US20180375379A1 - Voltage source isolation in wireless power transfer systems - Google Patents

Voltage source isolation in wireless power transfer systems Download PDF

Info

Publication number
US20180375379A1
US20180375379A1 US16/120,746 US201816120746A US2018375379A1 US 20180375379 A1 US20180375379 A1 US 20180375379A1 US 201816120746 A US201816120746 A US 201816120746A US 2018375379 A1 US2018375379 A1 US 2018375379A1
Authority
US
United States
Prior art keywords
coil
wireless power
voltage
source
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/120,746
Inventor
Christopher Buenrostro
Paul Gerardus Hlebowitsh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WiTricity Corp
Original Assignee
WiTricity Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WiTricity Corp filed Critical WiTricity Corp
Priority to US16/120,746 priority Critical patent/US20180375379A1/en
Assigned to WITRICITY CORPORATION reassignment WITRICITY CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BUENROSTRO, Christopher, HLEBOWITSH, Paul Gerardus
Publication of US20180375379A1 publication Critical patent/US20180375379A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • H02J7/025
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields

Definitions

  • This disclosure relates to wireless power transfer systems, and in particular, to isolating voltage sources from reference ground in such systems.
  • Energy can be transferred from a power source to a receiving device using a variety of known techniques such as radiative (far-field) techniques.
  • radiative techniques using low-directionality antennas can transfer a small portion of the supplied radiated power, namely, that portion in the direction of, and overlapping with, the receiving device used for pick up. In such methods, much—even most—of the energy is radiated away in directions other than the direction of the receiving device, and typically the transferred energy is insufficient to power or charge the receiving device.
  • directional antennas are used to confine and preferentially direct the radiated energy towards the receiving device. In this case, an uninterruptible line-of-sight and potentially complicated tracking and steering mechanisms are used.
  • non-radiative (near-field) techniques For example, techniques known as traditional induction schemes do not (intentionally) radiate power, but use an oscillating current passing through a primary coil, to generate an oscillating magnetic near-field that induces currents in a nearby receiving or secondary coil.
  • Traditional induction schemes can transfer modest to large amounts of power over very short distances. In these schemes, the offset tolerances between the power source and the receiving device are very small.
  • Electric transformers and proximity chargers typically use traditional induction schemes.
  • Wireless power transfer systems can be used to transfer significant quantities of power between a source resonator and a receiving resonator.
  • a source resonator To generate a large amplitude magnetic field using a magnetic source resonator, one or more source resonator coils are typically driven with a large amplitude AC voltage that is referenced to a common ground in the source.
  • the components in the source each should be capable of withstanding the large AC voltage that is applied to the resonator coil(s).
  • switches that are used in capacitor banks as part of impedance matching networks, components that are used for communication, and other circuit elements that are used to generate low power driving voltages, to detect low power signals, and/or to switch or adjust other elements should all be capable of withstanding the large AC driving voltages.
  • Components that can withstand such voltages are expensive and can therefore significantly increase the cost of wireless power transfer systems.
  • auxiliary coils that transmit and/or receive small quantities of power, which can then be conditioned and used for a variety of applications.
  • the auxiliary coils can be used to construct one or more floating “batteries” within a wireless power source.
  • the floating batteries are then available for a wide variety of uses within the source.
  • the disclosure features wireless power transmitters that include a power source, a first coil connected to the power source, a second coil connected in series to the first coil, and a third coil positioned in proximity to the second coil, where during operation of the wireless power transmitter: the power source applies a driving voltage to the first and second coils; the first coil generates a first magnetic field that transfers power to a receiver resonator; the second coil generates a second magnetic field that induces a voltage across the third coil; and the induced voltage across the third coil is applied to a component of the wireless power transmitter.
  • Embodiments of the transmitters can include any one or more of the following features.
  • Each of the first, second, and third coils can include one or more loops of conductive material.
  • the sources can include a housing that encloses the power source and the first, second, and third coils.
  • the component can include at least one of a resistive element, a capacitive element, and an inductive element of the wireless power transmitters.
  • the component can include a switch of the wireless power transmitters.
  • the component can include a component of an impedance matching network of the wireless power transmitters, e.g., an adjustable capacitor of the impedance matching network.
  • the component can include a transceiver or transmitter configured to generate an information carrying signal.
  • the component can include a fourth coil configured to generate an information carrying magnetic field that, during operation, is received by a fifth coil connected to the receiver resonator.
  • the sources can include a modulator configured to modulate the induced voltage to generate the information carrying magnetic field.
  • the induced voltage can correspond to an oscillating voltage signal, and the modulator can be configured to modulate at least one of an amplitude and a frequency of the oscillating voltage signal to generate the information carrying magnetic field.
  • the sources can include a conditioning circuit connected to the third coil, where during operation, the conditioning circuit can be configured to at least one of rectify the induced voltage, adjust an amplitude of the induced voltage, and adjust a frequency of the induced voltage.
  • a magnitude of the induced voltage can be 1% or less (e.g., 0.01% or less) of a magnitude of a voltage induced in the receiver resonator.
  • the induced voltage may not be referenced to a ground voltage of the wireless power transmitter.
  • the transmitters can include a fourth coil connected in series to the first and second coils, and a fifth coil positioned in proximity to the fourth coil, where during operation of the wireless power transmitters: the power source applies the driving voltage to the first, second, and fourth coils; the fourth coil generates a third magnetic field that induces a voltage across the fifth coil; and the induced voltage across the fifth coil is applied to a second component of the wireless power transmitters.
  • the second component can include at least one of a resistive element, a capacitive element, an inductive element, a switch, and a component of an impedance matching network.
  • the second component can include a transceiver configured to generate an information carrying signal.
  • the second component can include a sixth coil configured to generate an information carrying magnetic field that, during operation, is received by a seventh coil connected to the receiver resonator.
  • Embodiments of the transmitters can also include any of the other features disclosed herein, including combinations of features disclosed in connection with different embodiments, except as expressly stated otherwise.
  • the disclosure features wireless power transmitters that include a power source, a first coil connected to the power source, and a second coil positioned in proximity to the first coil, where during operation of the wireless power transmitters: the power source applies a driving voltage to the first coil; the first coil generates a magnetic field that transfers power to a receiver resonator; the magnetic field induces a voltage across the second coil; and the induced voltage across the second coil is applied to a component of the wireless power transmitters.
  • Embodiments of the transmitters can include any one or more of the following features.
  • Each of the first and second coils can include one or more loops of conductive material.
  • the transmitters can include a housing that encloses the power source and the first and second coils.
  • the component can include at least one of a resistive element, a capacitive element, and an inductive element of the wireless power transmitters.
  • the component can include a switch of the wireless power transmitters.
  • the component can include a component of an impedance matching network of the wireless power transmitters.
  • the component can include an adjustable capacitor of the impedance matching network.
  • the component can include a transceiver or transmitter configured to generate an information carrying signal.
  • the component can include a third coil configured to generate an information carrying magnetic field that, during operation, is received by a fourth coil connected to the receiver resonator.
  • the sources can include a modulator configured to modulate the induced voltage to generate the information carrying magnetic field.
  • the induced voltage can correspond to an oscillating voltage signal, and the modulator can be configured to modulate at least one of an amplitude and a frequency of the oscillating voltage signal to generate the information carrying magnetic field.
  • the sources can include a conditioning circuit connected to the second coil, where during operation, the conditioning circuit is configured to at least one of rectify the induced voltage, adjust an amplitude of the induced voltage, and adjust a frequency of the induced voltage.
  • a magnitude of the induced voltage can be 1% or less (e.g., 0.01% or less) of a magnitude of a voltage induced in the receiver resonator.
  • the induced voltage may not be referenced to a ground voltage of the wireless power transmitters.
  • the sources can include a third coil positioned in proximity to the first coil, where during operation of the wireless power transmitters, the magnetic field induces a voltage across the third coil, and the induced voltage across the third coil is applied to a second component of the wireless power transmitters.
  • the second component can include at least one of a resistive element, a capacitive element, an inductive element, a switch, and a component of an impedance matching network.
  • the second component can include a transceiver or transmitter configured to generate an information carrying signal.
  • the second component can include a fourth coil configured to generate an information carrying magnetic field that, during operation, is received by a fifth coil connected to the receiver resonator.
  • Embodiments of the transmitters can also include any of the other features disclosed herein, including combinations of features disclosed in connection with different embodiments, except as expressly stated otherwise.
  • the disclosure features wireless power systems that include a power source, a first coil connected to the power source, a second coil connected in series to the first coil, a third coil positioned in proximity to the second coil, a controller connected to the third coil and configured to selectively modulate coupling between the second and third coils, a power receiving device, a receiver resonator connected to the power receiving device, and a fourth coil connected to the power receiving device and positioned in proximity to the second coil, where during operation of the wireless power transfer systems: the power source applies a driving voltage to the first and second coils; the first coil generates a first magnetic field that transfers power to the receiver resonator; the second coil generates a second magnetic field that induces voltages across the third and fourth coils; and the controller modulates the coupling between the second and third coils to adjust a magnitude of the induced voltage across the fourth coil.
  • Embodiments of the systems can include any one or more of the features disclosed herein, including combinations of features disclosed in connection with different embodiments, except as expressly stated otherwise.
  • the disclosure features methods that include applying a driving voltage across first and second coils connected in series in a wireless power transmitter to generate a first magnetic field and a second magnetic field, where the first magnetic field transfers power wirelessly to a receiver resonator, and where the second magnetic field induces a voltage across a third coil positioned in proximity to the second coil in the wireless power transmitter, and applying the induced voltage to a component of the wireless power transmitter.
  • Embodiments of the methods can include any one or more of the features disclosed herein, including combinations of features disclosed in connection with different embodiments, except as expressly stated otherwise.
  • the disclosure features methods that include applying a driving voltage across a source coil in a wireless power transmitter to generate a magnetic field to transfer power wirelessly to a receiver resonator, inducing a voltage in an auxiliary coil positioned in proximity to the source coil in the wireless power transmitter, and applying the induced voltage to a component of the wireless power transmitter.
  • Embodiments of the methods can include any one or more of the features disclosed herein, including combinations of features disclosed in connection with different embodiments, except as expressly stated otherwise.
  • FIG. 1 is a schematic diagram of a wireless power system.
  • FIG. 2 is a perspective view of a wireless power transmitting apparatus.
  • FIG. 3 is a schematic diagram of a wireless power source.
  • FIG. 4 is a schematic diagram of a flyback transformer.
  • FIG. 5 is a schematic diagram of an opto-coupler.
  • FIG. 6 is a schematic diagram of a wireless power transfer system that includes one or more auxiliary coils.
  • FIG. 7 is a schematic diagram of a wireless power transfer system that includes two auxiliary coils.
  • FIG. 8 is a schematic diagram of a wireless power transfer system that includes multiple floating auxiliary power sources.
  • FIG. 9 is a schematic diagram of a portion of a wireless power transfer system that uses an auxiliary coil to adjust a variable capacitance.
  • FIG. 10 is a schematic diagram of a portion of a wireless power transfer system that uses an auxiliary coil for wireless communication.
  • FIG. 11 is a schematic diagram of a portion of a wireless power transfer system that uses an auxiliary coil to modulate an analog communication signal.
  • FIGS. 13A-13C are schematic diagrams showing a portion of a source resonator coil in proximity to a portion of an auxiliary coil.
  • a wireless power transfer system can include a power transmitting apparatus which is configured to wirelessly transmit power to a power receiving apparatus.
  • the power transmitting apparatus can include a source coil which generates oscillating fields (e.g., electric fields, magnetic fields) due to currents oscillating within the source coil.
  • the generated oscillating fields can couple to the power receiving apparatus and provide power to the power receiving apparatus through the coupling.
  • the power receiving apparatus typically includes a receiver coil.
  • the oscillating fields generated by the source coil can induce oscillating currents within the receiver coil.
  • either or both of the source and receiver coils can be resonant.
  • either or both of the source and receiver coils can be non-resonant so that power transfer is achieved through non-resonant coupling.
  • a wireless power transfer system can utilize a source resonator to wirelessly transmit power to a receiver resonator.
  • a power transmitting apparatus of the system can include the source resonator, which has a source coil
  • a power receiving apparatus of the system can include the receiver resonator, which has a receiver coil.
  • Power can be wirelessly transferred between the source resonator and the receiver resonator.
  • the wireless power transfer can be extended by multiple source resonators and/or multiple device resonators and/or multiple intermediate (also referred as “repeater” or “repeating”) resonators.
  • FIG. 1 is a schematic diagram of a wireless power transfer system 100 .
  • System 100 includes a power transmitting apparatus 102 and a power receiving apparatus 104 .
  • Power transmitting apparatus 102 is coupled to power source 106 through a coupling 105 .
  • coupling 105 is a direct electrical connection.
  • coupling 105 is a non-contact inductive coupling.
  • coupling 105 can include an impedance matching network (not shown in FIG. 1 ). Impedance matching networks and methods for impedance matching are disclosed, for example, in commonly owned U.S. patent application Ser. No. 13/283,822, published as US Patent Application Publication No. 2012/0242225, the entire contents of which are incorporated herein by reference.
  • Coupling 107 can be a direct electrical connection or a non-contact inductive coupling.
  • coupling 107 can include an impedance matching network, as described above.
  • device 108 receives power from power receiving apparatus 104 .
  • Device 108 then uses the power to do useful work.
  • device 108 is a battery charger that charges depleted batteries (e.g., car batteries).
  • device 108 is a lighting device and uses the power to illuminate one or more light sources.
  • device 108 is an electronic device such as a communication device (e.g., a mobile telephone) or a display.
  • device 108 is a medical device which can be implanted in a patient.
  • power transmitting apparatus 102 is configured to wirelessly transmit power to power receiving apparatus 104 .
  • power transmitting apparatus 102 can include a source coil, which can generate oscillating fields (e.g., electric, magnetic fields) when electrical currents oscillate within the source resonator.
  • the generated oscillating fields can couple to power receiving apparatus 104 and provide power to the power receiving apparatus through the coupling.
  • the power receiving apparatus can include a receiver resonator.
  • the oscillating fields can induce oscillating currents within the receiver resonator.
  • the system 100 can include a power repeating apparatus (not shown in FIG. 1 ).
  • the power repeating apparatus can be configured to wirelessly receive power from the power transmitting apparatus 102 and wirelessly transmit the power to the power receiving apparatus 104 .
  • the power repeating apparatus can include similar elements described in relation to the power transmitting apparatus 102 and the power receiving apparatus 104 above.
  • System 100 can include an electronic controller 103 configured to control the power transfer in the system 100 , for example, by directing electrical currents through coils of the system 100 .
  • the electronic controller 103 can tune resonant frequencies of resonators included in the system 100 , through coupling 109 .
  • the electronic controller 103 can tune impedance matching elements in either impedance matching network.
  • the electronic controller 103 can be coupled to one or more elements of the system 100 in various configurations. For example, the electronic controller 103 can be only coupled to power source 106 .
  • the electronic controller 103 can be coupled to power source 106 and power transmitting apparatus 102 .
  • the electronic controller 103 can be only coupled to power transmitting apparatus 102 .
  • coupling 109 is a direct connection.
  • coupling 109 is a wireless communication (e.g., radio-frequency, Bluetooth communication).
  • the coupling 109 between the electronic controller 103 and the various components of system 100 can depend, respectively, on the components.
  • the electronic controller 103 can be directly connected to power source 106 while wirelessly communicating with power receiving apparatus 104 .
  • the electronic controller 103 can configure the power source 106 to provide power to the power transmitting apparatus 102 .
  • the electronic controller 103 can increase the power output of the power source 106 by sending a higher drive current to a coil in the power transmitting apparatus 102 .
  • the power output can be at an operating frequency, which is used to generate oscillating fields by the power transmitting apparatus 102 .
  • the electronic controller 103 can tune a resonant frequency of a resonator in the power transmitting apparatus 102 and/or a resonant frequency of a resonator in the power receiving apparatus 104 .
  • the efficiency of power transfer from the power source 106 to the device 108 can be controlled.
  • the electronic controller 103 can tune the resonant frequencies to be substantially the same (e.g., within 0.5%, within 1%, within 2%) to the operating frequency to increase the efficiency of power transfer.
  • the electronic controller 103 can tune the resonant frequencies by adjusting capacitance values of respective resonators.
  • the electronic controller 103 can adjust a capacitance of a capacitor connected to a coil in a resonator. The adjustment can be based on the electronic controller 103 's measurement of the resonant frequency or based on wireless communication signal from the apparatuses 102 and 104 .
  • the electronic controller 103 can tune the operating frequency to be substantially the same (e.g., within 0.5%, within 1%, within 2%) to the resonant frequencies of the resonators. In some embodiments, the electronic controller 103 can tune the operating frequency.
  • the electronic controller 103 can control an impedance matching network in the system 100 to optimize or de-tune impedance matching conditions in the system 100 , and thereby control the efficiency of power transfer.
  • the electronic controller 103 can tune capacitance of capacitors or networks of capacitors included in the impedance matching network connected between power transmitting apparatus 102 and power source 106 .
  • the optimum impedance conditions can be calculated internally by the electronic controller 103 or can be received from an external device.
  • FIG. 2 is a schematic diagram of a power transmitting apparatus 200 that includes a resonator coil 202 having a plurality of loops.
  • the resonator coil 202 can be printed on substrate 204 in the form of, for example, a printed circuit board.
  • a layer of magnetic material 206 can guide the magnetic field from one side of the resonator coil 210 .
  • the power transmitting apparatus 200 can include a shield 208 (e.g., a sheet of conductive material) positioned between coil 202 and a lossy object 210 .
  • Shield 208 which is typically formed of a conductive material (such as copper, aluminum, and/or other metallic materials), shields magnetic fields generated by coil 202 from lossy object 210 (e.g., lossy steel object).
  • the shield 208 can reduce aberrant coupling of magnetic fields to lossy object 210 by guiding magnetic field lines away from the lossy object 210 .
  • FIG. 3 is a schematic diagram of a portion of a wireless power transmitter 300 .
  • Source 300 includes a resonator coil 302 used to generate an oscillating magnetic field for wireless power transfer.
  • Coil 302 is coupled through an impedance matching network (IMN) 304 to a power source represented by terminals A and B.
  • Impedance matching network 304 includes a fixed capacitance C 1 and a variable capacitance C 2 , although an impedance matching network 304 can be implemented in a wide variety of ways.
  • Impedance matching network 304 includes a fixed capacitance C 1 and a variable capacitance C 2 , although an impedance matching network 304 can be implemented in a wide variety of ways.
  • Various aspects of impedance matching networks are disclosed, for example, in U.S. Patent Application Publication No. 2015/0270719, the entire contents of which are incorporated herein by reference.
  • the power source applies a driving voltage between terminals A and B to drive coil 302 to generate the magnetic field.
  • the power source is referenced to common ground 308 , as are the other components of source 300 .
  • the voltage at each of the terminals A and B can range from 0 (i.e., the ground voltage) to a maximum voltage V max , which can be 1 V to 50 V or more.
  • V A -V B A voltage difference V A -V B is applied across coil 302 to drive the coil and generate the magnetic field used for wireless power transfer to a receiving coil.
  • V A and V B can each range in magnitude from V max to 0 (the common ground voltage)
  • each of the other components in source 300 including the capacitors, inductors, switches, and other components of IMN 304 —should be capable of withstanding any voltage up to V max to ensure that failure does not occur during operation of source 300 .
  • source 300 is tapped at point 306 , for example, to apply a voltage to a switch, a resistive element, a capacitive element, an inductive element, or any other circuit component, that component should also be capable of withstanding any voltage up to V max to ensure failure does not occur, since that component will also be referenced to ground 308 .
  • V max in wireless power transfer systems can be high, implementing such systems with hundreds or thousands of elements, all of which are capable of withstanding high voltages, adds significant expense to the systems. Moreover, for certain components designed to operate only at low voltages, designing high voltage-capable counterparts may be quite difficult.
  • Decoupling certain components of source 300 from common ground 308 creates “floating” components, i.e., components that are not ground referenced.
  • components that are not ground referenced need only be capable of withstanding the voltage difference that is applied across their terminals, not the difference between the voltage at one terminal and a ground reference, as discussed above. Such components are said to be “isolated” from other components in the system.
  • FIG. 4 is a schematic diagram of a flyback transformer 400 that includes a primary winding 402 and a secondary winding 404 .
  • a voltage V C is applied across primary winding 402 , which is spaced from secondary winding 404 .
  • the current flowing in primary winding 402 generates a magnetic field which in turn induces a voltage V D across the terminals of secondary winding 404 .
  • V D across the terminals of secondary winding 404 is only induced when the magnetic field generated by primary winding 402 is time-varying.
  • V C is typically a DC voltage. Accordingly, to produce a time-varying magnetic field from primary winding 402 (which approximates the field that would be produced from an AC driving voltage), V C can be “chopped” using switch 408 , which alternately opens and closes to replicate a time-varying driving voltage.
  • the voltage that is thus induced across secondary coil 404 is a time-varying voltage also.
  • flyback transformers are used for DC-DC voltage conversion.
  • the induced voltage can be conditioned by voltage conditioner 406 (which can be, for example, a rectifier) to produce a DC output voltage V D , which differs from the input DC voltage V C .
  • FIG. 5 is a schematic diagram of an opto-coupler 500 that includes a radiation source 502 and a radiation receiver 504 enclosed in a housing 508 .
  • a voltage V E is applied across the terminals of source 502 , causing source 502 to emit radiation 506 .
  • the emitted radiation is detected by receiver 504 , which generates a voltage V F across its terminals.
  • V F is less than V E .
  • conventional sources 502 are not capable of generating sufficient quantities of radiation 506 such that large quantities of power can be transferred between source 502 and receiver 504 .
  • opto-couplers are best suited for isolation in circumstances where only weak signals are involved, such as in communication.
  • circuit elements that are isolated from large potentials relative to ground, the elements need only be capable of withstanding smaller voltages. As low-voltage circuit components are typically much cheaper than corresponding high-voltage components, portions of wireless power sources can be implemented at significant cost savings.
  • isolation among components are typically safer, as portions of such systems are not exposed to high voltages. Isolation is important in medical applications, for example, where a wireless power source may be located in close proximity to a human or animal patient. Isolating certain components of the source ensures that the human or animal is not exposed to potentially lethal voltages that are generated within the source.
  • isolation helps to eliminate electromagnetic interference (EMI) that can arise when energy couples back into the common ground, giving rise to ground loops.
  • EMI electromagnetic interference
  • electrical noise from the ground-coupled energy can propagate into other components of the system that are also connected to the common ground, and can particularly disrupt low power signals such as those used for communication and low amplitude measurements.
  • auxiliary coils i.e., coils that are different from one or more source resonator coils that are used to transfer power wirelessly to a receiver resonator by generating magnetic fields.
  • the systems and methods exploit the AC driving voltage that is generated within a source resonator and used to drive one or more source resonator coils, using the driving voltage to generate auxiliary magnetic fields (or capturing a small portion of the magnetic field that is generated by the source resonator coil(s)) to transfer small quantities of power wirelessly to additional components within the source.
  • the additional components are not connected through conductors to the electronics that generate the AC driving voltage, the additional components are isolated from the source's common ground. The additional components therefore are effectively driven by floating batteries or power sources, and are not subject to, or expected to withstand, the large ground-referenced voltages that are generated in the source.
  • FIG. 6 is a schematic diagram showing one embodiment of a wireless power transfer system 600 that includes one or more auxiliary coils for ground-isolation of components.
  • a housing 602 encloses the components of a source, which include a power source 604 , switching and impedance matching circuitry 606 , a source resonator coil 608 , an auxiliary coil 610 , and conditioning circuit 612 .
  • power source 604 generates an AC driving voltage that is conveyed to coil 608 through switching and impedance matching circuitry 606 .
  • Coil 608 generates a magnetic field (represented by field lines 614 ), a portion of which is captured by receiver resonator coil 616 , inducing a current within the coil.
  • Switching and impedance matching circuitry 618 (along with switching and impedance matching circuitry 606 ) is configured to ensure that power is transferred efficiently between source coil 608 and receiver coil 616 .
  • the current induced in receiver coil 616 is delivered to device 620 , where it performs useful work.
  • auxiliary coil 610 which can be positioned outside of a principal region of power transfer between source and receiver coils 608 and 616 —captures a small fraction of the magnetic field generated by source coil 608 , inducing a small voltage across auxiliary coil 610 .
  • the induced voltage is optionally conditioned by conditioning circuit 612 , before being used to drive one or more elements in switching and impedance matching circuitry 606 and/or power source 604 .
  • Conditioning can include, but is not limited to, rectification of the AC voltage induced in auxiliary coil 610 to generate a DC voltage, attenuation of the voltage induced in auxiliary coil 610 , and changing the frequency of the voltage induced in auxiliary coil 610 .
  • auxiliary coil 610 captures only a very small portion of the magnetic field that is generated by source coil 608 , and therefore the voltage generated across the terminals of auxiliary coil 610 is small relative to the driving voltage applied to source coil 608 .
  • the voltage across auxiliary coil 610 , V aux can be 1% or less of the driving voltage V src applied across source coil 608 (e.g., 0.5% or less, 0.1% or less, 0.05% or less, 0.01% or less, 0.001% or less, 0.0001% or less).
  • a single auxiliary coil is used in system 600 to function effectively as a floating voltage source. More generally, however, system 600 can include more than one auxiliary coil configured in the same manner, each of which functions as an independent, floating voltage source. In some embodiments, for example, system 600 can include 2 or more auxiliary coils (e.g., 3 or more auxiliary coils, 4 or more auxiliary coils, 5 or more auxiliary coils, 7 or more auxiliary coils, or even more).
  • auxiliary coils e.g., 3 or more auxiliary coils, 4 or more auxiliary coils, 5 or more auxiliary coils, 7 or more auxiliary coils, or even more.
  • auxiliary coil 610 can be positioned on or near the source resonator coil 608 , and the spatial location and orientation of auxiliary coil 610 relative to source resonator coil 608 can be adjusted to control the amount of flux captured by auxiliary coil 610 from source coil 608 , and the coupling between the coils.
  • auxiliary coil 610 and source coil 608 overlap in the x-y (i.e., coil) plane, but are relatively displaced in a direction perpendicular to the plane.
  • FIG. 13A is a schematic diagram showing an embodiment of a wireless power transfer system in which auxiliary coil 610 overlaps with, and is displaced vertically from, source resonator coil 608 . To indicate that coil 610 is in a different plane from coil 608 , coil 610 is shown in dashed lines.
  • FIG. 13B is a schematic diagram showing an embodiment of a wireless power transfer system in which individual loops of source coil 608 are interleaved with loops of auxiliary coil 610 .
  • Insulating material 1302 is positioned between adjacent interleaved loops.
  • auxiliary coil 610 can be positioned within source resonator coil 608 .
  • FIG. 13C is a schematic diagram of a wireless power transfer system in which auxiliary coil 610 , which is coplanar with source resonator coil 608 , is positioned within a central region of source coil 608 , surrounded by the loops of source coil 608 .
  • conditioning circuit 612 is controlled by controller 622 , which is connected to conditioning circuit 612 , power source 604 , and switching and matching circuitry 606 via one or more communication lines (shown as dashed lines in FIG. 6 ).
  • controller 622 In addition to regulating modulation (amplitude and/or frequency) and rectification by conditioning circuit 612 , controller 622 also adjusts the driving voltage and frequency generated by power source 604 , impedance adjustment by circuitry 606 , and also regulates other functions such as communication between components of the source, and between the source and device 620 .
  • auxiliary coil 610 is positioned inside housing 602 .
  • Housing 602 can be formed from or lined with a material (e.g., a conductive material) that effectively prevents stray fields other than those used for wireless power transfer from escaping.
  • a material e.g., a conductive material
  • auxiliary coil 610 can be positioned either inside housing 602 or external to housing 602 .
  • auxiliary coil 610 By positioning auxiliary coil 610 external to housing 602 , the auxiliary coil may be able to capture a larger fraction of the field generated by source coil 608 . Such a configuration can be useful for certain applications, particularly where shielding and/or containment of the magnetic field is not as significant a concern.
  • FIG. 7 is a schematic diagram of a wireless power transfer system 700 that includes a power source 704 , switching and matching circuitry 706 , source resonator coil 708 , and a controller 722 enclosed within a housing 702 .
  • source resonator coil 708 generates a magnetic field (represented by field lines 714 ) that is captured by receiver resonator coil 716 , which is coupled to switching and matching circuitry 718 .
  • the current induced in receiver resonator coil 716 is coupled to load 720 and provides electrical power for the load.
  • the foregoing components of system 700 function in a manner similar to their counterparts in system 600 .
  • System 700 includes two auxiliary coils 710 and 711 .
  • Coil 710 is connected in series with source resonator coil 708 , such that the driving voltage applied to source resonator coil 708 is also applied across auxiliary coil 710 .
  • Coil 711 is coupled to conditioning circuit 712 .
  • auxiliary coil 710 when the driving voltage is applied across source resonator coil 708 and auxiliary coil 710 , auxiliary coil 710 generates a magnetic field (represented by field lines 713 ).
  • Auxiliary coil 711 captures the field generated by coil 710 , which induces a voltage across the terminals of coil 711 .
  • Conditioning circuit 712 is configured to perform functions similar to the functions of conditioning circuit 612 , i.e., rectifying the induced voltage across coil 711 and/or modulating the amplitude and/or frequency of the induced voltage, for example.
  • the conditioned voltage then functions as an auxiliary floating power source, which is coupled to one or more elements of power source 704 and/or switching and matching circuitry 706 within the wireless power source.
  • auxiliary coils 710 and 711 can be fully enclosed within housing 702 to ensure that magnetic fields used to creating floating power sources do not perturb other components of the system (i.e., components that are not part of the wireless power source). More generally, auxiliary coils 710 and/or 711 can be positioned either interior to housing 702 or exterior to housing 702 , depending upon the particular wireless power transfer application.
  • auxiliary coils one of which is connected in series with source resonator coil 708 —to realize a floating power source internal to the wireless power source that is isolated from the wireless power source's common ground reference has certain advantages relative to one-auxiliary-coil implementations, as shown in FIG. 6 .
  • a first auxiliary coil i.e., coil 710
  • a second auxiliary coil i.e., coil 711
  • the auxiliary coil that receives the field does not have to be positioned anywhere near the magnetic field that is generated by source coil 708 for wireless power transfer.
  • auxiliary coils does not perturb the spatial field distribution (represented by magnetic field lines 714 ) used for wireless power transfer, and the auxiliary coil that receives the magnetic field does not capture too large a fraction (or even any fraction) of the wireless power transfer field.
  • the use of two auxiliary coils allows for greater flexibility in the layout and design of wireless power transfer systems; pairs of auxiliary coils can be positioned at nearly any desired location within the wireless power source to realize a floating auxiliary power source.
  • auxiliary coil 710 can be positioned in series with source coil 708 on either side of source coil 708 (i.e., in terms of current flow, either upstream or downstream relative to source coil 708 ). Further, while a single pair of auxiliary coils are used to implement a single auxiliary floating power source in FIG. 7 , more generally a wireless power source can include multiple pairs of auxiliary coils, each of which is used to implement an independent auxiliary floating power source.
  • FIG. 8 is a schematic diagram showing a portion of a wireless power system 800 that is similar to system 700 of FIG. 7 , but includes multiple floating auxiliary power sources. More specifically, in system 800 , a source resonator coil 808 is connected at points A and B to switching and matching circuitry and a power source (not shown in FIG. 8 ), and during operation, generates a magnetic field 814 for wireless power transfer to a receiving resonator. Connected in series with source coil 808 are three auxiliary coils 810 a , 810 b , and 810 c , which generate magnetic fields 813 a , 813 b , and 813 c , respectively, when the driving voltage is applied across terminals A and B.
  • auxiliary coils 810 a , 810 b , and 810 c Connected in series with source coil 808 are three auxiliary coils 810 a , 810 b , and 810 c , which generate magnetic fields 813 a , 813
  • Fields 813 a - c are captured by auxiliary coils 811 a , 811 b , and 811 c , respectively, inducing voltages across each of coils 811 a - c .
  • the induced voltages are conditioned, respectively, by conditioning circuits 812 a , 812 b , and 812 c .
  • auxiliary coils 810 a - c and 811 a - c yield three floating, independent auxiliary voltage sources V a , V b , and V c , each of which can be connected to one or more components within the wireless power source to drive the components and/or perform other useful work.
  • auxiliary floating power sources can be included in a wireless power source.
  • a wireless power source can include two or more auxiliary floating power sources (e.g., three or more sources, four or more sources, five or more sources, or even more sources).
  • Each of the multiple sources can be implemented using a single auxiliary coil, as discussed above in connection with FIG. 6 , or using two auxiliary coils, as discussed in connection with FIGS. 7 and 8 .
  • these implementations can be mixed: one or more auxiliary floating power sources can be implemented using a single auxiliary coil, and one or more auxiliary floating power sources can be implemented using pairs of auxiliary coils.
  • the area and strength of the magnetic field generated by source resonator 808 are considerations in determining the number of auxiliary power sources that are implemented.
  • auxiliary floating power sources are implemented using a single auxiliary coil or a pair of auxiliary coils
  • the sizes of the coils determine the magnitudes of the voltages of each auxiliary source.
  • the sizes of the coils are chosen such that perturbations of the wireless power transfer process between the source coil and the receiver resonator are relatively insignificant, and so that the voltage of each floating source is nonetheless sufficient for its intended purpose.
  • the sources are independent and therefore can have the same or different output voltages.
  • V a , V b , and V c can be the same, any two of these can be the same, or they can each be different voltages.
  • each of the auxiliary sources is coupled to one or more low voltage components within the wireless power source and is used to drive the coupled components. Because the auxiliary sources are decoupled from the wireless power source's common ground, the components to which they are coupled are not subjected to the large, ground-referenced voltages that are generated by the wireless power source's electronics. To the contrary, the components to which the auxiliary sources are coupled are subjected only to the much lower floating voltages (i.e., V a , V b , and V c in system 800 ), and are therefore significantly cheaper to implement than their corresponding high voltage counterparts would be.
  • V a , V b , and V c in system 800 the much lower floating voltages
  • Floating auxiliary power sources can generally be used for functions that fall within one of two categories in a wireless power source: power-related functions and communication-related functions.
  • Power-related functions include driving adjustable components such as inductors, capacitors, resistors, switches, detectors, and other electronic devices.
  • FIG. 9 illustrates an example of such an application.
  • the output voltage V a from a floating auxiliary source (such as the corresponding source shown in FIG. 8 ) is connected across switch S 1 , which is connected in series with capacitance C 2 of an adjustable capacitor.
  • the adjustable capacitor also includes a fixed capacitance C 1 . When voltage V a is applied across switch S 1 , the switch closes, coupling C 2 into the circuit.
  • the auxiliary floating source can be used to implement an adjustable capacitor (e.g., in an impedance matching circuit) by selectively closing or opening S 1 to switch C 2 in or out of the total capacitance.
  • auxiliary floating power sources are also well suited for communications-related applications. Such applications can include communications between components internal to the wireless power source, and communications between the wireless power source and the wireless power receiver that receives wirelessly transmitted power.
  • communications-related applications can include communications between components internal to the wireless power source, and communications between the wireless power source and the wireless power receiver that receives wirelessly transmitted power.
  • a variety of different types of communications systems can be implemented.
  • an auxiliary floating power source can be used to drive a transmitter located in a wireless power source to generate a communications signal that is received by the receiver connected to the receiving resonator.
  • FIG. 10 is a schematic diagram showing a portion of a wireless power transfer system 1000 , including a controller 1022 connected to a transceiver 1030 in a wireless power source, and a transceiver 1040 connected to a load 1020 that receives power from the wireless power source.
  • a voltage V a is applied to transceiver 1030 , which also receives an information signal from controller 1022 .
  • Transceiver 1030 energized by voltage V a , generates a communications signal 1035 that carries the information from controller 1022 .
  • the communications signal is received by transceiver 1040 and delivered to device 1020 , and the information encoded in the signal is extracted.
  • Communications signals that correspond to a wide variety of different protocols and implementations can be transmitted in the foregoing manner, including Bluetooth® signals, wireless 802.11a/b/g/n signals, IrDA signals, and signals corresponding to other open and/or proprietary specifications.
  • wireless power transfer system 1000 includes transceivers 1030 and 1040 .
  • transceivers are devices that both transmit and receive communication signals.
  • the system shown in FIG. 10 as well as the other systems disclosed herein, are not limited to the use of transceivers and/or two-way communication.
  • any of the transceivers disclosed in connection with embodiments herein can be replaced with a transmitter or a receiver alone, or separate transmitters and receivers, for purposes of one-way communication.
  • the term “transceiver” should be understood to include functional devices that can transmit only, receive only, or both transmit and receive communication signals.
  • FIG. 11 is a schematic diagram showing a portion of a wireless power transfer system 1100 that includes a source resonator coil 1102 in a wireless power source and a receiving resonator coil 1104 connected to a load 1120 that receives power wirelessly from the wireless power source.
  • voltage V a generated by a floating auxiliary source is applied to a modulator 1106 .
  • Voltage V a typically corresponds to an oscillating AC voltage signal at a frequency corresponding approximately to the frequency of the voltage applied to the source resonator coil in the wireless power source to generate the power transmitting magnetic field.
  • Modulator 1106 modulates voltage signal V a to encode information into the voltage signal.
  • modulator 1106 generates an amplitude modulated voltage signal, where the information is encoded as variations in an amplitude envelope function that modulates the underlying sinusoidal AC voltage signal V a .
  • modulator 1106 generates a frequency modulated voltage signal, where the information is encoded as variations in the nominal frequency of the oscillating AC voltage signal V a .
  • Modulator 1106 can also implement other modulation or encoding schemes as well.
  • the modulated voltage signal is then delivered to source resonator coil 1102 , where it generates a magnetic field that is modulated in a manner that corresponds to the modulation of the voltage signal.
  • the modulated magnetic field is captured by receiving resonator coil 1104 , and induces a voltage signal across the receiving resonator coil that is modulated in the same manner as V a .
  • Load 1120 (or circuits connected to load 1120 ) demodulates the induced voltage signal to extract the information encoded in it.
  • FIG. 12 is a schematic diagram showing a portion of a wireless power transfer system 1200 .
  • a source resonator coil 1208 and an auxiliary coil 1210 are connected in series.
  • source resonator coil 1208 When a driving voltage is applied across terminal points A and B, source resonator coil 1208 generates a magnetic field that transfers power to a receiver resonator (not shown in FIG. 12 ), and auxiliary coil 1210 generates an auxiliary magnetic field 1215 .
  • System 1200 includes two additional auxiliary coils 1211 and 1221 .
  • Auxiliary coil 1211 is a component of the wireless power source, and auxiliary coil 1221 is connected to a device 1220 that receives power from the wireless power source.
  • Auxiliary coil 1211 is connected in series with a switch S v , which is controlled by controller 1222 .
  • Auxiliary coils 1211 and 1221 are positioned so that each coil captures a portion of magnetic field 1215 . Accordingly, voltages are induced across each of coils 1211 and 1221 when coil 1210 generates field 1215 .
  • both auxiliary coils 1211 and 1221 couple to coil 1210 through the same magnetic field 1215 , a change in the coupling between coils 1211 and 1210 changes the coupling between coils 1221 and 1210 , and vice versa.
  • the coupling between auxiliary coils 1210 and 1221 and therefore the voltage induced across auxiliary coil 1221 —can be changed by adjusting the coupling between coils 1210 and 1211 .
  • System 1200 exploits this property by using switch S v to adjust the coupling between coils 1210 and 1211 .
  • controller 1222 closes switch S v , coil 1211 is connected or shorted within the wireless power source.
  • Power is transferred from coil 1210 to coil 1211 , and power transfer between coils 1210 and 1221 is therefore reduced or otherwise modulated.
  • controller 1222 opens switch S v thereby decoupling or open-circuiting coil 1211 within the wireless power source, power transfer between coils 1210 and 1211 is reduced, and power transfer between coils 1210 and 1221 is increased or otherwise modulated.
  • Device 1220 connected to auxiliary coil 1221 senses the changes in induced voltage across coil 1221 as switch S v is opened and closed.
  • controller 1222 can implement a digital (or bitwise) communication protocol that transmits information to device 1220 by opening and closing switch S v to alternately switch coil 1221 between high and low voltage states.
  • controller 1222 does not directly generate a communication signal that is broadcast. Instead, controller 1222 —through auxiliary coil 1211 —effectively functions as a digital modulator that perturbs power transfer between two different coils (i.e., coils 1210 and 1221 ).
  • This method for generating an “on/off” signal can also be used to switch devices such as power supplies on and off.
  • signals corresponding to high and low voltage states can be used to activate and de-activate, respectively, device 1220 .
  • Device 1220 can correspond to a power supply or to any one or more of various switchable electronic devices.
  • FIG. 12 shows communication of information from a wireless power source to a receiving device by modulating power transfer between an auxiliary coil connected in series with a source resonator coil and an auxiliary coil connected to the receiving device. Similar methods can be used to generate a digital communication signal that is received by auxiliary coil 1211 and controller 1222 , i.e., coil 1221 can be alternately connected and disconnected by closing and opening a switch connected in series with coil 1221 by device 1220 , thereby modulating coupling and the induced voltage across coil 1211 between high and low voltage states.
  • coils 1211 and 1221 can be used both to effectively “transmit” and “receive” signals by interleaving these functions in time. For example, for a first period of time, coil 1211 can be alternately coupled and decoupled by controller 1222 to induce voltage changes across coil 1221 , thereby communicating information to device 1220 . Then, for a second period of time, coil 1221 can be alternately coupled and decoupled by device 1220 to induce voltage changes across coil 1211 , thereby communicating information to the wireless power source. The alternating of functionalities defines a duty cycle for coils 1211 and 1221 that enables two-way communication.
  • system 1200 includes additional auxiliary coils to enable simultaneous two-way communication.
  • system 1200 can include a second auxiliary coil connected in series with source coil 1208 that generates a second auxiliary magnetic field, analogous to field 1215 .
  • Two additional auxiliary coils one implemented as part of the wireless power source and the other connected to device 1220 , are positioned so that each captures a portion of the second auxiliary magnetic field, analogous to auxiliary coils 1211 and 1221 .
  • the generation of two magnetic fields by two different auxiliary coils connected in series with source resonator coil 1208 allows the wireless power source to transmit information to, and receive information from, device 1220 at the same time.
  • one of the auxiliary magnetic fields can be used to induce an information-carrying voltage signal that is received by device 1220
  • the other auxiliary magnetic field can be used to induce an information-carrying voltage signal that is received by the wireless power source, as disclosed above.
  • digitally encoded information can be transmitted bi-directionally between the wireless power source and device 1220 .
  • auxiliary coils can be used to isolate sensitive analog circuitry from noisy power ground connections, thereby ensuring that such circuitry operates at high sensitivity.
  • Auxiliary coils can also be used to implement feedback systems in which power from one or more auxiliary coils is used to adjust coupling to provide a regulated source (i.e., perform auxiliary coil-mediated voltage regulation).

Abstract

The disclosure features wireless power transmitters that include a power source, a first coil connected to the power source, a second coil connected in series to the first coil, and a third coil positioned in proximity to the second coil, where during operation of the wireless power transmitters, the power source applies a driving voltage to the first and second coils, the first coil generates a first magnetic field that transfers power to a receiver resonator, the second coil generates a second magnetic field that induces a voltage across the third coil, and the induced voltage across the third coil is applied to a component of the wireless power transmitters.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a divisional of and claims priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 15/356,798, filed on Nov. 21, 2016, which claims priority to U.S. Provisional Patent Application No. 62/258,144, filed on Nov. 20, 2015. The contents of the above-referenced priority applications are incorporated herein by reference in their entirety.
  • TECHNICAL FIELD
  • This disclosure relates to wireless power transfer systems, and in particular, to isolating voltage sources from reference ground in such systems.
  • BACKGROUND
  • Energy can be transferred from a power source to a receiving device using a variety of known techniques such as radiative (far-field) techniques. For example, radiative techniques using low-directionality antennas can transfer a small portion of the supplied radiated power, namely, that portion in the direction of, and overlapping with, the receiving device used for pick up. In such methods, much—even most—of the energy is radiated away in directions other than the direction of the receiving device, and typically the transferred energy is insufficient to power or charge the receiving device. In another example of radiative techniques, directional antennas are used to confine and preferentially direct the radiated energy towards the receiving device. In this case, an uninterruptible line-of-sight and potentially complicated tracking and steering mechanisms are used.
  • Another approach to energy transfer is to use non-radiative (near-field) techniques. For example, techniques known as traditional induction schemes do not (intentionally) radiate power, but use an oscillating current passing through a primary coil, to generate an oscillating magnetic near-field that induces currents in a nearby receiving or secondary coil. Traditional induction schemes can transfer modest to large amounts of power over very short distances. In these schemes, the offset tolerances between the power source and the receiving device are very small. Electric transformers and proximity chargers, for example, typically use traditional induction schemes.
  • Wireless power transfer systems can be used to transfer significant quantities of power between a source resonator and a receiving resonator. To generate a large amplitude magnetic field using a magnetic source resonator, one or more source resonator coils are typically driven with a large amplitude AC voltage that is referenced to a common ground in the source.
  • SUMMARY
  • With components referenced in a common ground in a wireless power transmitter, the components in the source each should be capable of withstanding the large AC voltage that is applied to the resonator coil(s). For example, switches that are used in capacitor banks as part of impedance matching networks, components that are used for communication, and other circuit elements that are used to generate low power driving voltages, to detect low power signals, and/or to switch or adjust other elements, should all be capable of withstanding the large AC driving voltages. Components that can withstand such voltages are expensive and can therefore significantly increase the cost of wireless power transfer systems.
  • An alternative to common ground-referenced components would be to implement floating sources, switches, and other elements that are not referenced to the common wireless source ground. However, transformers that are typically used to implement floating elements are themselves expensive and bulky, and therefore also increase the cost and size of wireless power transfer systems.
  • Disclosed herein are systems and methods for wireless power transfer that implement floating components (e.g., voltage sources, switches, detectors, communication transmitters and receivers) by taking advantage of the large AC voltages that are used to drive source resonator coils. The systems include one or more auxiliary coils that transmit and/or receive small quantities of power, which can then be conditioned and used for a variety of applications. In effect, the auxiliary coils can be used to construct one or more floating “batteries” within a wireless power source. The floating batteries are then available for a wide variety of uses within the source.
  • In general, in a first aspect, the disclosure features wireless power transmitters that include a power source, a first coil connected to the power source, a second coil connected in series to the first coil, and a third coil positioned in proximity to the second coil, where during operation of the wireless power transmitter: the power source applies a driving voltage to the first and second coils; the first coil generates a first magnetic field that transfers power to a receiver resonator; the second coil generates a second magnetic field that induces a voltage across the third coil; and the induced voltage across the third coil is applied to a component of the wireless power transmitter.
  • Embodiments of the transmitters can include any one or more of the following features.
  • Each of the first, second, and third coils can include one or more loops of conductive material. The sources can include a housing that encloses the power source and the first, second, and third coils.
  • The component can include at least one of a resistive element, a capacitive element, and an inductive element of the wireless power transmitters. The component can include a switch of the wireless power transmitters. The component can include a component of an impedance matching network of the wireless power transmitters, e.g., an adjustable capacitor of the impedance matching network. The component can include a transceiver or transmitter configured to generate an information carrying signal.
  • The component can include a fourth coil configured to generate an information carrying magnetic field that, during operation, is received by a fifth coil connected to the receiver resonator. The sources can include a modulator configured to modulate the induced voltage to generate the information carrying magnetic field. The induced voltage can correspond to an oscillating voltage signal, and the modulator can be configured to modulate at least one of an amplitude and a frequency of the oscillating voltage signal to generate the information carrying magnetic field.
  • The sources can include a conditioning circuit connected to the third coil, where during operation, the conditioning circuit can be configured to at least one of rectify the induced voltage, adjust an amplitude of the induced voltage, and adjust a frequency of the induced voltage.
  • A magnitude of the induced voltage can be 1% or less (e.g., 0.01% or less) of a magnitude of a voltage induced in the receiver resonator. The induced voltage may not be referenced to a ground voltage of the wireless power transmitter.
  • The transmitters can include a fourth coil connected in series to the first and second coils, and a fifth coil positioned in proximity to the fourth coil, where during operation of the wireless power transmitters: the power source applies the driving voltage to the first, second, and fourth coils; the fourth coil generates a third magnetic field that induces a voltage across the fifth coil; and the induced voltage across the fifth coil is applied to a second component of the wireless power transmitters. The second component can include at least one of a resistive element, a capacitive element, an inductive element, a switch, and a component of an impedance matching network. The second component can include a transceiver configured to generate an information carrying signal. The second component can include a sixth coil configured to generate an information carrying magnetic field that, during operation, is received by a seventh coil connected to the receiver resonator.
  • Embodiments of the transmitters can also include any of the other features disclosed herein, including combinations of features disclosed in connection with different embodiments, except as expressly stated otherwise.
  • In another aspect, the disclosure features wireless power transmitters that include a power source, a first coil connected to the power source, and a second coil positioned in proximity to the first coil, where during operation of the wireless power transmitters: the power source applies a driving voltage to the first coil; the first coil generates a magnetic field that transfers power to a receiver resonator; the magnetic field induces a voltage across the second coil; and the induced voltage across the second coil is applied to a component of the wireless power transmitters.
  • Embodiments of the transmitters can include any one or more of the following features.
  • Each of the first and second coils can include one or more loops of conductive material. The transmitters can include a housing that encloses the power source and the first and second coils.
  • The component can include at least one of a resistive element, a capacitive element, and an inductive element of the wireless power transmitters. The component can include a switch of the wireless power transmitters. The component can include a component of an impedance matching network of the wireless power transmitters. The component can include an adjustable capacitor of the impedance matching network. The component can include a transceiver or transmitter configured to generate an information carrying signal.
  • The component can include a third coil configured to generate an information carrying magnetic field that, during operation, is received by a fourth coil connected to the receiver resonator. The sources can include a modulator configured to modulate the induced voltage to generate the information carrying magnetic field. The induced voltage can correspond to an oscillating voltage signal, and the modulator can be configured to modulate at least one of an amplitude and a frequency of the oscillating voltage signal to generate the information carrying magnetic field.
  • The sources can include a conditioning circuit connected to the second coil, where during operation, the conditioning circuit is configured to at least one of rectify the induced voltage, adjust an amplitude of the induced voltage, and adjust a frequency of the induced voltage.
  • A magnitude of the induced voltage can be 1% or less (e.g., 0.01% or less) of a magnitude of a voltage induced in the receiver resonator. The induced voltage may not be referenced to a ground voltage of the wireless power transmitters.
  • The sources can include a third coil positioned in proximity to the first coil, where during operation of the wireless power transmitters, the magnetic field induces a voltage across the third coil, and the induced voltage across the third coil is applied to a second component of the wireless power transmitters. The second component can include at least one of a resistive element, a capacitive element, an inductive element, a switch, and a component of an impedance matching network. The second component can include a transceiver or transmitter configured to generate an information carrying signal. The second component can include a fourth coil configured to generate an information carrying magnetic field that, during operation, is received by a fifth coil connected to the receiver resonator.
  • Embodiments of the transmitters can also include any of the other features disclosed herein, including combinations of features disclosed in connection with different embodiments, except as expressly stated otherwise.
  • In a further aspect, the disclosure features wireless power systems that include a power source, a first coil connected to the power source, a second coil connected in series to the first coil, a third coil positioned in proximity to the second coil, a controller connected to the third coil and configured to selectively modulate coupling between the second and third coils, a power receiving device, a receiver resonator connected to the power receiving device, and a fourth coil connected to the power receiving device and positioned in proximity to the second coil, where during operation of the wireless power transfer systems: the power source applies a driving voltage to the first and second coils; the first coil generates a first magnetic field that transfers power to the receiver resonator; the second coil generates a second magnetic field that induces voltages across the third and fourth coils; and the controller modulates the coupling between the second and third coils to adjust a magnitude of the induced voltage across the fourth coil.
  • Embodiments of the systems can include any one or more of the features disclosed herein, including combinations of features disclosed in connection with different embodiments, except as expressly stated otherwise.
  • In another aspect, the disclosure features methods that include applying a driving voltage across first and second coils connected in series in a wireless power transmitter to generate a first magnetic field and a second magnetic field, where the first magnetic field transfers power wirelessly to a receiver resonator, and where the second magnetic field induces a voltage across a third coil positioned in proximity to the second coil in the wireless power transmitter, and applying the induced voltage to a component of the wireless power transmitter.
  • Embodiments of the methods can include any one or more of the features disclosed herein, including combinations of features disclosed in connection with different embodiments, except as expressly stated otherwise.
  • In a further aspect, the disclosure features methods that include applying a driving voltage across a source coil in a wireless power transmitter to generate a magnetic field to transfer power wirelessly to a receiver resonator, inducing a voltage in an auxiliary coil positioned in proximity to the source coil in the wireless power transmitter, and applying the induced voltage to a component of the wireless power transmitter.
  • Embodiments of the methods can include any one or more of the features disclosed herein, including combinations of features disclosed in connection with different embodiments, except as expressly stated otherwise.
  • Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the subject matter herein, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.
  • The details of one or more embodiments are set forth in the accompanying drawings and the description below. Other features and advantages will be apparent from the description, drawings, and claims.
  • DESCRIPTION OF DRAWINGS
  • FIG. 1 is a schematic diagram of a wireless power system.
  • FIG. 2 is a perspective view of a wireless power transmitting apparatus.
  • FIG. 3 is a schematic diagram of a wireless power source.
  • FIG. 4 is a schematic diagram of a flyback transformer.
  • FIG. 5 is a schematic diagram of an opto-coupler.
  • FIG. 6 is a schematic diagram of a wireless power transfer system that includes one or more auxiliary coils.
  • FIG. 7 is a schematic diagram of a wireless power transfer system that includes two auxiliary coils.
  • FIG. 8 is a schematic diagram of a wireless power transfer system that includes multiple floating auxiliary power sources.
  • FIG. 9 is a schematic diagram of a portion of a wireless power transfer system that uses an auxiliary coil to adjust a variable capacitance.
  • FIG. 10 is a schematic diagram of a portion of a wireless power transfer system that uses an auxiliary coil for wireless communication.
  • FIG. 11 is a schematic diagram of a portion of a wireless power transfer system that uses an auxiliary coil to modulate an analog communication signal.
  • FIG. 12 is a schematic diagram of a portion of a wireless power transfer system that uses an auxiliary coil to generate a digital signal.
  • FIGS. 13A-13C are schematic diagrams showing a portion of a source resonator coil in proximity to a portion of an auxiliary coil.
  • Like reference symbols in the various drawings indicate like elements.
  • DETAILED DESCRIPTION Introduction
  • A wireless power transfer system can include a power transmitting apparatus which is configured to wirelessly transmit power to a power receiving apparatus. In some embodiments, the power transmitting apparatus can include a source coil which generates oscillating fields (e.g., electric fields, magnetic fields) due to currents oscillating within the source coil. The generated oscillating fields can couple to the power receiving apparatus and provide power to the power receiving apparatus through the coupling. To achieve coupling, the power receiving apparatus typically includes a receiver coil. The oscillating fields generated by the source coil can induce oscillating currents within the receiver coil. In some embodiments, either or both of the source and receiver coils can be resonant. In some other embodiments, either or both of the source and receiver coils can be non-resonant so that power transfer is achieved through non-resonant coupling.
  • In some embodiments, a wireless power transfer system can utilize a source resonator to wirelessly transmit power to a receiver resonator. For example, a power transmitting apparatus of the system can include the source resonator, which has a source coil, and a power receiving apparatus of the system can include the receiver resonator, which has a receiver coil. Power can be wirelessly transferred between the source resonator and the receiver resonator. In certain embodiments, the wireless power transfer can be extended by multiple source resonators and/or multiple device resonators and/or multiple intermediate (also referred as “repeater” or “repeating”) resonators.
  • FIG. 1 is a schematic diagram of a wireless power transfer system 100. System 100 includes a power transmitting apparatus 102 and a power receiving apparatus 104. Power transmitting apparatus 102 is coupled to power source 106 through a coupling 105. In some embodiments, coupling 105 is a direct electrical connection. In certain embodiments, coupling 105 is a non-contact inductive coupling. In some embodiments, coupling 105 can include an impedance matching network (not shown in FIG. 1). Impedance matching networks and methods for impedance matching are disclosed, for example, in commonly owned U.S. patent application Ser. No. 13/283,822, published as US Patent Application Publication No. 2012/0242225, the entire contents of which are incorporated herein by reference.
  • In similar fashion, power receiving apparatus 104 is coupled to a device 108 through a coupling 107. Coupling 107 can be a direct electrical connection or a non-contact inductive coupling. In some embodiments, coupling 107 can include an impedance matching network, as described above.
  • In general, device 108 receives power from power receiving apparatus 104. Device 108 then uses the power to do useful work. In some embodiments, for example, device 108 is a battery charger that charges depleted batteries (e.g., car batteries). In certain embodiments, device 108 is a lighting device and uses the power to illuminate one or more light sources. In some embodiments, device 108 is an electronic device such as a communication device (e.g., a mobile telephone) or a display. In some embodiments, device 108 is a medical device which can be implanted in a patient.
  • During operation, power transmitting apparatus 102 is configured to wirelessly transmit power to power receiving apparatus 104. In some embodiments, power transmitting apparatus 102 can include a source coil, which can generate oscillating fields (e.g., electric, magnetic fields) when electrical currents oscillate within the source resonator. The generated oscillating fields can couple to power receiving apparatus 104 and provide power to the power receiving apparatus through the coupling. To achieve coupling between power transmitting apparatus 102 and power receiving apparatus 104, the power receiving apparatus can include a receiver resonator. The oscillating fields can induce oscillating currents within the receiver resonator.
  • In certain embodiments, the system 100 can include a power repeating apparatus (not shown in FIG. 1). The power repeating apparatus can be configured to wirelessly receive power from the power transmitting apparatus 102 and wirelessly transmit the power to the power receiving apparatus 104. The power repeating apparatus can include similar elements described in relation to the power transmitting apparatus 102 and the power receiving apparatus 104 above.
  • System 100 can include an electronic controller 103 configured to control the power transfer in the system 100, for example, by directing electrical currents through coils of the system 100. In some embodiments, the electronic controller 103 can tune resonant frequencies of resonators included in the system 100, through coupling 109. In some embodiments, the electronic controller 103 can tune impedance matching elements in either impedance matching network. The electronic controller 103 can be coupled to one or more elements of the system 100 in various configurations. For example, the electronic controller 103 can be only coupled to power source 106. The electronic controller 103 can be coupled to power source 106 and power transmitting apparatus 102. The electronic controller 103 can be only coupled to power transmitting apparatus 102. In some embodiments, coupling 109 is a direct connection. In certain embodiments, coupling 109 is a wireless communication (e.g., radio-frequency, Bluetooth communication). The coupling 109 between the electronic controller 103 and the various components of system 100 can depend, respectively, on the components. For example, the electronic controller 103 can be directly connected to power source 106 while wirelessly communicating with power receiving apparatus 104.
  • In some embodiments, the electronic controller 103 can configure the power source 106 to provide power to the power transmitting apparatus 102. For example, the electronic controller 103 can increase the power output of the power source 106 by sending a higher drive current to a coil in the power transmitting apparatus 102. The power output can be at an operating frequency, which is used to generate oscillating fields by the power transmitting apparatus 102.
  • In certain embodiments, the electronic controller 103 can tune a resonant frequency of a resonator in the power transmitting apparatus 102 and/or a resonant frequency of a resonator in the power receiving apparatus 104. By tuning resonant frequencies of resonators relative to the operating frequency of the power output of the power source 106, the efficiency of power transfer from the power source 106 to the device 108 can be controlled. For example, the electronic controller 103 can tune the resonant frequencies to be substantially the same (e.g., within 0.5%, within 1%, within 2%) to the operating frequency to increase the efficiency of power transfer. The electronic controller 103 can tune the resonant frequencies by adjusting capacitance values of respective resonators. To achieve this, for example, the electronic controller 103 can adjust a capacitance of a capacitor connected to a coil in a resonator. The adjustment can be based on the electronic controller 103's measurement of the resonant frequency or based on wireless communication signal from the apparatuses 102 and 104. In certain embodiments, the electronic controller 103 can tune the operating frequency to be substantially the same (e.g., within 0.5%, within 1%, within 2%) to the resonant frequencies of the resonators. In some embodiments, the electronic controller 103 can tune the operating frequency.
  • In some embodiments, the electronic controller 103 can control an impedance matching network in the system 100 to optimize or de-tune impedance matching conditions in the system 100, and thereby control the efficiency of power transfer. For example, the electronic controller 103 can tune capacitance of capacitors or networks of capacitors included in the impedance matching network connected between power transmitting apparatus 102 and power source 106.
  • The optimum impedance conditions can be calculated internally by the electronic controller 103 or can be received from an external device.
  • FIG. 2 is a schematic diagram of a power transmitting apparatus 200 that includes a resonator coil 202 having a plurality of loops. The resonator coil 202 can be printed on substrate 204 in the form of, for example, a printed circuit board. In some embodiments, a layer of magnetic material 206 can guide the magnetic field from one side of the resonator coil 210. In certain embodiments, the power transmitting apparatus 200 can include a shield 208 (e.g., a sheet of conductive material) positioned between coil 202 and a lossy object 210. Shield 208, which is typically formed of a conductive material (such as copper, aluminum, and/or other metallic materials), shields magnetic fields generated by coil 202 from lossy object 210 (e.g., lossy steel object). For example, the shield 208 can reduce aberrant coupling of magnetic fields to lossy object 210 by guiding magnetic field lines away from the lossy object 210.
  • FIG. 3 is a schematic diagram of a portion of a wireless power transmitter 300. Source 300 includes a resonator coil 302 used to generate an oscillating magnetic field for wireless power transfer. Coil 302 is coupled through an impedance matching network (IMN) 304 to a power source represented by terminals A and B. Impedance matching network 304 includes a fixed capacitance C1 and a variable capacitance C2, although an impedance matching network 304 can be implemented in a wide variety of ways. Various aspects of impedance matching networks are disclosed, for example, in U.S. Patent Application Publication No. 2015/0270719, the entire contents of which are incorporated herein by reference.
  • The power source applies a driving voltage between terminals A and B to drive coil 302 to generate the magnetic field. The power source is referenced to common ground 308, as are the other components of source 300. During operation, the voltage at each of the terminals A and B can range from 0 (i.e., the ground voltage) to a maximum voltage Vmax, which can be 1 V to 50 V or more.
  • A voltage difference VA-VB is applied across coil 302 to drive the coil and generate the magnetic field used for wireless power transfer to a receiving coil. However, because VA and VB can each range in magnitude from Vmax to 0 (the common ground voltage), each of the other components in source 300—including the capacitors, inductors, switches, and other components of IMN 304—should be capable of withstanding any voltage up to Vmax to ensure that failure does not occur during operation of source 300. If source 300 is tapped at point 306, for example, to apply a voltage to a switch, a resistive element, a capacitive element, an inductive element, or any other circuit component, that component should also be capable of withstanding any voltage up to Vmax to ensure failure does not occur, since that component will also be referenced to ground 308.
  • Since Vmax in wireless power transfer systems can be high, implementing such systems with hundreds or thousands of elements, all of which are capable of withstanding high voltages, adds significant expense to the systems. Moreover, for certain components designed to operate only at low voltages, designing high voltage-capable counterparts may be quite difficult.
  • Decoupling certain components of source 300 from common ground 308 creates “floating” components, i.e., components that are not ground referenced. During operation, components that are not ground referenced need only be capable of withstanding the voltage difference that is applied across their terminals, not the difference between the voltage at one terminal and a ground reference, as discussed above. Such components are said to be “isolated” from other components in the system.
  • In general electrical circuits, isolation can conventionally be performed using DC-DC flyback transformers. FIG. 4 is a schematic diagram of a flyback transformer 400 that includes a primary winding 402 and a secondary winding 404. During operation, a voltage VC is applied across primary winding 402, which is spaced from secondary winding 404. The current flowing in primary winding 402 generates a magnetic field which in turn induces a voltage VD across the terminals of secondary winding 404.
  • In general, voltage VD across the terminals of secondary winding 404 is only induced when the magnetic field generated by primary winding 402 is time-varying. However, VC is typically a DC voltage. Accordingly, to produce a time-varying magnetic field from primary winding 402 (which approximates the field that would be produced from an AC driving voltage), VC can be “chopped” using switch 408, which alternately opens and closes to replicate a time-varying driving voltage.
  • The voltage that is thus induced across secondary coil 404 is a time-varying voltage also. Typically, however, flyback transformers are used for DC-DC voltage conversion. Accordingly, the induced voltage can be conditioned by voltage conditioner 406 (which can be, for example, a rectifier) to produce a DC output voltage VD, which differs from the input DC voltage VC.
  • Isolation can also be achieved using opto-couplers, particularly for low power signals such as those used for communication. FIG. 5 is a schematic diagram of an opto-coupler 500 that includes a radiation source 502 and a radiation receiver 504 enclosed in a housing 508. During operation, a voltage VE is applied across the terminals of source 502, causing source 502 to emit radiation 506. The emitted radiation is detected by receiver 504, which generates a voltage VF across its terminals. As the conversions from electrical energy to radiation and then from radiation back to electrical energy are lossy processes, VF is less than VE. Moreover, conventional sources 502 are not capable of generating sufficient quantities of radiation 506 such that large quantities of power can be transferred between source 502 and receiver 504. As a result, opto-couplers are best suited for isolation in circumstances where only weak signals are involved, such as in communication.
  • Isolation with Auxiliary Coils
  • The benefits of achieving isolation of circuit elements are significant. For circuit elements that are isolated from large potentials relative to ground, the elements need only be capable of withstanding smaller voltages. As low-voltage circuit components are typically much cheaper than corresponding high-voltage components, portions of wireless power sources can be implemented at significant cost savings.
  • In addition, systems that implement isolation among components are typically safer, as portions of such systems are not exposed to high voltages. Isolation is important in medical applications, for example, where a wireless power source may be located in close proximity to a human or animal patient. Isolating certain components of the source ensures that the human or animal is not exposed to potentially lethal voltages that are generated within the source.
  • Further, isolation helps to eliminate electromagnetic interference (EMI) that can arise when energy couples back into the common ground, giving rise to ground loops. When this occurs, electrical noise from the ground-coupled energy can propagate into other components of the system that are also connected to the common ground, and can particularly disrupt low power signals such as those used for communication and low amplitude measurements.
  • But while these advantages of isolation in wireless power transfer systems are significant, the use of conventional isolation technologies in such systems is difficult, and obviates some of the advantages. Transformers that operate at high voltages are large and expensive, and inclusion of such devices in wireless power source can both increase the physical size of the source and increase the cost of the source. If multiple groups of isolated components are desired, multiple transformers may be required, further emphasizing these drawbacks. Opto-couplers are generally also expensive and only suitable for isolation of components that handle very low-power signals such as communication signals.
  • The systems and methods disclosed herein implement isolation in a different manner, using one or more auxiliary coils (i.e., coils that are different from one or more source resonator coils that are used to transfer power wirelessly to a receiver resonator by generating magnetic fields). In particular, the systems and methods exploit the AC driving voltage that is generated within a source resonator and used to drive one or more source resonator coils, using the driving voltage to generate auxiliary magnetic fields (or capturing a small portion of the magnetic field that is generated by the source resonator coil(s)) to transfer small quantities of power wirelessly to additional components within the source. As the additional components are not connected through conductors to the electronics that generate the AC driving voltage, the additional components are isolated from the source's common ground. The additional components therefore are effectively driven by floating batteries or power sources, and are not subject to, or expected to withstand, the large ground-referenced voltages that are generated in the source.
  • FIG. 6 is a schematic diagram showing one embodiment of a wireless power transfer system 600 that includes one or more auxiliary coils for ground-isolation of components. In FIG. 6, a housing 602 encloses the components of a source, which include a power source 604, switching and impedance matching circuitry 606, a source resonator coil 608, an auxiliary coil 610, and conditioning circuit 612. During operation of system 600, power source 604 generates an AC driving voltage that is conveyed to coil 608 through switching and impedance matching circuitry 606. Coil 608 generates a magnetic field (represented by field lines 614), a portion of which is captured by receiver resonator coil 616, inducing a current within the coil. Switching and impedance matching circuitry 618 (along with switching and impedance matching circuitry 606) is configured to ensure that power is transferred efficiently between source coil 608 and receiver coil 616. The current induced in receiver coil 616 is delivered to device 620, where it performs useful work.
  • During operation of system 600, auxiliary coil 610—which can be positioned outside of a principal region of power transfer between source and receiver coils 608 and 616—captures a small fraction of the magnetic field generated by source coil 608, inducing a small voltage across auxiliary coil 610. The induced voltage is optionally conditioned by conditioning circuit 612, before being used to drive one or more elements in switching and impedance matching circuitry 606 and/or power source 604. Conditioning can include, but is not limited to, rectification of the AC voltage induced in auxiliary coil 610 to generate a DC voltage, attenuation of the voltage induced in auxiliary coil 610, and changing the frequency of the voltage induced in auxiliary coil 610.
  • Typically, auxiliary coil 610 captures only a very small portion of the magnetic field that is generated by source coil 608, and therefore the voltage generated across the terminals of auxiliary coil 610 is small relative to the driving voltage applied to source coil 608. By capturing only a small fraction of the field that is generated, the perturbing effect of the auxiliary coil on the transfer of power between source coil 608 and receiver coil 616 is relatively insignificant. In some embodiments, for example, the voltage across auxiliary coil 610, Vaux can be 1% or less of the driving voltage Vsrc applied across source coil 608 (e.g., 0.5% or less, 0.1% or less, 0.05% or less, 0.01% or less, 0.001% or less, 0.0001% or less).
  • In FIG. 6, a single auxiliary coil is used in system 600 to function effectively as a floating voltage source. More generally, however, system 600 can include more than one auxiliary coil configured in the same manner, each of which functions as an independent, floating voltage source. In some embodiments, for example, system 600 can include 2 or more auxiliary coils (e.g., 3 or more auxiliary coils, 4 or more auxiliary coils, 5 or more auxiliary coils, 7 or more auxiliary coils, or even more).
  • In general, the auxiliary coil 610 can be positioned on or near the source resonator coil 608, and the spatial location and orientation of auxiliary coil 610 relative to source resonator coil 608 can be adjusted to control the amount of flux captured by auxiliary coil 610 from source coil 608, and the coupling between the coils. In some embodiments, for example, auxiliary coil 610 and source coil 608 overlap in the x-y (i.e., coil) plane, but are relatively displaced in a direction perpendicular to the plane. FIG. 13A is a schematic diagram showing an embodiment of a wireless power transfer system in which auxiliary coil 610 overlaps with, and is displaced vertically from, source resonator coil 608. To indicate that coil 610 is in a different plane from coil 608, coil 610 is shown in dashed lines.
  • In certain embodiments, auxiliary coil 610 and source resonator coil 608 can be interleaved. FIG. 13B is a schematic diagram showing an embodiment of a wireless power transfer system in which individual loops of source coil 608 are interleaved with loops of auxiliary coil 610. Insulating material 1302 is positioned between adjacent interleaved loops.
  • In some embodiments, auxiliary coil 610 can be positioned within source resonator coil 608. FIG. 13C is a schematic diagram of a wireless power transfer system in which auxiliary coil 610, which is coplanar with source resonator coil 608, is positioned within a central region of source coil 608, surrounded by the loops of source coil 608.
  • In general, the action of conditioning circuit 612, as well as power source 604 and switching and matching circuitry 606, is controlled by controller 622, which is connected to conditioning circuit 612, power source 604, and switching and matching circuitry 606 via one or more communication lines (shown as dashed lines in FIG. 6). In addition to regulating modulation (amplitude and/or frequency) and rectification by conditioning circuit 612, controller 622 also adjusts the driving voltage and frequency generated by power source 604, impedance adjustment by circuitry 606, and also regulates other functions such as communication between components of the source, and between the source and device 620.
  • In FIG. 6, auxiliary coil 610 is positioned inside housing 602. Housing 602 can be formed from or lined with a material (e.g., a conductive material) that effectively prevents stray fields other than those used for wireless power transfer from escaping. By positioning auxiliary coil 610 inside housing 602, the portion of the magnetic field that is captured by auxiliary coil 610 does not affect other field-sensitive devices or elements that may be positioned outside housing 602, which reduces electrical interference and noise that might otherwise occur during operation of the system. More generally, however, in certain embodiments, auxiliary coil 610 can be positioned either inside housing 602 or external to housing 602. By positioning auxiliary coil 610 external to housing 602, the auxiliary coil may be able to capture a larger fraction of the field generated by source coil 608. Such a configuration can be useful for certain applications, particularly where shielding and/or containment of the magnetic field is not as significant a concern.
  • In certain embodiments, multiple auxiliary coils can be used to create an isolated, floating voltage source. FIG. 7 is a schematic diagram of a wireless power transfer system 700 that includes a power source 704, switching and matching circuitry 706, source resonator coil 708, and a controller 722 enclosed within a housing 702. During operation, source resonator coil 708 generates a magnetic field (represented by field lines 714) that is captured by receiver resonator coil 716, which is coupled to switching and matching circuitry 718. The current induced in receiver resonator coil 716 is coupled to load 720 and provides electrical power for the load. The foregoing components of system 700 function in a manner similar to their counterparts in system 600.
  • System 700 includes two auxiliary coils 710 and 711. Coil 710 is connected in series with source resonator coil 708, such that the driving voltage applied to source resonator coil 708 is also applied across auxiliary coil 710. Coil 711 is coupled to conditioning circuit 712. During operation of system 700, when the driving voltage is applied across source resonator coil 708 and auxiliary coil 710, auxiliary coil 710 generates a magnetic field (represented by field lines 713). Auxiliary coil 711 captures the field generated by coil 710, which induces a voltage across the terminals of coil 711. Conditioning circuit 712 is configured to perform functions similar to the functions of conditioning circuit 612, i.e., rectifying the induced voltage across coil 711 and/or modulating the amplitude and/or frequency of the induced voltage, for example. The conditioned voltage then functions as an auxiliary floating power source, which is coupled to one or more elements of power source 704 and/or switching and matching circuitry 706 within the wireless power source.
  • As shown in FIG. 7, auxiliary coils 710 and 711 can be fully enclosed within housing 702 to ensure that magnetic fields used to creating floating power sources do not perturb other components of the system (i.e., components that are not part of the wireless power source). More generally, auxiliary coils 710 and/or 711 can be positioned either interior to housing 702 or exterior to housing 702, depending upon the particular wireless power transfer application.
  • The use of two auxiliary coils—one of which is connected in series with source resonator coil 708—to realize a floating power source internal to the wireless power source that is isolated from the wireless power source's common ground reference has certain advantages relative to one-auxiliary-coil implementations, as shown in FIG. 6. By using a first auxiliary coil (i.e., coil 710) to generate a small amplitude magnetic field, and a second auxiliary coil (i.e., coil 711) to capture the small amplitude field, the auxiliary coil that receives the field does not have to be positioned anywhere near the magnetic field that is generated by source coil 708 for wireless power transfer. As such, the use of auxiliary coils does not perturb the spatial field distribution (represented by magnetic field lines 714) used for wireless power transfer, and the auxiliary coil that receives the magnetic field does not capture too large a fraction (or even any fraction) of the wireless power transfer field. Furthermore, the use of two auxiliary coils allows for greater flexibility in the layout and design of wireless power transfer systems; pairs of auxiliary coils can be positioned at nearly any desired location within the wireless power source to realize a floating auxiliary power source.
  • In general, auxiliary coil 710 can be positioned in series with source coil 708 on either side of source coil 708 (i.e., in terms of current flow, either upstream or downstream relative to source coil 708). Further, while a single pair of auxiliary coils are used to implement a single auxiliary floating power source in FIG. 7, more generally a wireless power source can include multiple pairs of auxiliary coils, each of which is used to implement an independent auxiliary floating power source.
  • FIG. 8 is a schematic diagram showing a portion of a wireless power system 800 that is similar to system 700 of FIG. 7, but includes multiple floating auxiliary power sources. More specifically, in system 800, a source resonator coil 808 is connected at points A and B to switching and matching circuitry and a power source (not shown in FIG. 8), and during operation, generates a magnetic field 814 for wireless power transfer to a receiving resonator. Connected in series with source coil 808 are three auxiliary coils 810 a, 810 b, and 810 c, which generate magnetic fields 813 a, 813 b, and 813 c, respectively, when the driving voltage is applied across terminals A and B. Fields 813 a-c are captured by auxiliary coils 811 a, 811 b, and 811 c, respectively, inducing voltages across each of coils 811 a-c. The induced voltages are conditioned, respectively, by conditioning circuits 812 a, 812 b, and 812 c. As a result, auxiliary coils 810 a-c and 811 a-c yield three floating, independent auxiliary voltage sources Va, Vb, and Vc, each of which can be connected to one or more components within the wireless power source to drive the components and/or perform other useful work.
  • While system 800 includes three auxiliary floating power sources, in general any number of auxiliary power sources can be included in a wireless power source. For example, a wireless power source can include two or more auxiliary floating power sources (e.g., three or more sources, four or more sources, five or more sources, or even more sources). Each of the multiple sources can be implemented using a single auxiliary coil, as discussed above in connection with FIG. 6, or using two auxiliary coils, as discussed in connection with FIGS. 7 and 8. In some embodiments, these implementations can be mixed: one or more auxiliary floating power sources can be implemented using a single auxiliary coil, and one or more auxiliary floating power sources can be implemented using pairs of auxiliary coils. Typically, the area and strength of the magnetic field generated by source resonator 808 are considerations in determining the number of auxiliary power sources that are implemented.
  • Whether auxiliary floating power sources are implemented using a single auxiliary coil or a pair of auxiliary coils, the sizes of the coils (e.g., the number of turns, the diameter of the turns, the size and composition of the core material) determine the magnitudes of the voltages of each auxiliary source. In general, the sizes of the coils are chosen such that perturbations of the wireless power transfer process between the source coil and the receiver resonator are relatively insignificant, and so that the voltage of each floating source is nonetheless sufficient for its intended purpose. Where a wireless power source includes multiple auxiliary floating sources, the sources are independent and therefore can have the same or different output voltages. For example, in system 800, Va, Vb, and Vc can be the same, any two of these can be the same, or they can each be different voltages.
  • Applications
  • The floating (i.e., ground isolated) auxiliary sources disclosed herein can be used for a variety of applications in wireless power transfer systems. In general, each of the auxiliary sources is coupled to one or more low voltage components within the wireless power source and is used to drive the coupled components. Because the auxiliary sources are decoupled from the wireless power source's common ground, the components to which they are coupled are not subjected to the large, ground-referenced voltages that are generated by the wireless power source's electronics. To the contrary, the components to which the auxiliary sources are coupled are subjected only to the much lower floating voltages (i.e., Va, Vb, and Vc in system 800), and are therefore significantly cheaper to implement than their corresponding high voltage counterparts would be.
  • Floating auxiliary power sources can generally be used for functions that fall within one of two categories in a wireless power source: power-related functions and communication-related functions. Power-related functions include driving adjustable components such as inductors, capacitors, resistors, switches, detectors, and other electronic devices. FIG. 9 illustrates an example of such an application. In FIG. 9, the output voltage Va from a floating auxiliary source (such as the corresponding source shown in FIG. 8) is connected across switch S1, which is connected in series with capacitance C2 of an adjustable capacitor. The adjustable capacitor also includes a fixed capacitance C1. When voltage Va is applied across switch S1, the switch closes, coupling C2 into the circuit. When the voltage is not applied across S1, C2 is decoupled from the circuit. Thus, the auxiliary floating source can be used to implement an adjustable capacitor (e.g., in an impedance matching circuit) by selectively closing or opening S1 to switch C2 in or out of the total capacitance.
  • As mentioned above, auxiliary floating power sources are also well suited for communications-related applications. Such applications can include communications between components internal to the wireless power source, and communications between the wireless power source and the wireless power receiver that receives wirelessly transmitted power. A variety of different types of communications systems can be implemented. In some embodiments, for example, an auxiliary floating power source can be used to drive a transmitter located in a wireless power source to generate a communications signal that is received by the receiver connected to the receiving resonator.
  • FIG. 10 is a schematic diagram showing a portion of a wireless power transfer system 1000, including a controller 1022 connected to a transceiver 1030 in a wireless power source, and a transceiver 1040 connected to a load 1020 that receives power from the wireless power source. A voltage Va is applied to transceiver 1030, which also receives an information signal from controller 1022. Transceiver 1030, energized by voltage Va, generates a communications signal 1035 that carries the information from controller 1022. The communications signal is received by transceiver 1040 and delivered to device 1020, and the information encoded in the signal is extracted. Communications signals that correspond to a wide variety of different protocols and implementations can be transmitted in the foregoing manner, including Bluetooth® signals, wireless 802.11a/b/g/n signals, IrDA signals, and signals corresponding to other open and/or proprietary specifications.
  • In the above discussion, wireless power transfer system 1000 includes transceivers 1030 and 1040. In general, transceivers are devices that both transmit and receive communication signals. However, the system shown in FIG. 10, as well as the other systems disclosed herein, are not limited to the use of transceivers and/or two-way communication. It should be understood that any of the transceivers disclosed in connection with embodiments herein can be replaced with a transmitter or a receiver alone, or separate transmitters and receivers, for purposes of one-way communication. Thus, the term “transceiver” should be understood to include functional devices that can transmit only, receive only, or both transmit and receive communication signals.
  • In some embodiments, floating auxiliary voltage sources can be used to drive magnetic resonators that generate communications signals. FIG. 11 is a schematic diagram showing a portion of a wireless power transfer system 1100 that includes a source resonator coil 1102 in a wireless power source and a receiving resonator coil 1104 connected to a load 1120 that receives power wirelessly from the wireless power source. To generate a communications signal, voltage Va generated by a floating auxiliary source is applied to a modulator 1106. Voltage Va typically corresponds to an oscillating AC voltage signal at a frequency corresponding approximately to the frequency of the voltage applied to the source resonator coil in the wireless power source to generate the power transmitting magnetic field.
  • Modulator 1106 modulates voltage signal Va to encode information into the voltage signal. In some embodiments, for example, modulator 1106 generates an amplitude modulated voltage signal, where the information is encoded as variations in an amplitude envelope function that modulates the underlying sinusoidal AC voltage signal Va. In certain embodiments, modulator 1106 generates a frequency modulated voltage signal, where the information is encoded as variations in the nominal frequency of the oscillating AC voltage signal Va. Modulator 1106 can also implement other modulation or encoding schemes as well.
  • The modulated voltage signal is then delivered to source resonator coil 1102, where it generates a magnetic field that is modulated in a manner that corresponds to the modulation of the voltage signal. The modulated magnetic field is captured by receiving resonator coil 1104, and induces a voltage signal across the receiving resonator coil that is modulated in the same manner as Va. Load 1120 (or circuits connected to load 1120) demodulates the induced voltage signal to extract the information encoded in it.
  • Amplitude and frequency modulation of a sinusoidal or other oscillating/periodic carrier wave signal are methods for implementing analog communication between a wireless power source and receiver. However, floating auxiliary voltage sources can also be used to implement digital communication between a source and receiver. FIG. 12 is a schematic diagram showing a portion of a wireless power transfer system 1200. In system 1200, a source resonator coil 1208 and an auxiliary coil 1210 are connected in series. When a driving voltage is applied across terminal points A and B, source resonator coil 1208 generates a magnetic field that transfers power to a receiver resonator (not shown in FIG. 12), and auxiliary coil 1210 generates an auxiliary magnetic field 1215.
  • System 1200 includes two additional auxiliary coils 1211 and 1221. Auxiliary coil 1211 is a component of the wireless power source, and auxiliary coil 1221 is connected to a device 1220 that receives power from the wireless power source. Auxiliary coil 1211 is connected in series with a switch Sv, which is controlled by controller 1222. Auxiliary coils 1211 and 1221 are positioned so that each coil captures a portion of magnetic field 1215. Accordingly, voltages are induced across each of coils 1211 and 1221 when coil 1210 generates field 1215.
  • Because both auxiliary coils 1211 and 1221 couple to coil 1210 through the same magnetic field 1215, a change in the coupling between coils 1211 and 1210 changes the coupling between coils 1221 and 1210, and vice versa. Put another way, the coupling between auxiliary coils 1210 and 1221—and therefore the voltage induced across auxiliary coil 1221—can be changed by adjusting the coupling between coils 1210 and 1211. System 1200 exploits this property by using switch Sv to adjust the coupling between coils 1210 and 1211. When controller 1222 closes switch Sv, coil 1211 is connected or shorted within the wireless power source. Power is transferred from coil 1210 to coil 1211, and power transfer between coils 1210 and 1221 is therefore reduced or otherwise modulated. Conversely, when controller 1222 opens switch Sv thereby decoupling or open-circuiting coil 1211 within the wireless power source, power transfer between coils 1210 and 1211 is reduced, and power transfer between coils 1210 and 1221 is increased or otherwise modulated.
  • Device 1220 connected to auxiliary coil 1221 senses the changes in induced voltage across coil 1221 as switch Sv is opened and closed. As a result, controller 1222 can implement a digital (or bitwise) communication protocol that transmits information to device 1220 by opening and closing switch Sv to alternately switch coil 1221 between high and low voltage states. In this method, controller 1222 does not directly generate a communication signal that is broadcast. Instead, controller 1222—through auxiliary coil 1211—effectively functions as a digital modulator that perturbs power transfer between two different coils (i.e., coils 1210 and 1221).
  • This method for generating an “on/off” signal can also be used to switch devices such as power supplies on and off. Using a method similar to the one described above, signals corresponding to high and low voltage states can be used to activate and de-activate, respectively, device 1220. Device 1220 can correspond to a power supply or to any one or more of various switchable electronic devices.
  • FIG. 12 shows communication of information from a wireless power source to a receiving device by modulating power transfer between an auxiliary coil connected in series with a source resonator coil and an auxiliary coil connected to the receiving device. Similar methods can be used to generate a digital communication signal that is received by auxiliary coil 1211 and controller 1222, i.e., coil 1221 can be alternately connected and disconnected by closing and opening a switch connected in series with coil 1221 by device 1220, thereby modulating coupling and the induced voltage across coil 1211 between high and low voltage states.
  • Two-way communication between the wireless power source and device 1220 can be implemented in various ways. In some embodiments, for example, coils 1211 and 1221 can be used both to effectively “transmit” and “receive” signals by interleaving these functions in time. For example, for a first period of time, coil 1211 can be alternately coupled and decoupled by controller 1222 to induce voltage changes across coil 1221, thereby communicating information to device 1220. Then, for a second period of time, coil 1221 can be alternately coupled and decoupled by device 1220 to induce voltage changes across coil 1211, thereby communicating information to the wireless power source. The alternating of functionalities defines a duty cycle for coils 1211 and 1221 that enables two-way communication.
  • In certain embodiments, system 1200 includes additional auxiliary coils to enable simultaneous two-way communication. For example, system 1200 can include a second auxiliary coil connected in series with source coil 1208 that generates a second auxiliary magnetic field, analogous to field 1215. Two additional auxiliary coils, one implemented as part of the wireless power source and the other connected to device 1220, are positioned so that each captures a portion of the second auxiliary magnetic field, analogous to auxiliary coils 1211 and 1221.
  • The generation of two magnetic fields by two different auxiliary coils connected in series with source resonator coil 1208 allows the wireless power source to transmit information to, and receive information from, device 1220 at the same time. In particular, one of the auxiliary magnetic fields can be used to induce an information-carrying voltage signal that is received by device 1220, while the other auxiliary magnetic field can be used to induce an information-carrying voltage signal that is received by the wireless power source, as disclosed above. In this manner, digitally encoded information can be transmitted bi-directionally between the wireless power source and device 1220.
  • Other applications can also take advantage of the auxiliary coils disclosed herein. For example, auxiliary coils can be used to isolate sensitive analog circuitry from noisy power ground connections, thereby ensuring that such circuitry operates at high sensitivity. Auxiliary coils can also be used to implement feedback systems in which power from one or more auxiliary coils is used to adjust coupling to provide a regulated source (i.e., perform auxiliary coil-mediated voltage regulation).
  • Other Embodiments
  • A number of embodiments have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the disclosure. Accordingly, other embodiments are within the scope of the following claims.

Claims (10)

What is claimed is:
1. A wireless power transmitter, comprising:
a power source;
a first coil connected to the power source; and
a second coil positioned in proximity to the first coil,
wherein during operation of the wireless power transmitter:
the power source applies a driving voltage to the first coil;
the first coil generates a magnetic field that transfers power to a receiver resonator;
the magnetic field induces a voltage across the second coil; and
the induced voltage across the second coil is applied to a component of the wireless power transmitter.
2. The transmitter of claim 1, wherein each of the first and second coils comprises one or more loops of conductive material.
3. The transmitter of claim 1, wherein the component comprises at least one of a resistive element of the wireless power transmitter, a capacitive element of the wireless power transmitter, an inductive element of the wireless power transmitter, a switch of the wireless power transmitter, and a component of an impedance matching network of the wireless power transmitter.
4. The transmitter of claim 1, wherein the component comprises a transceiver configured to generate an information carrying signal.
5. The transmitter of claim 1, wherein the component comprises a third coil configured to generate an information carrying magnetic field that, during operation, is received by a fourth coil connected to the receiver resonator.
6. The transmitter of claim 5, further comprising a modulator configured to modulate the induced voltage to generate the information carrying magnetic field.
7. The transmitter of claim 6, wherein the induced voltage corresponds to an oscillating voltage signal, and wherein the modulator is configured to modulate at least one of an amplitude and a frequency of the oscillating voltage signal to generate the information carrying magnetic field.
8. The transmitter of claim 1, wherein a magnitude of the induced voltage is 1% or less of a magnitude of a voltage induced in the receiver resonator, and wherein the induced voltage is not referenced to a ground voltage of the wireless power transmitter.
9. The transmitter of claim 1, further comprising a third coil positioned in proximity to the first coil, wherein during operation of the wireless power transmitter:
the magnetic field induces a voltage across the third coil; and
the induced voltage across the third coil is applied to a second component of the wireless power transmitter.
10. The transmitter of claim 9, wherein the second component comprises at least one of a resistive element, a capacitive element, an inductive element, a switch, a component of an impedance matching network, a transceiver configured to generate an information carrying signal, and a fourth coil configured to generate an information carrying magnetic field that, during operation, is received by a fifth coil connected to the receiver resonator.
US16/120,746 2015-11-20 2018-09-04 Voltage source isolation in wireless power transfer systems Abandoned US20180375379A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/120,746 US20180375379A1 (en) 2015-11-20 2018-09-04 Voltage source isolation in wireless power transfer systems

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562258144P 2015-11-20 2015-11-20
US15/356,798 US10075019B2 (en) 2015-11-20 2016-11-21 Voltage source isolation in wireless power transfer systems
US16/120,746 US20180375379A1 (en) 2015-11-20 2018-09-04 Voltage source isolation in wireless power transfer systems

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/356,798 Division US10075019B2 (en) 2015-11-20 2016-11-21 Voltage source isolation in wireless power transfer systems

Publications (1)

Publication Number Publication Date
US20180375379A1 true US20180375379A1 (en) 2018-12-27

Family

ID=58721221

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/356,798 Active 2037-01-28 US10075019B2 (en) 2015-11-20 2016-11-21 Voltage source isolation in wireless power transfer systems
US16/120,746 Abandoned US20180375379A1 (en) 2015-11-20 2018-09-04 Voltage source isolation in wireless power transfer systems

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US15/356,798 Active 2037-01-28 US10075019B2 (en) 2015-11-20 2016-11-21 Voltage source isolation in wireless power transfer systems

Country Status (1)

Country Link
US (2) US10075019B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220139650A1 (en) * 2019-07-18 2022-05-05 Abb Schweiz Ag Switch for MV or HV Traction Line Test Device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI605664B (en) * 2016-06-29 2017-11-11 立錡科技股份有限公司 Resonant Wireless Power Transmitter Circuit and Control Method thereof
US10982456B2 (en) 2018-03-16 2021-04-20 Maytronic Ltd. Pool cleaning system

Family Cites Families (581)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US645576A (en) 1897-09-02 1900-03-20 Nikola Tesla System of transmission of electrical energy.
US787412A (en) 1900-05-16 1905-04-18 Nikola Tesla Art of transmitting electrical energy through the natural mediums.
GB190508200A (en) 1905-04-17 1906-04-17 Nikola Tesla Improvements relating to the Transmission of Electrical Energy.
US1119732A (en) 1907-05-04 1914-12-01 Nikola Tesla Apparatus for transmitting electrical energy.
US2133494A (en) 1936-10-24 1938-10-18 Harry F Waters Wirelessly energized electrical appliance
US3535543A (en) 1969-05-01 1970-10-20 Nasa Microwave power receiving antenna
US3517350A (en) 1969-07-07 1970-06-23 Bell Telephone Labor Inc Energy translating device
GB1303835A (en) 1970-01-30 1973-01-24
US3871176A (en) 1973-03-08 1975-03-18 Combustion Eng Large sodium valve actuator
US4088999A (en) 1976-05-21 1978-05-09 Nasa RF beam center location method and apparatus for power transmission system
US4095998A (en) 1976-09-30 1978-06-20 The United States Of America As Represented By The Secretary Of The Army Thermoelectric voltage generator
JPS5374078A (en) 1976-12-14 1978-07-01 Bridgestone Tire Co Ltd Device for warning pressure reducing of inner pressure of tire
US4280129A (en) 1978-09-09 1981-07-21 Wells Donald H Variable mutual transductance tuned antenna
US4450431A (en) 1981-05-26 1984-05-22 Hochstein Peter A Condition monitoring system (tire pressure)
US4588978A (en) 1984-06-21 1986-05-13 Transensory Devices, Inc. Remote switch-sensing system
EP0301127B1 (en) 1987-07-31 1993-12-01 Texas Instruments Deutschland Gmbh Transponder arrangement
DE3815114A1 (en) 1988-05-04 1989-11-16 Bosch Gmbh Robert DEVICE FOR TRANSMITTING AND EVALUATING MEASURING SIGNALS FOR THE TIRE PRESSURE OF MOTOR VEHICLES
DE3824972A1 (en) 1988-07-22 1989-01-12 Roland Hiering Illumination of christmas trees, decorations and artwork
JPH0297005A (en) 1988-10-03 1990-04-09 Tokyo Cosmos Electric Co Ltd Variable inductance
JP2820706B2 (en) 1989-03-02 1998-11-05 株式会社日本自動車部品総合研究所 Power supply device having coil for electromagnetic coupling
US5034658A (en) 1990-01-12 1991-07-23 Roland Hierig Christmas-tree, decorative, artistic and ornamental object illumination apparatus
US5027709A (en) 1990-04-26 1991-07-02 Slagle Glenn B Magnetic induction mine arming, disarming and simulation system
JPH04265875A (en) 1991-02-21 1992-09-22 Seiko Instr Inc Plane type gradiometer
US5293308A (en) 1991-03-26 1994-03-08 Auckland Uniservices Limited Inductive power distribution system
US6738697B2 (en) 1995-06-07 2004-05-18 Automotive Technologies International Inc. Telematics system for vehicle diagnostics
US5118997A (en) 1991-08-16 1992-06-02 General Electric Company Dual feedback control for a high-efficiency class-d power amplifier circuit
NL9101590A (en) 1991-09-20 1993-04-16 Ericsson Radio Systems Bv SYSTEM FOR CHARGING A RECHARGEABLE BATTERY FROM A PORTABLE UNIT IN A RACK.
US5341083A (en) 1991-09-27 1994-08-23 Electric Power Research Institute, Inc. Contactless battery charging system
GB2262634B (en) 1991-12-18 1995-07-12 Apple Computer Power connection scheme
US5216402A (en) 1992-01-22 1993-06-01 Hughes Aircraft Company Separable inductive coupler
US5229652A (en) 1992-04-20 1993-07-20 Hough Wayne E Non-contact data and power connector for computer based modules
EP0640254B1 (en) 1992-05-10 2001-08-01 Auckland Uniservices Limited A non-contact power distribution system
US5437057A (en) 1992-12-03 1995-07-25 Xerox Corporation Wireless communications using near field coupling
US5287112A (en) 1993-04-14 1994-02-15 Texas Instruments Incorporated High speed read/write AVI system
GB9310545D0 (en) 1993-05-21 1993-07-07 Era Patents Ltd Power coupling
JP3207294B2 (en) 1993-06-02 2001-09-10 株式会社安川電機 Free hydraulic system
JP3409145B2 (en) 1993-07-26 2003-05-26 任天堂株式会社 Small electrical equipment
US5541604A (en) 1993-09-03 1996-07-30 Texas Instruments Deutschland Gmbh Transponders, Interrogators, systems and methods for elimination of interrogator synchronization requirement
WO1995011545A1 (en) 1993-10-21 1995-04-27 Auckland Uniservices Limited Inductive power pick-up coils
US5408209A (en) 1993-11-02 1995-04-18 Hughes Aircraft Company Cooled secondary coils of electric automobile charging transformer
US5565763A (en) 1993-11-19 1996-10-15 Lockheed Martin Corporation Thermoelectric method and apparatus for charging superconducting magnets
US5493691A (en) 1993-12-23 1996-02-20 Barrett; Terence W. Oscillator-shuttle-circuit (OSC) networks for conditioning energy in higher-order symmetry algebraic topological forms and RF phase conjugation
US5957956A (en) 1994-06-21 1999-09-28 Angeion Corp Implantable cardioverter defibrillator having a smaller mass
DE69535873D1 (en) 1994-07-13 2008-12-04 Auckland Uniservices Ltd Inductively fed lighting
US6459218B2 (en) 1994-07-13 2002-10-01 Auckland Uniservices Limited Inductively powered lamp unit
US5522856A (en) 1994-09-20 1996-06-04 Vitatron Medical, B.V. Pacemaker with improved shelf storage capacity
JPH08191259A (en) 1995-01-11 1996-07-23 Sony Chem Corp Transmitter-receiver for contactless ic card system
US5710413A (en) 1995-03-29 1998-01-20 Minnesota Mining And Manufacturing Company H-field electromagnetic heating system for fusion bonding
US5697956A (en) 1995-06-02 1997-12-16 Pacesetter, Inc. Implantable stimulation device having means for optimizing current drain
DE19681456T1 (en) 1995-06-16 1998-05-20 Daicel Chem Process for distinguishing between used and unused gas generators for airbags in the process of scrapping cars
US5703461A (en) 1995-06-28 1997-12-30 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Inductive coupler for electric vehicle charger
US5703950A (en) 1995-06-30 1997-12-30 Intermec Corporation Method and apparatus for controlling country specific frequency allocation
US5630835A (en) 1995-07-24 1997-05-20 Cardiac Control Systems, Inc. Method and apparatus for the suppression of far-field interference signals for implantable device data transmission systems
EP0782214B1 (en) 1995-12-22 2004-10-06 Texas Instruments France Ring antennas for resonant cicuits
JPH09182323A (en) 1995-12-28 1997-07-11 Rohm Co Ltd Non-contact type electric power transmission device
EP0788212B1 (en) 1996-01-30 2002-04-17 Sumitomo Wiring Systems, Ltd. Connection system and connection method for an electric automotive vehicle
US6066163A (en) 1996-02-02 2000-05-23 John; Michael Sasha Adaptive brain stimulation method and system
US6108579A (en) 1996-04-15 2000-08-22 Pacesetter, Inc. Battery monitoring apparatus and method for programmers of cardiac stimulating devices
JPH09298847A (en) 1996-04-30 1997-11-18 Sony Corp Non-contact charger
US5926949A (en) 1996-05-30 1999-07-27 Commscope, Inc. Of North Carolina Method of making coaxial cable
US5821728A (en) 1996-07-22 1998-10-13 Schwind; John P. Armature induction charging of moving electric vehicle batteries
JPH1092673A (en) 1996-07-26 1998-04-10 Tdk Corp Non-contact power transmission device
US5836943A (en) 1996-08-23 1998-11-17 Team Medical, L.L.C. Electrosurgical generator
US6832735B2 (en) 2002-01-03 2004-12-21 Nanoproducts Corporation Post-processed nanoscale powders and method for such post-processing
US6569397B1 (en) 2000-02-15 2003-05-27 Tapesh Yadav Very high purity fine powders and methods to produce such powders
US5742471A (en) 1996-11-25 1998-04-21 The Regents Of The University Of California Nanostructure multilayer dielectric materials for capacitors and insulators
JPH10164837A (en) 1996-11-26 1998-06-19 Sony Corp Power supply
WO1998050993A1 (en) 1997-05-06 1998-11-12 Auckland Uniservices Limited Inductive power transfer across an extended gap
US7068991B2 (en) 1997-05-09 2006-06-27 Parise Ronald J Remote power recharge for electronic equipment
US6176433B1 (en) 1997-05-15 2001-01-23 Hitachi, Ltd. Reader/writer having coil arrangements to restrain electromagnetic field intensity at a distance
DE69836468T2 (en) 1997-08-08 2007-09-13 Meins, Jürgen, Prof. Dr. Ing. METHOD AND DEVICE FOR CONTACTLESS POWER SUPPLY
JPH1175329A (en) 1997-08-29 1999-03-16 Hitachi Ltd Non-contact type ic card system
US6167309A (en) 1997-09-15 2000-12-26 Cardiac Pacemakers, Inc. Method for monitoring end of life for battery
US5993996A (en) 1997-09-16 1999-11-30 Inorganic Specialists, Inc. Carbon supercapacitor electrode materials
NZ329195A (en) 1997-11-17 2000-07-28 Auckland Uniservices Ltd Loosely coupled inductive power transfer using resonant pickup circuit, inductor core chosen to saturate under overload conditions
JPH11188113A (en) 1997-12-26 1999-07-13 Nec Corp Power transmission system, power transmission method and electric stimulation device provided with the power transmission system
JPH11285156A (en) 1998-03-30 1999-10-15 Nippon Electric Ind Co Ltd Non-contact charger
US5999308A (en) 1998-04-01 1999-12-07 Massachusetts Institute Of Technology Methods and systems for introducing electromagnetic radiation into photonic crystals
US5891180A (en) 1998-04-29 1999-04-06 Medtronic Inc. Interrogation of an implantable medical device using audible sound communication
US5986895A (en) 1998-06-05 1999-11-16 Astec International Limited Adaptive pulse width modulated resonant Class-D converter
US6047214A (en) 1998-06-09 2000-04-04 North Carolina State University System and method for powering, controlling, and communicating with multiple inductively-powered devices
US6255635B1 (en) 1998-07-10 2001-07-03 Ameritherm, Inc. System and method for providing RF power to a load
CA2348668A1 (en) 1998-12-05 2000-06-15 Energy Storage Systems Pty. Ltd. A charge storage device
US6615074B2 (en) 1998-12-22 2003-09-02 University Of Pittsburgh Of The Commonwealth System Of Higher Education Apparatus for energizing a remote station and related method
DE60042155D1 (en) 1999-03-24 2009-06-18 Second Sight Medical Prod Inc RETINAL COLOR PROSTHESIS FOR THE COLOR REHABILITATION
FR2792135B1 (en) 1999-04-07 2001-11-02 St Microelectronics Sa VERY CLOSE COMPLAGE OPERATION OF AN ELECTROMAGNETIC TRANSPONDER SYSTEM
FR2792134B1 (en) 1999-04-07 2001-06-22 St Microelectronics Sa DISTANCE DETECTION BETWEEN AN ELECTROMAGNETIC TRANSPONDER AND A TERMINAL
US6252762B1 (en) 1999-04-21 2001-06-26 Telcordia Technologies, Inc. Rechargeable hybrid battery/supercapacitor system
US6127799A (en) 1999-05-14 2000-10-03 Gte Internetworking Incorporated Method and apparatus for wireless powering and recharging
ATE364252T1 (en) 1999-06-11 2007-06-15 Abb Research Ltd SYSTEM FOR A MACHINE HAVING A MULTIPLE PROXIMITY SENSORS AND PROXIMITY SENSOR AND PRIMARY WINDING THEREOF
EP1190476B1 (en) 1999-06-11 2010-02-24 ABB Research Ltd. System for a machine with a plurality of actuators
US6825620B2 (en) 1999-06-21 2004-11-30 Access Business Group International Llc Inductively coupled ballast circuit
US7126450B2 (en) 1999-06-21 2006-10-24 Access Business Group International Llc Inductively powered apparatus
US7612528B2 (en) 1999-06-21 2009-11-03 Access Business Group International Llc Vehicle interface
US6731071B2 (en) 1999-06-21 2004-05-04 Access Business Group International Llc Inductively powered lamp assembly
US7385357B2 (en) 1999-06-21 2008-06-10 Access Business Group International Llc Inductively coupled ballast circuit
US7518267B2 (en) 2003-02-04 2009-04-14 Access Business Group International Llc Power adapter for a remote device
US7212414B2 (en) 1999-06-21 2007-05-01 Access Business Group International, Llc Adaptive inductive power supply
US6436299B1 (en) 1999-06-21 2002-08-20 Amway Corporation Water treatment system with an inductively coupled ballast
US7522878B2 (en) 1999-06-21 2009-04-21 Access Business Group International Llc Adaptive inductive power supply with communication
US6673250B2 (en) 1999-06-21 2004-01-06 Access Business Group International Llc Radio frequency identification system for a fluid treatment system
US6232841B1 (en) 1999-07-01 2001-05-15 Rockwell Science Center, Llc Integrated tunable high efficiency power amplifier
US6207887B1 (en) 1999-07-07 2001-03-27 Hi-2 Technology, Inc. Miniature milliwatt electric power generator
US6803744B1 (en) 1999-11-01 2004-10-12 Anthony Sabo Alignment independent and self aligning inductive power transfer system
DE19958265A1 (en) 1999-12-05 2001-06-21 Iq Mobil Electronics Gmbh Wireless energy transmission system with increased output voltage
US6650227B1 (en) 1999-12-08 2003-11-18 Hid Corporation Reader for a radio frequency identification system having automatic tuning capability
US6450946B1 (en) 2000-02-11 2002-09-17 Obtech Medical Ag Food intake restriction with wireless energy transfer
EP1264403B1 (en) 2000-03-02 2007-10-17 Abb Research Ltd. Proximity sensor and modular system for producing proximity sensors
ATE270771T1 (en) 2000-03-09 2004-07-15 Abb Research Ltd ARRANGEMENT FOR GENERATING ELECTRICAL ENERGY FROM A MAGNETIC FIELD
US6184651B1 (en) 2000-03-20 2001-02-06 Motorola, Inc. Contactless battery charger with wireless control link
US6561975B1 (en) 2000-04-19 2003-05-13 Medtronic, Inc. Method and apparatus for communicating with medical device systems
JP4140169B2 (en) 2000-04-25 2008-08-27 松下電工株式会社 Non-contact power transmission device
DE10029147A1 (en) 2000-06-14 2001-12-20 Ulf Tiemens Installation for supplying toys with electrical energy, preferably for production of light, comprises a sender of electromagnetic waves which is located at a small distance above a play area with the toys
US6452465B1 (en) 2000-06-27 2002-09-17 M-Squared Filters, Llc High quality-factor tunable resonator
JP4135299B2 (en) 2000-06-27 2008-08-20 松下電工株式会社 Non-contact power transmission device
WO2002015112A2 (en) 2000-08-11 2002-02-21 Escort Memory Systems Rfid passive repeater system and apparatus
GB2370509A (en) 2000-08-29 2002-07-03 Don Edward Casey Subcutaneously implanted photovoltaic power supply
US6591139B2 (en) 2000-09-06 2003-07-08 Advanced Bionics Corporation Low-power, high-modulation-index amplifier for use in battery-powered device
DE20016655U1 (en) 2000-09-25 2002-02-14 Ic Haus Gmbh System for wireless energy and data transmission
JP3851504B2 (en) 2000-11-16 2006-11-29 矢崎総業株式会社 Automotive sliding door feeder
EP1368815B1 (en) 2001-03-02 2010-01-27 Koninklijke Philips Electronics N.V. Inductive coupling system with capacitive parallel compensation of the mutual self-inductance between the primary and the secondary windings
US7282889B2 (en) 2001-04-19 2007-10-16 Onwafer Technologies, Inc. Maintenance unit for a sensor apparatus
JP3629553B2 (en) 2001-05-08 2005-03-16 インターナショナル・ビジネス・マシーンズ・コーポレーション Power supply system, computer apparatus, battery, abnormal charging protection method, and program
WO2002093248A1 (en) 2001-05-15 2002-11-21 Massachussets Institute Of Technology Mach-zehnder interferometer using photonic band gap crystals
SE519705C2 (en) 2001-08-22 2003-04-01 Ericsson Telefon Ab L M A tunable ferroelectric resonator device
EP1294074A2 (en) 2001-09-15 2003-03-19 ABB Research Ltd. Magnetic field generating system and device for cableless supply of a plurality of sensors and/or actuators
JP4478366B2 (en) 2001-12-11 2010-06-09 ソニー株式会社 Contactless communication system
CN103108477A (en) 2002-02-19 2013-05-15 通达商业集团国际公司 Starter assembly for gas discharge lamp
US6847190B2 (en) 2002-02-26 2005-01-25 Linvatec Corporation Method and apparatus for charging sterilizable rechargeable batteries
EP1488466A2 (en) 2002-03-01 2004-12-22 The Provost, Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin A semiconductor photodetector
JP3671919B2 (en) 2002-03-05 2005-07-13 日立電線株式会社 Coaxial cable and coaxial multi-core cable
US20040093041A1 (en) 2002-03-15 2004-05-13 Macdonald Stuart G. Biothermal power source for implantable devices
US7340304B2 (en) 2002-03-15 2008-03-04 Biomed Soutions, Llc Biothermal power source for implantable devices
US6683256B2 (en) 2002-03-27 2004-01-27 Ta-San Kao Structure of signal transmission line
JP3719510B2 (en) 2002-04-08 2005-11-24 アルプス電気株式会社 Storage room with contactless charger
GB0210886D0 (en) 2002-05-13 2002-06-19 Zap Wireless Technologies Ltd Improvements relating to contact-less power transfer
GB2388715B (en) 2002-05-13 2005-08-03 Splashpower Ltd Improvements relating to the transfer of electromagnetic power
JP4403285B2 (en) 2002-05-13 2010-01-27 アムウェイ(ヨーロッパ)リミテッド Improvements for contactless power transmission
US7239110B2 (en) 2002-05-13 2007-07-03 Splashpower Limited Primary units, methods and systems for contact-less power transfer
US6906495B2 (en) 2002-05-13 2005-06-14 Splashpower Limited Contact-less power transfer
DE10221484B4 (en) 2002-05-15 2012-10-11 Hans-Joachim Laue Device for powering a data acquisition and data transfer unit and data acquisition and transfer unit
US6844702B2 (en) 2002-05-16 2005-01-18 Koninklijke Philips Electronics N.V. System, method and apparatus for contact-less battery charging with dynamic control
EP1508236B1 (en) 2002-05-24 2007-07-11 Telefonaktiebolaget LM Ericsson (publ) Method for authenticating a user to a service of a service provider
US7471062B2 (en) 2002-06-12 2008-12-30 Koninklijke Philips Electronics N.V. Wireless battery charging
US6960968B2 (en) 2002-06-26 2005-11-01 Koninklijke Philips Electronics N.V. Planar resonator for wireless power transfer
SG112842A1 (en) 2002-06-28 2005-07-28 Tunity Pte Ltd Passive range extender/booster for rfid tag/reader
US20040026998A1 (en) 2002-07-24 2004-02-12 Henriott Jay M. Low voltage electrified furniture unit
US7147604B1 (en) 2002-08-07 2006-12-12 Cardiomems, Inc. High Q factor sensor
WO2004015885A1 (en) 2002-08-12 2004-02-19 Mobilewise, Inc. Wireless power supply system for small devices
US6856291B2 (en) 2002-08-15 2005-02-15 University Of Pittsburgh- Of The Commonwealth System Of Higher Education Energy harvesting circuits and associated methods
US6772011B2 (en) 2002-08-20 2004-08-03 Thoratec Corporation Transmission of information from an implanted medical device
US6609023B1 (en) 2002-09-20 2003-08-19 Angel Medical Systems, Inc. System for the detection of cardiac events
US6858970B2 (en) 2002-10-21 2005-02-22 The Boeing Company Multi-frequency piezoelectric energy harvester
AU2003282214A1 (en) 2002-10-28 2004-05-13 Splashpower Limited Unit and system for contactless power transfer
US6825734B2 (en) 2002-11-13 2004-11-30 Phasor Technologies Corporation Oscillator module incorporating spiral looped-stub resonator
JP2004166459A (en) 2002-11-15 2004-06-10 Mitsui Eng & Shipbuild Co Ltd Non-contact feeding device
US20090072782A1 (en) 2002-12-10 2009-03-19 Mitch Randall Versatile apparatus and method for electronic devices
US6791500B2 (en) 2002-12-12 2004-09-14 Research In Motion Limited Antenna with near-field radiation control
GB0229141D0 (en) 2002-12-16 2003-01-15 Splashpower Ltd Improvements relating to contact-less power transfer
JP3643581B2 (en) 2002-12-20 2005-04-27 東光株式会社 Multi-output power supply transformer
US20040189246A1 (en) 2002-12-23 2004-09-30 Claudiu Bulai System and method for inductive charging a wireless mouse
JP2004229144A (en) 2003-01-24 2004-08-12 Citizen Electronics Co Ltd Surface mounting antenna
EP1593133A2 (en) 2003-02-04 2005-11-09 Access Business Group International LLC Inductive coil assembly
DE10304584A1 (en) 2003-02-05 2004-08-19 Abb Research Ltd. Communication of power and data to sensors and actuators in a process uses field transmission and avoids wiring
US20070176840A1 (en) 2003-02-06 2007-08-02 James Pristas Multi-receiver communication system with distributed aperture antenna
DE10312284B4 (en) 2003-03-19 2005-12-22 Sew-Eurodrive Gmbh & Co. Kg Transducer head, system for contactless energy transmission and use of a transmitter head
KR100488524B1 (en) 2003-04-09 2005-05-11 삼성전자주식회사 Charging equipment for robot
FI115264B (en) 2003-04-17 2005-03-31 Ailocom Oy Wireless power transmission
US20050004637A1 (en) 2003-05-16 2005-01-06 Ruchika Singhal Explantation of implantable medical device
JP2004348496A (en) 2003-05-23 2004-12-09 Hitachi Ltd Communication system
US6967462B1 (en) 2003-06-05 2005-11-22 Nasa Glenn Research Center Charging of devices by microwave power beaming
US7243509B2 (en) 2003-06-06 2007-07-17 David Lam Trinh Thermal therapeutic method
SE0301786D0 (en) 2003-06-16 2003-06-16 Abb Ab Industrial Robot
US6798716B1 (en) 2003-06-19 2004-09-28 Bc Systems, Inc. System and method for wireless electrical power transmission
WO2005004754A2 (en) 2003-06-30 2005-01-20 Js Vascular, Inc. Subcutaneous implantable non-thrombogenic mechanical devices
US7613497B2 (en) 2003-07-29 2009-11-03 Biosense Webster, Inc. Energy transfer amplification for intrabody devices
JP3874744B2 (en) 2003-08-01 2007-01-31 三井化学株式会社 Small high sensitivity antenna
AU2003904086A0 (en) 2003-08-04 2003-08-21 Cochlear Limited Implant battery short circuit protection
US7737359B2 (en) 2003-09-05 2010-06-15 Newire Inc. Electrical wire and method of fabricating the electrical wire
GB0320960D0 (en) 2003-09-08 2003-10-08 Splashpower Ltd Improvements relating to improving flux patterns of inductive charging pads
US7233137B2 (en) 2003-09-30 2007-06-19 Sharp Kabushiki Kaisha Power supply system
GB2406730A (en) 2003-09-30 2005-04-06 Ocuity Ltd Directional display.
JP3982476B2 (en) 2003-10-01 2007-09-26 ソニー株式会社 Communications system
US20050075696A1 (en) 2003-10-02 2005-04-07 Medtronic, Inc. Inductively rechargeable external energy source, charger, system and method for a transcutaneous inductive charger for an implantable medical device
JP4676437B2 (en) 2003-10-06 2011-04-27 エヌエックスピー ビー ヴィ Resonator structure and method of manufacturing the same
US6839035B1 (en) 2003-10-07 2005-01-04 A.C.C. Systems Magnetically coupled antenna range extender
EP1673851A4 (en) 2003-10-17 2011-03-16 Powercast Corp Method and apparatus for a wireless power supply
US7379774B2 (en) 2003-10-17 2008-05-27 Alfred E. Mann Foundation For Scientific Research Method and apparatus for efficient power/data transmission
US7084605B2 (en) 2003-10-29 2006-08-01 University Of Pittsburgh Energy harvesting circuit
JP4501416B2 (en) 2003-11-17 2010-07-14 Tdk株式会社 IC card charger and pass case
US7872444B2 (en) 2003-12-11 2011-01-18 Symbol Technologies, Inc. Opportunistic power supply charge system for portable unit
US7378817B2 (en) 2003-12-12 2008-05-27 Microsoft Corporation Inductive power adapter
US7375493B2 (en) 2003-12-12 2008-05-20 Microsoft Corporation Inductive battery charger
US7375492B2 (en) 2003-12-12 2008-05-20 Microsoft Corporation Inductively charged battery pack
SE0303445L (en) 2003-12-17 2005-06-18 Abb Research Ltd Tools for an industrial robot
US20050151511A1 (en) 2004-01-14 2005-07-14 Intel Corporation Transferring power between devices in a personal area network
US8432167B2 (en) 2004-02-09 2013-04-30 Baker Hughes Incorporated Method and apparatus of using magnetic material with residual magnetization in transient electromagnetic measurement
US7288918B2 (en) 2004-03-02 2007-10-30 Distefano Michael Vincent Wireless battery charger via carrier frequency signal
US7035076B1 (en) 2005-08-15 2006-04-25 Greatbatch-Sierra, Inc. Feedthrough filter capacitor assembly with internally grounded hermetic insulator
NO320439B1 (en) 2004-04-30 2005-12-05 Geir Olav Gyland Device and method for contactless energy transfer
USD541322S1 (en) 2004-05-05 2007-04-24 Russell Finex Limited Resonator
US7642557B2 (en) 2004-05-11 2010-01-05 Los Alamos National Security, Llc Non-contact pumping of light emitters via non-radiative energy transfer
GB2414121B (en) 2004-05-11 2008-04-02 Splashpower Ltd Controlling inductive power transfer systems
GB2414120B (en) 2004-05-11 2008-04-02 Splashpower Ltd Controlling inductive power transfer systems
DE102004023815A1 (en) 2004-05-13 2005-12-08 Vacuumschmelze Gmbh & Co. Kg Antenna arrangement and use of the antenna arrangement
US7283867B2 (en) 2004-06-10 2007-10-16 Ndi Medical, Llc Implantable system and methods for acquisition and processing of electrical signals from muscles and/or nerves and/or central nervous system tissue
JP4611127B2 (en) 2004-06-14 2011-01-12 パナソニック株式会社 Electromechanical signal selection element
US20050288740A1 (en) 2004-06-24 2005-12-29 Ethicon Endo-Surgery, Inc. Low frequency transcutaneous telemetry to implanted medical device
US7191007B2 (en) 2004-06-24 2007-03-13 Ethicon Endo-Surgery, Inc Spatially decoupled twin secondary coils for optimizing transcutaneous energy transfer (TET) power transfer characteristics
US20050288739A1 (en) 2004-06-24 2005-12-29 Ethicon, Inc. Medical implant having closed loop transcutaneous energy transfer (TET) power transfer regulation circuitry
US7599743B2 (en) 2004-06-24 2009-10-06 Ethicon Endo-Surgery, Inc. Low frequency transcutaneous energy transfer to implanted medical device
US7599744B2 (en) 2004-06-24 2009-10-06 Ethicon Endo-Surgery, Inc. Transcutaneous energy transfer primary coil with a high aspect ferrite core
US20060001509A1 (en) 2004-06-30 2006-01-05 Gibbs Phillip R Systems and methods for automated resonant circuit tuning
DE102004035851B4 (en) 2004-07-23 2006-11-16 Bruker Biospin Ag Resonator system for generating a high-frequency magnetic field
KR20040072581A (en) 2004-07-29 2004-08-18 (주)제이씨 프로텍 An amplification relay device of electromagnetic wave and a radio electric power conversion apparatus using the above device
US7151357B2 (en) 2004-07-30 2006-12-19 Kye Systems Corporation Pulse frequency modulation for induction charge device
US7462951B1 (en) 2004-08-11 2008-12-09 Access Business Group International Llc Portable inductive power station
JP2006074848A (en) 2004-08-31 2006-03-16 Hokushin Denki Kk Non-contact power transmission system
US20060184209A1 (en) 2004-09-02 2006-08-17 John Constance M Device for brain stimulation using RF energy harvesting
US20060066443A1 (en) 2004-09-15 2006-03-30 Tagsys Sa Self-adjusting RF assembly
US20090038623A1 (en) 2004-09-21 2009-02-12 Pavad Medical, Inc. Inductive power transfer system for palatal implant
US7156201B2 (en) 2004-11-04 2007-01-02 Advanced Ultrasonic Solutions, Inc. Ultrasonic rod waveguide-radiator
SE0402945D0 (en) 2004-11-30 2004-11-30 Abb Research Ltd Industrial robot
US20060132045A1 (en) 2004-12-17 2006-06-22 Baarman David W Heating system and heater
US20060185809A1 (en) 2005-02-23 2006-08-24 Abb. Actuator system for use in control of a sheet or web forming process
KR20070105342A (en) 2005-02-24 2007-10-30 파이어플라이 파워 테크놀로지 Method, apparatus and system for power transmission
US7262700B2 (en) 2005-03-10 2007-08-28 Microsoft Corporation Inductive powering surface for powering portable devices
WO2006097870A2 (en) 2005-03-14 2006-09-21 Philips Intellectual Property & Standards Gmbh A system, an inductive powering device, an energizable load and a method of for enabling a wireless power transfer
KR100554889B1 (en) 2005-03-21 2006-03-03 주식회사 한림포스텍 No point of contact charging system
US20060214626A1 (en) 2005-03-25 2006-09-28 Nilson Lee A Battery charging assembly for use on a locomotive
US8042631B2 (en) 2005-04-04 2011-10-25 Delphi Technologies, Inc. Electric vehicle having multiple-use APU system
US7963941B2 (en) 2005-04-12 2011-06-21 Wilk Peter J Intra-abdominal medical method and associated device
US20060238365A1 (en) 2005-04-24 2006-10-26 Elio Vecchione Short-range wireless power transmission and reception
US7376407B2 (en) 2005-04-28 2008-05-20 Microtune (Texas), L.P. System and method for dynamic impedance tuning to minimize return loss
US20080012569A1 (en) 2005-05-21 2008-01-17 Hall David R Downhole Coils
US7844306B2 (en) 2005-05-24 2010-11-30 Powercast Corporation Power transmission network
MX2007015229A (en) 2005-06-08 2008-04-21 Powercast Corp Powering devices using rf energy harvesting.
US7321290B2 (en) 2005-10-02 2008-01-22 Visible Assets, Inc. Radio tag and system
CA2511051A1 (en) 2005-06-28 2006-12-29 Roger J. Soar Contactless battery charging apparel
EP1905162A2 (en) 2005-07-08 2008-04-02 Powercast Corporation Power transmission system, apparatus and method with communication
US7825543B2 (en) 2005-07-12 2010-11-02 Massachusetts Institute Of Technology Wireless energy transfer
EP2306616B2 (en) 2005-07-12 2023-06-21 Massachusetts Institute of Technology (MIT) Wireless non-radiative energy transfer
US7528725B2 (en) 2005-07-15 2009-05-05 Allflex U.S.A., Inc. Passive dynamic antenna tuning circuit for a radio frequency identification reader
US20070016089A1 (en) 2005-07-15 2007-01-18 Fischell David R Implantable device for vital signs monitoring
US20070021140A1 (en) 2005-07-22 2007-01-25 Keyes Marion A Iv Wireless power transmission systems and methods
WO2007016191A2 (en) 2005-07-27 2007-02-08 Flaugher David J Battery chargers and methods for extended battery life
DE102005036290B4 (en) 2005-08-02 2009-04-30 Gebrüder Frei GmbH & Co. KG operating system
KR100691255B1 (en) 2005-08-08 2007-03-12 (주)제이씨 프로텍 A Small and Light Wireless Power Transmitting and Receiving Device
US20070042729A1 (en) 2005-08-16 2007-02-22 Baaman David W Inductive power supply, remote device powered by inductive power supply and method for operating same
US8838215B2 (en) 2006-03-01 2014-09-16 Angel Medical Systems, Inc. Systems and methods of medical monitoring according to patient state
JP4155408B2 (en) 2005-09-29 2008-09-24 ソニー・エリクソン・モバイルコミュニケーションズ株式会社 Charging device and charging system
CN101442933A (en) 2005-10-07 2009-05-27 皇家飞利浦电子股份有限公司 Ear-thermometer with ear identification
US7382636B2 (en) 2005-10-14 2008-06-03 Access Business Group International Llc System and method for powering a load
JP4852970B2 (en) 2005-10-26 2012-01-11 パナソニック電工株式会社 Power supply system
US7798817B2 (en) 2005-11-04 2010-09-21 Georgia Tech Research Corporation Integrated circuit interconnects with coaxial conductors
US8233985B2 (en) 2005-11-04 2012-07-31 Kenergy, Inc. MRI compatible implanted electronic medical device with power and data communication capability
ZA200804243B (en) 2005-11-21 2009-12-30 Powercast Corp Radio-frequency (RF) power portal
WO2007063500A2 (en) 2005-12-02 2007-06-07 Koninklijke Philips Electronics N.V. Coupling system
US7521890B2 (en) 2005-12-27 2009-04-21 Power Science Inc. System and method for selective transfer of radio frequency power
US9130602B2 (en) 2006-01-18 2015-09-08 Qualcomm Incorporated Method and apparatus for delivering energy to an electrical or electronic device via a wireless link
CA2637842A1 (en) 2006-01-18 2007-07-26 Nigel Power Llc Method and apparatus for delivering energy to an electrical or electronic device via a wireless link
US8447234B2 (en) 2006-01-18 2013-05-21 Qualcomm Incorporated Method and system for powering an electronic device via a wireless link
US7952322B2 (en) 2006-01-31 2011-05-31 Mojo Mobility, Inc. Inductive power source and charging system
KR100792308B1 (en) 2006-01-31 2008-01-07 엘에스전선 주식회사 A contact-less power supply, contact-less charger systems and method for charging rechargeable battery cell
US8169185B2 (en) 2006-01-31 2012-05-01 Mojo Mobility, Inc. System and method for inductive charging of portable devices
JP2007266892A (en) 2006-03-28 2007-10-11 Sumida Corporation Coil antenna
US7738965B2 (en) 2006-04-28 2010-06-15 Medtronic, Inc. Holster for charging pectorally implanted medical devices
DE102007014712B4 (en) 2006-05-30 2012-12-06 Sew-Eurodrive Gmbh & Co. Kg investment
US7795708B2 (en) 2006-06-02 2010-09-14 Honeywell International Inc. Multilayer structures for magnetic shielding
WO2007150070A2 (en) 2006-06-23 2007-12-27 Securaplane Technologies, Inc. Wireless electromagnetic parasitic power transfer
US7916092B2 (en) 2006-08-02 2011-03-29 Schlumberger Technology Corporation Flexible circuit for downhole antenna
US9129741B2 (en) 2006-09-14 2015-09-08 Qualcomm Incorporated Method and apparatus for wireless power transmission
JP5362568B2 (en) 2006-09-18 2013-12-11 コーニンクレッカ フィリップス エヌ ヴェ Apparatus, system and method for electromagnetic energy transfer
DE102006044057A1 (en) 2006-09-20 2008-04-10 Abb Patent Gmbh Wireless power supply system for multiple electronic devices e.g. sensors, actuators has at least one field reinforcement or deflection unit that is brought into magnetic field such that resonance is adjusted
KR100836634B1 (en) 2006-10-24 2008-06-10 주식회사 한림포스텍 Non-contact charger available of wireless data and power transmission, charging battery-pack and mobile divice using non-contact charger
WO2008051939A2 (en) 2006-10-24 2008-05-02 Medapps, Inc. Systems and methods for medical data transmission
WO2008051611A2 (en) 2006-10-25 2008-05-02 Farkas Laszio High power wireless resonant energy transfer system transfers energy across an airgap
CN101529688A (en) 2006-10-26 2009-09-09 皇家飞利浦电子股份有限公司 Floor covering and inductive power system
WO2008050260A1 (en) 2006-10-26 2008-05-02 Philips Intellectual Property & Standards Gmbh Inductive power system and method of operation
EP2121307A1 (en) 2006-11-15 2009-11-25 PILKINGTON Automotive Deutschland GmbH Glazing
US8339096B2 (en) 2006-11-20 2012-12-25 Semiconductor Energy Laboratory Co., Ltd. Wireless power receiving device
US8320991B2 (en) 2006-12-01 2012-11-27 Medtronic Navigation Inc. Portable electromagnetic navigation system
US20080154331A1 (en) 2006-12-21 2008-06-26 Varghese John Device for multicentric brain modulation, repair and interface
US8010205B2 (en) * 2007-01-11 2011-08-30 Boston Scientific Neuromodulation Corporation Multiple telemetry and/or charging coil configurations for an implantable medical device system
DE112008000168T5 (en) 2007-01-12 2009-12-03 Kopin Corporation, Taunton Head mounted monocular display
US8503968B2 (en) 2007-01-19 2013-08-06 Samsung Electronics Co., Ltd. Method and system for power saving in wireless communications
JP4308858B2 (en) 2007-02-16 2009-08-05 セイコーエプソン株式会社 Power transmission control device, power reception control device, non-contact power transmission system, power transmission device, power reception device, and electronic equipment
JP4413236B2 (en) 2007-02-16 2010-02-10 セイコーエプソン株式会社 Power reception control device, power transmission control device, non-contact power transmission system, power reception device, power transmission device, and electronic device
JP4930093B2 (en) 2007-02-21 2012-05-09 セイコーエプソン株式会社 Power transmission control device, power reception control device, non-contact power transmission system, power transmission device, power reception device, and electronic equipment
US9774086B2 (en) 2007-03-02 2017-09-26 Qualcomm Incorporated Wireless power apparatus and methods
JP4649430B2 (en) 2007-03-20 2011-03-09 セイコーエプソン株式会社 Non-contact power transmission device
US20080255901A1 (en) 2007-03-26 2008-10-16 John Stuart Carroll Kiosk systems and methods
KR101356409B1 (en) 2007-03-27 2014-01-27 메사추세츠 인스티튜트 오브 테크놀로지 Wireless energy transfer
FR2914512A1 (en) 2007-03-27 2008-10-03 Delachaux Sa Sa ELECTRICAL POWER SUPPLY SYSTEM AND DATA TRANSMISSION WITHOUT ELECTRICAL CONTACT.
US7602142B2 (en) 2007-04-02 2009-10-13 Visteon Global Technologies, Inc. System for inductive power transfer
US20080272860A1 (en) 2007-05-01 2008-11-06 M/A-Com, Inc. Tunable Dielectric Resonator Circuit
CN101689761B (en) 2007-05-10 2013-02-27 奥克兰联合服务有限公司 Multi power sourced electric vehicle
US20080300657A1 (en) 2007-05-31 2008-12-04 Mark Raymond Stultz Therapy system
US8805530B2 (en) 2007-06-01 2014-08-12 Witricity Corporation Power generation for implantable devices
TWI339548B (en) 2007-06-01 2011-03-21 Ind Tech Res Inst Inductor devices
US9124120B2 (en) 2007-06-11 2015-09-01 Qualcomm Incorporated Wireless power system and proximity effects
WO2008152641A2 (en) 2007-06-12 2008-12-18 Advanced Magnetic Solutions Ltd. Magnetic induction devices and methods for producing them
US9634730B2 (en) 2007-07-09 2017-04-25 Qualcomm Incorporated Wireless energy transfer using coupled antennas
KR100819753B1 (en) 2007-07-13 2008-04-08 주식회사 한림포스텍 Non-contact charger system of wireless power transmision for battery and control method thereof
US20090033564A1 (en) 2007-08-02 2009-02-05 Nigel Power, Llc Deployable Antennas for Wireless Power
EP2176630A1 (en) 2007-08-06 2010-04-21 Premark FEG L.L.C. Oven with wireless temperature sensor for use in monitoring food temperature
CN101842962B (en) 2007-08-09 2014-10-08 高通股份有限公司 Increasing the Q factor of a resonator
US20090058189A1 (en) 2007-08-13 2009-03-05 Nigelpower, Llc Long range low frequency resonator and materials
US20090067198A1 (en) 2007-08-29 2009-03-12 David Jeffrey Graham Contactless power supply
JP4561796B2 (en) 2007-08-31 2010-10-13 ソニー株式会社 Power receiving device and power transmission system
US7999414B2 (en) 2007-09-01 2011-08-16 Maquet Gmbh & Co. Kg Apparatus and method for wireless energy and/or data transmission between a source device and at least one target device
WO2009033043A2 (en) 2007-09-05 2009-03-12 University Of Florida Research Foundation, Inc. Planar near-field wireless power charger and high-speed data communication platform
US8461817B2 (en) 2007-09-11 2013-06-11 Powercast Corporation Method and apparatus for providing wireless power to a load device
EP2188863A1 (en) 2007-09-13 2010-05-26 QUALCOMM Incorporated Maximizing power yield from wireless power magnetic resonators
CN101904048A (en) 2007-09-13 2010-12-01 高通股份有限公司 Antennas for wireless power applications
JP2010539857A (en) 2007-09-17 2010-12-16 クゥアルコム・インコーポレイテッド Transmitter and receiver for wireless energy transmission
US8610312B2 (en) 2007-09-17 2013-12-17 Hideo Kikuchi Induced power transmission circuit
CN104283332B (en) 2007-09-17 2018-08-07 高通股份有限公司 High efficiency in wireless power magnetic resonators and power transfer
JP2010539887A (en) 2007-09-19 2010-12-16 クゥアルコム・インコーポレイテッド Maximizing the power generated from wireless power magnetic resonators
EP2195716A1 (en) 2007-09-26 2010-06-16 Governing Dynamics, LLC. Self-charging electric vehicles and aircraft, and wireless energy distribution system
JP2009081943A (en) 2007-09-26 2009-04-16 Seiko Epson Corp Transmission controller, transmitter, apparatus on transmission side, and no-contact power transmitting system
US20100256481A1 (en) 2007-09-27 2010-10-07 Mareci Thomas H Method and Apparatus for Providing a Wireless Multiple-Frequency MR Coil
US7973635B2 (en) 2007-09-28 2011-07-05 Access Business Group International Llc Printed circuit board coil
WO2009049281A2 (en) 2007-10-11 2009-04-16 Nigel Power, Llc Wireless power transfer using magneto mechanical systems
EP2211991A4 (en) 2007-10-16 2015-08-19 Kirk Promotion Ltd Method and apparatus for supplying energy to a medical device
US8193769B2 (en) 2007-10-18 2012-06-05 Powermat Technologies, Ltd Inductively chargeable audio devices
JP4453741B2 (en) 2007-10-25 2010-04-21 トヨタ自動車株式会社 Electric vehicle and vehicle power supply device
US8175660B2 (en) 2007-10-30 2012-05-08 Qualcomm Incorporated Wireless energy transfer
US7868586B2 (en) 2007-10-31 2011-01-11 Intermec Ip Corp. System, devices, and method for selectively wirelessly energizing passive wireless data communications devices
US8228025B2 (en) 2007-11-09 2012-07-24 City University Of Hong Kong Electronic control method for a planar inductive battery charging apparatus
US7843288B2 (en) 2007-11-15 2010-11-30 Samsung Electronics Co., Ltd. Apparatus and system for transmitting power wirelessly
US8729734B2 (en) 2007-11-16 2014-05-20 Qualcomm Incorporated Wireless power bridge
WO2009070730A2 (en) 2007-11-27 2009-06-04 University Of Florida Research Foundation, Inc. Method and apparatus for high efficiency scalable near-field wireless power transfer
KR101261686B1 (en) 2007-11-28 2013-05-06 퀄컴 인코포레이티드 Wireless power range increase using parasitic antennas
JP4974171B2 (en) 2007-12-07 2012-07-11 ソニーモバイルコミュニケーションズ株式会社 Non-contact wireless communication device, method for adjusting resonance frequency of non-contact wireless communication antenna, and portable terminal device
TWI361540B (en) 2007-12-14 2012-04-01 Darfon Electronics Corp Energy transferring system and method thereof
US20090160261A1 (en) 2007-12-19 2009-06-25 Nokia Corporation Wireless energy transfer
US20090161078A1 (en) 2007-12-21 2009-06-25 Oculon Optoelectronics, Inc. Projector, and mobile device and computer device having the same
JP2009158598A (en) 2007-12-25 2009-07-16 Panasonic Electric Works Co Ltd Planar coil and non-contact power transfer device using the same
TWI484715B (en) 2008-01-07 2015-05-11 通路實業集團國際公司 Inductive power supply with duty cycle control and system and method for the same
US9128687B2 (en) 2008-01-10 2015-09-08 Qualcomm Incorporated Wireless desktop IT environment
US8294300B2 (en) 2008-01-14 2012-10-23 Qualcomm Incorporated Wireless powering and charging station
JP4604094B2 (en) 2008-01-23 2010-12-22 トヨタ自動車株式会社 Vehicle power supply device and vehicle window material
US8487479B2 (en) 2008-02-24 2013-07-16 Qualcomm Incorporated Ferrite antennas for wireless power transfer
US8344552B2 (en) 2008-02-27 2013-01-01 Qualcomm Incorporated Antennas and their coupling characteristics for wireless power transfer via magnetic coupling
US8855554B2 (en) 2008-03-05 2014-10-07 Qualcomm Incorporated Packaging and details of a wireless power device
JP5188211B2 (en) 2008-03-07 2013-04-24 キヤノン株式会社 Power supply apparatus and power supply method
US8421267B2 (en) 2008-03-10 2013-04-16 Qualcomm, Incorporated Packaging and details of a wireless power device
CA2715984A1 (en) 2008-03-13 2009-09-17 Access Business Group International, Llc Inductive power supply system with multiple coil primary
US8629576B2 (en) 2008-03-28 2014-01-14 Qualcomm Incorporated Tuning and gain control in electro-magnetic power systems
JP2009251895A (en) 2008-04-04 2009-10-29 Sony Corp Power exchange device, power exchange method, program, and power exchange system
US7999506B1 (en) 2008-04-09 2011-08-16 SeventhDigit Corporation System to automatically recharge vehicles with batteries
WO2009126963A2 (en) 2008-04-11 2009-10-15 University Of Florida Research Foundation, Inc. Power control duty cycle throttling scheme for planar wireless power transmission system
KR20130010089A (en) 2008-04-21 2013-01-25 퀄컴 인코포레이티드 Short range efficient wireless power transfer
US9603512B2 (en) 2008-04-25 2017-03-28 Karl Storz Imaging, Inc. Wirelessly powered medical devices and instruments
JP4544338B2 (en) 2008-04-28 2010-09-15 ソニー株式会社 Power transmission device, power reception device, power transmission method, program, and power transmission system
WO2009132383A1 (en) 2008-04-28 2009-11-05 Cochlear Limited Magnetic inductive systems and devices
KR101094253B1 (en) 2008-04-28 2011-12-19 정춘길 Non-contact power receier, non-contact power trasmitter related to the same and non-contact power transmitting and receiving system
JP4544339B2 (en) 2008-04-28 2010-09-15 ソニー株式会社 Power transmission device, power transmission method, program, and power transmission system
US8193766B2 (en) 2008-04-30 2012-06-05 Medtronic, Inc. Time remaining to charge an implantable medical device, charger indicator, system and method therefore
US20090273242A1 (en) 2008-05-05 2009-11-05 Nigelpower, Llc Wireless Delivery of power to a Fixed-Geometry power part
JP4557045B2 (en) 2008-05-12 2010-10-06 ソニー株式会社 Power transmission device, power transmission method, program, and power transmission system
US8878393B2 (en) 2008-05-13 2014-11-04 Qualcomm Incorporated Wireless power transfer for vehicles
US8629650B2 (en) 2008-05-13 2014-01-14 Qualcomm Incorporated Wireless power transfer using multiple transmit antennas
AU2009246310B9 (en) 2008-05-14 2015-04-02 Massachusetts Institute Of Technology Wireless energy transfer, including interference enhancement
TW200950257A (en) 2008-05-20 2009-12-01 Darfon Electronics Corp Wireless charging module and electronic apparatus
KR100976231B1 (en) 2008-05-23 2010-08-17 고려대학교 산학협력단 Wireless power providing control system
WO2009155000A2 (en) 2008-05-27 2009-12-23 University Of Florida Research Foundation, Inc. Method and apparatus for producing substantially uniform magnetic field
US20090299918A1 (en) 2008-05-28 2009-12-03 Nigelpower, Llc Wireless delivery of power to a mobile powered device
US8674551B2 (en) 2008-06-06 2014-03-18 University Of Florida Research Foundation, Inc. Method and apparatus for contactless power transfer
JP4725604B2 (en) 2008-06-25 2011-07-13 セイコーエプソン株式会社 Power transmission control device, power transmission device, power reception control device, power reception device, and electronic device
US8466654B2 (en) 2008-07-08 2013-06-18 Qualcomm Incorporated Wireless high power transfer under regulatory constraints
US8212414B2 (en) 2008-07-10 2012-07-03 Lockheed Martin Corporation Resonant, contactless radio frequency power coupling
US9853488B2 (en) 2008-07-11 2017-12-26 Charge Fusion Technologies, Llc Systems and methods for electric vehicle charging and power management
US7835417B2 (en) 2008-07-15 2010-11-16 Octrolix Bv Narrow spectrum light source
WO2010009429A1 (en) 2008-07-17 2010-01-21 Qualcomm Incorporated Adaptive matching and tuning of hf wireless power transmit antenna
US20100015918A1 (en) 2008-07-18 2010-01-21 Ferro Solutions, Inc. Wireless transfer of information using magneto-electric devices
US8278784B2 (en) 2008-07-28 2012-10-02 Qualcomm Incorporated Wireless power transmission for electronic devices
US20100034238A1 (en) 2008-08-05 2010-02-11 Broadcom Corporation Spread spectrum wireless resonant power delivery
US7893564B2 (en) 2008-08-05 2011-02-22 Broadcom Corporation Phased array wireless resonant power delivery system
US8111042B2 (en) 2008-08-05 2012-02-07 Broadcom Corporation Integrated wireless resonant power charging and communication channel
US8901880B2 (en) 2008-08-19 2014-12-02 Qualcomm Incorporated Wireless power transmission for portable wireless power charging
US8299652B2 (en) 2008-08-20 2012-10-30 Intel Corporation Wireless power transfer apparatus and method thereof
US8446045B2 (en) 2008-08-20 2013-05-21 Intel Corporation Flat, asymmetric, and E-field confined wireless power transfer apparatus and method thereof
US20100081379A1 (en) 2008-08-20 2010-04-01 Intel Corporation Wirelessly powered speaker
US8432070B2 (en) 2008-08-25 2013-04-30 Qualcomm Incorporated Passive receivers for wireless power transmission
CN102132501A (en) 2008-08-26 2011-07-20 高通股份有限公司 Concurrent wireless power transmission and near-field communication
US8947041B2 (en) 2008-09-02 2015-02-03 Qualcomm Incorporated Bidirectional wireless power transmission
JP4911148B2 (en) 2008-09-02 2012-04-04 ソニー株式会社 Contactless power supply
US8581542B2 (en) 2008-09-08 2013-11-12 Qualcomm Incorporated Receive antenna arrangement for wireless power
US8232793B2 (en) 2008-09-12 2012-07-31 University Of Florida Research Foundation, Inc. Method and apparatus of load detection for a planar wireless power system
WO2010029125A1 (en) 2008-09-12 2010-03-18 Advanced Automotive Antennas, S.L. Flush-mounted low-profile resonant hole antenna
US8532724B2 (en) 2008-09-17 2013-09-10 Qualcomm Incorporated Transmitters for wireless power transmission
JP4743244B2 (en) 2008-09-18 2011-08-10 トヨタ自動車株式会社 Non-contact power receiving device
US8421409B2 (en) 2008-09-19 2013-04-16 Toyota Jidosha Kabushiki Kaisha Noncontact power receiving apparatus for electrically-powered vehicle and vehicle including the same
US8598743B2 (en) 2008-09-27 2013-12-03 Witricity Corporation Resonator arrays for wireless energy transfer
US8933594B2 (en) 2008-09-27 2015-01-13 Witricity Corporation Wireless energy transfer for vehicles
US8461720B2 (en) 2008-09-27 2013-06-11 Witricity Corporation Wireless energy transfer using conducting surfaces to shape fields and reduce loss
US8497601B2 (en) 2008-09-27 2013-07-30 Witricity Corporation Wireless energy transfer converters
US9160203B2 (en) 2008-09-27 2015-10-13 Witricity Corporation Wireless powered television
US20120242159A1 (en) 2008-09-27 2012-09-27 Herbert Toby Lou Multi-resonator wireless energy transfer for appliances
US20120086284A1 (en) 2008-09-27 2012-04-12 Capanella Andrew J Wireless transmission of solar generated power
US20120256494A1 (en) 2008-09-27 2012-10-11 Kesler Morris P Tunable wireless energy transfer for medical applications
US20120091819A1 (en) 2008-09-27 2012-04-19 Konrad Kulikowski Computer that wirelessly powers accessories
US20120091949A1 (en) 2008-09-27 2012-04-19 Campanella Andrew J Wireless energy transfer for energizing power tools
US20120086867A1 (en) 2008-09-27 2012-04-12 Kesler Morris P Modular upgrades for wirelessly powered televisions
US8552592B2 (en) 2008-09-27 2013-10-08 Witricity Corporation Wireless energy transfer with feedback control for lighting applications
US20120248981A1 (en) 2008-09-27 2012-10-04 Aristeidis Karalis Multi-resonator wireless energy transfer for lighting
US8937408B2 (en) 2008-09-27 2015-01-20 Witricity Corporation Wireless energy transfer for medical applications
US20120091794A1 (en) 2008-09-27 2012-04-19 Campanella Andrew J Wirelessly powered laptop and desktop environment
US8587155B2 (en) 2008-09-27 2013-11-19 Witricity Corporation Wireless energy transfer using repeater resonators
US8643326B2 (en) 2008-09-27 2014-02-04 Witricity Corporation Tunable wireless energy transfer systems
US8466583B2 (en) 2008-09-27 2013-06-18 Witricity Corporation Tunable wireless energy transfer for outdoor lighting applications
US8928276B2 (en) 2008-09-27 2015-01-06 Witricity Corporation Integrated repeaters for cell phone applications
US20120112691A1 (en) 2008-09-27 2012-05-10 Kurs Andre B Wireless energy transfer for vehicles
US20120112538A1 (en) 2008-09-27 2012-05-10 Kesler Morris P Wireless energy transfer for vehicle applications
US20120248888A1 (en) 2008-09-27 2012-10-04 Kesler Morris P Wireless energy transfer with resonator arrays for medical applications
US20120228953A1 (en) 2008-09-27 2012-09-13 Kesler Morris P Tunable wireless energy transfer for furniture applications
US8482158B2 (en) 2008-09-27 2013-07-09 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US8963488B2 (en) 2008-09-27 2015-02-24 Witricity Corporation Position insensitive wireless charging
US8907531B2 (en) 2008-09-27 2014-12-09 Witricity Corporation Wireless energy transfer with variable size resonators for medical applications
US20120091797A1 (en) 2008-09-27 2012-04-19 Kesler Morris P Energized tabletop
US20120313742A1 (en) 2008-09-27 2012-12-13 Witricity Corporation Compact resonators for wireless energy transfer in vehicle applications
US8629578B2 (en) 2008-09-27 2014-01-14 Witricity Corporation Wireless energy transfer systems
US8476788B2 (en) 2008-09-27 2013-07-02 Witricity Corporation Wireless energy transfer with high-Q resonators using field shaping to improve K
US20120235501A1 (en) 2008-09-27 2012-09-20 Kesler Morris P Multi-resonator wireless energy transfer for medical applications
US9577436B2 (en) 2008-09-27 2017-02-21 Witricity Corporation Wireless energy transfer for implantable devices
US9093853B2 (en) 2008-09-27 2015-07-28 Witricity Corporation Flexible resonator attachment
US20120119569A1 (en) 2008-09-27 2012-05-17 Aristeidis Karalis Multi-resonator wireless energy transfer inside vehicles
US9318922B2 (en) 2008-09-27 2016-04-19 Witricity Corporation Mechanically removable wireless power vehicle seat assembly
US8461721B2 (en) 2008-09-27 2013-06-11 Witricity Corporation Wireless energy transfer using object positioning for low loss
US20170053736A9 (en) 2008-09-27 2017-02-23 Witricity Corporation Wireless energy transfer converters
US20120248886A1 (en) 2008-09-27 2012-10-04 Kesler Morris P Multi-resonator wireless energy transfer to mobile devices
US8410636B2 (en) 2008-09-27 2013-04-02 Witricity Corporation Low AC resistance conductor designs
US8669676B2 (en) 2008-09-27 2014-03-11 Witricity Corporation Wireless energy transfer across variable distances using field shaping with magnetic materials to improve the coupling factor
US20120248887A1 (en) 2008-09-27 2012-10-04 Kesler Morris P Multi-resonator wireless energy transfer for sensors
US20120062345A1 (en) 2008-09-27 2012-03-15 Kurs Andre B Low resistance electrical conductor
US8686598B2 (en) 2008-09-27 2014-04-01 Witricity Corporation Wireless energy transfer for supplying power and heat to a device
US20110074346A1 (en) 2009-09-25 2011-03-31 Hall Katherine L Vehicle charger safety system and method
US20120228952A1 (en) 2008-09-27 2012-09-13 Hall Katherine L Tunable wireless energy transfer for appliances
US8957549B2 (en) 2008-09-27 2015-02-17 Witricity Corporation Tunable wireless energy transfer for in-vehicle applications
US8912687B2 (en) 2008-09-27 2014-12-16 Witricity Corporation Secure wireless energy transfer for vehicle applications
US8569914B2 (en) 2008-09-27 2013-10-29 Witricity Corporation Wireless energy transfer using object positioning for improved k
US8587153B2 (en) 2008-09-27 2013-11-19 Witricity Corporation Wireless energy transfer using high Q resonators for lighting applications
US20120235566A1 (en) 2008-09-27 2012-09-20 Aristeidis Karalis Tunable wireless energy transfer for lighting applications
US20120228954A1 (en) 2008-09-27 2012-09-13 Kesler Morris P Tunable wireless energy transfer for clothing applications
US8487480B1 (en) 2008-09-27 2013-07-16 Witricity Corporation Wireless energy transfer resonator kit
US9601261B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Wireless energy transfer using repeater resonators
US8304935B2 (en) 2008-09-27 2012-11-06 Witricity Corporation Wireless energy transfer using field shaping to reduce loss
US9065423B2 (en) 2008-09-27 2015-06-23 Witricity Corporation Wireless energy distribution system
US8692412B2 (en) 2008-09-27 2014-04-08 Witricity Corporation Temperature compensation in a wireless transfer system
US8400017B2 (en) 2008-09-27 2013-03-19 Witricity Corporation Wireless energy transfer for computer peripheral applications
US8723366B2 (en) 2008-09-27 2014-05-13 Witricity Corporation Wireless energy transfer resonator enclosures
US8692410B2 (en) 2008-09-27 2014-04-08 Witricity Corporation Wireless energy transfer with frequency hopping
US8324759B2 (en) 2008-09-27 2012-12-04 Witricity Corporation Wireless energy transfer using magnetic materials to shape field and reduce loss
US20120091820A1 (en) 2008-09-27 2012-04-19 Campanella Andrew J Wireless power transfer within a circuit breaker
US8772973B2 (en) 2008-09-27 2014-07-08 Witricity Corporation Integrated resonator-shield structures
US20110043049A1 (en) 2008-09-27 2011-02-24 Aristeidis Karalis Wireless energy transfer with high-q resonators using field shaping to improve k
US20120235502A1 (en) 2008-09-27 2012-09-20 Kesler Morris P Multi-resonator wireless energy transfer for implanted medical devices
US9035499B2 (en) 2008-09-27 2015-05-19 Witricity Corporation Wireless energy transfer for photovoltaic panels
US8901779B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with resonator arrays for medical applications
US20120112536A1 (en) 2008-09-27 2012-05-10 Aristeidis Karalis Wireless energy transfer for vehicles
US8461719B2 (en) 2008-09-27 2013-06-11 Witricity Corporation Wireless energy transfer systems
US20120119698A1 (en) 2008-09-27 2012-05-17 Aristeidis Karalis Wireless energy transfer for vehicles
US8471410B2 (en) 2008-09-27 2013-06-25 Witricity Corporation Wireless energy transfer over distance using field shaping to improve the coupling factor
US8946938B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Safety systems for wireless energy transfer in vehicle applications
US8947186B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Wireless energy transfer resonator thermal management
US9106203B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Secure wireless energy transfer in medical applications
US9184595B2 (en) 2008-09-27 2015-11-10 Witricity Corporation Wireless energy transfer in lossy environments
US8441154B2 (en) 2008-09-27 2013-05-14 Witricity Corporation Multi-resonator wireless energy transfer for exterior lighting
US9246336B2 (en) 2008-09-27 2016-01-26 Witricity Corporation Resonator optimizations for wireless energy transfer
US9105959B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Resonator enclosure
US8901778B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with variable size resonators for implanted medical devices
US20120235504A1 (en) 2008-09-27 2012-09-20 Kesler Morris P Tunable wireless energy transfer for sensors
US8922066B2 (en) 2008-09-27 2014-12-30 Witricity Corporation Wireless energy transfer with multi resonator arrays for vehicle applications
US20100259110A1 (en) 2008-09-27 2010-10-14 Kurs Andre B Resonator optimizations for wireless energy transfer
US20120112535A1 (en) 2008-09-27 2012-05-10 Aristeidis Karalis Wireless energy transfer for vehicles
US8461722B2 (en) 2008-09-27 2013-06-11 Witricity Corporation Wireless energy transfer using conducting surfaces to shape field and improve K
US20120091796A1 (en) 2008-09-27 2012-04-19 Kesler Morris P Wireless powered projector
US20100277121A1 (en) 2008-09-27 2010-11-04 Hall Katherine L Wireless energy transfer between a source and a vehicle
WO2010039967A1 (en) 2008-10-01 2010-04-08 Massachusetts Institute Of Technology Efficient near-field wireless energy transfer using adiabatic system variations
KR101025743B1 (en) 2008-10-13 2011-04-04 한국전자통신연구원 The artificial retina driving apparatus using middle-distance wireless power transfer technology
JP5375032B2 (en) 2008-11-04 2013-12-25 株式会社豊田自動織機 Non-contact power transmission device and design method of non-contact power transmission device
US8947042B2 (en) 2008-11-13 2015-02-03 Qualcomm Incorporated Wireless power and data transfer for electronic devices
JP5308127B2 (en) 2008-11-17 2013-10-09 株式会社豊田中央研究所 Power supply system
KR101440591B1 (en) 2008-11-17 2014-09-17 삼성전자 주식회사 Apparatus of wireless power transmission using high Q near magnetic field resonator
US8810194B2 (en) 2008-11-20 2014-08-19 Qualcomm Incorporated Retrofitting wireless power and near-field communication in electronic devices
US8929957B2 (en) 2008-11-21 2015-01-06 Qualcomm Incorporated Reduced jamming between receivers and wireless power transmitters
US8552593B2 (en) 2008-12-12 2013-10-08 Hanrim Postech Co., Ltd. Non-contact power transmission apparatus
KR101455825B1 (en) 2008-12-18 2014-10-30 삼성전자 주식회사 Resonator for wireless power transmission
US8054039B2 (en) 2008-12-19 2011-11-08 GM Global Technology Operations LLC System and method for charging a plug-in electric vehicle
JP5285418B2 (en) 2008-12-24 2013-09-11 株式会社豊田自動織機 Resonant non-contact power supply device
JP5135204B2 (en) 2008-12-26 2013-02-06 株式会社日立製作所 Non-contact power transmission system and load device in the non-contact power transmission system
US8497658B2 (en) 2009-01-22 2013-07-30 Qualcomm Incorporated Adaptive power control for wireless charging of devices
CN102292918A (en) 2009-01-22 2011-12-21 创科电动工具科技有限公司 Wireless power distribution system and method for power tools
US9136914B2 (en) 2009-01-22 2015-09-15 Qualcomm Incorporated Impedance change detection in wireless power transmission
WO2010091202A1 (en) 2009-02-04 2010-08-12 Graham David S Wireless power transfer with lighting
US9130394B2 (en) 2009-02-05 2015-09-08 Qualcomm Incorporated Wireless power for charging devices
KR101794901B1 (en) 2009-02-05 2017-11-07 오클랜드 유니서비시즈 리미티드 Inductive power transfer apparatus
EP2394345B1 (en) 2009-02-05 2019-08-07 Auckland UniServices Limited Inductive power transfer apparatus
US8427330B2 (en) 2009-02-06 2013-04-23 Broadcom Corporation Efficiency indicator for increasing efficiency of wireless power transfer
US8427100B2 (en) 2009-02-06 2013-04-23 Broadcom Corporation Increasing efficiency of wireless power transfer
US20100201310A1 (en) 2009-02-06 2010-08-12 Broadcom Corporation Wireless power transfer system
JP5262785B2 (en) 2009-02-09 2013-08-14 株式会社豊田自動織機 Non-contact power transmission device
JP2010183814A (en) 2009-02-09 2010-08-19 Toyota Industries Corp Non-contact power transmitter
US20100201312A1 (en) 2009-02-10 2010-08-12 Qualcomm Incorporated Wireless power transfer for portable enclosures
US20100201201A1 (en) 2009-02-10 2010-08-12 Qualcomm Incorporated Wireless power transfer in public places
US9312924B2 (en) 2009-02-10 2016-04-12 Qualcomm Incorporated Systems and methods relating to multi-dimensional wireless charging
CN102439669B (en) 2009-02-13 2015-11-25 韦特里西提公司 Damage the wireless energy transfer in environment
US9407327B2 (en) 2009-02-13 2016-08-02 Qualcomm Incorporated Wireless power for chargeable and charging devices
US8682261B2 (en) 2009-02-13 2014-03-25 Qualcomm Incorporated Antenna sharing for wirelessly powered devices
US8760113B2 (en) 2009-02-24 2014-06-24 Qualcomm Incorporated Wireless power charging timing and charging control
JP4815499B2 (en) 2009-02-27 2011-11-16 東光株式会社 Non-contact power transmission circuit
JP4849142B2 (en) 2009-02-27 2012-01-11 ソニー株式会社 Power supply device and power transmission system
US20100225270A1 (en) 2009-03-08 2010-09-09 Qualcomm Incorporated Wireless power transfer for chargeable devices
US8855786B2 (en) 2009-03-09 2014-10-07 Nucurrent, Inc. System and method for wireless power transfer in implantable medical devices
US9873347B2 (en) 2009-03-12 2018-01-23 Wendell Brown Method and apparatus for automatic charging of an electrically powered vehicle
US8338991B2 (en) 2009-03-20 2012-12-25 Qualcomm Incorporated Adaptive impedance tuning in wireless power transmission
US8803474B2 (en) 2009-03-25 2014-08-12 Qualcomm Incorporated Optimization of wireless power devices
JP5521665B2 (en) 2009-03-26 2014-06-18 セイコーエプソン株式会社 Coil unit, power transmission device and power reception device using the same
US8686684B2 (en) 2009-03-27 2014-04-01 Microsoft Corporation Magnetic inductive charging with low far fields
US8452235B2 (en) 2009-03-28 2013-05-28 Qualcomm, Incorporated Tracking receiver devices with wireless power systems, apparatuses, and methods
JP5621203B2 (en) 2009-03-30 2014-11-12 富士通株式会社 Wireless power supply system and wireless power supply method
JP5417942B2 (en) 2009-03-31 2014-02-19 富士通株式会社 Power transmission device, power transmission / reception device, and power transmission method
JP5689587B2 (en) 2009-03-31 2015-03-25 富士通株式会社 Power transmission equipment
JP5353376B2 (en) 2009-03-31 2013-11-27 富士通株式会社 Wireless power device and wireless power receiving method
JP5365306B2 (en) 2009-03-31 2013-12-11 富士通株式会社 Wireless power supply system
JP5515368B2 (en) 2009-03-31 2014-06-11 富士通株式会社 Wireless power supply method and wireless power supply system
JP5556044B2 (en) 2009-03-31 2014-07-23 富士通株式会社 Wireless power transmission system, wireless power receiving device, and wireless power transmitting device
JP5417941B2 (en) 2009-03-31 2014-02-19 富士通株式会社 Power transmission equipment
US8536736B2 (en) 2009-04-03 2013-09-17 International Business Machines Corporation Wireless power infrastructure
US8970180B2 (en) 2009-04-07 2015-03-03 Qualcomm Incorporated Wireless power transmission scheduling
JP2010252468A (en) 2009-04-14 2010-11-04 Sony Corp Power transmission device and method, power receiving device and method, and power transmission system
US9013141B2 (en) 2009-04-28 2015-04-21 Qualcomm Incorporated Parasitic devices for wireless power transfer
US20100276995A1 (en) 2009-04-29 2010-11-04 Thomas Louis Marzetta Security for wireless transfer of electrical power
KR101083630B1 (en) 2009-05-22 2011-11-17 정춘길 Control module layout for battery charging of wireless type
JP2011050140A (en) 2009-08-26 2011-03-10 Sony Corp Non-contact electric power feeding apparatus, non-contact power electric receiver receiving apparatus, non-contact electric power feeding method, non-contact electric power receiving method and non-contact electric power feeding system
JP5484843B2 (en) 2009-09-24 2014-05-07 パナソニック株式会社 Contactless charging system
EP2489110B1 (en) 2009-10-13 2016-11-09 Cynetic Designs Ltd An inductively coupled power and data transmission system
US8575944B2 (en) 2009-11-03 2013-11-05 Robert Bosch Gmbh Foreign object detection in inductive coupled devices
KR101706616B1 (en) 2009-11-09 2017-02-14 삼성전자주식회사 Load Impedance Selecting Device, Wireless Power Transmission Device and Wireless Power Transmission Method
US8547057B2 (en) 2009-11-17 2013-10-01 Qualcomm Incorporated Systems and methods for selective wireless power transfer
EP2502124B1 (en) 2009-11-17 2020-02-19 Apple Inc. Wireless power utilization in a local computing environment
US8427101B2 (en) 2009-11-18 2013-04-23 Nokia Corporation Wireless energy repeater
JP5580333B2 (en) 2009-11-18 2014-08-27 株式会社東芝 Wireless power transmission device
US20110115303A1 (en) 2009-11-19 2011-05-19 Access Business Group International Llc Multiple use wireless power systems
TWM384453U (en) 2010-03-02 2010-07-11 Winharbor Technology Co Ltd Pull-resistant illuminating/heat generating structure capable of being charged in wireless manner
EP2545654A4 (en) 2010-03-10 2014-09-17 Witricity Corp Wireless energy transfer converters
EP2428970B1 (en) 2010-04-07 2019-02-13 Panasonic Intellectual Property Management Co., Ltd. Wireless power transmission system
US10343535B2 (en) 2010-04-08 2019-07-09 Witricity Corporation Wireless power antenna alignment adjustment system for vehicles
US9561730B2 (en) 2010-04-08 2017-02-07 Qualcomm Incorporated Wireless power transmission in electric vehicles
US20110278943A1 (en) 2010-05-11 2011-11-17 Searete Llc, A Limited Liability Corporation Of The State Of Delaware System including wearable power receiver and wearable power-output device
EP2590299A4 (en) 2010-06-30 2018-01-10 Panasonic Intellectual Property Management Co., Ltd. Electric power generator and electric power generating system
IT1400748B1 (en) 2010-06-30 2013-07-02 St Microelectronics Srl SYSTEM FOR WIRELESS TRANSFER OF ENERGY BETWEEN TWO DEVICES AND SIMULTANEOUS DATA TRANSFER.
JP6094762B2 (en) 2010-09-14 2017-03-15 ウィトリシティ コーポレーション Wireless energy distribution system
US8901775B2 (en) 2010-12-10 2014-12-02 Everheart Systems, Inc. Implantable wireless power system
US9094055B2 (en) 2011-04-19 2015-07-28 Qualcomm Incorporated Wireless power transmitter tuning
JP6124882B2 (en) 2011-06-06 2017-05-10 ワイトリシティ コーポレーションWitricity Corporation Wireless energy transfer for implantable devices
US20130007949A1 (en) 2011-07-08 2013-01-10 Witricity Corporation Wireless energy transfer for person worn peripherals
US20130020878A1 (en) 2011-07-21 2013-01-24 Witricity Corporation Wireless power component selection
US20130038402A1 (en) 2011-07-21 2013-02-14 Witricity Corporation Wireless power component selection
CA2844062C (en) 2011-08-04 2017-03-28 Witricity Corporation Tunable wireless power architectures
ES2558182T3 (en) 2011-09-09 2016-02-02 Witricity Corporation Detection of foreign objects in wireless energy transfer systems
US20130062966A1 (en) 2011-09-12 2013-03-14 Witricity Corporation Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems
US20130069753A1 (en) 2011-09-16 2013-03-21 Witricity Corporation High frequency pcb coils
US9318257B2 (en) 2011-10-18 2016-04-19 Witricity Corporation Wireless energy transfer for packaging
AU2012326113A1 (en) 2011-10-18 2014-05-29 Witricity Corporation Wireless energy transfer for photovoltaic panels
CN103988391A (en) 2011-11-04 2014-08-13 WiTricity公司 Wireless energy transfer modeling tool
US9270342B2 (en) 2011-12-16 2016-02-23 Qualcomm Incorporated System and method for low loss wireless power transmission
US20130175874A1 (en) 2012-01-09 2013-07-11 Witricity Corporation Wireless energy transfer for promotional items
EP2807720A4 (en) 2012-01-26 2015-12-02 Witricity Corp Wireless energy transfer with reduced fields
WO2013142840A1 (en) 2012-03-23 2013-09-26 Witricity Corporation Integrated repeaters for cell phone applications
US9343922B2 (en) 2012-06-27 2016-05-17 Witricity Corporation Wireless energy transfer for rechargeable batteries
CN104737414B (en) 2012-06-27 2019-05-28 韦特里西提公司 Wireless energy transfer for rechargeable battery
US9472338B2 (en) * 2012-09-11 2016-10-18 Qualcomm Incorporated Wireless power transfer system coil arrangements and method of operation
US10014104B2 (en) * 2012-11-02 2018-07-03 Qualcomm Incorporated Coil arrangements in wireless power transfer systems for low electromagnetic emissions
JP6115626B2 (en) * 2013-02-15 2017-04-19 株式会社村田製作所 Wireless power supply device
EP3061176B1 (en) * 2013-10-24 2020-11-11 Harald Merkel Method and arrangement for wireless energy transfer
US9837830B2 (en) * 2014-04-25 2017-12-05 Electronics And Telecommunications Research Institute Wireless power transmitting method and apparatus using dual-loop in-phase feeding
KR20160078186A (en) * 2014-12-24 2016-07-04 삼성전기주식회사 Coil structure and apparatus for wireless power transmiting using the same
WO2016160681A1 (en) * 2015-03-29 2016-10-06 Sanjaya Maniktala Wireless power transfer using multiple coil arrays

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220139650A1 (en) * 2019-07-18 2022-05-05 Abb Schweiz Ag Switch for MV or HV Traction Line Test Device

Also Published As

Publication number Publication date
US10075019B2 (en) 2018-09-11
US20170149280A1 (en) 2017-05-25

Similar Documents

Publication Publication Date Title
US10141769B2 (en) Wireless power transfer system
KR101045585B1 (en) Wireless power transfer device for reducing electromagnetic wave leakage
KR101436063B1 (en) Wiress Power Transmission Apparatus
KR101301389B1 (en) Packaging and details of a wireless power device
CN101023600B (en) An amplification relay device of electromagnetic wave and a radio electric power conversion apparatus using the above device
CN101849342B (en) High efficiency and power transfer in wireless power magnetic resonators
US20160284465A1 (en) Electromagnetic Interference Shield for Wireless Power Transfer
JP4258505B2 (en) Power supply system
CN103718417B (en) Capacitive character contactless power supply system
EP3131178A1 (en) Wireless power transmission system having wireless power transmission device
EP3029799A1 (en) Wireless power transmitter
US20180375379A1 (en) Voltage source isolation in wireless power transfer systems
EP2582064B1 (en) Wireless power repeater
US20170047768A1 (en) Transmission system, method for inductively charging an electrically driven vehicle, and vehicle assembly
JP2012049434A (en) Electronic component, feeder device, power receiver, and wireless feeder system
KR20190143242A (en) Wireless charger having electromagnetic wave shielding function
EP2754225B1 (en) Wireless power apparatus and operation method thereof
Etemadrezaei Wireless power transfer
KR20130128130A (en) Resonance coupling wireless energy transfer receiver and transmistter
US8760009B2 (en) Wireless power source
US20170070097A1 (en) Assembly for inductive energy transfer
KR20120135737A (en) Resonant coil wireless power transmission apparatus using the same
CN205595907U (en) Transformer and power strip
KR20170139319A (en) A wireless power transmitter and a wireless power receiver
KR20170005589A (en) Apparatus for transmitting wireless power and system for transmitting wireless power

Legal Events

Date Code Title Description
AS Assignment

Owner name: WITRICITY CORPORATION, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BUENROSTRO, CHRISTOPHER;HLEBOWITSH, PAUL GERARDUS;SIGNING DATES FROM 20161121 TO 20170614;REEL/FRAME:047015/0034

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION