certain axis or axes.
- the sealing member 562 may be sized to extend beyond the shaped dressing bolster 532 , e.g., beyond the edge 538 on an extremity 533 , to form a drape extension 564 , or extension.
- the drape extension 564 has a first surface 566 and a second, inward-facing surface 568 .
- the sealing member 562 may be sealed against the epidermis 514 of the patient using a sealing apparatus 569 , which helps to provide a seal and allows reduced pressure to be maintained by the reduced-pressure subsystem 580 at the treatment site.
- the sealing apparatus 569 may take numerous forms, such as an adhesive 570 ; a sealing tape, or drape tape or strip; double-side drape tape; paste; hydrocolloid; hydrogel; or other sealing device. If a tape is used, the tape may be formed of the same material as the sealing member 562 with a pre-applied, pressure-sensitive adhesive.
- the pressure sensitive adhesive 570 may be applied on the second, inward-facing surface 568 of the drape extension 564 .
- the pressure-sensitive adhesive 570 provides a seal between the sealing member 562 and the epidermis 514 of the patient. Before the sealing member 562 is secured to the patient, the pressure-sensitive adhesive 570 may have removable strips or backing covering the pressure-sensitive adhesive 570 .
- the reduced-pressure subsystem 580 includes a reduced-pressure source 582 , or therapy unit, which can take many different forms.
- the reduced-pressure source 582 provides reduced pressure as a part of the see-through wound treatment system 510 .
- the reduced-pressure source 582 may be any device for supplying reduced pressure, such as a vacuum pump, wall suction, or other source. While the amount and nature of reduced pressure applied to a tissue will typically vary according to the application, reduced pressure will typically be between ⁇ 5 mm Hg and ⁇ 500 mm Hg and more typically between ⁇ 100 mm Hg and ⁇ 300 mm Hg.
- the reduced-pressure source 582 may be a battery-powered, single-use reduced-pressure generator, which facilitates application in the operating room and provides mobility and convenience for the patient during the rehabilitation phase.
- the reduced-pressure source 582 is shown having a battery compartment 584 and a canister region 586 with windows 588 providing a visual indication of the level of fluid within the canister region 586 .
- An interposed membrane filter such as hydrophobic or oleophobic filter, may be interspersed between a reduced-pressure delivery conduit, or tubing, 590 and the reduced-pressure source 582 .
- Reduced pressure developed by reduced-pressure source 582 is delivered through the reduced-pressure delivery conduit 590 to a reduced-pressure interface 592 , which may be an elbow port 594 .
- the elbow port 594 is a TRAC® technology port available from KCI of San Antonio, Tex.
- the reduced-pressure interface 592 allows reduced pressure to be delivered to the sealing subsystem 560 and realized within an interior portion of the sealing subsystem 560 .
- the elbow port 594 extends through the sealing member 562 and into the shaped dressing bolster 532 .
- the see-through wound treatment system 510 is applied to the linear wound 512 .
- the see-through wound treatment system 510 may be applied to the linear wound 512 in the operating room after a surgical procedure on the patient.
- the second, inward-facing side 536 of the shaped dressing bolster 532 is placed against the patient's epidermis 514 with the shaped dressing bolster 532 over the damaged subcutaneous tissue site 520 and with a portion of the shaped dressing bolster 532 over the linear wound 512 .
- the dressing assembly 530 may be sized for the typical application involved in the procedure performed by a healthcare provider.
- the dressing assembly 530 may be sized, shaped, and configured to work with different anatomical applications, such as the abdomen, chest, arms, thighs, etc.
- the sealing member 562 is placed over the first side 534 of the shaped dressing bolster 532 with a portion extending beyond the shaped dressing bolster 532 to form the drape extensions 564 .
- the drape extensions 564 may then be taped down or an adhesive 570 used to form a seal between the sealing member 562 and the patient's epidermis 514 .
- the seal need only be adequate to allow the see-through wound treatment system 510 to hold reduced pressure on the desired treatment area.
- the reduced-pressure interface 592 and the reduced-pressure source 582 are fluidly coupled using the reduced-pressure delivery conduit 590 .
- the reduced-pressure source 582 may then be activated and reduced pressure delivered to the shaped dressing bolster 532 .
- the shaped dressing bolster 532 compresses and contracts laterally and forms a semi-rigid substrate, and a number of beneficial forces and actions may take place. Reduced pressure is transmitted further still through the shaped dressing bolster 532 so that reduced pressure delivered to the linear wound 512 . At least at the early stages of the healing process, reduced pressure may also be realized through the linear wound 512 and into the subcutaneous tissue site 520 . As such, reduced pressure may help close defects, such as subcutaneous void 522 , and generally provides stability to the area. Reduced pressure delivered to the shaped dressing bolster 532 also develops the compressive force 524 that again may provide stability and therapy. The compressive force 524 is more than just at the top of the epidermis 514 . The compressive force 524 extends down deeper and may be experienced at the level of the subcutaneous tissue site 520 . The compressive force may help close defects and provide stability.
- the sealing member 562 , shaped dressing bolster 532 , and any other layers from see-through materials that allow the healthcare provider to gain visual cues about the healing of the linear wound 512 and damaged subcutaneous tissue site 520 without having to remove the dressing assembly 530 .
- the closing dressing bolster and sealing member are formed from see-through materials sufficient to allow perception of color from a point external to the see-through dressing assembly.
- the closing dressing bolster may include a top wall and a bottom wall. The top wall and bottom wall are coupled in a spaced relationship.
- the bottom wall includes a center portion, a first lateral portion, and a second lateral portion. A first closing member is formed on the first lateral portion, and a second closing member is formed on the second lateral portion. When placed under reduced pressure, the first closing member and the second closing member move towards each other.
- a system for treating a wound on a patient with reduced pressure and that allows visual observation of the wound during treatment includes a dressing bolster for placing on a portion of the patient's epidermis over the wound.
- the dressing bolster is formed from a see-through material.
- the system further includes a sealing subsystem for providing a seal over the closing bolster and the patient's epidermis and a reduced-pressure subsystem for delivering a reduced pressure to the sealing subsystem.
- the sealing subsystem and reduced-pressure subsystem are operable to deliver reduced pressure to the dressing bolster.
- the dressing bolster, sealing subsystem, and reduced-pressure subsystem are operable to develop a directed force and to deliver reduced pressure to the wound.
- the sealing subsystem includes a see-through sealing member.
- the dressing bolster and sealing subsystem are operable to allow light to pass such that shades of color of the wound may be perceived from a place external to the system.
- the dressing bolster has a first surface, a second, inward-facing surface and includes an oblique extremity formed a portion of the dressing bolster.
- the dressing bolster is formed from a medical bolster material that has a density greater than 20 kg/m3.
- the dressing bolster has the characteristic of evenly distributing a directed force when under a reduced pressure.
Landscapes
- Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Vascular Medicine (AREA)
- Hematology (AREA)
- Epidemiology (AREA)
- Anesthesiology (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Dermatology (AREA)
- Materials Engineering (AREA)
- Dispersion Chemistry (AREA)
- Physical Education & Sports Medicine (AREA)
- Rehabilitation Therapy (AREA)
- Pain & Pain Management (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Surgical Instruments (AREA)
- External Artificial Organs (AREA)
- Materials For Medical Uses (AREA)
- Prostheses (AREA)
- Orthopedics, Nursing, And Contraception (AREA)
- Massaging Devices (AREA)
Abstract
Description
- This application is a continuation of U.S. patent application Ser. No. 15/656,697, entitled “Reduced-Pressure, Linear-Wound Treatment Systems”, filed on Jul. 21, 2017, which is a continuation of U.S. patent application Ser. No. 14/267,722, entitled “Reduced-Pressure, Linear-Wound Treatment Systems”, filed on May 1, 2014, now U.S. Pat. No. 9,744,079, which is a continuation of U.S. patent application Ser. No. 13/407,360, entitled “Reduced-Pressure, Linear-Wound Treatment Systems”, filed on Feb. 28, 2012, now U.S. Pat. No. 8,747,375, which is a divisional of U.S. patent application Ser. No. 12/475,319, entitled “Reduced-Pressure, Linear-Wound Treatment Systems”, filed on May 29, 2009, now U.S. Pat. No. 8,147,468, which claims the benefit, under 35 USC § 119(e), of the filing of U.S. Provisional Patent Application Ser. No. 61/057,807, entitled “Reduced-pressure Surgical Wound Treatment System,” filed May 30, 2008; U.S. Provisional Patent Application Ser. No. 61/057,798, entitled “Dressing Assembly For Subcutaneous Wound treatment Using Reduce Pressure,” filed May 30, 2008; U.S. Provisional Patent Application Ser. No. 61/057,808, entitled “See-Through, Reduced-Pressure Dressing,” filed May 30, 2008; U.S. Provisional Patent Application Ser. No. 61/057,802, entitled “Reduced-Pressure Dressing Assembly For Use in Applying a Closing Force,” filed May 30, 2008; U.S. Provisional Patent Application Ser. No. 61/057,803, entitled “Reduced-Pressure, Linear-Wound Treatment System,” filed May 30, 2008; U.S. Provisional Patent Application Ser. No. 61/057,800, entitled “Reduced-Pressure, Compression System and Apparatus for use on a Curved Body Part,” filed, May 30, 2008; U.S. Provisional Patent Application Ser. No. 61/057,797, entitled “Reduced-Pressure, Compression System and Apparatus for use on Breast Tissue,” filed May 30, 2008; U.S. Provisional Patent Application Ser. No. 61/057,805, entitled “Super-Absorbent, Reduced-Pressure Wound Dressing and System,” filed May 30, 2008; U.S. Provisional Patent Application Ser. No. 61/057,810, entitled “Reduced-Pressure, Compression System and Apparatus for use on a Joint,” filed May 30, 2008; U.S. Provisional Patent Application Ser. No. 61/121,362, entitled “Reduced-Pressure Wound treatment System Employing an Anisotropic Drape,” filed Dec. 10, 2008; and U.S. Provisional Patent Application Ser. No. 61/144,067, entitled “Reduced-Pressure, Compression System and Apparatus for use on a Joint,” filed Jan. 12, 2009. All of these applications are incorporated herein by reference for all purposes.
- The present invention relates generally to medical treatment systems, and more particularly, to reduced-pressure wound treatment systems suitable for use with linear wounds, such as surgical wounds.
- Physicians perform millions of surgical procedures each year around the world. Many of the procedures are performed as open surgery and an increasing number are performed using minimally invasive surgery, such as arthroscopic, laparoscopic, and endoscopic procedures. As one example, the American Society for Aesthetic Plastic Surgery reports that there were more than 450,000 liposuction procedures in the United States in 2007.
- Surgical procedures involve acute wounds, e.g., an incision or linear wound, in the skin and related tissue. In addition to surgical wounds, linear wounds are also caused by trauma. In many instances, the linear wound is closed using a mechanical apparatus, such as staples, suture, or adhesives, and then the wound is merely covered with a dry, sterile bandage. Often the bandage must be removed to view the wound to monitor the wound's progress and to check for infection or other issues. Unless otherwise indicated, as used herein, “or” does not require mutual exclusivity.
- Shortcomings with aspects of linear wound care are addressed by the present invention as shown and described in a variety of illustrative embodiments herein. “Linear wound” refers generally to a laceration or incision whether in a line or not. According to one illustrative embodiment, a system for treating a linear wound on a patient includes a closing dressing bolster for placing on the patient's epidermis over the linear wound and a sealing subsystem for providing a seal over the closing dressing bolster and the patient. The system further includes a reduced-pressure subsystem for delivering a reduced pressure to the sealing subsystem. The sealing subsystem and reduced pressure subsystem are operable to deliver reduced pressure to the closing dressing bolster. The closing dressing bolster is operable under reduced pressure to develop an inward closing realized at the linear wound. The system may be see through and may provide a compressive force.
- According to one illustrative embodiment, a system for treating a linear wound on a patient includes a closing dressing bolster for placing on the patient's epidermis over the linear wound and a sealing subsystem for providing a seal over the closing dressing bolster and the patient. The system further includes a reduced-pressure subsystem for delivering reduced pressure to the sealing subsystem. The sealing subsystem and reduced pressure subsystem are operable to deliver reduced pressure to the closing dressing bolster. The closing dressing bolster, sealing subsystem, and reduced pressure subsystem are operable, under reduced pressure, to develop a compressive force and an inward closing realized at the linear wound and to deliver a reduced pressure to the linear wound.
- According to one illustrative embodiment, a system for treating a linear wound on a patient includes a closing dressing bolster for placing on the patient's epidermis over the linear wound. The closing dressing bolster includes a bolster body formed from a bolster material and formed with a first portion and a second portion. The bolster body includes a wound placement area and the first portion is on one side of the wound placement area and the second portion is on the other side of the wound placement area. The bolster body has a first closing member formed on the first portion of the bolster body and a second closing member formed on the second portion of the bolster body. The system further includes a sealing subsystem for providing a seal over the closing dressing bolster and the patient. The sealing subsystem includes an over-drape that extends over the closing dressing bolster and a sealing apparatus for providing a seal between a patient's epidermis and the over-drape. The system further includes a reduced-pressure subsystem for delivering reduced pressure to the sealing subsystem. The reduced-pressure subsystem includes a reduced-pressure source for providing reduced pressure, a reduced-pressure interface coupled to the sealing subsystem, and a reduced-pressure delivery conduit for providing reduced pressure from the reduced-pressure source to the reduced-pressure interface. The sealing subsystem and reduced pressure subsystem are operable to deliver reduced pressure to the closing dressing bolster. The closing dressing bolster, sealing subsystem, and reduced-pressure subsystem are operable to develop a compressive force and an inward closing realized at the linear wound and to deliver a reduced pressure to the linear wound.
- According to one illustrative embodiment, a method of manufacturing a system for treating a linear wound on a patient includes the steps of providing a closing dressing bolster for placing on the patient's epidermis over the linear wound so that a closing force is developed when placed under reduced pressure. The method of manufacturing further includes the steps of providing an over-drape for placing over the closing dressing bolster; providing a reduced-pressure interface for coupling to the over-drape and the closing dressing bolster; and providing a reduced-pressure delivery conduit for coupling the reduced-pressure source and the reduced-pressure interface.
- Other features and advantages of the illustrative embodiments will become apparent with reference to the drawings and detailed description that follow.
- A more complete understanding of the method and apparatus of the present invention may be obtained by reference to the following Detailed Description when taken in conjunction with the accompanying Drawings wherein:
-
FIG. 1 is a schematic, perspective view, with a portion in cross section, of an illustrative embodiment of a system for treating a linear wound on a patient; -
FIG. 2 is a schematic, perspective view of an illustrative embodiment of a closing dressing bolster for use in treating a linear wound on a patient; -
FIG. 3A is a schematic cross-section of an illustrative embodiment of a system for treating a linear wound on a patient; -
FIG. 3B is a schematic cross-section of a detail fromFIG. 3A ; -
FIG. 3C is a schematic cross-section of a detail fromFIG. 3A ; -
FIG. 4A is a schematic, perspective view of an illustrative embodiment of a closing dressing bolster for use in treating a linear wound on a patient; -
FIG. 4B is a partially exploded, perspective view of the closing dressing bolster ofFIG. 4A showing one illustrative embodiment of a tubing connector; -
FIG. 4C is a cross-section of the closing dressing bolster ofFIG. 4A ; -
FIG. 4D is a detail of the closing dressing bolster ofFIG. 4C ; -
FIG. 5 is a schematic, perspective view of an illustrative embodiment of a closing dressing bolster for use in treating a linear wound on a patient; -
FIG. 6 is a schematic cross-section of a portion of an illustrative embodiment of a system for treating a linear wound on a patient; -
FIG. 7 is a schematic cross-section of an illustrative embodiment of a portion of a system for treating a linear wound on a patient; and -
FIG. 8 is a schematic, perspective view, with a portion in cross section, of an illustrative embodiment of a system for treating damaged subcutaneous tissue that allows the wound to be seen from a point external to the system. - In the following detailed description of the preferred embodiments, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration specific preferred embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is understood that other embodiments may be utilized and that logical structural, mechanical, electrical, and chemical changes may be made without departing from the spirit or scope of the invention. To avoid detail not necessary to enable those skilled in the art to practice the invention, the description may omit certain information known to those skilled in the art. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims.
- Referring to
FIGS. 1-3 , an illustrative embodiment of a reduced-pressure system 10 for treating alinear wound 12, such as a laceration or, more typically, anincision 14 is presented. The reduced-pressure system 10 may hold or support peri-incisional tissue, enhance tensile strength of theincision 14; compresssubcutaneous tissue 20; remove interstitial fluid, which may help reduce or eliminate edema; and isolate thelinear wound 12 from infectious sources. The reduced-pressure system 10 may be particularly well suited for use with at-risk patients, e.g., obese patients, diabetic patients, smokers, etc. - While the
linear wound 12 may extend to different depths, in this example theincision 14 extends throughepidermis 16,dermis 18, and into thesubcutaneous tissue 20. An damagedsubcutaneous tissue 22 includes, in this illustration, asubcutaneous void 24 or dead space. While not shown in this embodiment, thelinear wound 12 may have any number of closing devices employed on the linear wound, e.g., mechanical closing devices (suture, staples, clamps, etc.), adhesives, bonding, etc. The wound may be or include a graft. - The reduced-
pressure system 10 may include a dressingassembly 40, which may be placed over thelinear wound 12 and used with reduced pressure to supply a directed force, which may include acompressive force 42 or a closing force 44 (or an inward force with respect to an outer edge of the dressing assembly). The dressingassembly 40 may include a closing dressing bolster 46 that under reduced pressure develops the directed force, e.g., thecompressive forces 42 or the closing forces 44. The closing dressing bolster 46 may be formed with a bolsterbody 50. The closing dressing bolster 46 is preferably made from a material that allows flexing and yet is rigid enough to deliver a closing force. - The bolster
body 50 may include afirst closing member 52 and asecond closing member 54. Additional closing members, such asmembers subsystem 70 and a reduced-pressure subsystem 90 cooperate with the closing dressing bolster 46 to develop the directed force, e.g., the closingforce 44 or thecompressive force 42. - The closing dressing bolster 46 may be made from a material that helps to distribute reduced pressure to the
linear wound 12, provides thecompressive force 42, and, through the closing members, e.g., closingmember 56, provides a closingforce 44—preferably a force that is substantially within the plane of theepidermis 16. In addition, the material for the closing dressing bolster 46 is preferably translucent or see through to an extent that light may pass through allowing one to view thelinear wound 12 through the bolster material from a point external to the reduced-pressure system 10. The material from which the closing dressing bolster 46 may be formed is further described below. - As previously noted, the reduced-
pressure system 10 may allow wound color, shades of color, wound edge, or other features to be perceived visually from a point external the reduced-pressure system 10. As such, the color, shades of color, nature of the wound edge, or other features may be determined by a healthcare provider without requiring removal of the dressingassembly 40 and thereby may avoid the increased risk of complications and pain of a dressing change. As such, the expense of another a dressingassembly 40 or part of thereof may also be avoided. The reduced-pressure system 10 may also provide thecompressive force 42 to thelinear wound 12 and that force may help thelinear wound 12,subcutaneous tissue 22, orsubcutaneous void 24 to heal and may stabilize thelinear wound 12 against shear. The reduced-pressure system 10 may also help remove exudates from thelinear wound 12 and may help close the void 24. - The sealing
subsystem 70 may include the sealingmember 72. The sealingmember 72 has afirst side 74 and a second, inward-facingside 76. A portion of the sealingmember 72 may extend beyond the closing dressing bolster 46, e.g., beyondedge 48, to form a flap, or adrape extension 77, which has afirst side 78 and a second, inward-facingside 79. The sealingmember 72 may be any material that provides a fluid seal that allows reduced pressure to be held. The sealing member may, for example, be an impermeable or semi-permeable, elastomeric material. “Elastomeric” means having the properties of an elastomer. It generally refers to a polymeric material that has rubber-like properties. More specifically, most elastomers have elongation rates greater than 100% and a significant amount of resilience. The resilience of a material refers to the material's ability to recover from an elastic deformation. Examples of elastomers may include, but are not limited to, natural rubbers, polyisoprene, styrene butadiene rubber, chloroprene rubber, polybutadiene, nitrile rubber, butyl rubber, ethylene propylene rubber, ethylene propylene diene monomer, chlorosulfonated polyethylene, polysulfide rubber, polyurethane, EVA film, co-polyester, and silicones. Specific examples of sealing member materials include a silicone drape, 3M Tegaderm® drape, acrylic drape (such as one available from Avery Dennison), or an incise drape. - A sealing
apparatus 80, or attachment device, may be used to help provide a fluid seal between thedrape extension 77 and the patient'sepidermis 16. In the present embodiment, the sealingapparatus 80 may be an adhesive 82 that is applied to the second, inward-facingside 79 of theflap extension 77 to provide such a seal against theepidermis 16. The sealingapparatus 80 may be used to hold the sealingmember 72 against the patient'sepidermis 16 or another layer, such as a gasket or additional sealing member. The sealingapparatus 80 may take numerous forms. For example, the sealingapparatus 80 may be a medically acceptable, pressure-sensitive adhesive that extends about a periphery of the sealingmember 72. - The reduced-
pressure subsystem 90 includes a reduced-pressure source 92, or therapy unit. The reduced-pressure source 92 provides reduced pressure. The reduced-pressure source 92 may be any device for supplying reduced pressure, such as a vacuum pump, wall suction, or other source. While the amount and nature of reduced pressure applied to a tissue will typically vary according to the application, reduced pressure will typically be between −5 mm Hg and −500 mm Hg and more typically between −100 mm Hg and −300 mm Hg. In one embodiment, the reduced pressure is held around −200 mm Hg. The reduced-pressure source 92, for convenience and mobility purposes, may be a battery-operated unit that is capable of providing a continuous and intermittent reduced pressure. The reduced-pressure source 92, or therapy unit, may include acanister 94, or reservoir, and may be provided withwindows 96 to allow the patient or healthcare provider to view the fill status of thecanister 94. The reduced-pressure subsystem 90 further includes a reduced-pressure delivery conduit 98, or medical tubing, which if fluidly coupled to a reduced-pressure interface 100, such as aport 102. The reduced-pressure delivery conduit 98 and the reduced-pressure interface 100 allow reduced pressure to be delivered into the sealingsubsystem 70. - As used herein, “reduced pressure” generally refers to a pressure less than the ambient pressure at a
linear wound 12, tissue site, or treatment site that is being subjected to treatment. In most cases, this reduced pressure will be less than the atmospheric pressure at which the patient is located. Alternatively, reduced pressure may be less than a hydrostatic pressure at the tissue site. Unless otherwise indicated, values of pressure stated herein are gauge pressures. Reduced pressure delivered may be constant or varied (patterned or random) and may be delivered continuously or intermittently. Although the terms “vacuum” and “negative pressure” may be used to describe the pressure applied to the tissue site, the actual pressure applied to the tissue site may be more than the pressure normally associated with a complete vacuum. Consistent with the use herein, an increase in reduced pressure or vacuum pressure typically refers to a relative reduction in absolute pressure. - The closing dressing bolster 46 may be made from a polymer and is preferably a soft polymer. In one illustrative embodiment, the closing dressing bolster 46 is a material having a durometer of 50 Shore A, but other materials and characteristics are possible. The closing dressing bolster 46 and the bolster
body 50 may be made of a see-through material, as is a sealingmember 72, in order to allow the color, shades of color, wound edges, or other features of thelinear wound 12 to be viewed from a point external to the reduced-pressure system 10 (seeFIG. 6 ). A color change, or change in the shade of a color, of thelinear wound 12 can signify the onset of infection or other issues, and such visual cues provide useful information to the healthcare provider. The bolsterbody 50 may be made from a flexible closing bolster material, e.g., a soft polymer, a medical grade silicone, or other suitable material. The closing dressing bolster 46 may be extruded, pour molded, injection molded, blow molded, or formed by other manufacturing techniques. “Flexible” means able to move enough to generate the inward closing force. - Referring now primarily to
FIG. 2 , the closing dressing bolster 46 is shown with a plurality ofapertures 64 formed on a second, inward-facing side orsurface 49 of asecond wall 55, or bottom wall, of the bolsterbody 50. Theapertures 64 are formed under acenter portion 66, and in particular,near center line 68 of the bolsterbody 50. A detail showing oneaperture 64 is shown inFIG. 3C . Afirst wall 53, or top wall, and thesecond wall 55 are coupled in a spaced relationship to form a hollow region orcentral compartment 57. Referring again primarily toFIG. 2 , theapertures 64 facilitate the transmission of reduced pressure by the bolsterbody 50 to thelinear wound 12. Additional apertures in various patterns may be provided in the bolsterbody 50 to facilitate communication of reduced pressure to the patient'sepidermis 16, and, in particular, to thelinear wound 12. One or more apertures, such asaperture 65, may be formed on afirst side 47 of thefirst wall 53 of the bolsterbody 50. Closingmembers side 49. Closingmembers center portion 66 andclosing members center portion 66. - As shown clearly in
FIGS. 3A and 3B , anoblique surface 69 has an angle formed with respect to an imaginary plane extending vertically (vertical for the orientation shown inFIG. 2 ). Theoblique surface 69, which is opposite asurface 63, is shown making anangle 61 with respect to a referencevertical plane 59 formed at the apex of theoblique surface 69. - In operation, when treatment is desired, the closing dressing bolster 46 is placed over the
linear wound 12 with thecenter portion 66 over thelinear wound 12 proximate a center woundarea 45. If the closing dressing bolster 46 is not pre-manufactured with the sealingmember 72 applied on thefirst side 47, then the sealingmember 72 is applied over thefirst side 47 of the closing dressing bolster 46 and beyond the closing dressing bolster 46 to form the flap extension ordrape extension 77. Thedrape extension 77 is either taped down or an adhesive 82 is applied to provide a fluid seal between the sealingmember 72 and the patient'sepidermis 16. “Fluid seal,” or “seal,” means a seal adequate to hold reduced pressure at the desired site given the particular reduced-pressure subsystem involved. - The reduced-
pressure subsystem 90 is fluidly coupled to thesealing subsystem 70 through the reduced-pressure interface 100. The reduced-pressure source 92 is activated and develops and delivers reduced pressure through the reduced-pressure delivery conduit 98 to the reduced-pressure interface 100. When activated, the reduced-pressure source 92 delivers reduced pressure to thesealing subsystem 70 and reduced pressure causes the closing dressing bolster 46 to develop thecompressive force 42. The geometry of the closing dressing bolster 46 may cause a bending moment to develop about thecenter portion 66 and thereby cause theclosing members compressive force 42 or the closingforce 44. These forces may be experienced at or near thelinear wound 12. - Referring primarily to
FIG. 2 , the development of the closing force or compressive force is described in more detail. Each of the oblique surfaces 69 between adjacent closing members, 58 and 56, 56 and 52, 52 and 54, 54 and 60, and 60 and 62, form part of a triangle-shaped ridge, each having an apex: first apex 67,second apex 71,central apex 75,third apex 83, andfourth apex 85. As the reduced pressure enters theaperture 65, thecentral compartment 57 is evacuated until some or all of theapexes first wall 53. Reduced pressure is also delivered from thecentral compartment 57 throughapertures 64 and may provide a force urging the apexes higher, or trying to make the angle associated with each apex smaller. As a result of one or more of these actions, the closingmembers center line 68 and, through friction against the patient's epidermis from the closingmembers first wall 53 andsecond wall 55 are pulled by reduced pressure toward the patient or in the direction going from thefirst wall 53 to thesecond wall 55. - Referring now primarily to
FIGS. 4A, 4B, 4C, and 4D , another illustrative embodiment of a closing dressing bolster 146 is presented. The closing dressing bolster 146 has a bolsterbody 150 formed with afirst closing member 152 and asecond closing member 154. Athird closing member 156 and afourth closing member 158 are also shown. The closingmembers first portion 153 which is one side of acenter plane 168, or center portion, and may extend the longitudinal length of the closing dressing bolster 146. The closingmembers side 155, which is on the other side of thecenter plane 168. - A
central trough area 157 may help the bolsterbody 150 to flex in that region as a bending moment is developed under reduced pressure. The bending moment helps to press the closingmembers area 45 inFIG. 1 ). The shape of the bolsterbody 150 in this illustrative embodiment has been chosen for strength and ease in extruding from a material, e.g., silicone, and so that the bolsterbody 150 collapses or moves in a desired way to develop the directed force, e.g., the compressive or closing forces. The closing dressing bolster 146 may be made of a see-through or at least partially transparent material so that the closing dressing bolster 146 may help the color, shades of color, wound edge, or other features of the linear wound underneath the closing dressing bolster 146 be viewed from a point exterior to a system utilizing the closing dressing bolster 146. - As shown in
FIGS. 4A and 4B , atubing connector 199 may be used to provide reduced pressure to the closing dressing bolster. Thetubing connector 199 is sized and configured to mate withcentral trough area 157 on the closing dressing bolster 146. Thetubing connector 199 is fluidly coupled to a reduced-pressure delivery conduit 198 whereby reduced pressure is delivered to the closing dressing bolster 146.Apertures 151 allow reduced pressure to communicate inside the closing dressing bolster 146. As shown clearly inFIG. 4C , anaperture 164 may be formed in a portion of the closing dressing bolster 146 to help communicate reduced pressure to the linear wound below. - Referring now primarily to
FIGS. 4C-4D , the development of the closing force or a compressive force will be described in more detail. In this illustrative embodiment, the bolsterbody 150 has been extruded with acentral compartment 123 and a plurality of compartments. Six of the plurality ofcompartments first portion 153. Thecentral compartment 123 is formed substantially adjacent to thecentral trough 157. Six of the plurality ofcompartments second portion 155. In this embodiment, only thecentral compartment 123 receives reduced pressure and does so throughapertures 151. - The plurality of compartments, e.g., compartments 111, 113, 115, 117, 119, 121, 125, 127, 129, 131, 133, 135, and 137, are formed using a first wall 139 (or top wall), a second wall 141 (or bottom wall), and a plurality of
web members 143. The plurality of compartments provides strength to keep thefirst wall 139 from collapsing against thesecond wall 141, except that alower portion 145 of thecentral trough 157 is designed to collapse under reduced pressure against ashelf portion 161 of thecentral compartment 123. It should be noted thatfirst closing member 152 andsecond closing member 154 are spaced apart and sized and configured to provide atreatment trough 163. Thetreatment trough 163 may have a dome-cutout 165 andoblique walls 167. Thefirst closing member 152 is formed on a first lateral portion with respect to thecenter plane 168, and thesecond closing member 154 is formed on a second lateral portion with respect to thecenter plane 168. - As reduced pressure is delivered to
apertures 151, the reduced pressure enters thecentral compartment 123 and is delivered throughaperture 164 into thetreatment trough 163. The reduced pressure causes thelower portion 145 of thecentral trough 157 to collapse and touch theshelf portion 161 of thecentral compartment 123. In addition, reduced pressure in thetreatment trough 163 pulls theoblique walls 169 towards each other. One or more of these actions causes the bolsterbody 150 to flex, or bend, about thecenter plane 168 and thereby urges the closing members towards thecenter plane 168. The plurality of compartments preferably do not collapse and continue to provide strength. Moreover, as the reduced pressure pulls the closing dressing bolster 146 inward, i.e., in the direction going from thefirst wall 139 to thesecond wall 141, and a compressive force is developed. - Referring now primarily to
FIG. 5 , another embodiment of a closing dressing bolster 246 is presented. The closing dressing bolster 246 includes a bolsterbody 250 formed with afirst closing member 252 on afirst side 253, or first lateral side, and asecond closing member 254 on asecond side 255, or second lateral side. The first andsecond closing members material holder 236. With respect to acenter portion 268, anoverlay piece 265, or overlay, may cover and hold the closingmembers members material holder 236 that holds awicking material 238. The shape of thewicking material 238 and the substance of thewicking material 238 may be operable to help keep an underlying linear wound (e.g.,linear wound 12 inFIG. 1 ) dry and clean. - The materials that may be used for the
wicking material 238 include hydrophobic materials, hydrophilic materials, and all the materials listed elsewhere that may be used for a shaped dressing bolster 532 described below (seeFIG. 8 ). Theoverlay piece 265 and closingmembers FIG. 6 for an example) and external to the system. - In operation, the closing dressing bolster 246 may develop a bending moment under reduced pressure causing the lower portion of the
first closing member 252 and the lower portion of thesecond closing member 254 to press downward (for the orientation shown) and inward on the patient's epidermis causing both a compressive force or a closing force towards the linear wound. Reduced pressure delivered to the wicking-material holder 236 may move thefirst closing member 252 and thesecond closing member 254 closer together and thereby provide the closing force. The closing dressing bolster 246 is sized and configured so that thewicking material 238 may be in contact with the linear wound and thereby helps to remove any fluids that might have emanated from the linear wound. Any such fluids would be delivered to a reduced-pressure interface and then be delivered by a reduced-pressure conduit to a canister under the influence of a reduced-pressure source. - The illustrative closing dressing bolsters 46, 146, and 246 presented above may provide for the visual determination of the color, shades of color, wound edge, or other features of the wound from a location external to the closing dressing bolster. This feature is also possible with other types of dressings as will now be discussed. Referring now to
FIG. 6 , a portion of a reduced-pressure treatment system 310 is shown. The reduced-pressure treatment system 310 includes a see-throughdressing assembly 340, which has a bolsterbody 350. The bolsterbody 350 may be made of any number of materials, such as a bolster mesh or bolster foam, provided that the spacing of pores on the foam (non-opaque foam) or between structural elements of the material allow for sufficient light to pass through the material such that the color, shades of color, wound edge, or other features of alinear wound 312 can be seen from a point external to the reduced-pressure treatment system 310, e.g., can be seen in a line of sight location shown byreference numeral 384. For example, the bolsterbody 350 may be formed from silicone or porous foam, e.g., a GranuFoam® material available from Kinetic Concepts, Inc. of San Antonio, Tex. The pore size and density may be varied to help provide the see-through characteristic. - In an alternative illustrative embodiment, a
window 386, such as a window made of see-through silicone, may be placed over a portion of the bolster material such that when reduced pressure is provided to the bolsterbody 350 and thewindow 386 is compressed down further on the bolster material, thelinear wound 312 becomes visible through thewindow 386 from a point exterior to the bolsterbody 350 and thesystem 310. For example, a patient or healthcare provider may see thelinear wound 312 on a line of sight 388. - In another alternative, illustrative embodiment, clear beads may be used as or included within bolster
body 350. The beads may be arranged within the bolster body so that under negative pressure, the beads come together over the wound allowing the patient or healthcare provider to see through to the wound from a point exterior or external to the bolsterbody 350 and thesystem 310. The body bolster 350 may be a mesh material that the beads can displace as they come together under reduced pressure. - In another embodiment, a window can be made such than when reduced pressure is removed from the bolster
body 350, a biased portion moves aside allowing one to view thelinear wound 312. For example, two portions of the bolsterbody 350 may overlap as reduced pressure compresses the two portions, but when reduced pressure is removed, the portions separate and allow a clear view of the linear wound. As such, it will be appreciated that numerous visual inspection devices may be used to allow the color and other characteristics of the wound to be visually detected. The visual inspection device may be a see-through bolster and a see-through sealing member, awindow 386, a bolster material that allows adequate light to pass, a plurality of clear beads, or a moveable portion of a bolster that allows visual inspection when not under reduced pressure. - The bolster
body 350 is shown covered by a sealingmember 372 that extends beyond the bolsterbody 350, e.g., beyondedge 348, to form adrape extension 377. Thedrape extension 377 may be sealed to form a fluid seal between the sealingmember 372 and a patient'sepidermis 314 using asealing apparatus 380, such as adrape tape 383 or other sealing device. - Referring now primarily to
FIG. 7 , a portion of anillustrative system 410 for treating alinear wound 412 is presented. Thesystem 410 includes a dressingassembly 440. The dressingassembly 440 includes a dressing bolster 446, which has adressing body 450. The dressingbody 450 may be formed with two portions: the first side, or firstlateral portion 453, and a second side, or secondlateral portion 455. Thefirst portion 453 andsecond portion 455 may be integrally connected or may be two separate pieces. Thefirst portion 453 is formed with closingmembers second portion 455 is formed with closingmembers members linear wound 412. The dressingbody 450 is shown covered by a sealingmember 472 that is sealed with asealing apparatus 480 to provide a seal against a patient'sepidermis 416. - A
first wall 437 on thefirst portion 453 and asecond wall 439 on thesecond portion 455 together may form a wicking-material holder 436 for holding awicking material 438. The wickingmaterial 438 may be held against thelinear wound 412 to help to remove any fluids, e.g., exudates, when the dressingassembly 440 is place under reduced pressure. - Referring now primarily to
FIG. 8 , an illustrative see-throughwound treatment system 510 is presented that allows a healthcare provider to view a treatment site, e.g.,linear wound 512, area wound, a portion ofintact epidermis 514, etc., and may provide a compressive force. The see-throughwound treatment system 510 may provide for the treatment of subcutaneous damaged tissue and may allow the treatment site to be viewed from a place external to the see-throughwound treatment system 510. - The see-through
wound treatment system 510 is shown in a peri-incisional region around thelinear wound 512, which is through theepidermis 514,dermis 516, and reaching into a hypodermis, orsubcutaneous tissue 518. Thesubcutaneous tissue 518 may include numerous tissue types, such as fatty tissue or muscle. A damagedsubcutaneous tissue site 520 is shown extending out from thelinear wound 512 and includes, in this instance, a subcutaneous defect, dead space, or void 522. The damagedsubcutaneous tissue site 520 may be caused by surgical procedures, such as liposuction. The damagedsubcutaneous tissue site 520 may include voids, such as thevoid 522, open spaces, and various defects that can be troublesome for a number of reasons, such as fluid accumulation that may result in edema. - The
linear wound 512 may be closed using any closing device or technique, such as staples, sutures, or adhesive, but is shown in this illustrative embodiment with astaple 513. The see-throughwound treatment system 510 may be used for treating an area and, in particular, may be used for treating asubcutaneous tissue site 520 and the tissue aroundsubcutaneous tissue site 520, but the see-throughwound treatment system 510 may also be used to treat the more limited area of alinear wound 512. - The see-through
wound treatment system 510 includes a dressingassembly 530, which includes the shaped dressing bolster 532, asealing subsystem 560, and a reduced-pressure subsystem 580. In operation, the see-throughwound treatment system 510 may develop the directed force, which may include a net compressive force, represented byreference numerals 524, that is realized in thesubcutaneous tissue site 520. As described further below, the shaped dressing bolster 532 may be shaped and configured to allow thecompressive force 524 to be distributed fairly evenly over the patient'sepidermis 514. Otherwise, if there are areas of substantially increased force as compared to other areas on theepidermis 514, skin irritation may result. - The directed force may also include the closing force, or inward force, i.e., a force towards an interior portion of the dressing
assembly 530. The closing force is represented byreference numerals 526. The closingforce 526 remains substantially within the plane of theepidermis 514. In other words, the closingforce 526 operates mainly within theepidermis 514. In addition, the see-throughwound treatment system 510 is operable to deliver reduced pressure to thelinear wound 512 and, depending on the phase of healing and the nature of thelinear wound 512, through thelinear wound 512 such that reduced pressure is realized at the level of anysubcutaneous voids 522 to help approximate—bring together—the tissues in that region as well as to help remove any air or any other fluids. - The dressing
assembly 530 includes the shaped dressing bolster 532 that has afirst side 534 and a second, inward-facingside 536. The shaped dressing bolster 532 may be sized and shaped to substantially match the estimated area of the damagedsubcutaneous tissue site 520 although a larger or smaller size may be used in different applications. The shaped dressing bolster 532 has anedge 538. The shaped dressing bolster 532 may be made of a number of different medical bolster materials, i.e., materials suitable for use in medical applications and that may be made sterile. In one illustrative embodiment, the shaped dressing bolster 532 is made from a medical bolster material that is a manifold material. In one illustrative embodiment, the shaped dressing bolster 532 is made from bolster material that is a porous and permeable foam-like material and, more particularly, a reticulated, open-cell polyurethane or polyether foam that allows good permeability of wound fluids while under reduced pressure. One such foam material that has been used is the VAC® GranuFoam® material available from Kinetic Concepts, Inc. (KCI) of San Antonio, Tex. Any material or combination of materials may be used for the bolster material provided that the bolster material is operable to distribute, or manifold, reduced pressure. - The term “manifold” as used herein generally refers to a substance or structure that is provided to assist in applying reduced pressure to, delivering fluids to, or removing fluids from a tissue site. The bolster material may also be a combination or layering of materials; for example, a first bolster layer of hydrophilic foam may be disposed adjacent to a second bolster layer of hydrophobic foam to form the bolster material. The term “fluid” as used herein generally refers to gas or liquid, but may also include any other flowable material, including but not limited to gels, colloids, and foams.
- The reticulated pores of the Granufoam® material, which are typically in the range of about 400 to 600 microns, are helpful in carrying out the manifold function, but other materials may be used. The density of the medical bolster material, e.g., Granufoam® material, is typically in the range of about 1.3 lb/ft3-1.6 lb/ft3 (20.8 kg/m3-25.6 kg/m3). A material with a higher density (smaller pore size) than Granufoam® material may be desirable in some situations. For example, the Granufoam® material or similar material with a density greater than 1.6 lb/ft3 (25.6 kg/m3) may be used. As another example, the Granufoam® material or similar material with a density greater than 2.0 lb/ft3 (32 kg/m3) or 5.0 lb/ft3 (80.1 kg/m3) or even more may be used. The more dense the material is, the higher compressive force that may be generated for a given reduced pressure. If a foam with a density less than the tissue at the tissue site is used as the medical bolster material, a lifting force may be developed.
- The bolster material may be a reticulated foam that is later felted to thickness of about ⅓ the foam's original thickness. Among the many possible materials, the following may be used: GranuFoam® material or a Foamex® technical foam (www.foamex.com). In some instances it may be desirable to add ionic silver to the bolster material in a microbonding process or to add other substances to the bolster material, such as antimicrobial agents. The bolster material may be isotropic or anisotropic depending on the exact orientation of the directed force that is desired during reduced pressure. The bolster material may be made anisotropic by adding filaments, felting a portion, adding adhesive selectively, etc. The bolster material could be a bio-absorbable material.
- The
sealing subsystem 560 includes a sealingmember 562, or drape, which is analogous to the sealingmember 72. The sealingmember 562 may be coupled to the shaped dressing bolster 532. For example, the sealingmember 562 and shaped dressing bolster 532 may be coupled using adhesives, such as an acrylic adhesive, silicone adhesive, hydrogel, hydrocolloid, etc. As another example, the sealingmember 562 and the shaped dressing bolster 532 may be bonded by heat bonding, ultrasonic bonding, and radio frequency bonding, etc. The coupling may occur in patterns or completely. Structure may be added to the bond to make the sealingmember 562 behave anisotropically in a desired direction, i.e., to make an anisotropic drape material. An anisotropic drape material helps the dressingassembly 530 to primarily move in a given direction, i.e., only about a certain axis or axes. - In the illustrative embodiment of
FIG. 8 , the sealingmember 562 may be sized to extend beyond the shaped dressing bolster 532, e.g., beyond theedge 538 on anextremity 533, to form adrape extension 564, or extension. Thedrape extension 564 has afirst surface 566 and a second, inward-facingsurface 568. The sealingmember 562 may be sealed against theepidermis 514 of the patient using asealing apparatus 569, which helps to provide a seal and allows reduced pressure to be maintained by the reduced-pressure subsystem 580 at the treatment site. The sealingapparatus 569 may take numerous forms, such as an adhesive 570; a sealing tape, or drape tape or strip; double-side drape tape; paste; hydrocolloid; hydrogel; or other sealing device. If a tape is used, the tape may be formed of the same material as the sealingmember 562 with a pre-applied, pressure-sensitive adhesive. The pressuresensitive adhesive 570 may be applied on the second, inward-facingsurface 568 of thedrape extension 564. The pressure-sensitive adhesive 570 provides a seal between the sealingmember 562 and theepidermis 514 of the patient. Before the sealingmember 562 is secured to the patient, the pressure-sensitive adhesive 570 may have removable strips or backing covering the pressure-sensitive adhesive 570. - The reduced-
pressure subsystem 580 includes a reduced-pressure source 582, or therapy unit, which can take many different forms. The reduced-pressure source 582 provides reduced pressure as a part of the see-throughwound treatment system 510. The reduced-pressure source 582 may be any device for supplying reduced pressure, such as a vacuum pump, wall suction, or other source. While the amount and nature of reduced pressure applied to a tissue will typically vary according to the application, reduced pressure will typically be between −5 mm Hg and −500 mm Hg and more typically between −100 mm Hg and −300 mm Hg. In order to maximize patient mobility and ease, the reduced-pressure source 582 may be a battery-powered, single-use reduced-pressure generator, which facilitates application in the operating room and provides mobility and convenience for the patient during the rehabilitation phase. - In the illustrative embodiment of
FIG. 8 , the reduced-pressure source 582 is shown having abattery compartment 584 and acanister region 586 withwindows 588 providing a visual indication of the level of fluid within thecanister region 586. An interposed membrane filter, such as hydrophobic or oleophobic filter, may be interspersed between a reduced-pressure delivery conduit, or tubing, 590 and the reduced-pressure source 582. - Reduced pressure developed by reduced-
pressure source 582 is delivered through the reduced-pressure delivery conduit 590 to a reduced-pressure interface 592, which may be anelbow port 594. In one illustrative embodiment, theelbow port 594 is a TRAC® technology port available from KCI of San Antonio, Tex. The reduced-pressure interface 592 allows reduced pressure to be delivered to thesealing subsystem 560 and realized within an interior portion of thesealing subsystem 560. In this illustrative embodiment, theelbow port 594 extends through the sealingmember 562 and into the shaped dressing bolster 532. - In operation, the see-through
wound treatment system 510 is applied to thelinear wound 512. The see-throughwound treatment system 510 may be applied to thelinear wound 512 in the operating room after a surgical procedure on the patient. The second, inward-facingside 536 of the shaped dressing bolster 532 is placed against the patient'sepidermis 514 with the shaped dressing bolster 532 over the damagedsubcutaneous tissue site 520 and with a portion of the shaped dressing bolster 532 over thelinear wound 512. The dressingassembly 530 may be sized for the typical application involved in the procedure performed by a healthcare provider. The dressingassembly 530 may be sized, shaped, and configured to work with different anatomical applications, such as the abdomen, chest, arms, thighs, etc. - If the sealing
member 562 has not already been coupled, the sealingmember 562 is placed over thefirst side 534 of the shaped dressing bolster 532 with a portion extending beyond the shaped dressing bolster 532 to form thedrape extensions 564. Thedrape extensions 564 may then be taped down or an adhesive 570 used to form a seal between the sealingmember 562 and the patient'sepidermis 514. The seal need only be adequate to allow the see-throughwound treatment system 510 to hold reduced pressure on the desired treatment area. The reduced-pressure interface 592 and the reduced-pressure source 582 are fluidly coupled using the reduced-pressure delivery conduit 590. The reduced-pressure source 582 may then be activated and reduced pressure delivered to the shaped dressing bolster 532. - As the pressure is reduced in the shaped dressing bolster 532, the shaped dressing bolster 532 compresses and contracts laterally and forms a semi-rigid substrate, and a number of beneficial forces and actions may take place. Reduced pressure is transmitted further still through the shaped dressing bolster 532 so that reduced pressure delivered to the
linear wound 512. At least at the early stages of the healing process, reduced pressure may also be realized through thelinear wound 512 and into thesubcutaneous tissue site 520. As such, reduced pressure may help close defects, such assubcutaneous void 522, and generally provides stability to the area. Reduced pressure delivered to the shaped dressing bolster 532 also develops thecompressive force 524 that again may provide stability and therapy. Thecompressive force 524 is more than just at the top of theepidermis 514. Thecompressive force 524 extends down deeper and may be experienced at the level of thesubcutaneous tissue site 520. The compressive force may help close defects and provide stability. - It may be desirable to apply the see-through
wound treatment system 510 in the operating room and allow the see-throughwound treatment system 510 to remain on the patient until adequate healing has taken place. In this regard, it may be desirable to form the sealingmember 562, shaped dressing bolster 532, and any other layers from see-through materials that allow the healthcare provider to gain visual cues about the healing of thelinear wound 512 and damagedsubcutaneous tissue site 520 without having to remove thedressing assembly 530. - According to one illustrative embodiment, a see-through dressing assembly for use with a reduced-pressure system for treating a linear wound on a patient includes a closing dressing bolster for providing a closing force when under reduced pressure and a sealing member for covering the closing dressing bolster and providing a seal over the closing dressing bolster. The closing dressing bolster and sealing member are formed from see-through materials sufficient to allow perception of color from a point external to the see-through dressing assembly. The closing dressing bolster may include a top wall and a bottom wall. The top wall and bottom wall are coupled in a spaced relationship. The bottom wall includes a center portion, a first lateral portion, and a second lateral portion. A first closing member is formed on the first lateral portion, and a second closing member is formed on the second lateral portion. When placed under reduced pressure, the first closing member and the second closing member move towards each other.
- According to one illustrative embodiment, a system for treating a wound on a patient with reduced pressure and that allows visual observation of the wound during treatment includes a dressing bolster for placing on a portion of the patient's epidermis over the wound. The dressing bolster is formed from a see-through material. The system further includes a sealing subsystem for providing a seal over the closing bolster and the patient's epidermis and a reduced-pressure subsystem for delivering a reduced pressure to the sealing subsystem. The sealing subsystem and reduced-pressure subsystem are operable to deliver reduced pressure to the dressing bolster. The dressing bolster, sealing subsystem, and reduced-pressure subsystem are operable to develop a directed force and to deliver reduced pressure to the wound. The sealing subsystem includes a see-through sealing member. The dressing bolster and sealing subsystem are operable to allow light to pass such that shades of color of the wound may be perceived from a place external to the system. The dressing bolster has a first surface, a second, inward-facing surface and includes an oblique extremity formed a portion of the dressing bolster. The dressing bolster is formed from a medical bolster material that has a density greater than 20 kg/m3. The dressing bolster has the characteristic of evenly distributing a directed force when under a reduced pressure.
- Although the present invention and its advantages have been disclosed in the context of certain illustrative, non-limiting embodiments, it should be understood that various changes, substitutions, permutations, and alterations can be made without departing from the scope of the invention as defined by the appended claims. It will be appreciated that any feature that is described in a connection to any one embodiment may also be applicable to any other embodiment.
Claims (28)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/596,424 US20200046565A1 (en) | 2008-05-30 | 2019-10-08 | Reduced-Pressure, Linear-Wound Treatment Systems |
US16/710,844 US20200113741A1 (en) | 2008-05-30 | 2019-12-11 | Dressing with tissue viewing capability |
Applications Claiming Priority (16)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US5780808P | 2008-05-30 | 2008-05-30 | |
US5781008P | 2008-05-30 | 2008-05-30 | |
US5780708P | 2008-05-30 | 2008-05-30 | |
US5779808P | 2008-05-30 | 2008-05-30 | |
US5780308P | 2008-05-30 | 2008-05-30 | |
US5780508P | 2008-05-30 | 2008-05-30 | |
US5780208P | 2008-05-30 | 2008-05-30 | |
US5779708P | 2008-05-30 | 2008-05-30 | |
US5780008P | 2008-05-30 | 2008-05-30 | |
US12136208P | 2008-12-10 | 2008-12-10 | |
US14406709P | 2009-01-12 | 2009-01-12 | |
US12/475,319 US8147468B2 (en) | 2008-05-30 | 2009-05-29 | Reduced-pressure, linear-wound treatment systems |
US13/407,360 US8747375B2 (en) | 2008-05-30 | 2012-02-28 | Reduced-pressure, linear-wound treatment systems |
US14/267,722 US9744079B2 (en) | 2008-05-30 | 2014-05-01 | Reduced-pressure, linear-wound treatment systems |
US15/656,697 US10478345B2 (en) | 2008-05-30 | 2017-07-21 | Reduced-pressure, linear-wound treatment systems |
US16/596,424 US20200046565A1 (en) | 2008-05-30 | 2019-10-08 | Reduced-Pressure, Linear-Wound Treatment Systems |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/656,697 Continuation US10478345B2 (en) | 2008-05-30 | 2017-07-21 | Reduced-pressure, linear-wound treatment systems |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/710,844 Continuation-In-Part US20200113741A1 (en) | 2008-05-30 | 2019-12-11 | Dressing with tissue viewing capability |
Publications (1)
Publication Number | Publication Date |
---|---|
US20200046565A1 true US20200046565A1 (en) | 2020-02-13 |
Family
ID=40809887
Family Applications (41)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/475,257 Active 2030-03-04 US8100848B2 (en) | 2008-05-30 | 2009-05-29 | Reduced-pressure, compression systems and apparatuses for use on breast tissue |
US12/475,407 Active 2030-02-11 US8133211B2 (en) | 2008-05-30 | 2009-05-29 | Reduced pressure, compression systems and apparatuses for use on joints |
US12/475,398 Active 2033-06-13 US9572719B2 (en) | 2008-05-30 | 2009-05-29 | Reduced-pressure surgical wound treatment systems and methods |
US12/475,285 Active 2030-04-27 US8241261B2 (en) | 2008-05-30 | 2009-05-29 | Super-absorbent, reduced-pressure wound dressings and systems |
US12/475,301 Active 2030-05-12 US8129580B2 (en) | 2008-05-30 | 2009-05-29 | Reduced-pressure, compression systems and apparatuses for use on a curved body part |
US12/475,231 Active 2030-02-20 US8172816B2 (en) | 2008-05-30 | 2009-05-29 | Anisotropic drapes and systems |
US12/475,373 Active 2030-02-21 US8167856B2 (en) | 2008-05-30 | 2009-05-29 | Inflatable bladder dressings, systems, and methods |
US12/475,367 Active 2030-02-06 US8202261B2 (en) | 2008-05-30 | 2009-05-29 | Dressing assemblies for wound treatment using reduced pressure |
US12/475,319 Active 2030-02-24 US8147468B2 (en) | 2008-05-30 | 2009-05-29 | Reduced-pressure, linear-wound treatment systems |
US12/475,380 Active 2030-03-26 US8188331B2 (en) | 2008-05-30 | 2009-05-29 | See-through, reduced-pressure dressings and systems |
US12/475,328 Active 2031-04-01 US8399730B2 (en) | 2008-05-30 | 2009-05-29 | Reduced-pressure dressing assemblies for use in applying a closing force |
US13/253,711 Active 2030-01-07 US8722959B2 (en) | 2008-05-30 | 2011-10-05 | Reduced-pressure, compression systems and apparatuses for use on a curved body part |
US13/352,549 Active US8480605B2 (en) | 2008-05-30 | 2012-01-18 | Reduced-pressure, compression systems and apparatuses for use on breast tissue |
US13/363,889 Active 2029-10-10 US8715253B2 (en) | 2008-05-30 | 2012-02-01 | Reduced pressure, compression systems and apparatuses for use on joints |
US13/407,360 Active 2029-11-17 US8747375B2 (en) | 2008-05-30 | 2012-02-28 | Reduced-pressure, linear-wound treatment systems |
US13/437,898 Active 2031-04-10 US9173788B2 (en) | 2008-05-30 | 2012-04-02 | Anisotropic drapes and systems |
US13/437,884 Active US8409156B2 (en) | 2008-05-30 | 2012-04-02 | Inflatable bladder dressings, systems, and methods |
US13/455,383 Active 2030-05-23 US9204999B2 (en) | 2008-05-30 | 2012-04-25 | See-through reduced-pressure dressings and system |
US13/468,866 Active US8679080B2 (en) | 2008-05-30 | 2012-05-10 | Dressing assemblies for wound treatment using reduced pressure |
US13/546,161 Active US8795244B2 (en) | 2008-05-30 | 2012-07-11 | Super-absorbent, reduced-pressure wound dressings and systems |
US13/769,127 Active US9095468B2 (en) | 2008-05-30 | 2013-02-15 | Reduced-pressure dressing assemblies for use in applying a closing force |
US13/796,295 Active 2029-09-12 US8920395B2 (en) | 2008-05-30 | 2013-03-12 | Inflatable bladder dressings, systems, and methods |
US14/175,743 Active 2030-04-03 US10143593B2 (en) | 2008-05-30 | 2014-02-07 | Dressing assemblies for wound treatment using reduced pressure |
US14/220,706 Active 2031-02-09 US10245184B2 (en) | 2008-05-30 | 2014-03-20 | Reduced pressure, compression systems and apparatuses for use on joints |
US14/252,605 Active 2032-02-06 US9895269B2 (en) | 2008-05-30 | 2014-04-14 | Reduced-pressure, compression systems and apparatuses for use on a curved body part |
US14/267,722 Active 2030-06-03 US9744079B2 (en) | 2008-05-30 | 2014-05-01 | Reduced-pressure, linear-wound treatment systems |
US14/309,705 Active 2030-08-22 US10695225B2 (en) | 2008-05-30 | 2014-06-19 | Super-absorbent, reduced-pressure wound dressings and systems |
US14/751,438 Active 2029-07-05 US9750641B2 (en) | 2008-05-30 | 2015-06-26 | Reduced-pressure dressing assemblies for use in applying a closing force |
US14/867,933 Active 2031-02-06 US10226384B2 (en) | 2008-05-30 | 2015-09-28 | Anisotropic drapes and systems |
US14/931,350 Active 2030-05-08 US10076447B2 (en) | 2008-05-30 | 2015-11-03 | See-through reduced-pressure dressings and systems |
US15/411,395 Active 2030-10-09 US10568768B2 (en) | 2008-05-30 | 2017-01-20 | Reduced-pressure surgical wound treatment systems and methods |
US15/656,697 Active 2029-07-05 US10478345B2 (en) | 2008-05-30 | 2017-07-21 | Reduced-pressure, linear-wound treatment systems |
US15/668,132 Active 2030-10-07 US10744040B2 (en) | 2008-05-30 | 2017-08-03 | Reduced-pressure dressing assemblies for use in applying a closing force |
US15/864,937 Active 2030-08-18 US11020277B2 (en) | 2008-05-30 | 2018-01-08 | Reduced-pressure, compression systems and apparatuses for use on a curved body part |
US16/156,756 Active 2031-12-21 US11413193B2 (en) | 2008-05-30 | 2018-10-10 | Dressing assemblies for wound treatment using reduced pressure |
US16/242,825 Abandoned US20190142643A1 (en) | 2008-05-30 | 2019-01-08 | Anisotropic Drapes And Systems |
US16/278,638 Active 2031-05-14 US11419768B2 (en) | 2008-05-30 | 2019-02-18 | Reduced pressure, compression systems and apparatuses for use on joints |
US16/596,424 Abandoned US20200046565A1 (en) | 2008-05-30 | 2019-10-08 | Reduced-Pressure, Linear-Wound Treatment Systems |
US16/740,004 Active 2029-11-22 US11382796B2 (en) | 2008-05-30 | 2020-01-10 | Reduced-pressure surgical wound treatment systems and methods |
US16/875,587 Active 2031-04-01 US11793679B2 (en) | 2008-05-30 | 2020-05-15 | Super-absorbent, reduced-pressure wound dressing and systems |
US17/062,382 Active 2031-04-03 US11969319B2 (en) | 2008-05-30 | 2020-10-02 | Reduced-pressure, compression systems and apparatuses for use on a curved body part |
Family Applications Before (37)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/475,257 Active 2030-03-04 US8100848B2 (en) | 2008-05-30 | 2009-05-29 | Reduced-pressure, compression systems and apparatuses for use on breast tissue |
US12/475,407 Active 2030-02-11 US8133211B2 (en) | 2008-05-30 | 2009-05-29 | Reduced pressure, compression systems and apparatuses for use on joints |
US12/475,398 Active 2033-06-13 US9572719B2 (en) | 2008-05-30 | 2009-05-29 | Reduced-pressure surgical wound treatment systems and methods |
US12/475,285 Active 2030-04-27 US8241261B2 (en) | 2008-05-30 | 2009-05-29 | Super-absorbent, reduced-pressure wound dressings and systems |
US12/475,301 Active 2030-05-12 US8129580B2 (en) | 2008-05-30 | 2009-05-29 | Reduced-pressure, compression systems and apparatuses for use on a curved body part |
US12/475,231 Active 2030-02-20 US8172816B2 (en) | 2008-05-30 | 2009-05-29 | Anisotropic drapes and systems |
US12/475,373 Active 2030-02-21 US8167856B2 (en) | 2008-05-30 | 2009-05-29 | Inflatable bladder dressings, systems, and methods |
US12/475,367 Active 2030-02-06 US8202261B2 (en) | 2008-05-30 | 2009-05-29 | Dressing assemblies for wound treatment using reduced pressure |
US12/475,319 Active 2030-02-24 US8147468B2 (en) | 2008-05-30 | 2009-05-29 | Reduced-pressure, linear-wound treatment systems |
US12/475,380 Active 2030-03-26 US8188331B2 (en) | 2008-05-30 | 2009-05-29 | See-through, reduced-pressure dressings and systems |
US12/475,328 Active 2031-04-01 US8399730B2 (en) | 2008-05-30 | 2009-05-29 | Reduced-pressure dressing assemblies for use in applying a closing force |
US13/253,711 Active 2030-01-07 US8722959B2 (en) | 2008-05-30 | 2011-10-05 | Reduced-pressure, compression systems and apparatuses for use on a curved body part |
US13/352,549 Active US8480605B2 (en) | 2008-05-30 | 2012-01-18 | Reduced-pressure, compression systems and apparatuses for use on breast tissue |
US13/363,889 Active 2029-10-10 US8715253B2 (en) | 2008-05-30 | 2012-02-01 | Reduced pressure, compression systems and apparatuses for use on joints |
US13/407,360 Active 2029-11-17 US8747375B2 (en) | 2008-05-30 | 2012-02-28 | Reduced-pressure, linear-wound treatment systems |
US13/437,898 Active 2031-04-10 US9173788B2 (en) | 2008-05-30 | 2012-04-02 | Anisotropic drapes and systems |
US13/437,884 Active US8409156B2 (en) | 2008-05-30 | 2012-04-02 | Inflatable bladder dressings, systems, and methods |
US13/455,383 Active 2030-05-23 US9204999B2 (en) | 2008-05-30 | 2012-04-25 | See-through reduced-pressure dressings and system |
US13/468,866 Active US8679080B2 (en) | 2008-05-30 | 2012-05-10 | Dressing assemblies for wound treatment using reduced pressure |
US13/546,161 Active US8795244B2 (en) | 2008-05-30 | 2012-07-11 | Super-absorbent, reduced-pressure wound dressings and systems |
US13/769,127 Active US9095468B2 (en) | 2008-05-30 | 2013-02-15 | Reduced-pressure dressing assemblies for use in applying a closing force |
US13/796,295 Active 2029-09-12 US8920395B2 (en) | 2008-05-30 | 2013-03-12 | Inflatable bladder dressings, systems, and methods |
US14/175,743 Active 2030-04-03 US10143593B2 (en) | 2008-05-30 | 2014-02-07 | Dressing assemblies for wound treatment using reduced pressure |
US14/220,706 Active 2031-02-09 US10245184B2 (en) | 2008-05-30 | 2014-03-20 | Reduced pressure, compression systems and apparatuses for use on joints |
US14/252,605 Active 2032-02-06 US9895269B2 (en) | 2008-05-30 | 2014-04-14 | Reduced-pressure, compression systems and apparatuses for use on a curved body part |
US14/267,722 Active 2030-06-03 US9744079B2 (en) | 2008-05-30 | 2014-05-01 | Reduced-pressure, linear-wound treatment systems |
US14/309,705 Active 2030-08-22 US10695225B2 (en) | 2008-05-30 | 2014-06-19 | Super-absorbent, reduced-pressure wound dressings and systems |
US14/751,438 Active 2029-07-05 US9750641B2 (en) | 2008-05-30 | 2015-06-26 | Reduced-pressure dressing assemblies for use in applying a closing force |
US14/867,933 Active 2031-02-06 US10226384B2 (en) | 2008-05-30 | 2015-09-28 | Anisotropic drapes and systems |
US14/931,350 Active 2030-05-08 US10076447B2 (en) | 2008-05-30 | 2015-11-03 | See-through reduced-pressure dressings and systems |
US15/411,395 Active 2030-10-09 US10568768B2 (en) | 2008-05-30 | 2017-01-20 | Reduced-pressure surgical wound treatment systems and methods |
US15/656,697 Active 2029-07-05 US10478345B2 (en) | 2008-05-30 | 2017-07-21 | Reduced-pressure, linear-wound treatment systems |
US15/668,132 Active 2030-10-07 US10744040B2 (en) | 2008-05-30 | 2017-08-03 | Reduced-pressure dressing assemblies for use in applying a closing force |
US15/864,937 Active 2030-08-18 US11020277B2 (en) | 2008-05-30 | 2018-01-08 | Reduced-pressure, compression systems and apparatuses for use on a curved body part |
US16/156,756 Active 2031-12-21 US11413193B2 (en) | 2008-05-30 | 2018-10-10 | Dressing assemblies for wound treatment using reduced pressure |
US16/242,825 Abandoned US20190142643A1 (en) | 2008-05-30 | 2019-01-08 | Anisotropic Drapes And Systems |
US16/278,638 Active 2031-05-14 US11419768B2 (en) | 2008-05-30 | 2019-02-18 | Reduced pressure, compression systems and apparatuses for use on joints |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/740,004 Active 2029-11-22 US11382796B2 (en) | 2008-05-30 | 2020-01-10 | Reduced-pressure surgical wound treatment systems and methods |
US16/875,587 Active 2031-04-01 US11793679B2 (en) | 2008-05-30 | 2020-05-15 | Super-absorbent, reduced-pressure wound dressing and systems |
US17/062,382 Active 2031-04-03 US11969319B2 (en) | 2008-05-30 | 2020-10-02 | Reduced-pressure, compression systems and apparatuses for use on a curved body part |
Country Status (14)
Country | Link |
---|---|
US (41) | US8100848B2 (en) |
EP (35) | EP2282788B8 (en) |
JP (26) | JP5538371B2 (en) |
KR (11) | KR20110022643A (en) |
CN (21) | CN103417332B (en) |
AU (11) | AU2009262880B2 (en) |
BR (8) | BRPI0909569A2 (en) |
CA (15) | CA2970330C (en) |
ES (1) | ES2562345T3 (en) |
HK (1) | HK1151753A1 (en) |
MX (10) | MX2010012957A (en) |
RU (3) | RU2470672C2 (en) |
TW (11) | TW201002375A (en) |
WO (11) | WO2009158126A1 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10968543B2 (en) | 2011-12-01 | 2021-04-06 | Convatec Technologies Inc. | Wound dressing for use in vacuum therapy |
US11116884B2 (en) | 2010-12-08 | 2021-09-14 | Convatec Technologies Inc. | Integrated system for assessing wound exudates |
US11135315B2 (en) | 2010-11-30 | 2021-10-05 | Convatec Technologies Inc. | Composition for detecting biofilms on viable tissues |
US11241339B2 (en) | 2011-11-29 | 2022-02-08 | Convatec Inc. | Perforated binder for laminated wound dressing |
US11241525B2 (en) | 2010-12-08 | 2022-02-08 | Convatec Technologies Inc. | Wound exudate monitor accessory |
US11266774B2 (en) | 2016-07-08 | 2022-03-08 | Convatec Technologies Inc. | Fluid collection apparatus |
US11286601B2 (en) | 2012-12-20 | 2022-03-29 | Convatec Technologies, Inc. | Processing of chemically modified cellulosic fibres |
US11331221B2 (en) | 2019-12-27 | 2022-05-17 | Convatec Limited | Negative pressure wound dressing |
US11452808B2 (en) | 2016-07-08 | 2022-09-27 | Convatec Technologies Inc. | Fluid flow sensing |
US11458044B2 (en) | 2008-09-29 | 2022-10-04 | Convatec Technologies Inc. | Wound dressing |
US11583430B2 (en) | 2011-09-02 | 2023-02-21 | Convatec Ltd. | Skin contact material |
US11596554B2 (en) | 2016-07-08 | 2023-03-07 | Convatec Technologies Inc. | Flexible negative pressure system |
US11628093B2 (en) | 2008-05-08 | 2023-04-18 | Convatec Technologies, Inc. | Wound dressing |
US11723808B2 (en) | 2016-03-30 | 2023-08-15 | Convatec Technologies Inc. | Detecting microbial infections in wounds |
US11740241B2 (en) | 2016-03-30 | 2023-08-29 | Synovo Gmbh | Construct including an anchor, an enzyme recognition site and an indicator region for detecting microbial infection in wounds |
US11771819B2 (en) | 2019-12-27 | 2023-10-03 | Convatec Limited | Low profile filter devices suitable for use in negative pressure wound therapy systems |
US12076215B2 (en) | 2019-06-03 | 2024-09-03 | Convatec Limited | Methods and devices to disrupt and contain pathogens |
US12121645B2 (en) | 2020-08-17 | 2024-10-22 | Convatec Technologies Inc. | Method and system for removing exudates from a wound site |
Families Citing this family (385)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7846141B2 (en) | 2002-09-03 | 2010-12-07 | Bluesky Medical Group Incorporated | Reduced pressure treatment system |
GB0224986D0 (en) | 2002-10-28 | 2002-12-04 | Smith & Nephew | Apparatus |
US20120316538A1 (en) * | 2003-09-08 | 2012-12-13 | Jeremy Heiser | Osmotic Wound Vacuum System |
US11298453B2 (en) | 2003-10-28 | 2022-04-12 | Smith & Nephew Plc | Apparatus and method for wound cleansing with actives |
GB0325129D0 (en) | 2003-10-28 | 2003-12-03 | Smith & Nephew | Apparatus in situ |
GB0325126D0 (en) | 2003-10-28 | 2003-12-03 | Smith & Nephew | Apparatus with heat |
US7909805B2 (en) | 2004-04-05 | 2011-03-22 | Bluesky Medical Group Incorporated | Flexible reduced pressure treatment appliance |
US10058642B2 (en) | 2004-04-05 | 2018-08-28 | Bluesky Medical Group Incorporated | Reduced pressure treatment system |
US7776028B2 (en) | 2004-04-05 | 2010-08-17 | Bluesky Medical Group Incorporated | Adjustable overlay reduced pressure wound treatment system |
US7708724B2 (en) * | 2004-04-05 | 2010-05-04 | Blue Sky Medical Group Incorporated | Reduced pressure wound cupping treatment system |
US8062272B2 (en) | 2004-05-21 | 2011-11-22 | Bluesky Medical Group Incorporated | Flexible reduced pressure treatment appliance |
US7753894B2 (en) | 2004-04-27 | 2010-07-13 | Smith & Nephew Plc | Wound cleansing apparatus with stress |
GB0508531D0 (en) | 2005-04-27 | 2005-06-01 | Smith & Nephew | Sai with ultrasound |
CN101039641B (en) * | 2004-10-11 | 2010-06-09 | 康复宝科技有限公司 | Electro active compression bandage |
GB0515294D0 (en) | 2005-07-26 | 2005-08-31 | Novamedix Distrib Ltd | Limited durability closure means for an inflatable medical garment |
WO2011106454A2 (en) | 2010-02-23 | 2011-09-01 | L-Vad Technology, Inc. | Vacuum assisted percutaneous appliance |
CN101257875A (en) | 2005-09-06 | 2008-09-03 | 泰科保健集团有限合伙公司 | Self contained wound dressing with micropump |
CN101404968B (en) | 2006-01-13 | 2012-04-18 | 康沃特克科技公司 | Apparatus, system and method for compression treatment of body part |
US7779625B2 (en) | 2006-05-11 | 2010-08-24 | Kalypto Medical, Inc. | Device and method for wound therapy |
CA2664677C (en) | 2006-09-26 | 2016-01-26 | T.J. Smith & Nephew, Limited | Lattice dressing |
US9820888B2 (en) | 2006-09-26 | 2017-11-21 | Smith & Nephew, Inc. | Wound dressing |
CA2604623C (en) | 2006-09-28 | 2018-10-30 | Tyco Healthcare Group Lp | Portable wound therapy system |
WO2008048481A2 (en) | 2006-10-13 | 2008-04-24 | Bluesky Medical Group Inc. | Improved control circuit and apparatus for negative pressure wound treatment |
US7931651B2 (en) * | 2006-11-17 | 2011-04-26 | Wake Lake University Health Sciences | External fixation assembly and method of use |
EP3513820A1 (en) | 2007-03-14 | 2019-07-24 | The Board of Trustees of the Leland Stanford University | Devices for application of reduced pressure therapy |
US8162861B2 (en) | 2007-04-09 | 2012-04-24 | Tyco Healthcare Group Lp | Compression device with strategic weld construction |
US8016779B2 (en) | 2007-04-09 | 2011-09-13 | Tyco Healthcare Group Lp | Compression device having cooling capability |
US8034007B2 (en) | 2007-04-09 | 2011-10-11 | Tyco Healthcare Group Lp | Compression device with structural support features |
US8128584B2 (en) | 2007-04-09 | 2012-03-06 | Tyco Healthcare Group Lp | Compression device with S-shaped bladder |
US8506508B2 (en) | 2007-04-09 | 2013-08-13 | Covidien Lp | Compression device having weld seam moisture transfer |
US8070699B2 (en) | 2007-04-09 | 2011-12-06 | Tyco Healthcare Group Lp | Method of making compression sleeve with structural support features |
GB0712763D0 (en) | 2007-07-02 | 2007-08-08 | Smith & Nephew | Apparatus |
GB0715259D0 (en) | 2007-08-06 | 2007-09-12 | Smith & Nephew | Canister status determination |
US9408954B2 (en) | 2007-07-02 | 2016-08-09 | Smith & Nephew Plc | Systems and methods for controlling operation of negative pressure wound therapy apparatus |
GB0712739D0 (en) | 2007-07-02 | 2007-08-08 | Smith & Nephew | Apparatus |
US9023001B2 (en) * | 2007-09-12 | 2015-05-05 | Heal-Ex, Llc | Systems and methods for providing a debriding wound vacuum |
EP2203137B1 (en) | 2007-10-11 | 2016-02-24 | Spiracur, Inc. | Closed incision negative pressure wound therapy device |
HUE049431T2 (en) | 2007-11-21 | 2020-09-28 | Smith & Nephew | Wound dressing |
WO2009067711A2 (en) | 2007-11-21 | 2009-05-28 | T.J. Smith & Nephew, Limited | Suction device and dressing |
CA2705896C (en) | 2007-11-21 | 2019-01-08 | Smith & Nephew Plc | Wound dressing |
GB0722820D0 (en) | 2007-11-21 | 2008-01-02 | Smith & Nephew | Vacuum assisted wound dressing |
GB0723855D0 (en) | 2007-12-06 | 2008-01-16 | Smith & Nephew | Apparatus and method for wound volume measurement |
US11253399B2 (en) | 2007-12-06 | 2022-02-22 | Smith & Nephew Plc | Wound filling apparatuses and methods |
GB0723875D0 (en) | 2007-12-06 | 2008-01-16 | Smith & Nephew | Wound management |
US20130096518A1 (en) | 2007-12-06 | 2013-04-18 | Smith & Nephew Plc | Wound filling apparatuses and methods |
GB0723872D0 (en) | 2007-12-06 | 2008-01-16 | Smith & Nephew | Apparatus for topical negative pressure therapy |
DK2242522T3 (en) | 2008-01-08 | 2012-06-18 | Bluesky Medical Group Inc | Wound treatment with uninterrupted variable pressure and methods for controlling it |
US20090177051A1 (en) * | 2008-01-09 | 2009-07-09 | Heal-Ex, Llc | Systems and methods for providing sub-dressing wound analysis and therapy |
EP2586470B1 (en) | 2008-02-14 | 2020-07-15 | KCI Licensing, Inc. | Devices for treatment of damaged tissue |
BRPI0906095A2 (en) | 2008-03-05 | 2016-06-21 | Kci Licensing Inc | reduced pressure dressing to apply a reduced pressure treatment to a tissue site, method for collecting fluid in a bandage positioned at a tissue site and a reduced pressure dressing adapted to deliver a reduced pressure to a tissue site. |
US8021347B2 (en) | 2008-07-21 | 2011-09-20 | Tyco Healthcare Group Lp | Thin film wound dressing |
US9033942B2 (en) | 2008-03-07 | 2015-05-19 | Smith & Nephew, Inc. | Wound dressing port and associated wound dressing |
US8298200B2 (en) | 2009-06-01 | 2012-10-30 | Tyco Healthcare Group Lp | System for providing continual drainage in negative pressure wound therapy |
AU2009223037A1 (en) | 2008-03-12 | 2009-09-17 | Smith & Nephew Plc | Negative pressure dressing and method of using same |
GB0804654D0 (en) * | 2008-03-13 | 2008-04-16 | Smith & Nephew | Vacuum closure device |
US8152785B2 (en) | 2008-03-13 | 2012-04-10 | Tyco Healthcare Group Lp | Vacuum port for vacuum wound therapy |
US8114117B2 (en) * | 2008-09-30 | 2012-02-14 | Tyco Healthcare Group Lp | Compression device with wear area |
AU2009251802B2 (en) * | 2008-05-27 | 2013-05-30 | Smith & Nephew, Inc. | Control unit with pump module for a negative pressure wound therapy device |
CA2725569C (en) | 2008-05-30 | 2014-11-25 | Kci Licensing, Inc. | Reduced-pressure, linear wound closing bolsters and systems |
CN103417332B (en) | 2008-05-30 | 2015-10-07 | 凯希特许有限公司 | Super-absorbent, reduced-pressure wound dressing and system |
US20090299252A1 (en) * | 2008-06-03 | 2009-12-03 | O'neill Barrie Jane | Breast Skin Care Dressing |
DK2309961T3 (en) | 2008-08-08 | 2018-03-12 | Smith & Nephew Inc | Wound dressing of continuous fibers |
US9414968B2 (en) | 2008-09-05 | 2016-08-16 | Smith & Nephew, Inc. | Three-dimensional porous film contact layer with improved wound healing |
JP5680544B2 (en) | 2008-11-25 | 2015-03-04 | スパイラキュア インコーポレイテッド | Device for delivering reduced pressure to the body surface |
US8529528B2 (en) * | 2008-12-24 | 2013-09-10 | Kci Licensing, Inc. | Reduced-pressure wound treatment systems and methods employing microstrain-inducing manifolds |
KR20110102918A (en) * | 2008-12-24 | 2011-09-19 | 케이씨아이 라이센싱 인코포레이티드 | Membranes, systems, and methods for applying reduced pressure to a subcutaneous tissue site |
WO2010080907A1 (en) | 2009-01-07 | 2010-07-15 | Spiracur Inc. | Reduced pressure therapy of the sacral region |
AU2010204911B2 (en) * | 2009-01-15 | 2015-10-22 | Convatec Technologies Inc. | Aspirated wound dressing |
US8162907B2 (en) | 2009-01-20 | 2012-04-24 | Tyco Healthcare Group Lp | Method and apparatus for bridging from a dressing in negative pressure wound therapy |
WO2010088698A2 (en) * | 2009-02-02 | 2010-08-05 | Medtronic, Inc. | Antimicrobial accessory for an implantable medical device |
GB0902368D0 (en) | 2009-02-13 | 2009-04-01 | Smith & Nephew | Wound packing |
US8113409B2 (en) | 2009-03-31 | 2012-02-14 | Tyco Healthcare Group Lp | Surgical stapling apparatus with clamping assembly |
CA2757841C (en) | 2009-04-10 | 2018-06-12 | Spiracur, Inc. | Methods and devices for applying closed incision negative pressure wound therapy |
US8444614B2 (en) | 2009-04-10 | 2013-05-21 | Spiracur, Inc. | Methods and devices for applying closed incision negative pressure wound therapy |
US8663132B2 (en) * | 2009-04-14 | 2014-03-04 | Kci Licensing, Inc. | Reduced-pressure treatment systems and methods employing a variable cover |
WO2010121186A1 (en) | 2009-04-17 | 2010-10-21 | Kalypto Medical, Inc. | Negative pressure wound therapy device |
US8858983B2 (en) * | 2009-04-30 | 2014-10-14 | Medtronic, Inc. | Antioxidants and antimicrobial accessories including antioxidants |
WO2010147930A1 (en) | 2009-06-16 | 2010-12-23 | 3M Innovative Properties Company | Conformable medical dressing with self supporting substrate |
US20100324516A1 (en) | 2009-06-18 | 2010-12-23 | Tyco Healthcare Group Lp | Apparatus for Vacuum Bridging and/or Exudate Collection |
KR100920996B1 (en) * | 2009-08-11 | 2009-10-09 | 한국 한의학 연구원 | Disposable sterilization cupping device |
WO2011043863A2 (en) | 2009-08-13 | 2011-04-14 | Michael Simms Shuler | Methods and dressing systems for promoting healing of injured tissue |
US8690844B2 (en) * | 2009-08-27 | 2014-04-08 | Kci Licensing, Inc. | Re-epithelialization wound dressings and systems |
US20110054420A1 (en) * | 2009-08-27 | 2011-03-03 | Christopher Brian Locke | Reduced-pressure wound dressings and systems for re-epithelialization and granulation |
IN2012DN03120A (en) | 2009-09-17 | 2015-09-18 | Zipline Medical Inc | |
US10159825B2 (en) | 2009-09-17 | 2018-12-25 | Zipline Medical, Inc. | Rapid closing surgical closure device |
US9011393B2 (en) * | 2009-12-18 | 2015-04-21 | Kci Licensing, Inc. | Systems, methods, and devices for restoring lymphatic flow associated with a subcutaneous defect in a patients body |
DK2515961T3 (en) | 2009-12-22 | 2019-07-15 | Smith & Nephew Inc | APPARATUS AND METHODS FOR NEGATIVE PRESSURE WOUND THERAPY |
US8791315B2 (en) | 2010-02-26 | 2014-07-29 | Smith & Nephew, Inc. | Systems and methods for using negative pressure wound therapy to manage open abdominal wounds |
US8721606B2 (en) | 2010-03-11 | 2014-05-13 | Kci Licensing, Inc. | Dressings, systems, and methods for treating a tissue site |
US8814842B2 (en) | 2010-03-16 | 2014-08-26 | Kci Licensing, Inc. | Delivery-and-fluid-storage bridges for use with reduced-pressure systems |
RU2559184C2 (en) * | 2010-03-23 | 2015-08-10 | Ухань Всд Медикал Сайенс Энд Текхнолоджи Ко., Лтд. | Medical device for vacuum closed drainage |
US8652079B2 (en) | 2010-04-02 | 2014-02-18 | Covidien Lp | Compression garment having an extension |
US20110257611A1 (en) * | 2010-04-16 | 2011-10-20 | Kci Licensing, Inc. | Systems, apparatuses, and methods for sizing a subcutaneous, reduced-pressure treatment device |
US9061095B2 (en) | 2010-04-27 | 2015-06-23 | Smith & Nephew Plc | Wound dressing and method of use |
GB201006986D0 (en) | 2010-04-27 | 2010-06-09 | Smith & Nephew | Wound dressing |
GB201006988D0 (en) * | 2010-04-27 | 2010-06-09 | Smith & Nephew | Suction port |
US8623047B2 (en) | 2010-04-30 | 2014-01-07 | Kci Licensing, Inc. | System and method for sealing an incisional wound |
US8439945B2 (en) | 2010-05-03 | 2013-05-14 | Zipline Medical, Inc. | Methods for biopsying tissue |
USRE48117E1 (en) | 2010-05-07 | 2020-07-28 | Smith & Nephew, Inc. | Apparatuses and methods for negative pressure wound therapy |
US10639404B2 (en) | 2010-06-03 | 2020-05-05 | Wound Healing Technologies, Llc | Wound dressing |
CN103002844B (en) * | 2010-06-14 | 2016-08-31 | 奇普林医药公司 | For the method and apparatus suppressing cicatrization |
GB201011173D0 (en) | 2010-07-02 | 2010-08-18 | Smith & Nephew | Provision of wound filler |
JP2012029791A (en) * | 2010-07-29 | 2012-02-16 | Kurume Univ | Negative pressure treatment apparatus and control method for the same |
US8753322B2 (en) | 2010-08-10 | 2014-06-17 | Spiracur Inc. | Controlled negative pressure apparatus and alarm mechanism |
US8795246B2 (en) | 2010-08-10 | 2014-08-05 | Spiracur Inc. | Alarm system |
US10751221B2 (en) | 2010-09-14 | 2020-08-25 | Kpr U.S., Llc | Compression sleeve with improved position retention |
GB201015656D0 (en) | 2010-09-20 | 2010-10-27 | Smith & Nephew | Pressure control apparatus |
AU2011316599B2 (en) | 2010-10-12 | 2018-09-20 | Smith & Nephew, Inc. | Medical device |
CA140188S (en) | 2010-10-15 | 2011-11-07 | Smith & Nephew | Medical dressing |
CA140189S (en) | 2010-10-15 | 2011-11-07 | Smith & Nephew | Medical dressing |
JP5761966B2 (en) * | 2010-11-18 | 2015-08-12 | 学校法人 久留米大学 | Negative pressure treatment loading material |
BR112013012785A2 (en) | 2010-11-25 | 2020-10-20 | Bluestar Silicones France Sas | composition i - ii and products and uses thereof |
GB201020005D0 (en) | 2010-11-25 | 2011-01-12 | Smith & Nephew | Composition 1-1 |
PL2648668T3 (en) * | 2010-12-08 | 2018-10-31 | Convatec Technologies Inc. | Self-sealing dressing |
TWI465263B (en) * | 2010-12-10 | 2014-12-21 | Ind Tech Res Inst | Medical dressing and negative pressure wound therapy apparatus using the same |
US8613733B2 (en) * | 2010-12-15 | 2013-12-24 | Kci Licensing, Inc. | Foam dressing with integral porous film |
US8613762B2 (en) | 2010-12-20 | 2013-12-24 | Medical Technology Inc. | Cold therapy apparatus using heat exchanger |
USD714433S1 (en) | 2010-12-22 | 2014-09-30 | Smith & Nephew, Inc. | Suction adapter |
RU2016111981A (en) | 2010-12-22 | 2018-11-27 | Смит Энд Нефью, Инк. | DEVICE AND METHOD FOR TREATING RAS WITH NEGATIVE PRESSURE |
WO2012106590A2 (en) * | 2011-02-04 | 2012-08-09 | University Of Massachusetts | Negative pressure wound closure device |
US9421132B2 (en) | 2011-02-04 | 2016-08-23 | University Of Massachusetts | Negative pressure wound closure device |
US9107990B2 (en) | 2011-02-14 | 2015-08-18 | Kci Licensing, Inc. | Reduced-pressure dressings, systems, and methods for use with linear wounds |
WO2012142473A1 (en) | 2011-04-15 | 2012-10-18 | University Of Massachusetts | Surgical cavity drainage and closure system |
GB201108229D0 (en) | 2011-05-17 | 2011-06-29 | Smith & Nephew | Tissue healing |
EP2714116A4 (en) | 2011-05-24 | 2015-01-07 | Kalypto Medical Inc | Device with controller and pump modules for providing negative pressure for wound therapy |
US9058634B2 (en) | 2011-05-24 | 2015-06-16 | Kalypto Medical, Inc. | Method for providing a negative pressure wound therapy pump device |
JP2014516711A (en) * | 2011-05-25 | 2014-07-17 | ケーシーアイ ライセンシング インコーポレイテッド | Wound healing system using positive pressure to promote granulation in tissue sites |
US9067003B2 (en) | 2011-05-26 | 2015-06-30 | Kalypto Medical, Inc. | Method for providing negative pressure to a negative pressure wound therapy bandage |
EP2717936B1 (en) | 2011-06-07 | 2016-10-12 | Smith & Nephew PLC | Apparatus for the treatment of wounds |
US9681993B2 (en) | 2011-06-07 | 2017-06-20 | Kci Licensing, Inc. | Solutions for bridging and pressure concentration reduction at wound sites |
US20120316521A1 (en) * | 2011-06-09 | 2012-12-13 | Ronaldo Scholze Webster | Manual negative pressure dressing-Webster's Dressing |
WO2013066426A2 (en) * | 2011-06-24 | 2013-05-10 | Kci Licensing, Inc. | Reduced-pressure dressings employing tissue-fixation elements |
JP6208124B2 (en) | 2011-07-14 | 2017-10-04 | スミス アンド ネフュー ピーエルシーSmith & Nephew Public Limited Company | Wound dressing and method for producing the wound dressing |
KR20140049582A (en) * | 2011-08-03 | 2014-04-25 | 케이씨아이 라이센싱 인코포레이티드 | Reduced-pressure wound dressings |
CN103747814B (en) * | 2011-08-31 | 2017-11-28 | 凯希特许有限公司 | Decompression treatment and debridement system and method |
BR112014005672B1 (en) | 2011-09-12 | 2021-01-12 | Mavrik Dental Systems Ltd. | dental device and method for dental and / or gum treatment |
WO2013055887A1 (en) * | 2011-10-14 | 2013-04-18 | Regents Of The University Of Minnesota | Microalgae culture and harvest |
US9050086B2 (en) | 2011-11-01 | 2015-06-09 | Zipline Medical, Inc. | Surgical incision and closure apparatus |
US10123800B2 (en) | 2011-11-01 | 2018-11-13 | Zipline Medical, Inc. | Surgical incision and closure apparatus with integrated force distribution |
US9393354B2 (en) * | 2011-11-01 | 2016-07-19 | J&M Shuler Medical, Inc. | Mechanical wound therapy for sub-atmospheric wound care system |
US8323313B1 (en) | 2011-11-01 | 2012-12-04 | Zipline Medical, Inc. | Surgical incision and closure apparatus with integrated force distribution |
US10123801B2 (en) | 2011-11-01 | 2018-11-13 | Zipline Medical, Inc. | Means to prevent wound dressings from adhering to closure device |
US9561034B2 (en) | 2011-11-01 | 2017-02-07 | Zipline Medical, Inc. | Surgical incision and closure apparatus |
US9084845B2 (en) | 2011-11-02 | 2015-07-21 | Smith & Nephew Plc | Reduced pressure therapy apparatuses and methods of using same |
EP3326656B1 (en) * | 2011-11-02 | 2020-06-24 | Smith & Nephew plc | Reduced pressure therapy apparatuses |
AU2012335000B2 (en) * | 2011-11-11 | 2017-10-05 | Kci Licensing, Inc. | Dressings and systems for treating a wound on a patients limb employing liquid control |
US9233028B2 (en) * | 2011-11-15 | 2016-01-12 | Kci Licensing, Inc. | Medical dressings, systems, and methods with thermally-enhanced vapor transmissions |
CN103917255B (en) * | 2011-11-18 | 2016-09-28 | 凯希特许有限公司 | There is tissue therapy system and the method for the perforated substrate of band constricted zone and extended region |
US20150159066A1 (en) | 2011-11-25 | 2015-06-11 | Smith & Nephew Plc | Composition, apparatus, kit and method and uses thereof |
EP2787944A1 (en) * | 2011-12-09 | 2014-10-15 | Birgit Riesinger | Set comprising wound dressing and wound filler |
EP3005997B1 (en) * | 2011-12-16 | 2024-06-26 | Solventum Intellectual Properties Company | Releasable medical drapes |
WO2013110008A1 (en) * | 2012-01-18 | 2013-07-25 | Worldwide Innovative Healthcare, Inc. | Modifiable occlusive skin dressing |
GB2501055B (en) * | 2012-02-01 | 2017-08-30 | Banwell Paul | Scar reduction apparatus |
US8758315B2 (en) * | 2012-02-21 | 2014-06-24 | Kci Licensing, Inc. | Multi-orientation canister for use with a reduced pressure treatment system |
EP3708196A1 (en) | 2012-03-12 | 2020-09-16 | Smith & Nephew PLC | Reduced pressure apparatus and methods |
US20130317442A1 (en) * | 2012-03-12 | 2013-11-28 | Ivwatch, Llc | Dressing for an Insertion Site of an Intravascular Infusate |
US9114055B2 (en) | 2012-03-13 | 2015-08-25 | Cothera Llc | Deep vein thrombosis (“DVT”) and thermal/compression therapy systems, apparatuses and methods |
US9566187B2 (en) | 2012-03-13 | 2017-02-14 | Breg, Inc. | Cold therapy systems and methods |
JP6276251B2 (en) | 2012-03-20 | 2018-02-07 | スミス アンド ネフュー ピーエルシーSmith & Nephew Public Limited Company | Operation control of decompression therapy system based on dynamic determination of duty cycle threshold |
USD733896S1 (en) | 2012-05-04 | 2015-07-07 | Genadyne Biotechnologies, Inc. | Abdominal dressing |
US9427505B2 (en) | 2012-05-15 | 2016-08-30 | Smith & Nephew Plc | Negative pressure wound therapy apparatus |
AU346291S (en) | 2012-05-15 | 2013-01-09 | Smith & Nephew | Medical dressing |
CN104394977B (en) | 2012-05-18 | 2017-03-22 | 巴斯夫欧洲公司 | Encapsulated particle |
CN104394979B (en) | 2012-05-18 | 2017-05-24 | 巴斯夫欧洲公司 | An encapsulated particle |
EP2852419B1 (en) | 2012-05-22 | 2019-11-20 | Smith & Nephew plc | Wound closure device |
MX2014014266A (en) | 2012-05-22 | 2015-06-23 | Smith & Nephew | Apparatuses and methods for wound therapy. |
HUE047600T2 (en) | 2012-05-23 | 2020-04-28 | Smith & Nephew | Apparatuses for negative pressure wound therapy |
US10117782B2 (en) | 2012-05-24 | 2018-11-06 | Smith & Nephew, Inc. | Devices and methods for treating and closing wounds with negative pressure |
US9205021B2 (en) | 2012-06-18 | 2015-12-08 | Covidien Lp | Compression system with vent cooling feature |
US10130520B2 (en) | 2012-07-16 | 2018-11-20 | Smith & Nephew, Inc. | Negative pressure wound closure device |
BR112015000933B1 (en) * | 2012-07-16 | 2021-10-19 | University Of Massachusetts | NEGATIVE PRESSURE INJURY CLOSING DEVICE |
CN104487033B (en) * | 2012-07-30 | 2018-06-15 | 凯希特许有限公司 | Decompression absorbability for treating tissue site applies part, system and manufactures the method for applying part |
ES2625709T3 (en) | 2012-08-01 | 2017-07-20 | Smith & Nephew Plc. | Wound dressing |
MX2015001520A (en) * | 2012-08-01 | 2015-08-20 | Smith & Nephew | Wound dressing. |
EP2882392B1 (en) | 2012-08-08 | 2019-03-20 | Smith & Nephew PLC | Bespoke wound treatment apparatuses and methods for use in negative pressure wound therapy |
US9402763B2 (en) | 2012-09-12 | 2016-08-02 | Breg, Inc. | Cold therapy apparatus having heat exchanging therapy pad |
MX2015006133A (en) | 2012-11-16 | 2015-10-26 | Basf Se | An encapsulated fertilizer particle containing pesticide. |
DE102012025125A1 (en) * | 2012-12-21 | 2014-06-26 | Paul Hartmann Ag | Absorbent body for the therapeutic treatment of a wound by means of negative pressure |
DE102012025124A1 (en) * | 2012-12-21 | 2014-06-26 | Paul Hartmann Ag | Absorbent body for the therapeutic treatment of a wound by means of negative pressure |
CA2893634A1 (en) * | 2013-01-02 | 2014-07-10 | Kci Licensing, Inc. | A flexible, adherent, and non-polyurethane film wound drape cover |
WO2014107233A1 (en) * | 2013-01-02 | 2014-07-10 | Kci Licensing, Inc. | A medical drape having an ultra-thin drape film and a thick adhesive coating |
EP3081199B1 (en) * | 2013-01-03 | 2019-10-30 | KCI Licensing, Inc. | Moisture absorbing seal |
GB201317746D0 (en) | 2013-10-08 | 2013-11-20 | Smith & Nephew | PH indicator |
EP3092988B1 (en) * | 2013-01-16 | 2018-03-21 | KCI Licensing, Inc. | Dressing with asymmetric absorbent core for negative pressure wound therapy |
ES2655788T5 (en) * | 2013-01-28 | 2024-05-22 | Moelnlycke Health Care Ab | Suction device |
EP3741347B1 (en) * | 2013-03-12 | 2024-07-10 | Solventum Intellectual Properties Company | System utilizing vacuum for promoting the healing of sprains |
RU2015142873A (en) | 2013-03-13 | 2017-04-19 | Смит Энд Нефью Инк. | DEVICE AND SYSTEMS FOR CLOSING A Wound USING NEGATIVE PRESSURE, AND METHODS FOR APPLICATION IN TREATING A WAN USING NEGATIVE PRESSURE |
MX2015011812A (en) | 2013-03-14 | 2016-07-05 | Smith & Nephew Inc | Systems and methods for applying reduced pressure therapy. |
WO2014158526A1 (en) * | 2013-03-14 | 2014-10-02 | Kci Licensing, Inc. | Negative pressure therapy with dynamic profile capability |
US9737649B2 (en) | 2013-03-14 | 2017-08-22 | Smith & Nephew, Inc. | Systems and methods for applying reduced pressure therapy |
AU2014229749B2 (en) | 2013-03-14 | 2018-09-20 | Smith & Nephew Plc | Compressible wound fillers and systems and methods of use in treating wounds with negative pressure |
WO2014150288A2 (en) | 2013-03-15 | 2014-09-25 | Insera Therapeutics, Inc. | Vascular treatment devices and methods |
CA2902396A1 (en) * | 2013-03-15 | 2014-09-18 | Smith & Nephew Plc | Wound dressing sealant and use thereof |
US20160120706A1 (en) | 2013-03-15 | 2016-05-05 | Smith & Nephew Plc | Wound dressing sealant and use thereof |
US10695226B2 (en) | 2013-03-15 | 2020-06-30 | Smith & Nephew Plc | Wound dressing and method of treatment |
WO2014140606A1 (en) | 2013-03-15 | 2014-09-18 | Smith & Nephew Plc | Wound dressing and method of treatment |
US8893721B2 (en) | 2013-03-15 | 2014-11-25 | Futrell Medical Corporation | Surgical drape with vapor evacuation |
JP2016518936A (en) | 2013-05-10 | 2016-06-30 | スミス アンド ネフュー ピーエルシーSmith & Nephew Public Limited Company | Fluid connector for wound irrigation and aspiration |
US9517163B2 (en) | 2013-07-03 | 2016-12-13 | 3K Anesthesia Innovations, Llp | Pre-stressed pressure device |
CN105530898B (en) | 2013-07-16 | 2020-02-28 | 史密夫及内修公开有限公司 | Apparatus for wound therapy |
EP3033057B1 (en) * | 2013-08-16 | 2019-01-02 | Bioconix Pty Ltd | A substrate |
WO2015061352A2 (en) | 2013-10-21 | 2015-04-30 | Smith & Nephew, Inc. | Negative pressure wound closure device |
US20150144143A1 (en) * | 2013-11-24 | 2015-05-28 | Sandra J. Forsythe | Pressure sore treatment device and method |
US20160193071A1 (en) * | 2013-11-24 | 2016-07-07 | Sandra J. Forsythe | Pressure sore treatment device and method |
WO2015094724A1 (en) * | 2013-12-18 | 2015-06-25 | Kci Licensing, Inc. | Autonomous fluid instillation system and method with tissue site pressure monitoring |
CN105873525A (en) | 2014-01-05 | 2016-08-17 | 奇普林医药公司 | Instrumented wound closure device |
CN110974539A (en) | 2014-01-21 | 2020-04-10 | 史密夫及内修公开有限公司 | Collapsible dressing for negative pressure wound therapy |
CN106456376B (en) | 2014-01-21 | 2020-12-15 | 史密夫及内修公开有限公司 | Wound treatment device |
RO129702A3 (en) * | 2014-02-03 | 2016-01-29 | Sanimed International Impex S.R.L. | Bioresonant dressing for fast wound healing |
US10226566B2 (en) | 2014-04-23 | 2019-03-12 | Genadyne Biotechnologies, Inc. | System and process for removing bodily fluids from a body opening |
CN111134959B (en) * | 2014-05-09 | 2022-08-16 | 3M创新知识产权公司 | Dressing with a shrink layer for a linear tissue site |
US10022274B1 (en) * | 2014-06-02 | 2018-07-17 | Zdzislaw Harry Piotrowski | Systems and methods for wound healing |
US11026847B2 (en) | 2014-06-02 | 2021-06-08 | Zdzislaw Harry Piotrowski | Systems and methods for wound healing |
GB2526800A (en) | 2014-06-02 | 2015-12-09 | Mavrik Dental Systems Ltd | An anatomical drape device |
EP3666237B1 (en) * | 2014-06-18 | 2023-11-01 | Smith & Nephew plc | Wound dressing |
US9770369B2 (en) | 2014-08-08 | 2017-09-26 | Neogenix, Llc | Wound care devices, apparatus, and treatment methods |
US10070685B2 (en) | 2014-08-27 | 2018-09-11 | Nike, Inc. | Article of footwear with soil-shedding performance |
GB2532837B (en) | 2014-08-27 | 2017-10-25 | Nike Innovate Cv | Article of footwear with soil-shedding performance |
CN107148226B (en) | 2014-08-27 | 2020-05-22 | 耐克创新有限合伙公司 | Article of footwear, article of clothing and article of sports equipment with water-absorbing properties |
AU2015360377B2 (en) * | 2014-12-10 | 2020-09-24 | Worldwide Innovative Healthcare, Inc. | Unbacked and modifiable tapes and skin dressings |
AU2015370583B2 (en) | 2014-12-22 | 2020-08-20 | Smith & Nephew Plc | Negative pressure wound therapy apparatus and methods |
CN107530531B (en) | 2015-04-27 | 2021-07-13 | 史密夫及内修公开有限公司 | Pressure reducing device |
EP3288509B1 (en) | 2015-04-29 | 2022-06-29 | Smith & Nephew, Inc | Negative pressure wound closure device |
US10076594B2 (en) | 2015-05-18 | 2018-09-18 | Smith & Nephew Plc | Fluidic connector for negative pressure wound therapy |
US11559421B2 (en) | 2015-06-25 | 2023-01-24 | Hill-Rom Services, Inc. | Protective dressing with reusable phase-change material cooling insert |
CN105169499A (en) * | 2015-07-11 | 2015-12-23 | 赵全明 | Closed washing and drainage apparatus for osteomyelitis treatment |
PE20180755A1 (en) | 2015-07-29 | 2018-05-03 | Innovative Therapies Inc | WOUND THERAPY DEVICE PRESSURE MONITORING AND CONTROL SYSTEM |
US11607363B2 (en) | 2015-07-30 | 2023-03-21 | Eva Medtec, Inc. | Diverter for use in therapeutic massage system |
US11090216B2 (en) | 2015-07-30 | 2021-08-17 | Eva Medtec, Inc. | Therapeutic massage system |
DE102015216409A1 (en) * | 2015-08-27 | 2017-03-02 | Siemens Healthcare Gmbh | Medical imaging device with a housing unit |
EP3360063A1 (en) | 2015-10-07 | 2018-08-15 | Smith & Nephew, Inc | Systems and methods for applying reduced pressure therapy |
CN105147344B (en) * | 2015-10-19 | 2018-12-21 | 张新平 | Skin wound assists device for healing |
CN105147345B (en) * | 2015-10-19 | 2019-12-13 | 张新平 | Negative pressure tension-reducing suturing device for skin wound |
US20170105878A1 (en) * | 2015-10-20 | 2017-04-20 | Carlton Parrish | Bandage Assembly |
WO2018237206A2 (en) * | 2017-06-21 | 2018-12-27 | University Of Massachusetts | Negative pressure wound closure devices and methods |
US10575991B2 (en) | 2015-12-15 | 2020-03-03 | University Of Massachusetts | Negative pressure wound closure devices and methods |
US10814049B2 (en) | 2015-12-15 | 2020-10-27 | University Of Massachusetts | Negative pressure wound closure devices and methods |
US11471586B2 (en) | 2015-12-15 | 2022-10-18 | University Of Massachusetts | Negative pressure wound closure devices and methods |
CA3009878A1 (en) | 2015-12-30 | 2017-07-06 | Smith & Nephew Plc | Negative pressure wound therapy apparatus |
US11090196B2 (en) | 2015-12-30 | 2021-08-17 | Smith & Nephew Plc | Absorbent negative pressure wound therapy dressing |
US11395874B2 (en) * | 2016-01-28 | 2022-07-26 | Kci Licensing, Inc. | Sequential collapse waveform dressing |
CN108697423A (en) | 2016-02-16 | 2018-10-23 | 伊瑟拉医疗公司 | The part flow arrangement of suction unit and anchoring |
JP1586116S (en) | 2016-02-29 | 2017-09-19 | ||
USD796735S1 (en) | 2016-02-29 | 2017-09-05 | Smith & Nephew Plc | Mount apparatus for portable negative pressure apparatus |
US10531705B2 (en) | 2016-03-02 | 2020-01-14 | Nike, Inc. | Hydrogel tie layer |
US11771820B2 (en) | 2016-03-04 | 2023-10-03 | Smith & Nephew Plc | Negative pressure wound therapy apparatus for post breast surgery wounds |
JP6911043B2 (en) | 2016-03-07 | 2021-07-28 | スミス アンド ネフュー ピーエルシーSmith & Nephew Public Limited Company | Wound healing devices and methods in which the negative pressure source is integrated within the wound dressing |
EP3445293B1 (en) * | 2016-04-19 | 2020-06-03 | LifeCell Corporation | Stress relieving device |
CN109121396B (en) | 2016-04-26 | 2022-04-05 | 史密夫及内修公开有限公司 | Wound dressing and method for use with an integrated negative pressure source having a fluid intrusion inhibiting feature |
CA3038206A1 (en) | 2016-05-03 | 2017-11-09 | Smith & Nephew Plc | Optimizing power transfer to negative pressure sources in negative pressure therapy systems |
US11305047B2 (en) | 2016-05-03 | 2022-04-19 | Smith & Nephew Plc | Systems and methods for driving negative pressure sources in negative pressure therapy systems |
US11096831B2 (en) | 2016-05-03 | 2021-08-24 | Smith & Nephew Plc | Negative pressure wound therapy device activation and control |
US11602461B2 (en) | 2016-05-13 | 2023-03-14 | Smith & Nephew, Inc. | Automatic wound coupling detection in negative pressure wound therapy systems |
EP3260098A1 (en) | 2016-06-23 | 2017-12-27 | Mölnlycke Health Care AB | Medical dressing |
US11166658B2 (en) * | 2016-07-28 | 2021-11-09 | Invitae Corporation | Blood sampling system and method |
CN106264867A (en) * | 2016-07-29 | 2017-01-04 | 吴江富凯医用卫生用品有限公司 | A kind of Medical moisture-proof binder |
CA3034789A1 (en) | 2016-08-25 | 2018-03-01 | Smith & Nephew Plc | Absorbent negative pressure wound therapy dressing |
EP3506865B1 (en) | 2016-08-30 | 2021-10-06 | Smith & Nephew plc | Systems for applying reduced pressure therapy |
US11096832B2 (en) | 2016-09-27 | 2021-08-24 | Smith & Nephew Plc | Wound closure devices with dissolvable portions |
EP3519002A2 (en) | 2016-09-29 | 2019-08-07 | Smith & Nephew, Inc | Construction and protection of components in negative pressure wound therapy systems |
EP3519001A1 (en) | 2016-09-30 | 2019-08-07 | Smith & Nephew PLC | Negative pressure wound treatment apparatuses and methods with integrated electronics |
WO2018081674A1 (en) * | 2016-10-28 | 2018-05-03 | The Penn State Research Foundation | Device and method for assisting breathing in a subject |
GB2555584B (en) | 2016-10-28 | 2020-05-27 | Smith & Nephew | Multi-layered wound dressing and method of manufacture |
WO2018081795A1 (en) | 2016-10-31 | 2018-05-03 | Zipline Medical, Inc. | Systems and methods for monitoring physical therapy of the knee and other joints |
US11617684B2 (en) | 2016-11-02 | 2023-04-04 | Smith & Nephew, Inc. | Wound closure devices |
US11806217B2 (en) | 2016-12-12 | 2023-11-07 | Smith & Nephew Plc | Wound dressing |
CA3046416A1 (en) | 2016-12-12 | 2018-06-21 | Smith & Nephew Plc | Pressure wound therapy status indication via external device |
JP2020503107A (en) * | 2016-12-23 | 2020-01-30 | カルゴン カーボン コーポレーション | Activated carbon composite wound dressing |
WO2018129062A1 (en) * | 2017-01-09 | 2018-07-12 | Kci Licensing, Inc. | Wound dressing layer for improved fluid removal |
US11439797B2 (en) | 2017-02-10 | 2022-09-13 | Medtronic Advanced Energy Llc. | Surgical drain system and container |
EP3582731B1 (en) * | 2017-02-14 | 2022-08-17 | 3M Innovative Properties Company | Dressing with variable contraction zones |
WO2018156730A1 (en) | 2017-02-22 | 2018-08-30 | Cornell University | Mechanical vacuum dressing for mechanically managing, protecting and suctioning small incisional wounds |
CN110545765A (en) | 2017-02-28 | 2019-12-06 | T.J.史密夫及内修有限公司 | Multi-dressing negative pressure wound treatment system |
AU2018230992B2 (en) | 2017-03-07 | 2023-07-27 | Smith & Nephew, Inc. | Reduced pressure therapy systems and methods including an antenna |
WO2018162613A1 (en) | 2017-03-08 | 2018-09-13 | Smith & Nephew Plc | Negative pressure wound therapy device control in presence of fault condition |
AU2018231237B2 (en) * | 2017-03-10 | 2023-03-30 | Piper Access, Llc. | Securement devices, systems, and methods |
USD874642S1 (en) * | 2017-09-29 | 2020-02-04 | Mölnlycke Health Care Ab | Medical equipment |
USD983351S1 (en) | 2017-04-03 | 2023-04-11 | Mölnlycke Health Care Ab | Medical equipment |
US10046095B1 (en) * | 2017-04-04 | 2018-08-14 | Aatru Medical, LLC | Wound therapy device and method |
AU2018265052B2 (en) | 2017-05-09 | 2023-08-31 | Smith & Nephew Plc | Redundant controls for negative pressure wound therapy systems |
WO2018212849A1 (en) * | 2017-05-16 | 2018-11-22 | Kci Licensing, Inc. | An absorbent negative-pressure dressing system for use with post-surgical breast wounds |
EP3634332B1 (en) | 2017-06-07 | 2022-07-27 | 3M Innovative Properties Company | Assembly features and methods for a peel-and-place dressing for use with negative-pressure treatment |
EP4124324A1 (en) * | 2017-06-07 | 2023-02-01 | 3M Innovative Properties Company | Peel and place dressing for thick exudate and instillation |
US11207217B2 (en) | 2017-06-07 | 2021-12-28 | Kci Licensing, Inc. | Methods for manufacturing and assembling dual material tissue interface for negative-pressure therapy |
US10695227B2 (en) | 2017-06-07 | 2020-06-30 | Kci Licensing, Inc. | Methods for manufacturing and assembling dual material tissue interface for negative-pressure therapy |
CN110709038B (en) | 2017-06-07 | 2022-09-02 | 3M创新知识产权公司 | Composite dressing for improving granulation growth and reducing maceration by negative pressure therapy |
JP2020523078A (en) | 2017-06-07 | 2020-08-06 | ケーシーアイ ライセンシング インコーポレイテッド | Composite dressing for promoting granulation and reducing maceration by negative pressure treatment |
WO2018226707A1 (en) | 2017-06-07 | 2018-12-13 | Kci Licensing, Inc. | Composite dressings for improved granulation reduced maceration with negative-pressure treatment |
EP3634519B1 (en) | 2017-06-07 | 2023-05-31 | 3M Innovative Properties Company | Systems, apparatuses, and methods for negative-pressure treatment with reduced tissue in-growth |
JP7356358B2 (en) | 2017-06-07 | 2023-10-04 | スリーエム イノベイティブ プロパティズ カンパニー | Multilayer wound filler for long-term wear |
US20180353334A1 (en) * | 2017-06-07 | 2018-12-13 | Kci Licensing, Inc. | Tissue Contact Interface |
AU2018285236B2 (en) | 2017-06-13 | 2024-02-29 | Smith & Nephew Plc | Wound closure device and method of use |
EP3638169A1 (en) | 2017-06-13 | 2020-04-22 | Smith & Nephew PLC | Collapsible structure and method of use |
WO2018231874A1 (en) | 2017-06-14 | 2018-12-20 | Smith & Nephew, Inc. | Control of wound closure and fluid removal management in wound therapy |
WO2018229011A1 (en) | 2017-06-14 | 2018-12-20 | Smith & Nephew Plc | Collapsible structure for wound closure and method of use |
EP3638332A1 (en) | 2017-06-14 | 2020-04-22 | Smith & Nephew, Inc | Fluid removal management and control of wound closure in wound therapy |
WO2018229008A1 (en) * | 2017-06-14 | 2018-12-20 | Smith & Nephew Plc | Negative pressure wound therapy apparatus |
JP7419072B2 (en) | 2017-06-14 | 2024-01-22 | スミス アンド ネフュー ピーエルシー | Foldable sheet for wound closure and method of use |
WO2019002085A1 (en) | 2017-06-30 | 2019-01-03 | Smith & Nephew Plc | Negative pressure wound therapy apparatus |
US11712508B2 (en) | 2017-07-10 | 2023-08-01 | Smith & Nephew, Inc. | Systems and methods for directly interacting with communications module of wound therapy apparatus |
WO2019020544A1 (en) | 2017-07-27 | 2019-01-31 | Smith & Nephew Plc | Customizable wound closure device and method of use |
US11712373B2 (en) | 2017-07-29 | 2023-08-01 | Edward D. Lin | Wound therapy apparatus with scar modulation properties and related methods |
US12036353B2 (en) | 2017-07-29 | 2024-07-16 | Edward D. Lin | Apparatus and methods for pressure management within a wound chamber |
US10729826B2 (en) | 2017-07-29 | 2020-08-04 | Edward D. Lin | Wound cover apparatus and related methods of use |
US10780201B2 (en) | 2017-07-29 | 2020-09-22 | Edward D. Lin | Control apparatus and related methods for wound therapy delivery |
US11559622B2 (en) | 2017-07-29 | 2023-01-24 | Edward D. Lin | Deformation resistant wound therapy apparatus and related methods of use |
WO2019030136A1 (en) | 2017-08-07 | 2019-02-14 | Smith & Nephew Plc | Wound closure device with protective layer and method of use |
WO2019036551A1 (en) * | 2017-08-17 | 2019-02-21 | Gary Dean Lavon | Umbilical cord cover |
WO2019042790A1 (en) | 2017-08-29 | 2019-03-07 | Smith & Nephew Plc | Systems and methods for monitoring wound closure |
US11701265B2 (en) | 2017-09-13 | 2023-07-18 | Smith & Nephew Plc | Negative pressure wound treatment apparatuses and methods with integrated electronics |
GB201718070D0 (en) | 2017-11-01 | 2017-12-13 | Smith & Nephew | Negative pressure wound treatment apparatuses and methods with integrated electronics |
US12004926B2 (en) | 2017-09-18 | 2024-06-11 | Kci Licensing, Inc. | Wound dressings and systems with remote oxygen generation for topical wound therapy and related methods |
TWM553191U (en) | 2017-09-21 | 2017-12-21 | 明基材料股份有限公司 | Negative pressure wound dressing |
WO2019060667A1 (en) | 2017-09-22 | 2019-03-28 | Kci Licensing, Inc. | Wound dressings and systems with high-flow therapeutic gas sources for topical wound therapy and related methods |
GB201718851D0 (en) * | 2017-11-15 | 2017-12-27 | Smith & Nephew | Flocked conformable circuit boards for sensor enabled wound therapy dressings and systems |
EP3473218B1 (en) * | 2017-10-23 | 2021-09-01 | 3M Innovative Properties Company | Area management of tissue sites on articulating joints |
US20210236342A1 (en) * | 2017-10-24 | 2021-08-05 | Kci Licensing, Inc. | Wound Dressings and Systems with Low-Flow Therapeutic Gas Sources for Topical Wound Therapy and Related Methods |
US11141523B2 (en) | 2017-10-26 | 2021-10-12 | Kci Licensing, Inc. | Wound dressings and systems for effluent management of topical wound therapy and related methods |
US11730631B2 (en) * | 2017-10-27 | 2023-08-22 | Kci Licensing, Inc. | Contoured foam dressing shaped for providing negative pressure to incisions in the breast |
GB201718054D0 (en) | 2017-11-01 | 2017-12-13 | Smith & Nephew | Sterilization of integrated negative pressure wound treatment apparatuses and sterilization methods |
EP3703632B1 (en) | 2017-11-01 | 2024-04-03 | Smith & Nephew plc | Negative pressure wound treatment apparatuses and methods with integrated electronics |
GB201718072D0 (en) | 2017-11-01 | 2017-12-13 | Smith & Nephew | Negative pressure wound treatment apparatuses and methods with integrated electronics |
GB201718014D0 (en) | 2017-11-01 | 2017-12-13 | Smith & Nephew | Dressing for negative pressure wound therapy with filter |
US11839527B2 (en) | 2017-12-06 | 2023-12-12 | Cornell University | Manually-operated negative pressure wound therapy (NPWT) bandage with improved pump efficiency, automatic pressure indicator and automatic pressure limiter |
KR102005719B1 (en) * | 2018-01-03 | 2019-07-31 | (주)시지바이오 | Aspirator and apparatus for tissue expansion comprising the same |
US11576818B2 (en) | 2018-01-10 | 2023-02-14 | Kci Licensing, Inc. | Negative pressure wound therapy dressings with local oxygen generation for topical wound therapy and related methods |
USD847864S1 (en) | 2018-01-22 | 2019-05-07 | Insera Therapeutics, Inc. | Pump |
US11583437B2 (en) | 2018-02-06 | 2023-02-21 | Aspen Surgical Products, Inc. | Reusable warming blanket with phase change material |
US10624794B2 (en) | 2018-02-12 | 2020-04-21 | Healyx Labs, Inc. | Negative pressure wound therapy systems, devices, and methods |
EP3755290B1 (en) * | 2018-02-23 | 2023-06-21 | 3M Innovative Properties Company | Dressing with bolster for linear tissue sites |
US11525063B2 (en) | 2018-02-28 | 2022-12-13 | The Board Of Trustees Of Western Michigan University | Fluorescent oxygen sensing ink |
CA3093711A1 (en) * | 2018-03-23 | 2019-09-26 | Unity Health Toronto | Device, method, and kit for perihepatic packing |
EP3773781B1 (en) * | 2018-04-13 | 2024-01-17 | 3M Innovative Properties Company | Compression strain and negative pressure delivery indicator for a wound dressing |
WO2019213609A1 (en) * | 2018-05-04 | 2019-11-07 | Dry See Llc | Liquid detecting article and method of making same |
USD851261S1 (en) | 2018-05-11 | 2019-06-11 | Avery Dennison Corporation | Medical connection pad |
EP3773782A4 (en) * | 2018-05-16 | 2022-03-02 | Midwest Training and Development Services, LLC | Negative pressure wound apposition dressing system |
TWM575271U (en) | 2018-06-01 | 2019-03-11 | 芙爾摩莎股份有限公司 | Convalescent bra structure |
WO2020005535A1 (en) * | 2018-06-28 | 2020-01-02 | Kci Licensing, Inc. | A highly conformable wound dressing |
GB201811449D0 (en) | 2018-07-12 | 2018-08-29 | Smith & Nephew | Apparatuses and methods for negative pressure wound therapy |
GB2574074B (en) | 2018-07-27 | 2020-05-20 | Mclaren Applied Tech Ltd | Time synchronisation |
EP3829515A1 (en) * | 2018-08-01 | 2021-06-09 | KCI Licensing, Inc. | Soft-tissue treatment with negative pressure |
USD875954S1 (en) * | 2018-08-01 | 2020-02-18 | Evelyn Mae Tarkington | Circular bandage |
WO2020046907A1 (en) * | 2018-08-28 | 2020-03-05 | Aatru Medical, LLC | Negative pressure device having oxygen scavenger and volume reduction |
WO2020046443A1 (en) * | 2018-08-28 | 2020-03-05 | Kci Licensing, Inc. | Dressings for reduced tissue ingrowth |
USD898925S1 (en) | 2018-09-13 | 2020-10-13 | Smith & Nephew Plc | Medical dressing |
US11406141B2 (en) | 2018-09-14 | 2022-08-09 | Nike, Inc. | Single-piece pad insert for bras |
EP3849482A1 (en) * | 2018-09-14 | 2021-07-21 | KCI Licensing, Inc. | Differential collapse wound dressings |
EP3883510A1 (en) * | 2018-11-20 | 2021-09-29 | KCI Licensing, Inc. | Non-collapsing negative pressure wound dressing |
GB201820668D0 (en) | 2018-12-19 | 2019-01-30 | Smith & Nephew Inc | Systems and methods for delivering prescribed wound therapy |
USD907216S1 (en) * | 2019-02-07 | 2021-01-05 | Kci Licensing, Inc. | Therapy device |
US20200253788A1 (en) * | 2019-02-07 | 2020-08-13 | Kci Licensing, Inc. | Contoured foam dressing shaped for providing negative pressure to incisions in the shoulder |
WO2020186730A1 (en) * | 2019-03-19 | 2020-09-24 | 景润(上海)医疗器械有限公司 | Surgical assistance device for sutureless wound closure of skin wounds in deep fascia of limbs |
CN111714171B (en) * | 2019-03-19 | 2023-11-24 | 景润(上海)医疗器械有限公司 | Surgical auxiliary device for closing skin wound without suture in skin superficial fascia |
GB201903774D0 (en) | 2019-03-20 | 2019-05-01 | Smith & Nephew | Negative pressure wound treatment apparatuses and methods with integrated electronics |
US11813811B2 (en) * | 2019-05-22 | 2023-11-14 | The Boeing Company | Conformable apparatus, systems and methods for treating a composite material |
WO2020242879A1 (en) | 2019-05-24 | 2020-12-03 | Kci Licensing, Inc. | Perforated collagen wound interface for use with negative pressure wound therapy |
GB201907716D0 (en) | 2019-05-31 | 2019-07-17 | Smith & Nephew | Systems and methods for extending operational time of negative pressure wound treatment apparatuses |
EP3983028A1 (en) * | 2019-06-17 | 2022-04-20 | KCI Licensing, Inc. | Abdominal negative-pressure therapy dressing with closed-loop force management control |
GB201914706D0 (en) | 2019-10-11 | 2019-11-27 | Smith & Nephew | Apparatuses and methods for negative pressure wound therapy with switcheable fluid management |
GB2588236B (en) | 2019-10-18 | 2024-03-20 | Mclaren Applied Ltd | Gyroscope bias estimation |
US20220387696A1 (en) * | 2019-10-21 | 2022-12-08 | Kci Licensing, Inc. | Fluid bridge configured for use vertically and/or under compression |
JP2023500088A (en) * | 2019-11-01 | 2023-01-04 | ケーシーアイ ライセンシング インコーポレイテッド | Dressing with area management for extremities |
US11833290B2 (en) * | 2019-11-01 | 2023-12-05 | Kci Licensing, Inc. | Dressing design incorporating formed 3D textile for the delivery of therapeutic negative pressure and compressive forces to a treatment site |
WO2021090276A1 (en) | 2019-11-07 | 2021-05-14 | Kci Licensing, Inc. | Means to reduce pressure reduction experienced with a collagen foam interface layer |
US20230038460A1 (en) * | 2019-12-05 | 2023-02-09 | Kci Licensing, Inc. | Multi-layer negative pressure incisional wound therapy dressing |
AU2021205498A1 (en) * | 2020-01-10 | 2022-07-21 | Applied Tissue Technologies Llc | Devices and methods for negative pressure therapy |
GB202000574D0 (en) | 2020-01-15 | 2020-02-26 | Smith & Nephew | Fluidic connectors for negative pressure wound therapy |
GB202001212D0 (en) | 2020-01-29 | 2020-03-11 | Smith & Nephew | Systems and methods for measuring and tracking wound volume |
US11878104B2 (en) | 2020-02-20 | 2024-01-23 | Convatec Limited | Wound dressing and a wound therapy apparatus |
WO2021173447A1 (en) * | 2020-02-25 | 2021-09-02 | Gsquared Medical Llc | Convertible tissue retractor |
EP4125751B1 (en) * | 2020-03-24 | 2023-12-20 | KCI Manufacturing Unlimited Company | Negative-pressure wound therapy dressing with zone of ambient pressure |
TWI728793B (en) * | 2020-04-30 | 2021-05-21 | 臺灣基督教門諾會醫療財團法人門諾醫院 | Multifunctional pipeline fixing device |
CN111632215A (en) * | 2020-05-15 | 2020-09-08 | 孙英贤 | Hydraulic expanding type ventricular circulation auxiliary device |
US20220008632A1 (en) * | 2020-07-13 | 2022-01-13 | Wellness Allied Inc | Cupping auxiliary consumable, cupping kit, and cupping method |
USD945629S1 (en) * | 2020-09-08 | 2022-03-08 | Kci Manufacturing Unlimited Company | Therapy device |
USD992121S1 (en) | 2020-11-09 | 2023-07-11 | Coram Deo LLC | Umbilical cord cover |
KR102412854B1 (en) * | 2020-11-24 | 2022-06-23 | 이명숙 | A Fluid Bag Pressing Device with a Pressure Bag |
KR102540234B1 (en) * | 2021-01-13 | 2023-06-08 | 성균관대학교산학협력단 | Patch for cell encapsualtion and manufacturing method thereof |
CA3109057A1 (en) * | 2021-02-17 | 2022-08-17 | 145 Ltd. | Wound dressing systems and methods of use |
KR102488837B1 (en) * | 2021-03-26 | 2023-01-17 | 성균관대학교산학협력단 | Self recoverable multilayer adhesive pad for the organic surface and manufacturing method of thereof |
CN114522023A (en) * | 2021-12-27 | 2022-05-24 | 杨晔 | Electronic negative pressure sucker for treating funnel chest |
USD971267S1 (en) | 2022-01-03 | 2022-11-29 | Therabody, Inc. | Controller for pneumatic compression device |
USD1040356S1 (en) | 2022-02-11 | 2024-08-27 | Coloplast A/S | Absorbent heel wound dressing |
USD1041666S1 (en) | 2022-02-11 | 2024-09-10 | Coloplast A/S | Absorbent sacral wound dressing |
CN114748774B (en) * | 2022-03-04 | 2024-07-19 | 南京雅乐之舞网络科技有限公司 | Abdominal conditioning device for gastroenterology |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5674523A (en) * | 1995-09-01 | 1997-10-07 | New Dimensions In Medicine, Inc. | Self-adhesive hydrogel wound dressing |
US20190269835A1 (en) * | 2007-03-14 | 2019-09-05 | Kci Licensing, Inc. | Reduced pressure therapy devices |
Family Cites Families (400)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US456348A (en) * | 1891-07-21 | Island | ||
US1195430A (en) | 1916-08-22 | Reinforced tape | ||
US1355846A (en) | 1920-02-06 | 1920-10-19 | David A Rannells | Medical appliance |
US1638043A (en) | 1926-10-27 | 1927-08-09 | Union Switch & Signal Co | Railway-traffic-controlling apparatus |
US1845630A (en) | 1929-02-16 | 1932-02-16 | William M Scholl | Medical dressing |
US2452345A (en) | 1947-02-12 | 1948-10-26 | Anselmo Ceyl | Brassiere |
US2547758A (en) | 1949-01-05 | 1951-04-03 | Wilmer B Keeling | Instrument for treating the male urethra |
US2632443A (en) * | 1949-04-18 | 1953-03-24 | Eleanor P Lesher | Surgical dressing |
GB692578A (en) | 1949-09-13 | 1953-06-10 | Minnesota Mining & Mfg | Improvements in or relating to drape sheets for surgical use |
US2682873A (en) | 1952-07-30 | 1954-07-06 | Johnson & Johnson | General purpose protective dressing |
NL189176B (en) | 1956-07-13 | 1900-01-01 | Hisamitsu Pharmaceutical Co | PLASTER BASED ON A SYNTHETIC RUBBER. |
FR1163907A (en) | 1956-10-25 | 1958-10-02 | Skin care devices | |
US2969057A (en) * | 1957-11-04 | 1961-01-24 | Brady Co W H | Nematodic swab |
US2896618A (en) | 1958-01-21 | 1959-07-28 | Johnson & Johnson | Corrugated dressing |
US3026874A (en) * | 1959-11-06 | 1962-03-27 | Robert C Stevens | Wound shield |
US3066672A (en) | 1960-09-27 | 1962-12-04 | Jr William H Crosby | Method and apparatus for serial sampling of intestinal juice |
US3367332A (en) | 1965-08-27 | 1968-02-06 | Gen Electric | Product and process for establishing a sterile area of skin |
US3419006A (en) | 1966-08-08 | 1968-12-31 | Union Carbide Corp | Novel dressing and use thereof |
US3520300A (en) | 1967-03-15 | 1970-07-14 | Amp Inc | Surgical sponge and suction device |
NO134790C (en) | 1968-07-09 | 1984-03-22 | Smith & Nephew | Kleber ,; PRESSURE SENSITIVE, WATERPUME-PERMEABLE PRODUCT FOR SKIN USE BY HUMANS. |
US3568675A (en) | 1968-08-30 | 1971-03-09 | Clyde B Harvey | Fistula and penetrating wound dressing |
JPS492555B1 (en) * | 1969-11-01 | 1974-01-21 | ||
US3682180A (en) | 1970-06-08 | 1972-08-08 | Coilform Co Inc | Drain clip for surgical drain |
BE789293Q (en) | 1970-12-07 | 1973-01-15 | Parke Davis & Co | MEDICO-SURGICAL DRESSING FOR BURNS AND SIMILAR LESIONS |
US3826254A (en) | 1973-02-26 | 1974-07-30 | Verco Ind | Needle or catheter retaining appliance |
DE2505906A1 (en) * | 1973-10-08 | 1976-08-26 | Nierhaus & Co Friedr | Protective knee pad with resilient shell extending down leg - has spacer strip with indentations allowing bending movement but firm fit |
US3892229A (en) | 1973-12-06 | 1975-07-01 | Duane F Taylor | Apparatus for augmenting venous blood flow |
US3903882A (en) * | 1974-04-19 | 1975-09-09 | American Cyanamid Co | Composite dressing |
US3969561A (en) * | 1974-09-17 | 1976-07-13 | The Kendall Company | Biaxially oriented nonwoven fabrics and method of making same |
DE2527706A1 (en) * | 1975-06-21 | 1976-12-30 | Hanfried Dr Med Weigand | DEVICE FOR THE INTRODUCTION OF CONTRAST AGENTS INTO AN ARTIFICIAL INTESTINAL OUTLET |
DE2640413C3 (en) | 1976-09-08 | 1980-03-27 | Richard Wolf Gmbh, 7134 Knittlingen | Catheter monitor |
NL7710909A (en) * | 1976-10-08 | 1978-04-11 | Smith & Nephew | COMPOSITE STRAPS. |
GB1562244A (en) | 1976-11-11 | 1980-03-05 | Lock P M | Wound dressing materials |
US4080970A (en) | 1976-11-17 | 1978-03-28 | Miller Thomas J | Post-operative combination dressing and internal drain tube with external shield and tube connector |
US4121582A (en) * | 1976-11-29 | 1978-10-24 | Jose Maria Masso Remiro | Direct body covering sheet having a correcting and/or therapeutic action |
US4091804A (en) * | 1976-12-10 | 1978-05-30 | The Kendall Company | Compression sleeve |
US4139004A (en) * | 1977-02-17 | 1979-02-13 | Gonzalez Jr Harry | Bandage apparatus for treating burns |
US4184510A (en) * | 1977-03-15 | 1980-01-22 | Fibra-Sonics, Inc. | Valued device for controlling vacuum in surgery |
US4165748A (en) | 1977-11-07 | 1979-08-28 | Johnson Melissa C | Catheter tube holder |
US4245637A (en) | 1978-07-10 | 1981-01-20 | Nichols Robert L | Shutoff valve sleeve |
US4224945A (en) | 1978-08-30 | 1980-09-30 | Jonathan Cohen | Inflatable expansible surgical pressure dressing |
SE414994B (en) | 1978-11-28 | 1980-09-01 | Landstingens Inkopscentral | VENKATETERFORBAND |
DE2953373A1 (en) * | 1978-12-06 | 1981-01-08 | P Svedman | Device for treating tissues,for example skin |
US4266545A (en) | 1979-04-06 | 1981-05-12 | Moss James P | Portable suction device for collecting fluids from a closed wound |
US4284079A (en) | 1979-06-28 | 1981-08-18 | Adair Edwin Lloyd | Method for applying a male incontinence device |
US4261363A (en) | 1979-11-09 | 1981-04-14 | C. R. Bard, Inc. | Retention clips for body fluid drains |
US4569348A (en) * | 1980-02-22 | 1986-02-11 | Velcro Usa Inc. | Catheter tube holder strap |
EP0035583B1 (en) | 1980-03-11 | 1985-08-14 | Schmid, Eduard, Dr.Dr.med. | Skin graft pressure bandage |
US4297995A (en) | 1980-06-03 | 1981-11-03 | Key Pharmaceuticals, Inc. | Bandage containing attachment post |
US4375217A (en) * | 1980-06-04 | 1983-03-01 | The Kendall Company | Compression device with pressure determination |
US4333468A (en) | 1980-08-18 | 1982-06-08 | Geist Robert W | Mesentery tube holder apparatus |
US4465485A (en) | 1981-03-06 | 1984-08-14 | Becton, Dickinson And Company | Suction canister with unitary shut-off valve and filter features |
US4392853A (en) | 1981-03-16 | 1983-07-12 | Rudolph Muto | Sterile assembly for protecting and fastening an indwelling device |
US4373519A (en) | 1981-06-26 | 1983-02-15 | Minnesota Mining And Manufacturing Company | Composite wound dressing |
US4392858A (en) | 1981-07-16 | 1983-07-12 | Sherwood Medical Company | Wound drainage device |
US4419097A (en) | 1981-07-31 | 1983-12-06 | Rexar Industries, Inc. | Attachment for catheter tube |
AU550575B2 (en) | 1981-08-07 | 1986-03-27 | Richard Christian Wright | Wound drainage device |
SE429197B (en) | 1981-10-14 | 1983-08-22 | Frese Nielsen | SAR TREATMENT DEVICE |
DE3146266A1 (en) | 1981-11-21 | 1983-06-01 | B. Braun Melsungen Ag, 3508 Melsungen | COMBINED DEVICE FOR A MEDICAL SUCTION DRAINAGE |
US4551139A (en) | 1982-02-08 | 1985-11-05 | Marion Laboratories, Inc. | Method and apparatus for burn wound treatment |
US4475909A (en) | 1982-05-06 | 1984-10-09 | Eisenberg Melvin I | Male urinary device and method for applying the device |
US4430998A (en) * | 1982-06-01 | 1984-02-14 | Thoratec Laboratories Corporation | Wound closing device |
DE3361779D1 (en) * | 1982-07-06 | 1986-02-20 | Dow Corning | Medical-surgical dressing and a process for the production thereof |
NZ206837A (en) | 1983-01-27 | 1986-08-08 | Johnson & Johnson Prod Inc | Thin film adhesive dressing:backing material in three sections |
US4795435A (en) | 1983-02-25 | 1989-01-03 | E. R. Squibb & Sons, Inc. | Device for protecting a wound |
US4548202A (en) | 1983-06-20 | 1985-10-22 | Ethicon, Inc. | Mesh tissue fasteners |
US4540412A (en) | 1983-07-14 | 1985-09-10 | The Kendall Company | Device for moist heat therapy |
US4543100A (en) | 1983-11-01 | 1985-09-24 | Brodsky Stuart A | Catheter and drain tube retainer |
GB8402351D0 (en) * | 1984-01-30 | 1984-02-29 | Saggers M J | Inflatable garment |
US4553352A (en) | 1984-02-10 | 1985-11-19 | Texas Processed Plastics, Inc. | Plant container for draining moisture from the soil |
US4525374A (en) * | 1984-02-27 | 1985-06-25 | Manresa, Inc. | Treating hydrophobic filters to render them hydrophilic |
GB2157958A (en) | 1984-05-03 | 1985-11-06 | Ernest Edward Austen Bedding | Ball game net support |
US4897081A (en) * | 1984-05-25 | 1990-01-30 | Thermedics Inc. | Percutaneous access device |
US5215522A (en) | 1984-07-23 | 1993-06-01 | Ballard Medical Products | Single use medical aspirating device and method |
GB8419745D0 (en) | 1984-08-02 | 1984-09-05 | Smith & Nephew Ass | Wound dressing |
US4872450A (en) | 1984-08-17 | 1989-10-10 | Austad Eric D | Wound dressing and method of forming same |
US4826494A (en) * | 1984-11-09 | 1989-05-02 | Stryker Corporation | Vacuum wound drainage system |
US4655754A (en) | 1984-11-09 | 1987-04-07 | Stryker Corporation | Vacuum wound drainage system and lipids baffle therefor |
US4638043A (en) * | 1984-11-13 | 1987-01-20 | Thermedics, Inc. | Drug release system |
US4727868A (en) * | 1984-11-13 | 1988-03-01 | Thermedics, Inc. | Anisotropic wound dressing |
US4751133A (en) * | 1984-11-13 | 1988-06-14 | Thermedics, Inc. | Medical patches and processes for producing same |
US4605399A (en) | 1984-12-04 | 1986-08-12 | Complex, Inc. | Transdermal infusion device |
JPS61176348A (en) * | 1985-01-31 | 1986-08-08 | 株式会社クラレ | Breast external reduced pressure type artificial respirator |
US5037397A (en) | 1985-05-03 | 1991-08-06 | Medical Distributors, Inc. | Universal clamp |
US4629643A (en) * | 1985-05-31 | 1986-12-16 | The Procter & Gamble Company | Microapertured polymeric web exhibiting soft and silky tactile impression |
IT1181682B (en) | 1985-06-11 | 1987-09-30 | Sigma Tau Ind Farmaceuti | USE OF ALCANOIL L-CARNITINE FOR THE THERAPEUTIC TREATMENT OF IDIOPATHIC OR INDUCED PARKINSONISM |
US4640688A (en) | 1985-08-23 | 1987-02-03 | Mentor Corporation | Urine collection catheter |
US4710165A (en) | 1985-09-16 | 1987-12-01 | Mcneil Charles B | Wearable, variable rate suction/collection device |
US4758220A (en) | 1985-09-26 | 1988-07-19 | Alcon Laboratories, Inc. | Surgical cassette proximity sensing and latching apparatus |
US4733659A (en) * | 1986-01-17 | 1988-03-29 | Seton Company | Foam bandage |
US4612230A (en) | 1986-01-17 | 1986-09-16 | Ethicon, Inc. | Surgical wound closure tape |
WO1987004626A1 (en) | 1986-01-31 | 1987-08-13 | Osmond, Roger, L., W. | Suction system for wound and gastro-intestinal drainage |
US4838883A (en) * | 1986-03-07 | 1989-06-13 | Nissho Corporation | Urine-collecting device |
US4863779A (en) | 1986-03-24 | 1989-09-05 | Kimberly-Clark Corporation | Composite elastomeric material |
JPS62281965A (en) | 1986-05-29 | 1987-12-07 | テルモ株式会社 | Catheter and catheter fixing member |
JPS62197334U (en) * | 1986-06-04 | 1987-12-15 | ||
US4770490A (en) | 1986-08-07 | 1988-09-13 | Minnesota Mining And Manufacturing Company | Filament reinforced tape |
GB8621884D0 (en) | 1986-09-11 | 1986-10-15 | Bard Ltd | Catheter applicator |
GB2195255B (en) | 1986-09-30 | 1991-05-01 | Vacutec Uk Limited | Apparatus for vacuum treatment of an epidermal surface |
US4885215A (en) * | 1986-10-01 | 1989-12-05 | Kawasaki Steel Corp. | Zn-coated stainless steel welded pipe |
US4743232A (en) | 1986-10-06 | 1988-05-10 | The Clinipad Corporation | Package assembly for plastic film bandage |
DE3634569A1 (en) | 1986-10-10 | 1988-04-21 | Sachse Hans E | CONDOM CATHETER, A URINE TUBE CATHETER FOR PREVENTING RISING INFECTIONS |
JPS63135179A (en) | 1986-11-26 | 1988-06-07 | 立花 俊郎 | Subcataneous drug administration set |
GB8628564D0 (en) | 1986-11-28 | 1987-01-07 | Smiths Industries Plc | Anti-foaming agent suction apparatus |
GB8706116D0 (en) | 1987-03-14 | 1987-04-15 | Smith & Nephew Ass | Adhesive dressings |
US4865026A (en) | 1987-04-23 | 1989-09-12 | Barrett David M | Sealing wound closure device |
US4787888A (en) | 1987-06-01 | 1988-11-29 | University Of Connecticut | Disposable piezoelectric polymer bandage for percutaneous delivery of drugs and method for such percutaneous delivery (a) |
US4863449A (en) | 1987-07-06 | 1989-09-05 | Hollister Incorporated | Adhesive-lined elastic condom cathether |
JPS6415051A (en) * | 1987-07-08 | 1989-01-19 | Sumitomo Bakelite Co | Dome |
GB8717949D0 (en) | 1987-07-29 | 1987-09-03 | Yarsley Technical Centre Ltd | Water absorbent structures |
US5176663A (en) * | 1987-12-02 | 1993-01-05 | Pal Svedman | Dressing having pad with compressibility limiting elements |
US5018515A (en) * | 1987-12-14 | 1991-05-28 | The Kendall Company | See through absorbent dressing |
US4906240A (en) | 1988-02-01 | 1990-03-06 | Matrix Medica, Inc. | Adhesive-faced porous absorbent sheet and method of making same |
US4917490A (en) * | 1988-02-04 | 1990-04-17 | The Boeing Company | Boresight alignment measuring apparatus and method for electro-optic systems |
AU3002389A (en) | 1988-02-22 | 1989-08-24 | Simpson, John Michael | Surgical pressure plaster |
US4985019A (en) | 1988-03-11 | 1991-01-15 | Michelson Gary K | X-ray marker |
GB8812803D0 (en) | 1988-05-28 | 1988-06-29 | Smiths Industries Plc | Medico-surgical containers |
US4919654A (en) * | 1988-08-03 | 1990-04-24 | Kalt Medical Corporation | IV clamp with membrane |
US5000741A (en) | 1988-08-22 | 1991-03-19 | Kalt Medical Corporation | Transparent tracheostomy tube dressing |
US4917112A (en) * | 1988-08-22 | 1990-04-17 | Kalt Medical Corp. | Universal bandage with transparent dressing |
DE69017479T2 (en) | 1989-01-16 | 1995-07-13 | Roussel Uclaf | Azabicyclohepten derivatives and their salts, processes for their preparation, their use as medicaments and preparations containing them. |
GB2228682B (en) * | 1989-02-23 | 1992-08-12 | Ultra Lab Ltd | Wound dressing |
DE3907522C1 (en) | 1989-03-08 | 1990-04-05 | Matthias Dr. 8000 Muenchen De Weiler | Compression bandage cushioning |
GB8906100D0 (en) | 1989-03-16 | 1989-04-26 | Smith & Nephew | Laminates |
US5261893A (en) | 1989-04-03 | 1993-11-16 | Zamierowski David S | Fastening system and method |
US4969880A (en) | 1989-04-03 | 1990-11-13 | Zamierowski David S | Wound dressing and treatment method |
US5527293A (en) | 1989-04-03 | 1996-06-18 | Kinetic Concepts, Inc. | Fastening system and method |
US5100396A (en) | 1989-04-03 | 1992-03-31 | Zamierowski David S | Fluidic connection system and method |
JPH0313140U (en) * | 1989-06-21 | 1991-02-08 | ||
JP2719671B2 (en) | 1989-07-11 | 1998-02-25 | 日本ゼオン株式会社 | Wound dressing |
US5358494A (en) | 1989-07-11 | 1994-10-25 | Svedman Paul | Irrigation dressing |
US5232453A (en) | 1989-07-14 | 1993-08-03 | E. R. Squibb & Sons, Inc. | Catheter holder |
US4916954A (en) * | 1989-08-21 | 1990-04-17 | The United States Of America As Represented By The United States National Aeronautics And Space Administration | Fatigue testing apparatus |
GB2235877A (en) | 1989-09-18 | 1991-03-20 | Antonio Talluri | Closed wound suction apparatus |
US5085220A (en) | 1989-10-05 | 1992-02-04 | Spacelabs, Inc. | Doppler flow sensing device and method for its use |
US5106629A (en) | 1989-10-20 | 1992-04-21 | Ndm Acquisition Corp. | Transparent hydrogel wound dressing |
AT394655B (en) † | 1990-01-03 | 1992-05-25 | Pechatschek Hans | Disposable cupping device |
US5134994A (en) | 1990-02-12 | 1992-08-04 | Say Sam L | Field aspirator in a soft pack with externally mounted container |
US5092858A (en) | 1990-03-20 | 1992-03-03 | Becton, Dickinson And Company | Liquid gelling agent distributor device |
JPH048337A (en) * | 1990-04-25 | 1992-01-13 | Olympus Optical Co Ltd | Bending operation device for flexible pipe |
FR2661821A1 (en) * | 1990-05-14 | 1991-11-15 | Masurel Thierry | Device for dressing wounds which have clean margins |
JP2941918B2 (en) | 1990-09-19 | 1999-08-30 | テルモ株式会社 | Weighing device |
EP0503029B1 (en) * | 1990-10-01 | 1997-02-12 | Hollister Incorporated | Wound dressing having a countoured adhesive layer |
SE470052B (en) * | 1991-01-25 | 1993-11-01 | Lic Hygien Ab | Venkateterförband |
GB9102660D0 (en) * | 1991-02-07 | 1991-03-27 | Ultra Lab Ltd | Wound dressing materials |
US5160315A (en) | 1991-04-05 | 1992-11-03 | Minnesota Mining And Manufacturing Company | Combined adhesive strip and transparent dressing delivery system |
US5149331A (en) | 1991-05-03 | 1992-09-22 | Ariel Ferdman | Method and device for wound closure |
DK122791D0 (en) * | 1991-06-24 | 1991-06-24 | Coloplast As | wound dressing |
US5407193A (en) | 1991-07-03 | 1995-04-18 | Mcginley; Michael L. | Baseball pitching training device |
US5152741A (en) * | 1991-08-23 | 1992-10-06 | Golda, Inc. | Surgical chest dressing |
DE4134693A1 (en) * | 1991-10-21 | 1993-04-22 | Basf Ag | TRANSPARENT, STEAM-STEAMABLE, NON-CYTOTOXIC, COMPRISINGLY COMPACT POLYURETHANE POWDERING, PROCESS FOR THEIR PRODUCTION AND THEIR USE, ESPECIALLY FOR MEDICAL-TECHNICAL ITEMS |
AU3057792A (en) | 1991-11-06 | 1993-06-07 | Bioderm, Inc. | Occlusive wound dressing and applicator |
US5278100A (en) | 1991-11-08 | 1994-01-11 | Micron Technology, Inc. | Chemical vapor deposition technique for depositing titanium silicide on semiconductor wafers |
US5645081A (en) | 1991-11-14 | 1997-07-08 | Wake Forest University | Method of treating tissue damage and apparatus for same |
US7198046B1 (en) | 1991-11-14 | 2007-04-03 | Wake Forest University Health Sciences | Wound treatment employing reduced pressure |
US5636643A (en) | 1991-11-14 | 1997-06-10 | Wake Forest University | Wound treatment employing reduced pressure |
US5385775A (en) | 1991-12-09 | 1995-01-31 | Kimberly-Clark Corporation | Composite elastic material including an anisotropic elastic fibrous web and process to make the same |
US5279550A (en) | 1991-12-19 | 1994-01-18 | Gish Biomedical, Inc. | Orthopedic autotransfusion system |
US5167613A (en) | 1992-03-23 | 1992-12-01 | The Kendall Company | Composite vented wound dressing |
FR2690617B1 (en) | 1992-04-29 | 1994-06-24 | Cbh Textile | TRANSPARENT ADHESIVE DRESSING. |
US5376430A (en) | 1992-06-19 | 1994-12-27 | Minnesota Mining And Manufacturing Company | Elastic film laminate |
GB2271060B (en) * | 1992-10-01 | 1996-04-03 | Huntleigh Technology Plc | An inflatable garment |
AU692424B2 (en) * | 1992-10-02 | 1998-06-11 | Beiersdorf Aktiengesellschaft | Hydrophilic polyurethane gel foams, particularly for treating deep wounds, wound dressing based on hydrophilic polyurethane gel foams and method of manufacture |
US5376067A (en) * | 1992-10-28 | 1994-12-27 | Daneshvar; Yousef | Pressure bandages and dressings |
DK169711B1 (en) | 1993-01-15 | 1995-01-23 | Coloplast As | A dressing |
DE4306478A1 (en) * | 1993-03-02 | 1994-09-08 | Wolfgang Dr Wagner | Drainage device, in particular pleural drainage device, and drainage method |
GB9307312D0 (en) * | 1993-04-07 | 1993-06-02 | United Surgical Services Ltd | Surgical wound dressings |
US5342376A (en) | 1993-05-03 | 1994-08-30 | Dermagraphics, Inc. | Inserting device for a barbed tissue connector |
US6241747B1 (en) | 1993-05-03 | 2001-06-05 | Quill Medical, Inc. | Barbed Bodily tissue connector |
US5423737A (en) * | 1993-05-27 | 1995-06-13 | New Dimensions In Medicine, Inc. | Transparent hydrogel wound dressing with release tab |
US5344415A (en) | 1993-06-15 | 1994-09-06 | Deroyal Industries, Inc. | Sterile system for dressing vascular access site |
US5497788A (en) | 1993-07-16 | 1996-03-12 | Tecnol Medical Products, Inc. | Wound closure device for viewing a wound and method |
DE4328190A1 (en) * | 1993-08-23 | 1995-03-02 | Beiersdorf Ag | Wound care articles with selective absorbency |
US5437651A (en) | 1993-09-01 | 1995-08-01 | Research Medical, Inc. | Medical suction apparatus |
AU1072695A (en) * | 1993-11-27 | 1995-06-13 | Smith & Nephew Plc | Dressing |
FR2713384B1 (en) | 1993-12-01 | 1996-02-23 | Raoul Parienti | Correspondence object. |
US5429593A (en) | 1993-12-23 | 1995-07-04 | Matory; Yvedt L. | Post-surgical, drainage accommodating, compression dressing |
US5549584A (en) | 1994-02-14 | 1996-08-27 | The Kendall Company | Apparatus for removing fluid from a wound |
US6500112B1 (en) | 1994-03-30 | 2002-12-31 | Brava, Llc | Vacuum dome with supporting rim and rim cushion |
DE4419260C2 (en) | 1994-06-01 | 1996-09-05 | Bauerfeind Gmbh | Tubular bandage for human body parts |
GB9411429D0 (en) * | 1994-06-08 | 1994-07-27 | Seton Healthcare Group Plc | Wound dressings |
US5556375A (en) | 1994-06-16 | 1996-09-17 | Hercules Incorporated | Wound dressing having a fenestrated base layer |
US5607388A (en) * | 1994-06-16 | 1997-03-04 | Hercules Incorporated | Multi-purpose wound dressing |
US5664270A (en) | 1994-07-19 | 1997-09-09 | Kinetic Concepts, Inc. | Patient interface system |
ES2223977T3 (en) | 1994-08-22 | 2005-03-01 | Kci Licensing, Inc. | CONTAINER. |
US5628230A (en) * | 1994-11-01 | 1997-05-13 | Flam; Eric | Method and apparatus for testing the efficacy of patient support systems |
US5538502A (en) * | 1994-12-27 | 1996-07-23 | Golda, Inc. | Surgical chest dressing |
US6630238B2 (en) * | 1995-02-16 | 2003-10-07 | 3M Innovative Properties Company | Blended pressure-sensitive adhesives |
DE29504378U1 (en) | 1995-03-15 | 1995-09-14 | MTG Medizinisch, technische Gerätebau GmbH, 66299 Friedrichsthal | Electronically controlled low-vacuum pump for chest and wound drainage |
US5792088A (en) | 1995-07-18 | 1998-08-11 | Felder; Merrylee G. | Medical dressing system |
US5609585A (en) | 1995-08-01 | 1997-03-11 | Hollister Incorporated | Wafer having adhesive skin barrier layer |
SE507476C2 (en) * | 1995-08-04 | 1998-06-08 | Lissmyr Olof | wound bandage |
US8801681B2 (en) | 1995-09-05 | 2014-08-12 | Argentum Medical, Llc | Medical device |
GB9519574D0 (en) * | 1995-09-26 | 1995-11-29 | Smith & Nephew | Conformable absorbent dressing |
GB9523253D0 (en) * | 1995-11-14 | 1996-01-17 | Mediscus Prod Ltd | Portable wound treatment apparatus |
US5866249A (en) * | 1995-12-18 | 1999-02-02 | Minnesota Mining And Manufacturing Company | Pressure-sensitive adhesive based on partially oriented and partially crystallized elastomer |
CN2272750Y (en) * | 1996-01-19 | 1998-01-21 | 张国建 | Operation incision dressing |
US5843007A (en) | 1996-04-29 | 1998-12-01 | Mcewen; James Allen | Apparatus and method for periodically applying a pressure waveform to a limb |
US5906206A (en) | 1996-06-04 | 1999-05-25 | Circaio Medical Products, Inc. | Therapeutic compression garment |
US5653244A (en) * | 1996-06-04 | 1997-08-05 | Circaid Medical Products, Inc. | Therapeutic compression garment |
JP3741292B2 (en) | 1996-06-13 | 2006-02-01 | トヨタ自動車株式会社 | Exhaust gas purification catalyst and exhaust gas purification method |
JPH105356A (en) * | 1996-06-18 | 1998-01-13 | Sanyo Electric Co Ltd | Infrared therapy instrument |
US6107536A (en) † | 1997-04-28 | 2000-08-22 | Dadinis; Peter H. | Flex vented dome wound protector |
ATE250912T1 (en) * | 1997-05-27 | 2003-10-15 | Wilhelm Dr Med Fleischmann | DEVICE FOR APPLYING ACTIVE INGREDIENTS TO A WOUND SURFACE |
NL1006457C2 (en) | 1997-07-03 | 1999-01-05 | Polymedics N V | Drainage system to be used with an open wound, element used for applying a drainage pipe or hose and method for applying the drainage system. |
US6135116A (en) | 1997-07-28 | 2000-10-24 | Kci Licensing, Inc. | Therapeutic method for treating ulcers |
US7214202B1 (en) | 1997-07-28 | 2007-05-08 | Kci Licensing, Inc. | Therapeutic apparatus for treating ulcers |
US6420622B1 (en) * | 1997-08-01 | 2002-07-16 | 3M Innovative Properties Company | Medical article having fluid control film |
GB9719520D0 (en) | 1997-09-12 | 1997-11-19 | Kci Medical Ltd | Surgical drape and suction heads for wound treatment |
AU755496B2 (en) | 1997-09-12 | 2002-12-12 | Kci Licensing, Inc. | Surgical drape and suction head for wound treatment |
US6238767B1 (en) | 1997-09-15 | 2001-05-29 | Kimberly-Clark Worldwide, Inc. | Laminate having improved barrier properties |
US5944017A (en) | 1997-11-17 | 1999-08-31 | Tweedle; Jack A. | Wound protecting device |
US6213840B1 (en) | 1997-12-03 | 2001-04-10 | Bonnifant Heeja Han | Hands-free breast pump supporting bra and system |
US5950238A (en) | 1998-01-29 | 1999-09-14 | Klein; Jeffrey A. | Post-liposuction breast compression garment and method for edema reduction |
US6071267A (en) * | 1998-02-06 | 2000-06-06 | Kinetic Concepts, Inc. | Medical patient fluid management interface system and method |
US6270910B1 (en) * | 1998-04-03 | 2001-08-07 | 3M Innovative Properties Company | Anisotropic film |
US6143945A (en) * | 1998-04-06 | 2000-11-07 | Augustine Medical, Inc. | Bandage for autolytic wound debridement |
US6458109B1 (en) | 1998-08-07 | 2002-10-01 | Hill-Rom Services, Inc. | Wound treatment apparatus |
US6086450A (en) | 1998-08-13 | 2000-07-11 | Mankovitz; Roy J. | Brassieres which facilitate the drainage of lymphatic fluid from the breast area of the human female |
US6488643B1 (en) | 1998-10-08 | 2002-12-03 | Kci Licensing, Inc. | Wound healing foot wrap |
JP2000189427A (en) * | 1998-12-28 | 2000-07-11 | Nippon Zeon Co Ltd | Hemostatic instrument |
US6162960A (en) | 1999-01-25 | 2000-12-19 | Klein; Jeffrey A. | Compression sponge for wound care |
JP2000210386A (en) * | 1999-01-27 | 2000-08-02 | Hiroshi Sato | Health belt and electromagnetic barrel chain body for this purpose and electromagnetic barrel body |
US6287316B1 (en) | 1999-03-26 | 2001-09-11 | Ethicon, Inc. | Knitted surgical mesh |
RU2247548C2 (en) * | 1999-04-02 | 2005-03-10 | Кей Си Ай ЛАЙСЕНСИНГ, Инк. | Vacuum system for closing wounds by applying means introduced for healing the wound |
US20070021697A1 (en) | 2004-07-26 | 2007-01-25 | Kci Licensing, Inc. | System and method for use of agent in combination with subatmospheric tissue treatment |
US7947033B2 (en) | 1999-04-06 | 2011-05-24 | Kci Licensing Inc. | Systems and methods for detection of wound fluid blood and application of phototherapy in conjunction with reduced pressure wound treatment system |
US7799004B2 (en) | 2001-03-05 | 2010-09-21 | Kci Licensing, Inc. | Negative pressure wound treatment apparatus and infection identification system and method |
US6856821B2 (en) | 2000-05-26 | 2005-02-15 | Kci Licensing, Inc. | System for combined transcutaneous blood gas monitoring and vacuum assisted wound closure |
US6695823B1 (en) | 1999-04-09 | 2004-02-24 | Kci Licensing, Inc. | Wound therapy device |
WO2000061206A1 (en) | 1999-04-09 | 2000-10-19 | Kci Licensing, Inc. | Wound therapy device |
GB9909301D0 (en) * | 1999-04-22 | 1999-06-16 | Kci Medical Ltd | Wound treatment apparatus employing reduced pressure |
US6991643B2 (en) | 2000-12-20 | 2006-01-31 | Usgi Medical Inc. | Multi-barbed device for retaining tissue in apposition and methods of use |
JP2003518010A (en) * | 1999-07-06 | 2003-06-03 | ザ、プロクター、エンド、ギャンブル、カンパニー | Preformed self-adhesive sheet-like device suitable for topical application |
GB9926538D0 (en) | 1999-11-09 | 2000-01-12 | Kci Medical Ltd | Multi-lumen connector |
FR2801188B1 (en) * | 1999-11-22 | 2002-11-08 | Didier Detour | DEVICE FOR THE NON-TRAUMATIC CLOSURE, WITHOUT SUTURE, OF THE OPEN EDGES OF A WOUND OF THE MAMMALIAN SKIN |
US6831205B2 (en) * | 1999-11-29 | 2004-12-14 | Clozex Medical, Llc | Bandage for wound or incision closure |
US6824533B2 (en) | 2000-11-29 | 2004-11-30 | Hill-Rom Services, Inc. | Wound treatment apparatus |
US6528697B1 (en) | 2000-01-03 | 2003-03-04 | Augustine Medical, Inc. | Modular bandage |
US6566576B1 (en) * | 2000-01-04 | 2003-05-20 | James F. Komerska | Hydrocolloid foam medical dressings and method of making the same |
AU4176101A (en) | 2000-02-24 | 2001-09-03 | Venetec Int Inc | Universal catheter anchoring system |
GB0011202D0 (en) * | 2000-05-09 | 2000-06-28 | Kci Licensing Inc | Abdominal wound dressing |
MXPA02011416A (en) | 2000-05-22 | 2004-08-12 | Arthur C Coffey | Combination sis and vacuum bandage and method. |
JP2002078730A (en) * | 2000-07-05 | 2002-03-19 | Yoshiaki Tai | Pad to be applied to wound part |
US6903243B1 (en) * | 2000-09-08 | 2005-06-07 | 3M Innovative Properties Company | Multi-layer absorbent wound dressing |
US6659970B1 (en) * | 2000-09-20 | 2003-12-09 | Carol Anna Woodworth | Adjustable dressing wrap |
AU2002211639A1 (en) | 2000-10-09 | 2002-04-22 | Tricardia, L.L.C. | Material useable for medical balloons and catheters |
US6855135B2 (en) | 2000-11-29 | 2005-02-15 | Hill-Rom Services, Inc. | Vacuum therapy and cleansing dressing for wounds |
US6685681B2 (en) | 2000-11-29 | 2004-02-03 | Hill-Rom Services, Inc. | Vacuum therapy and cleansing dressing for wounds |
US7078582B2 (en) | 2001-01-17 | 2006-07-18 | 3M Innovative Properties Company | Stretch removable adhesive articles and methods |
US7700819B2 (en) | 2001-02-16 | 2010-04-20 | Kci Licensing, Inc. | Biocompatible wound dressing |
US7763769B2 (en) * | 2001-02-16 | 2010-07-27 | Kci Licensing, Inc. | Biocompatible wound dressing |
US7070584B2 (en) | 2001-02-20 | 2006-07-04 | Kci Licensing, Inc. | Biocompatible wound dressing |
US6540705B2 (en) | 2001-02-22 | 2003-04-01 | Core Products International, Inc. | Ankle brace providing upper and lower ankle adjustment |
WO2002083046A1 (en) * | 2001-04-16 | 2002-10-24 | Pamela Howard | Wound dressing system |
US7004915B2 (en) | 2001-08-24 | 2006-02-28 | Kci Licensing, Inc. | Negative pressure assisted tissue treatment system |
US6663584B2 (en) * | 2001-08-27 | 2003-12-16 | Kimberly-Clark Worldwide Inc. | Elastic bandage |
JP2003116907A (en) * | 2001-10-17 | 2003-04-22 | Noritake Co Ltd | External use lesion protective material |
US6648862B2 (en) | 2001-11-20 | 2003-11-18 | Spheric Products, Ltd. | Personally portable vacuum desiccator |
US20030109816A1 (en) | 2001-12-08 | 2003-06-12 | Charles A. Lachenbruch | Warmable bandage for promoting bandage for promoting wound healing |
US6939334B2 (en) | 2001-12-19 | 2005-09-06 | Kimberly-Clark Worldwide, Inc. | Three dimensional profiling of an elastic hot melt pressure sensitive adhesive to provide areas of differential tension |
US7723560B2 (en) | 2001-12-26 | 2010-05-25 | Lockwood Jeffrey S | Wound vacuum therapy dressing kit |
DE60225480T2 (en) * | 2001-12-26 | 2009-03-19 | Hill-Rom Services, Inc., Batesville | VACUUM PACKAGING BIND |
CA2468912A1 (en) * | 2001-12-26 | 2003-07-17 | Hill-Rom Services, Inc. | Vented vacuum bandage and method |
US20030139697A1 (en) | 2002-01-24 | 2003-07-24 | Gilman Thomas H. | Wound closure dressing with controlled stretchability |
NL1020049C2 (en) * | 2002-02-22 | 2003-08-25 | Two Beats B V | Device and system for treating a wound in the skin of a patient. |
CA2477674A1 (en) * | 2002-02-28 | 2003-09-12 | Jeffrey S. Lockwood | External catheter access to vacuum bandage |
WO2003075750A2 (en) | 2002-03-07 | 2003-09-18 | Board Of Regents, The University Of Texas System | Conformable bi-laminate compression bolster and method for using same |
CN100438939C (en) | 2002-03-14 | 2008-12-03 | 伊诺维思医疗公司 | Method and apparatus for detecting and transmitting electrical and related audio signals from a single, common anatomical site |
TWI224964B (en) | 2002-03-25 | 2004-12-11 | Molten Corp | Detecting device for cause of pressure sores |
US8168848B2 (en) | 2002-04-10 | 2012-05-01 | KCI Medical Resources, Inc. | Access openings in vacuum bandage |
NO20021675L (en) | 2002-04-10 | 2003-10-13 | Erik Liebermann | Device for container fittings |
US20030225347A1 (en) | 2002-06-03 | 2003-12-04 | Argenta Louis C. | Directed tissue growth employing reduced pressure |
USD503509S1 (en) * | 2002-07-01 | 2005-04-05 | Lightning2 Llc | Compression garment |
US6860789B2 (en) | 2002-07-01 | 2005-03-01 | Lightning2 Llc | Compression garment |
AU2002359833A1 (en) * | 2002-08-21 | 2004-03-11 | Hill-Rom Services, Inc. | Wound packing for preventing wound closure |
US7381211B2 (en) * | 2002-08-21 | 2008-06-03 | Kci Licensing, Inc. | Medical closure screen device and method |
US7846141B2 (en) | 2002-09-03 | 2010-12-07 | Bluesky Medical Group Incorporated | Reduced pressure treatment system |
US7520872B2 (en) | 2002-09-13 | 2009-04-21 | Neogen Technologies, Inc. | Closed wound drainage system |
US7815616B2 (en) | 2002-09-16 | 2010-10-19 | Boehringer Technologies, L.P. | Device for treating a wound |
GB0224986D0 (en) | 2002-10-28 | 2002-12-04 | Smith & Nephew | Apparatus |
US20040087884A1 (en) * | 2002-10-31 | 2004-05-06 | Haddock Teresa H. | Textured breathable films and their use as backing material for bandages |
JP4814523B2 (en) * | 2002-11-01 | 2011-11-16 | サイオン カーディオバスキュラー インコーポレイテッド | Hemostatic pad |
US8080703B2 (en) * | 2002-11-26 | 2011-12-20 | Coloplast A/S | Dressing |
US7612248B2 (en) * | 2002-12-19 | 2009-11-03 | 3M Innovative Properties Company | Absorbent medical articles |
US7423193B2 (en) * | 2002-12-31 | 2008-09-09 | Ossur, Hf | Wound dressing |
US6951553B2 (en) * | 2002-12-31 | 2005-10-04 | Kci Licensing, Inc | Tissue closure treatment system and method with externally-applied patient interface |
US7976519B2 (en) * | 2002-12-31 | 2011-07-12 | Kci Licensing, Inc. | Externally-applied patient interface system and method |
CN100448436C (en) * | 2002-12-31 | 2009-01-07 | 奥苏尔公司 | Wound dressing |
US20050158513A1 (en) | 2003-04-15 | 2005-07-21 | Tredegar Film Products Corporation | Breathable elastic web |
US6821185B1 (en) | 2003-05-28 | 2004-11-23 | Euta D. Francis | Maternity bra |
WO2004108988A1 (en) * | 2003-06-04 | 2004-12-16 | Mitsubishi Denki Kabushiki Kaisha | Discharge surface treatment method and discharge surface treatment apparatus |
GB2403149B (en) * | 2003-06-24 | 2005-10-19 | Anthony Bruce Pike | Medical protection sheeting |
CN2714024Y (en) * | 2003-06-25 | 2005-08-03 | 燕继扬 | Elastic bandage |
US7048013B2 (en) | 2003-07-07 | 2006-05-23 | Maidenform, Inc. | Elastic material having variable modulus of elasticity |
JP4795234B2 (en) | 2003-07-22 | 2011-10-19 | ケーシーアイ ライセンシング インク | Negative pressure wound dressing |
CN2636883Y (en) * | 2003-07-29 | 2004-09-01 | 梁智 | Drainage appliance for wound |
US7942866B2 (en) * | 2003-08-28 | 2011-05-17 | Boehringer Technologies, L.P. | Device for treating a wound |
US7361184B2 (en) | 2003-09-08 | 2008-04-22 | Joshi Ashok V | Device and method for wound therapy |
ES2564294T3 (en) * | 2003-09-17 | 2016-03-21 | Bsn Medical Gmbh | Wound dressing and manufacturing procedure |
JP4226425B2 (en) * | 2003-09-25 | 2009-02-18 | 本田技研工業株式会社 | Viscous damper device |
GB0518825D0 (en) * | 2005-09-15 | 2005-10-26 | Smith & Nephew | Apparatus with actives from tissue - sai |
GB0518804D0 (en) | 2005-09-15 | 2005-10-26 | Smith & Nephew | Exudialysis tissue cleanser |
GB0325120D0 (en) | 2003-10-28 | 2003-12-03 | Smith & Nephew | Apparatus with actives |
GB0325129D0 (en) * | 2003-10-28 | 2003-12-03 | Smith & Nephew | Apparatus in situ |
GB0325126D0 (en) * | 2003-10-28 | 2003-12-03 | Smith & Nephew | Apparatus with heat |
RU2283000C2 (en) * | 2003-11-19 | 2006-09-10 | Центр "Биоинженерия" Ран | Method for protein production |
US7135007B2 (en) | 2003-11-21 | 2006-11-14 | Julius Zorn, Inc. | Compression garments and related methods |
CN1261087C (en) * | 2003-12-16 | 2006-06-28 | 江苏雨林医药工程有限公司 | Physical bacteria and stick resistant dressing for medical purpose |
US7252870B2 (en) | 2003-12-31 | 2007-08-07 | Kimberly-Clark Worldwide, Inc. | Nonwovens having reduced Poisson ratio |
GB0403969D0 (en) * | 2004-02-24 | 2004-03-31 | Huntleigh Technology Plc | Tissue treatment device |
US7754937B2 (en) | 2004-03-18 | 2010-07-13 | Boehringer Technologies, L.P. | Wound packing material for use with suction |
GB0407502D0 (en) | 2004-04-02 | 2004-05-05 | Inotec Amd Ltd | Hyperbaric dressing |
US7909805B2 (en) † | 2004-04-05 | 2011-03-22 | Bluesky Medical Group Incorporated | Flexible reduced pressure treatment appliance |
CN1956689A (en) * | 2004-04-13 | 2007-05-02 | 柏林格实验室有限公司 | Wound contact device |
US7884258B2 (en) | 2004-04-13 | 2011-02-08 | Boehringer Technologies, L.P. | Wound contact device |
GB0424046D0 (en) | 2004-10-29 | 2004-12-01 | Smith & Nephew | Apparatus |
GB0508531D0 (en) * | 2005-04-27 | 2005-06-01 | Smith & Nephew | Sai with ultrasound |
GB0409292D0 (en) * | 2004-04-27 | 2004-06-02 | Smith & Nephew | Apparatus with ultrasound |
US8529548B2 (en) | 2004-04-27 | 2013-09-10 | Smith & Nephew Plc | Wound treatment apparatus and method |
US7201063B2 (en) * | 2004-04-30 | 2007-04-10 | Taylor Geoffrey L | Normal force gradient/shear force sensors and method of measuring internal biological tissue stress |
GB2415382A (en) | 2004-06-21 | 2005-12-28 | Johnson & Johnson Medical Ltd | Wound dressings for vacuum therapy |
JP4026629B2 (en) * | 2004-08-03 | 2007-12-26 | 日産自動車株式会社 | Vehicle motor torque control device |
US7618386B2 (en) * | 2004-07-22 | 2009-11-17 | Nordt Development Co., Llc | Two-component compression collar clamp for arm or leg |
CA2575253C (en) | 2004-08-04 | 2013-01-15 | Bradley Allan Ross | Adjustable tissue compression device |
US7455681B2 (en) | 2004-09-13 | 2008-11-25 | Wound Care Technologies, Llc | Wound closure product |
DE202004017052U1 (en) * | 2004-11-02 | 2005-06-09 | Riesinger, Birgit | Device for wound treatment using negative pressure |
DE202004018245U1 (en) * | 2004-11-24 | 2005-07-07 | Riesinger, Birgit | Drainage device for treating wounds using reduced pressure has absorption body with layer(s) of textile section enriched with super-absorbents enclosed by liquid transmissive sleeve; absorbed wound secretions remain in absorption body |
JP4492868B2 (en) * | 2004-11-25 | 2010-06-30 | 日東電工株式会社 | Adhesive bandage or adhesive dressing |
JP4831724B2 (en) | 2005-02-10 | 2011-12-07 | 富山県 | Human body support materials |
DE102005007016A1 (en) * | 2005-02-15 | 2006-08-24 | Fleischmann, Wilhelm, Dr.med. | Device for the treatment of wounds |
JP2006239213A (en) * | 2005-03-04 | 2006-09-14 | Toshio Oshiro | Laser treatment apparatus |
US7857806B2 (en) | 2005-07-14 | 2010-12-28 | Boehringer Technologies, L.P. | Pump system for negative pressure wound therapy |
US7438705B2 (en) | 2005-07-14 | 2008-10-21 | Boehringer Technologies, L.P. | System for treating a wound with suction and method detecting loss of suction |
US20070027414A1 (en) * | 2005-07-28 | 2007-02-01 | Integra Lifesciences Corporation | Laminar construction negative pressure wound dressing including bioabsorbable material |
US20070032755A1 (en) | 2005-08-02 | 2007-02-08 | Medica-Rents Co., Ltd. | Method and apparatus for treating a wound |
US7837673B2 (en) * | 2005-08-08 | 2010-11-23 | Innovative Therapies, Inc. | Wound irrigation device |
US7608066B2 (en) * | 2005-08-08 | 2009-10-27 | Innovative Therapies, Inc. | Wound irrigation device pressure monitoring and control system |
US20070043655A1 (en) | 2005-08-16 | 2007-02-22 | Nomis Solutions Inc. | Incorporation of adverse selection in customized price optimization |
US7845351B2 (en) * | 2005-08-31 | 2010-12-07 | Kimberly-Clark Worldwide Inc. | Germicidal face mask |
CN101257875A (en) * | 2005-09-06 | 2008-09-03 | 泰科保健集团有限合伙公司 | Self contained wound dressing with micropump |
AU2006287461A1 (en) | 2005-09-07 | 2007-03-15 | Tyco Healthcare Group L.P. | Self contained wound dressing apparatus |
WO2007030598A2 (en) * | 2005-09-07 | 2007-03-15 | Tyco Healthcare Group Lp | Wound dressing with vacuum reservoir |
US7504549B2 (en) * | 2005-09-21 | 2009-03-17 | Noth American Rescue Products, Inc. | Chest wound seal for preventing pneumothorax and including means for relieving a tension pheumothorax |
BRPI0616297A2 (en) | 2005-09-26 | 2016-08-23 | Coloplast As | foam bandage |
EP1929696A4 (en) | 2005-09-30 | 2009-12-16 | Dynasig Corp | Signature authentication |
US7713252B2 (en) * | 2005-12-14 | 2010-05-11 | Kimberly-Clark Worldwide, Inc. | Therapeutic article including a personal care composition and methods of making the therapeutic article |
US7605299B2 (en) † | 2005-12-23 | 2009-10-20 | Biosara Corporation | Wound guard bandage |
US7896823B2 (en) * | 2006-01-17 | 2011-03-01 | Theranova, Llc | Method and apparatus for treating wound using negative pressure therapy |
DE202006007877U1 (en) | 2006-01-25 | 2006-07-27 | Riesinger, Birgit | Prefabricated wound dressing with superabsorber |
US8235939B2 (en) | 2006-02-06 | 2012-08-07 | Kci Licensing, Inc. | System and method for purging a reduced pressure apparatus during the administration of reduced pressure treatment |
CA2641485C (en) * | 2006-02-07 | 2015-04-07 | Tyco Healthcare Group Lp | Surgical wound dressing |
KR101126413B1 (en) * | 2006-03-16 | 2012-03-28 | 어플라이드 머티어리얼스, 인코포레이티드 | Methods an apparatus for improving operation of an electronic device manufacturing system |
ES2394111T3 (en) * | 2006-04-11 | 2013-01-21 | Tyco Healthcare Group Lp | Wound dressings with antimicrobial and zinc-containing agents |
AU2006342253B2 (en) | 2006-04-13 | 2013-01-24 | Solventum Intellectual Properties Company | Medical closure screen installation systems and methods |
AU2007241496A1 (en) † | 2006-04-25 | 2007-11-01 | Coloplast A/S | An adhesive wafer |
US7779625B2 (en) | 2006-05-11 | 2010-08-24 | Kalypto Medical, Inc. | Device and method for wound therapy |
WO2007143179A2 (en) | 2006-06-02 | 2007-12-13 | Bengtson Bradley P | Assemblies, systems, and methods for vacuum assisted internal drainage during wound healing |
US8025650B2 (en) * | 2006-06-12 | 2011-09-27 | Wound Care Technologies, Inc. | Negative pressure wound treatment device, and methods |
SE0601536L (en) * | 2006-07-11 | 2008-01-12 | Moelnlycke Health Care Ab | Coil connection |
CA2656116A1 (en) * | 2006-07-18 | 2008-01-24 | Medela Holding Ag | Breastpump set |
CA2658548A1 (en) | 2006-07-25 | 2008-01-31 | Jeffrey E. Yeung | Spooled filament to repair tissue |
GB0712735D0 (en) * | 2006-07-26 | 2007-08-08 | Smith & Nephew | Dressing |
US20080026023A1 (en) * | 2006-07-31 | 2008-01-31 | Tauer Kevin C | Textile material for management of skin health complications associated with skin folds, and its method of use |
BRPI0714102B1 (en) * | 2006-08-02 | 2018-09-25 | Dow Global Technologies Inc | high density polyethylene composition, process for producing a high density polyethylene composition, reservoir device and method for making a reservoir device |
CA2695526A1 (en) * | 2006-08-11 | 2008-02-21 | Feg Holdings, Llc | High speed swelling, pressure exerting hemostatic device |
WO2008020209A2 (en) * | 2006-08-15 | 2008-02-21 | Lysgear Limited | Body part immobilisers |
CN101511277B (en) * | 2006-09-19 | 2013-05-22 | 凯希特许有限公司 | Reduced pressure treatment system having blockage clearing and dual-zone pressure protection capabilities |
US8061360B2 (en) * | 2006-09-19 | 2011-11-22 | Kci Licensing, Inc. | System and method for locating fluid leaks at a drape of a reduced pressure delivery system |
US8476326B2 (en) * | 2006-09-22 | 2013-07-02 | Dow Global Technologies Llc | Fibrillated polyolefin foam |
CA2604623C (en) * | 2006-09-28 | 2018-10-30 | Tyco Healthcare Group Lp | Portable wound therapy system |
SE0602064L (en) | 2006-10-03 | 2008-04-04 | Moelnlycke Health Care Ab | Wound dressing with pressure distributing hose inlet |
US20080243096A1 (en) | 2006-10-05 | 2008-10-02 | Paul Svedman | Device For Active Treatment and Regeneration of Tissues Such as Wounds |
US20080103489A1 (en) | 2006-10-26 | 2008-05-01 | The University Of North Carolina At Chapel Hill | Vacuum adherent dressings, systems and methods of use for same |
US20080103462A1 (en) * | 2006-10-30 | 2008-05-01 | Stuart Wenzel | Wound healing patch with integral passive vacuum and electrostimulation |
SE0602303L (en) | 2006-11-01 | 2008-05-02 | Moelnlycke Health Care Ab | The operating sheet with easy bendable edge and stiffening edge layer |
US8210899B2 (en) * | 2006-11-21 | 2012-07-03 | Loma Linda University Medical Center | Device and method for immobilizing patients for breast radiation therapy |
AU2007327300A1 (en) † | 2006-11-30 | 2008-06-05 | Medela Holding Ag | Device for treating wounds |
CN201005866Y (en) * | 2006-12-28 | 2008-01-16 | 窦修平 | Wound depression blood-supply enhancement dressing |
WO2008104609A1 (en) † | 2007-03-01 | 2008-09-04 | Coloplast A/S | Pressure-distributing elements for use with negative pressure therapy |
GB0715210D0 (en) | 2007-08-06 | 2007-09-12 | Smith & Nephew | Apparatus |
US20090043268A1 (en) * | 2007-08-06 | 2009-02-12 | Eddy Patrick E | Wound treatment system and suction regulator for use therewith |
US20090047855A1 (en) * | 2007-08-16 | 2009-02-19 | 3M Innovative Properties Company | Stretchable elastic nonwoven laminates |
AU2008288966B2 (en) | 2007-08-21 | 2013-10-24 | Solventum Intellectual Properties Company | Reduced-pressure system and method employing a gasket |
WO2009047524A2 (en) | 2007-10-10 | 2009-04-16 | Talley Group Limited | Medical apparatus for use in negative pressure wound therapy |
EP2203137B1 (en) † | 2007-10-11 | 2016-02-24 | Spiracur, Inc. | Closed incision negative pressure wound therapy device |
TWI340653B (en) | 2007-11-09 | 2011-04-21 | Ind Tech Res Inst | Detachable pump and the negative pressure wound therapy system using the same |
GB0723876D0 (en) | 2007-12-06 | 2008-01-16 | Smith & Nephew | Apparatus and method for topical negative pressure therapy |
US20090177051A1 (en) | 2008-01-09 | 2009-07-09 | Heal-Ex, Llc | Systems and methods for providing sub-dressing wound analysis and therapy |
BRPI0906095A2 (en) | 2008-03-05 | 2016-06-21 | Kci Licensing Inc | reduced pressure dressing to apply a reduced pressure treatment to a tissue site, method for collecting fluid in a bandage positioned at a tissue site and a reduced pressure dressing adapted to deliver a reduced pressure to a tissue site. |
US9033942B2 (en) | 2008-03-07 | 2015-05-19 | Smith & Nephew, Inc. | Wound dressing port and associated wound dressing |
US8021347B2 (en) | 2008-07-21 | 2011-09-20 | Tyco Healthcare Group Lp | Thin film wound dressing |
GB0804654D0 (en) † | 2008-03-13 | 2008-04-16 | Smith & Nephew | Vacuum closure device |
US8152785B2 (en) | 2008-03-13 | 2012-04-10 | Tyco Healthcare Group Lp | Vacuum port for vacuum wound therapy |
US20090234306A1 (en) | 2008-03-13 | 2009-09-17 | Tyco Healthcare Group Lp | Vacuum wound therapy wound dressing with variable performance zones |
US8007481B2 (en) | 2008-07-17 | 2011-08-30 | Tyco Healthcare Group Lp | Subatmospheric pressure mechanism for wound therapy system |
CN103417332B (en) | 2008-05-30 | 2015-10-07 | 凯希特许有限公司 | Super-absorbent, reduced-pressure wound dressing and system |
EP2829287B1 (en) † | 2008-05-30 | 2019-07-03 | KCI Licensing, Inc. | Reduced-pressure, linear-wound treatment system |
US8251979B2 (en) | 2009-05-11 | 2012-08-28 | Tyco Healthcare Group Lp | Orientation independent canister for a negative pressure wound therapy device |
US8216198B2 (en) | 2009-01-09 | 2012-07-10 | Tyco Healthcare Group Lp | Canister for receiving wound exudate in a negative pressure therapy system |
-
2009
- 2009-05-29 CN CN201310341893.1A patent/CN103417332B/en active Active
- 2009-05-29 KR KR1020107029652A patent/KR20110022643A/en not_active IP Right Cessation
- 2009-05-29 US US12/475,257 patent/US8100848B2/en active Active
- 2009-05-29 CA CA2970330A patent/CA2970330C/en active Active
- 2009-05-29 RU RU2010146770/14A patent/RU2470672C2/en not_active IP Right Cessation
- 2009-05-29 EP EP09770664.2A patent/EP2282788B8/en active Active
- 2009-05-29 MX MX2010012957A patent/MX2010012957A/en not_active Application Discontinuation
- 2009-05-29 EP EP09770666.7A patent/EP2278948B1/en active Active
- 2009-05-29 KR KR20107029626A patent/KR20110019762A/en not_active IP Right Cessation
- 2009-05-29 JP JP2011511879A patent/JP5538371B2/en active Active
- 2009-05-29 AU AU2009262880A patent/AU2009262880B2/en active Active
- 2009-05-29 KR KR1020107029653A patent/KR20110028468A/en not_active IP Right Cessation
- 2009-05-29 CN CN201310308384.9A patent/CN103480048B/en active Active
- 2009-05-29 US US12/475,407 patent/US8133211B2/en active Active
- 2009-05-29 US US12/475,398 patent/US9572719B2/en active Active
- 2009-05-29 WO PCT/US2009/045747 patent/WO2009158126A1/en active Application Filing
- 2009-05-29 JP JP2011511884A patent/JP5538372B2/en active Active
- 2009-05-29 EP EP13174166.2A patent/EP2659915B2/en active Active
- 2009-05-29 ES ES14171247.1T patent/ES2562345T3/en active Active
- 2009-05-29 WO PCT/US2009/045746 patent/WO2009158125A1/en active Application Filing
- 2009-05-29 EP EP20151390.0A patent/EP3677230A3/en active Pending
- 2009-05-29 KR KR1020107027982A patent/KR101192947B1/en active IP Right Grant
- 2009-05-29 KR KR20107028635A patent/KR20110011696A/en not_active Application Discontinuation
- 2009-05-29 AU AU2009262881A patent/AU2009262881B2/en active Active
- 2009-05-29 WO PCT/US2009/045744 patent/WO2009158124A1/en active Application Filing
- 2009-05-29 EP EP13169039.8A patent/EP2630979B1/en not_active Revoked
- 2009-05-29 CN CN201310308383.4A patent/CN103405813B/en active Active
- 2009-05-29 CA CA2980359A patent/CA2980359C/en active Active
- 2009-05-29 MX MX2010012970A patent/MX2010012970A/en active IP Right Grant
- 2009-05-29 US US12/475,285 patent/US8241261B2/en active Active
- 2009-05-29 RU RU2010146771/14A patent/RU2472533C2/en not_active IP Right Cessation
- 2009-05-29 WO PCT/US2009/045749 patent/WO2009158127A1/en active Application Filing
- 2009-05-29 JP JP2011511878A patent/JP5539972B2/en active Active
- 2009-05-29 JP JP2011511881A patent/JP5378506B2/en active Active
- 2009-05-29 BR BRPI0909569A patent/BRPI0909569A2/en not_active IP Right Cessation
- 2009-05-29 BR BRPI0909616A patent/BRPI0909616A2/en not_active Application Discontinuation
- 2009-05-29 CA CA2725945A patent/CA2725945C/en active Active
- 2009-05-29 CA CA2725556A patent/CA2725556C/en active Active
- 2009-05-29 EP EP09770661.8A patent/EP2285432B2/en active Active
- 2009-05-29 BR BRPI0909621-3A patent/BRPI0909621A2/en not_active IP Right Cessation
- 2009-05-29 CN CN201310466785.7A patent/CN103585682B/en active Active
- 2009-05-29 CN CN201410315871.2A patent/CN104117101B/en active Active
- 2009-05-29 CA CA 2725566 patent/CA2725566C/en not_active Expired - Fee Related
- 2009-05-29 US US12/475,301 patent/US8129580B2/en active Active
- 2009-05-29 EP EP11151735.5A patent/EP2319550B1/en active Active
- 2009-05-29 BR BRPI0909557A patent/BRPI0909557A2/en not_active Application Discontinuation
- 2009-05-29 EP EP09770659.2A patent/EP2285431B1/en active Active
- 2009-05-29 CA CA2978001A patent/CA2978001C/en active Active
- 2009-05-29 AU AU2009262877A patent/AU2009262877B2/en active Active
- 2009-05-29 MX MX2010013134A patent/MX359709B/en active IP Right Grant
- 2009-05-29 EP EP16199896.8A patent/EP3156016B1/en active Active
- 2009-05-29 JP JP2011511883A patent/JP5313340B2/en active Active
- 2009-05-29 CN CN2009801185214A patent/CN102036697B/en active Active
- 2009-05-29 EP EP10188493.0A patent/EP2305330B2/en active Active
- 2009-05-29 EP EP09770660.0A patent/EP2279016B2/en active Active
- 2009-05-29 WO PCT/US2009/045750 patent/WO2009158128A2/en active Application Filing
- 2009-05-29 KR KR1020107029651A patent/KR20110022642A/en not_active Application Discontinuation
- 2009-05-29 CN CN202011083392.4A patent/CN112206094A/en active Pending
- 2009-05-29 CA CA2726027A patent/CA2726027C/en active Active
- 2009-05-29 US US12/475,231 patent/US8172816B2/en active Active
- 2009-05-29 CN CN2009801188782A patent/CN102036698B/en active Active
- 2009-05-29 KR KR1020107027973A patent/KR20110011684A/en not_active Application Discontinuation
- 2009-05-29 CN CN200980119147XA patent/CN102046118B/en active Active
- 2009-05-29 EP EP18189610.1A patent/EP3456364B1/en active Active
- 2009-05-29 EP EP16164739.1A patent/EP3069701B1/en active Active
- 2009-05-29 CA CA2726240A patent/CA2726240C/en active Active
- 2009-05-29 CN CN201310466823.9A patent/CN103536975B/en active Active
- 2009-05-29 EP EP09770663.4A patent/EP2285433B1/en active Active
- 2009-05-29 CN CN2009801196134A patent/CN102046119B/en active Active
- 2009-05-29 WO PCT/US2009/045753 patent/WO2009158131A1/en active Application Filing
- 2009-05-29 WO PCT/US2009/045752 patent/WO2009158130A1/en active Application Filing
- 2009-05-29 JP JP2011511885A patent/JP5406283B2/en active Active
- 2009-05-29 CN CN2009801188867A patent/CN102036699B/en active Active
- 2009-05-29 CA CA2726225A patent/CA2726225C/en active Active
- 2009-05-29 MX MX2010012959A patent/MX2010012959A/en not_active Application Discontinuation
- 2009-05-29 EP EP15196111.7A patent/EP3037115B1/en active Active
- 2009-05-29 CA CA3078635A patent/CA3078635C/en active Active
- 2009-05-29 KR KR20107029630A patent/KR20110016963A/en not_active IP Right Cessation
- 2009-05-29 EP EP16206186.5A patent/EP3181161B1/en active Active
- 2009-05-29 EP EP20100188492 patent/EP2305329B1/en not_active Revoked
- 2009-05-29 EP EP10188488.0A patent/EP2305327B1/en active Active
- 2009-05-29 CN CN200980118887.1A patent/CN102036700B/en active Active
- 2009-05-29 AU AU2009262876A patent/AU2009262876B2/en active Active
- 2009-05-29 CN CN200980119612XA patent/CN102046219B/en active Active
- 2009-05-29 JP JP2011511877A patent/JP4981992B2/en active Active
- 2009-05-29 WO PCT/US2009/045751 patent/WO2009158129A1/en active Application Filing
- 2009-05-29 KR KR1020107028139A patent/KR20110033129A/en not_active IP Right Cessation
- 2009-05-29 MX MX2010013067A patent/MX2010013067A/en not_active Application Discontinuation
- 2009-05-29 JP JP2011511880A patent/JP5016137B2/en active Active
- 2009-05-29 BR BRPI0909571A patent/BRPI0909571A2/en not_active IP Right Cessation
- 2009-05-29 RU RU2010146765/14A patent/RU2471509C2/en active
- 2009-05-29 CN CN200980118946.5A patent/CN102046217B/en active Active
- 2009-05-29 EP EP17199322.3A patent/EP3311855B1/en active Active
- 2009-05-29 CN CN200980118938.0A patent/CN102046216B/en not_active Expired - Fee Related
- 2009-05-29 EP EP12171212.9A patent/EP2529767B2/en active Active
- 2009-05-29 CN CN200980117665.8A patent/CN102026675B/en active Active
- 2009-05-29 BR BRPI0909606A patent/BRPI0909606A2/en not_active Application Discontinuation
- 2009-05-29 EP EP16206175.8A patent/EP3181160B1/en active Active
- 2009-05-29 EP EP16160705.6A patent/EP3069702B1/en active Active
- 2009-05-29 MX MX2010013132A patent/MX2010013132A/en active IP Right Grant
- 2009-05-29 MX MX2010012958A patent/MX2010012958A/en not_active Application Discontinuation
- 2009-05-29 CN CN201510603255.1A patent/CN105266960B/en active Active
- 2009-05-29 EP EP14171247.1A patent/EP2781166B1/en active Active
- 2009-05-29 EP EP20208838.1A patent/EP3797616A1/en not_active Withdrawn
- 2009-05-29 AU AU2009262882A patent/AU2009262882B2/en not_active Ceased
- 2009-05-29 EP EP17164507.0A patent/EP3231459A1/en not_active Withdrawn
- 2009-05-29 CN CN200980119621.9A patent/CN102089017B/en active Active
- 2009-05-29 MX MX2010013069A patent/MX2010013069A/en active IP Right Grant
- 2009-05-29 EP EP10188490.6A patent/EP2305328B1/en active Active
- 2009-05-29 EP EP09770662.6A patent/EP2279017B2/en active Active
- 2009-05-29 CA CA2726038A patent/CA2726038C/en not_active Expired - Fee Related
- 2009-05-29 WO PCT/US2009/045743 patent/WO2009146441A1/en active Application Filing
- 2009-05-29 EP EP09770665.9A patent/EP2279018B8/en active Active
- 2009-05-29 AU AU2009262879A patent/AU2009262879B2/en active Active
- 2009-05-29 US US12/475,373 patent/US8167856B2/en active Active
- 2009-05-29 AU AU2009251242A patent/AU2009251242B2/en active Active
- 2009-05-29 CA CA2725943A patent/CA2725943C/en active Active
- 2009-05-29 EP EP20130155466 patent/EP2594298A1/en not_active Withdrawn
- 2009-05-29 WO PCT/US2009/045755 patent/WO2009158133A2/en active Application Filing
- 2009-05-29 BR BRPI0909570A patent/BRPI0909570A2/en not_active Application Discontinuation
- 2009-05-29 KR KR20107028138A patent/KR20110018359A/en not_active IP Right Cessation
- 2009-05-29 US US12/475,367 patent/US8202261B2/en active Active
- 2009-05-29 CA CA2726142A patent/CA2726142C/en active Active
- 2009-05-29 AU AU2009262874A patent/AU2009262874B2/en active Active
- 2009-05-29 EP EP20090770658 patent/EP2285430B1/en active Active
- 2009-05-29 KR KR20107029649A patent/KR20110018392A/en not_active Application Discontinuation
- 2009-05-29 JP JP2011511886A patent/JP5199462B2/en not_active Expired - Fee Related
- 2009-05-29 EP EP13174167.0A patent/EP2666488B1/en not_active Revoked
- 2009-05-29 EP EP20090755801 patent/EP2285323B1/en not_active Revoked
- 2009-05-29 MX MX2010013133A patent/MX2010013133A/en unknown
- 2009-05-29 CN CN201810154175.6A patent/CN108143539A/en active Pending
- 2009-05-29 EP EP20151937.8A patent/EP3656410A1/en active Pending
- 2009-05-29 US US12/475,319 patent/US8147468B2/en active Active
- 2009-05-29 JP JP2011511882A patent/JP5219104B2/en not_active Expired - Fee Related
- 2009-05-29 AU AU2009262878A patent/AU2009262878B2/en not_active Ceased
- 2009-05-29 AU AU2009262875A patent/AU2009262875B2/en active Active
- 2009-05-29 CA CA2726042A patent/CA2726042C/en active Active
- 2009-05-29 CN CN201410315361.5A patent/CN104161621B/en active Active
- 2009-05-29 AU AU2009262884A patent/AU2009262884B2/en active Active
- 2009-05-29 US US12/475,380 patent/US8188331B2/en active Active
- 2009-05-29 JP JP2011511888A patent/JP5219105B2/en active Active
- 2009-05-29 EP EP20196313.9A patent/EP3782663B1/en active Active
- 2009-05-29 BR BRPI0909565A patent/BRPI0909565A2/en not_active IP Right Cessation
- 2009-05-29 CA CA2725561A patent/CA2725561C/en active Active
- 2009-05-29 US US12/475,328 patent/US8399730B2/en active Active
- 2009-05-29 EP EP20090770668 patent/EP2279019B1/en not_active Revoked
- 2009-05-29 MX MX2010013131A patent/MX2010013131A/en not_active Application Discontinuation
- 2009-05-29 WO PCT/US2009/045742 patent/WO2009158123A2/en active Application Filing
- 2009-06-01 TW TW98118067A patent/TW201002375A/en unknown
- 2009-06-01 TW TW98118106A patent/TW201002249A/en unknown
- 2009-06-01 TW TW98118065A patent/TW200950830A/en unknown
- 2009-06-01 TW TW98118068A patent/TW201002376A/en unknown
- 2009-06-01 TW TW98118109A patent/TW200950832A/en unknown
- 2009-06-01 TW TW98118115A patent/TW200950833A/en unknown
- 2009-06-01 TW TW98118080A patent/TW201002276A/en unknown
- 2009-06-01 TW TW98118064A patent/TW200950829A/en unknown
- 2009-06-01 TW TW98118105A patent/TW201002377A/en unknown
- 2009-06-01 TW TW98118081A patent/TW200950831A/en unknown
- 2009-06-01 TW TW98118077A patent/TW200950823A/en unknown
-
2011
- 2011-06-14 HK HK11105990.6A patent/HK1151753A1/en not_active IP Right Cessation
- 2011-10-05 US US13/253,711 patent/US8722959B2/en active Active
-
2012
- 2012-01-18 US US13/352,549 patent/US8480605B2/en active Active
- 2012-02-01 US US13/363,889 patent/US8715253B2/en active Active
- 2012-02-28 US US13/407,360 patent/US8747375B2/en active Active
- 2012-04-02 US US13/437,898 patent/US9173788B2/en active Active
- 2012-04-02 US US13/437,884 patent/US8409156B2/en active Active
- 2012-04-25 US US13/455,383 patent/US9204999B2/en active Active
- 2012-05-10 US US13/468,866 patent/US8679080B2/en active Active
- 2012-07-11 US US13/546,161 patent/US8795244B2/en active Active
-
2013
- 2013-02-07 JP JP2013021874A patent/JP5642815B2/en not_active Expired - Fee Related
- 2013-02-15 US US13/769,127 patent/US9095468B2/en active Active
- 2013-02-27 JP JP2013036867A patent/JP5969936B2/en not_active Expired - Fee Related
- 2013-02-27 JP JP2013036543A patent/JP5930313B2/en active Active
- 2013-03-12 US US13/796,295 patent/US8920395B2/en active Active
- 2013-05-28 JP JP2013111510A patent/JP5705916B2/en active Active
- 2013-05-29 JP JP2013112925A patent/JP6103636B2/en active Active
- 2013-05-29 JP JP2013112903A patent/JP5839365B2/en active Active
- 2013-05-29 JP JP2013112948A patent/JP5705917B2/en active Active
- 2013-07-03 JP JP2013139933A patent/JP5814306B2/en active Active
- 2013-07-19 JP JP2013150463A patent/JP5850467B2/en active Active
-
2014
- 2014-02-07 US US14/175,743 patent/US10143593B2/en active Active
- 2014-03-20 US US14/220,706 patent/US10245184B2/en active Active
- 2014-04-14 US US14/252,605 patent/US9895269B2/en active Active
- 2014-05-01 US US14/267,722 patent/US9744079B2/en active Active
- 2014-06-19 US US14/309,705 patent/US10695225B2/en active Active
-
2015
- 2015-02-25 JP JP2015034714A patent/JP6353381B2/en active Active
- 2015-03-25 JP JP2015062135A patent/JP6037408B2/en active Active
- 2015-06-16 JP JP2015121561A patent/JP6258896B2/en active Active
- 2015-06-26 US US14/751,438 patent/US9750641B2/en active Active
- 2015-09-28 US US14/867,933 patent/US10226384B2/en active Active
- 2015-11-03 US US14/931,350 patent/US10076447B2/en active Active
-
2017
- 2017-01-20 US US15/411,395 patent/US10568768B2/en active Active
- 2017-07-21 US US15/656,697 patent/US10478345B2/en active Active
- 2017-08-03 US US15/668,132 patent/US10744040B2/en active Active
- 2017-12-07 JP JP2017235283A patent/JP6713977B2/en active Active
-
2018
- 2018-01-08 US US15/864,937 patent/US11020277B2/en active Active
- 2018-03-28 JP JP2018062401A patent/JP7017968B2/en active Active
- 2018-10-10 US US16/156,756 patent/US11413193B2/en active Active
-
2019
- 2019-01-08 US US16/242,825 patent/US20190142643A1/en not_active Abandoned
- 2019-02-18 US US16/278,638 patent/US11419768B2/en active Active
- 2019-10-08 US US16/596,424 patent/US20200046565A1/en not_active Abandoned
-
2020
- 2020-01-10 US US16/740,004 patent/US11382796B2/en active Active
- 2020-01-16 JP JP2020005250A patent/JP7012756B2/en active Active
- 2020-05-15 US US16/875,587 patent/US11793679B2/en active Active
- 2020-10-02 US US17/062,382 patent/US11969319B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5674523A (en) * | 1995-09-01 | 1997-10-07 | New Dimensions In Medicine, Inc. | Self-adhesive hydrogel wound dressing |
US20190269835A1 (en) * | 2007-03-14 | 2019-09-05 | Kci Licensing, Inc. | Reduced pressure therapy devices |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11628093B2 (en) | 2008-05-08 | 2023-04-18 | Convatec Technologies, Inc. | Wound dressing |
US11458044B2 (en) | 2008-09-29 | 2022-10-04 | Convatec Technologies Inc. | Wound dressing |
US11135315B2 (en) | 2010-11-30 | 2021-10-05 | Convatec Technologies Inc. | Composition for detecting biofilms on viable tissues |
US11241525B2 (en) | 2010-12-08 | 2022-02-08 | Convatec Technologies Inc. | Wound exudate monitor accessory |
US11116884B2 (en) | 2010-12-08 | 2021-09-14 | Convatec Technologies Inc. | Integrated system for assessing wound exudates |
US11583430B2 (en) | 2011-09-02 | 2023-02-21 | Convatec Ltd. | Skin contact material |
US11241339B2 (en) | 2011-11-29 | 2022-02-08 | Convatec Inc. | Perforated binder for laminated wound dressing |
US10968543B2 (en) | 2011-12-01 | 2021-04-06 | Convatec Technologies Inc. | Wound dressing for use in vacuum therapy |
US11286601B2 (en) | 2012-12-20 | 2022-03-29 | Convatec Technologies, Inc. | Processing of chemically modified cellulosic fibres |
US11723808B2 (en) | 2016-03-30 | 2023-08-15 | Convatec Technologies Inc. | Detecting microbial infections in wounds |
US11740241B2 (en) | 2016-03-30 | 2023-08-29 | Synovo Gmbh | Construct including an anchor, an enzyme recognition site and an indicator region for detecting microbial infection in wounds |
US11452808B2 (en) | 2016-07-08 | 2022-09-27 | Convatec Technologies Inc. | Fluid flow sensing |
US11596554B2 (en) | 2016-07-08 | 2023-03-07 | Convatec Technologies Inc. | Flexible negative pressure system |
US11266774B2 (en) | 2016-07-08 | 2022-03-08 | Convatec Technologies Inc. | Fluid collection apparatus |
US12076215B2 (en) | 2019-06-03 | 2024-09-03 | Convatec Limited | Methods and devices to disrupt and contain pathogens |
US11331221B2 (en) | 2019-12-27 | 2022-05-17 | Convatec Limited | Negative pressure wound dressing |
US11771819B2 (en) | 2019-12-27 | 2023-10-03 | Convatec Limited | Low profile filter devices suitable for use in negative pressure wound therapy systems |
US12121645B2 (en) | 2020-08-17 | 2024-10-22 | Convatec Technologies Inc. | Method and system for removing exudates from a wound site |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10478345B2 (en) | Reduced-pressure, linear-wound treatment systems | |
AU2013206230B2 (en) | Reduced-pressure dressing assemblies for use in applying a closing force | |
EP2829287A1 (en) | Reduced-pressure, linear-wound treatment system | |
AU2018200581B2 (en) | Reduced-pressure dressing assemblies for use in applying a closing force |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED |
|
AS | Assignment |
Owner name: KCI LICENSING, INC., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BARTA, ERIC WOODSON;LONG, JUSTIN ALEXANDER;KAZALA, RICHARD MARVIN, JR.;AND OTHERS;SIGNING DATES FROM 20090526 TO 20090715;REEL/FRAME:051728/0588 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |