JPH09182323A - Non-contact type electric power transmission device - Google Patents

Non-contact type electric power transmission device

Info

Publication number
JPH09182323A
JPH09182323A JP7342615A JP34261595A JPH09182323A JP H09182323 A JPH09182323 A JP H09182323A JP 7342615 A JP7342615 A JP 7342615A JP 34261595 A JP34261595 A JP 34261595A JP H09182323 A JPH09182323 A JP H09182323A
Authority
JP
Japan
Prior art keywords
power
non
means
transmission device
inductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7342615A
Other languages
Japanese (ja)
Inventor
Hiroshi Hayashi
宏 林
Original Assignee
Rohm Co Ltd
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd, ローム株式会社 filed Critical Rohm Co Ltd
Priority to JP7342615A priority Critical patent/JPH09182323A/en
Publication of JPH09182323A publication Critical patent/JPH09182323A/en
Application status is Pending legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To reduce favorably the inductance value of a resonance means, by reducing the voltage of a rectification power through a DC/DC converter to feed it to the resonance means.
SOLUTION: When feeding, e.g. a commercial power with signal-phase AC 100V from a commercial power supply 6 to a non-contract type electric power transmission device 1, rectifying this power by a rectification means comprising a diode D1 and a capacitor C1 to reduce its voltage to a predetermined one by a DC/DC converter 3, the reduced voltage is smoothed by a smoothing means comprising a capacitor C2 to be fed both to a resonance means comprising an inductor L1 and a capacitor C3 and to an oscillator 4. Thereby, from the oscillator 4, a pulse signal with a predetermined frequency is fed to the gate of a field effect transistor FET1 to switch on/off the FET1 at the predetermined frequency. Therefore, since the loss of the FET1 by switching is reduced, the switching frequency can be made high enough. As a result, the inductance value of the inductor L1 can be enough reduced.
COPYRIGHT: (C)1997,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本願発明は、商用電源から得た電力を2次側回路に非接触で伝達する非接触式電力伝達装置に関する。 The present invention relates to relates to a non-contact power transmission device for transmitting in a non-contact power obtained from the commercial power source to the secondary circuit.

【0002】 [0002]

【従来の技術】近年、コードレス電話、液晶テレビ、電動歯ブラシ、工作器具など、電力を使用する各種の携帯機器が日常的に多数使用されている。 In recent years, cordless phone, LCD TV, electric toothbrush, such as machine tool equipment, various types of portable devices that use the power has been used a number on a daily basis. このような携帯機器は、通常、充電式の電池を内蔵しており、適宜充電する必要がある。 Such portable devices are usually built rechargeable battery, it is necessary to charge appropriately. この充電には、各種の方法が採用されているが、携帯機器に充電用のアダプタやコードなどを接続することなく、携帯機器を単に充電器台の上などに載置するだけで充電が行われるようにするのが最も便利である。 The charge, various methods have been employed, without connecting a adapter or cord for charging portable devices, charging by simply placed like on the charger base a portable device row it is most convenient to so divide.

【0003】そこで、電磁誘導を利用した非接触式電力伝達装置が提案されているが、従来の非接触式電力伝達装置は、商用電源からの電力を整流し、その整流電力を所定周波数でスイッチングしてインダクタを含む共振手段に供給することにより、共振手段のインダクタに電磁気的に結合可能なインダクタを含む2次側回路に非接触で電力を伝達する構成であった。 [0003] Therefore, although the non-contact power transmission device using electromagnetic induction have been proposed, the conventional non-contact power transmission device, rectifies the power from the commercial power supply, switching the rectified power at a predetermined frequency and by supplying to the resonance means including an inductor, a non-contact was configured to transfer power to the secondary circuit including the electromagnetically coupled inductor inductor resonator means.

【0004】しかし、従来の非接触式電力伝達装置では、商用電力を全波整流した整流電力を共振回路に直接供給するので、整流電力の電圧が高く、このため共振回路に接続されたスイッチング用のトランジスタの損失が大きいことから、スイッチング周波数を十分に高くすることができず、この結果、共振回路のインダクタンスを小さくすることができない。 However, in the conventional non-contact power transmission apparatus, the supplied directly rectified power to commercial power and the full-wave rectification to the resonant circuit, a high voltage of the rectifier power, Therefore switching connected to the resonant circuit since the loss of the transistor is large, it is impossible to sufficiently increase the switching frequency, as a result, it is impossible to reduce the inductance of the resonant circuit. たとえば、商用電源の電圧が100ボルトの場合、全波整流した整流電力の電圧のピーク値は141ボルト程度であり、スイッチング周波数は数KHz〜百数十KHz程度以下となって、インダクタンスは数mH程度(たとえば7.05mH)と大きな値になる。 For example, if the voltage of the commercial power supply is 100 volts, the peak value of the voltage of the rectified electric power full-wave rectification is about 141 volts, the switching frequency is equal to or smaller than about several KHz~ hundred KHz, inductance several mH and a large value extent (for example 7.05mH). また、スイッチング用のトランジスタに印加される電圧のピーク値も、たとえば442ボルトと大きな値になる。 Further, the peak value of the voltage applied to the transistor for switching also becomes a large value, for example 442 volts.

【0005】したがって、共振回路のインダクタが大型化し、インダクタを基板上にパターン化することができないので、非接触式電力伝達装置の小型・軽量化の妨げとなるとともに、インダクタを個別部品として基板に実装する必要があり、生産性が悪いという課題があった。 Accordingly, the inductor of the resonant circuit becomes large, since the inductor can not be patterned on the substrate, it becomes an obstacle to size and weight of the non-contact power transmission device, the substrate inductor as discrete components There is a need to be implemented, there is a problem of poor productivity.
しかも、スイッチング用のトランジスタとして、高耐圧のものを用いる必要があった。 Moreover, as a switching transistor, it is necessary to use a high breakdown voltage.

【0006】 [0006]

【発明の開示】本願発明は、上記した事情のもとで考え出されたものであって、共振手段のインダクタンスを良好に小さくできる非接触式電力伝達装置を提供することをその課題とする。 The present invention DISCLOSURE OF THE INVENTION, which has been proposed under the circumstances described above, and its object is to provide a non-contact power transmission apparatus capable of satisfactorily reducing the inductance of the resonant means.

【0007】上記の課題を解決するため、本願発明では、次の技術的手段を講じている。 [0007] To solve the above problems, the present invention takes the following technical means.

【0008】本願発明の第1の側面によれば、商用電源からの電力を整流し、その整流電力を所定周波数でスイッチングしてインダクタを含む共振手段に供給することにより、共振手段のインダクタに電磁気的に結合可能なインダクタを含む2次側回路に非接触で電力を伝達する非接触式電力伝達装置であって、整流電力の電圧を所定値に降圧させる降圧手段を設けた非接触式電力伝達装置が提供される。 According to a first aspect of the [0008] present invention, by rectifying the power from the commercial power supply, to supply to the resonance means including an inductor by switching the rectified power at a predetermined frequency, electromagnetic inductor resonator means to a non-contact power transmission device for transmitting power in a contactless to the secondary side circuit including a bondable inductors, contactless power transfer having a step-down means for stepping down the voltage of the rectifier power to a predetermined value apparatus is provided.

【0009】降圧手段により整流電力の電圧を所定値に降圧させて共振手段に供給するので、スイッチングの損失が軽減され、この結果、スイッチング周波数を十分に高くできる。 [0009] Since the voltage of the rectifier power by the step-down means is stepped down to a predetermined value is supplied to the resonance means, the loss of the switching can be reduced, as a result, can be sufficiently high switching frequency. しかも、共振手段のインダクタに印加される電圧が十分に低い。 Moreover, the voltage applied to the inductor of the resonance means is sufficiently low. したがって、共振手段のインダクタンスを良好に小さくでき、たとえば、インダクタを基板上にパターン化できる。 Accordingly, the inductance of the resonance unit can be favorably reduced, for example, it is patterned inductor on the substrate. したがって、装置の小型・軽量化を実現できるとともに、インダクタを個別部品として基板に実装する必要がなくなり、生産性の向上を図ることができる。 Therefore, it realizes the size and weight of the device, it is not necessary to implement the substrate inductor as discrete components, it is possible to improve the productivity. もちろん、スイッチング周波数を十分に高くできることから、2次側回路のインダクタンスも小さくでき、2次側回路についても同様の効果が得られる。 Of course, since the switching frequency can be sufficiently high, the inductance of the secondary side circuit can also be reduced, the same effect can be obtained for the secondary circuit.

【0010】商用電源からの電力を整流する整流手段としては、たとえば全波整流回路、あるいは半波整流回路などを用いることができる。 [0010] As the rectifying means for rectifying the power from the commercial power source can for example be used as a full-wave rectifier circuit or a half-wave rectifier circuit.

【0011】インダクタを含む共振手段としては、たとえばインダクタとキャパシタとの並列共振回路、あるいはインダクタとキャパシタとの直列共振回路などを用いることができる。 [0011] The resonance means including an inductor, or the like can be used in series resonant circuit, for example a parallel resonance circuit of an inductor and a capacitor or an inductor and a capacitor.

【0012】好ましい実施の形態によれば、整流電力のスイッチングが、整流電力を電源とする発振器と、この発振器からの発振出力に応じて共振手段に供給される整流電力をスイッチングするトランジスタとにより行われる。 [0012] According to a preferred embodiment, the line switching of the rectifying power, an oscillator for the rectified power to the power supply by a transistor for switching the rectified power supplied to the resonance means in accordance with the oscillation output from the oscillator divide.

【0013】トランジスタとしては、電界効果トランジスタあるいはバイポーラトランジスタなどを用いることができる。 [0013] As transistor can be used as the field-effect transistor or a bipolar transistor. 電界効果トランジスタの場合、ゲートが発振器の出力端に接続され、ソース・ドレイン間が共振手段と直列に接続される。 When the field effect transistor, a gate connected to the output terminal of the oscillator, between the source and the drain is connected to the resonance unit in series. バイポーラトランジスタの場合、 In the case of a bipolar transistor,
ベースが発振器の出力端に接続され、コレクタ・エミッタ間が共振手段と直列に接続される。 Base connected to the output terminal of the oscillator, between the collector and the emitter is connected to the resonance unit in series. 降圧手段により整流電力を降圧するので、スイッチング用のトランジスタとして、耐圧の低いものを用いることができ、製造コストの低減を図ることができる。 Since stepping down the rectified power through the step-down unit, as a switching transistor, it is possible to use a low withstand voltage, it is possible to reduce the manufacturing cost.

【0014】別の好ましい実施の形態によれば、2次側回路は、充電式電池を含み、非接触で伝達された電力により充電式電池が充電される。 According to another preferred embodiment, the secondary circuit includes a rechargeable battery, the rechargeable battery is charged by electric power transmitted in a non-contact manner.

【0015】充電式電池としては、たとえばニッケル・ [0015] as rechargeable batteries, such as nickel,
カドミウム電池、ニッケル・水素電池、リチウムイオン電池などを用いることができる。 Cadmium batteries, nickel-hydrogen batteries can be used such as a lithium ion battery.

【0016】本願発明のその他の特徴および利点は、添付図面を参照して以下に行う詳細な説明によって、より明らかとなろう。 [0016] Other features and advantages of the present invention, the detailed description given below with reference to the accompanying drawings, will become more apparent.

【0017】 [0017]

【発明の実施の形態】以下、本願発明の好ましい実施の形態を、図面を参照して具体的に説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the preferred embodiments of the present invention will be described with reference to the accompanying drawings.

【0018】図1は、本願発明に係る非接触式電力伝達装置の回路図であって、図1においては、非接触式電力伝達装置1の他に、非接触式電力伝達装置1から無接触で電力を伝達される2次側回路2も含めて図示している。 [0018] Figure 1 is a circuit diagram of a contactless power transmission system according to the present invention, in Figure 1, in addition to the non-contact power transmission device 1, without contact from the non-contact power transmission device 1 in are shown including the secondary circuit 2 to be transmitted power. なお、図示していないが、2次側回路2は、コードレス電話、液晶テレビ、電動歯ブラシ、工作器具など、 Although not shown, the secondary circuit 2, a cordless telephone, an LCD TV, electric toothbrushes, handicraft tool,
電力を使用する各種の携帯機器に内蔵されており、非接触式電力伝達装置1は、それらの携帯機器の充電器台に内蔵されている。 Is built into portable devices that use electrical power, non-contact power transmission device 1 is built into the charger base their portable devices. この非接触式電力伝達装置1は、DC The non-contact power transmission device 1, DC
/DCコンバータ3、発振器4、電源プラグ5、ダイオードD1、キャパシタC1〜C3、インダクタL1、および電界効果トランジスタFET1を備えており、電源プラグ5は商用電源6に電気的に接続される。 / DC converter 3, an oscillator 4, a power supply plug 5, diodes D1, capacitors C1 to C3, comprises inductor L1, and the field effect transistor FET1, power plug 5 is electrically connected to a commercial power source 6.

【0019】また、2次側回路2は、インダクタL2、 Further, the secondary circuit 2, an inductor L2,
キャパシタC4,C5、ダイオードD2、スイッチSW Capacitors C4, C5, diodes D2, switch SW
1、および充電式電池7を備えている。 It includes 1, and a rechargeable battery 7.

【0020】商用電源6の一端は、電源プラグ5を介してダイオードD1のアノードに接続されており、ダイオードD1のカソードは、DC/DCコンバータ3の入力端とキャパシタC1の一端とに接続されている。 [0020] One end of the commercial power source 6 through a power plug 5 is connected to the anode of the diode D1, the cathode of the diode D1 is connected to one end of the input end and the capacitor C1 of the DC / DC converter 3 there. DC/ DC /
DCコンバータ3の出力端は、キャパシタC2,C3の一端と発振器4の電源入力端とインダクタL1の一端とに接続されており、発振器4の出力端は、電界効果トランジスタFET1のゲートに接続されている。 The output terminal of the DC converter 3 is connected to one end of the capacitor C2, C3 of the one end and the oscillator 4 the power input terminal and the inductor L1, the output end of the oscillator 4 is connected to the gate of the field effect transistor FET1 there. インダクタL1の他端は、キャパシタC3の他端と電界効果トランジスタFET1のドレインとに接続されており、キャパシタC1,C2の他端とDC/DCコンバータ3および発振器4の接地端と電界効果トランジスタFET1のソースとは、電源プラグ5を介して商用電源6の他端に接続されている。 The other end of the inductor L1 is connected to the drain of the other end and the field effect transistor FET1 of the capacitor C3, the capacitors C1, C2 of the other end and the DC / DC converter 3 and the ground terminal of the oscillator 4 and the field effect transistor FET1 and the source is connected to the other end of the commercial power source 6 through a power plug 5.

【0021】インダクタL2の一端は、キャパシタC4 [0021] One end of the inductor L2, capacitor C4
の一端およびダイオードD2のアノードに接続されており、ダイオードD2のカソードは、キャパシタC5の一端とスイッチSW1の一端とに接続されている。 Of which is connected to the anode of one and the diode D2, the cathode of the diode D2 is connected to one end of the one end and the switch SW1 of the capacitor C5. スイッチSW1の他端は、充電式電池7の正極端に接続されており、充電式電池7の負極端とキャパシタC4,C5の他端とは、インダクタL2の他端に接続されている。 The other end of the switch SW1 is connected to the positive terminal of the rechargeable battery 7, the negative electrode and the other end of the capacitor C4, C5 of the rechargeable battery 7 is connected to the other end of the inductor L2.

【0022】ダイオードD1と電解コンデンサからなるキャパシタC1とは、たとえば単相交流100ボルトの商用電源6からの電力を整流する整流手段を構成している。 The diode D1 and a capacitor C1 formed of the electrolytic capacitor, for example, constitute a rectifying means for rectifying the power from the commercial power source 6 of the single-phase AC 100 volts. DC/DCコンバータ3は、ダイオードD1およびキャパシタC1からなる整流手段により整流された整流電力の電圧を所定電圧に降圧する降圧手段を構成している。 DC / DC converter 3 constitutes a step-down means for stepping down the voltage of the rectifier power rectified by the rectifier means comprising diodes D1 and a capacitor C1 to a predetermined voltage. このDC/DCコンバータ3の具体的な回路は周知であるので、図示および説明を省略する。 This specific circuit of the DC / DC converter 3 is well known and will not be shown and described. キャパシタC Capacitor C
2は、電解コンデンサからなり、DC/DCコンバータ3により降圧された整流電力を平滑化する平滑手段を構成している。 2, an electrolytic capacitor, constitute a smoothing means for smoothing the rectified power is stepped down by the DC / DC converter 3. 発振器4と電界効果トランジスタFET1 Oscillator 4 and the field-effect transistor FET1
とは、キャパシタC2により平滑化された整流電力を所定周波数でスイッチングするスイッチング手段を構成している。 And constitutes a switching means for switching the rectified power is smoothed by a capacitor C2 at a predetermined frequency. すなわち、発振器4は、DC/DCコンバータ3により降圧された整流電力を電源として動作し、予め設定された所定周波数のパルス信号を電界効果トランジスタFET1のゲートに供給する。 That is, the oscillator 4, the rectified power is stepped down by the DC / DC converter 3 operates as a power source, and supplies a pulse signal of a predetermined frequency set in advance to the gate of the field effect transistor FET1. これにより電界効果トランジスタFET1のチャネルすなわちドレイン・ソース間が、発振器4からのパルス信号の周波数に応じて導通状態と非導通状態との間の反転を繰り返し、インダクタL1とキャパシタC3とからなる共振手段に供給されるDC/DCコンバータ3からの整流電力を断続させる。 Resonating means thereby between channel or drain and source of the field effect transistor FET1 is repeatedly inverted between a conducting state and a non-conducting state in accordance with the frequency of the pulse signal from the oscillator 4, consisting of an inductor L1 and a capacitor C3 Metropolitan to interrupt the rectified power from the DC / DC converter 3 is supplied to the. なお、発振器4の具体的な回路は周知であるので、 Since specific circuit of the oscillator 4 is well known,
図示および説明を省略する。 Omitted illustration and explanation. また、電界効果トランジスタFET1は、nチャネルエンハンスメントモードMO In addition, the field-effect transistor FET1, n-channel enhancement mode MO
S・FETである。 Is the S · FET. インダクタL1とキャパシタC3とは、並列共振回路からなる共振手段を構成しており、この並列共振回路の共振条件をほぼ満足するように、発振器4の発振周波数が設定されている。 An inductor L1 and the capacitor C3 constitutes a resonance means comprising parallel resonance circuit, so as to substantially satisfy the resonance condition of the parallel resonance circuit, the oscillation frequency of the oscillator 4 is set.

【0023】2次側回路2のインダクタL2とキャパシタC4とは、並列共振回路を構成しており、インダクタL2を非接触式電力伝達装置1のインダクタL1による磁束と鎖交する状態に位置させることにより、インダクタL2に電磁誘導による起電力が発生する。 [0023] The secondary circuit 2 of the inductor L2 and the capacitor C4, constitute a parallel resonance circuit, positioning the inductor L2 in a non-contact state interlinked magnetic flux and chains by the inductor L1 of the power transmission device 1 Accordingly, electromotive force due to electromagnetic induction is generated in the inductor L2. この並列共振回路は、電磁誘導によりインダクタL2に発生する起電力により共振するように回路条件が設定されている。 This parallel resonant circuit, the circuit conditions to resonate by electromotive force generated in the inductor L2 is set by electromagnetic induction.
ダイオードD2と電解コンデンサからなるキャパシタC Capacitor C and the diode D2 an electrolytic capacitor
5とは、インダクタL2とキャパシタC4とからなる並列共振回路からの誘導電力を整流する整流回路を構成している。 5 and constitute a rectifier circuit for rectifying the induced power from the parallel resonant circuit consisting of inductor L2 and capacitor C4 Prefecture. スイッチSW1は、ダイオードD2とキャパシタC5とからなる整流回路からの整流電力を充電式電池7に供給するスイッチ手段を構成している。 Switch SW1 constitute a switching means for supplying the rechargeable battery 7 rectified power from the rectifying circuit consisting of diode D2 and the capacitor C5 Prefecture. 充電式電池7は、スイッチSW1からなるスイッチ手段を介して供給される整流電力により充電され、携帯機器の制御回路および駆動回路などの各種回路(図示せず)に直流電力を供給する電源を構成している。 Rechargeable battery 7 is charged by rectification power supplied via the switch means comprising a switch SW1, constituting a power source for supplying DC power to various circuits such as a control circuit and a drive circuit of a portable device (not shown) doing.

【0024】次に動作を説明する。 [0024] Next, the operation will be described. 電源プラグ5を商用電源6のコンセント(図示せず)に挿入すると、商用電源6から非接触式電力伝達装置1にたとえば単相交流1 Upon insertion of the power plug 5 into the outlet of the commercial power source 6 (not shown), for example, a single-phase to the non-contact power transmission apparatus 1 from the commercial power source 6 AC 1
00ボルトの商用電力が供給され、この商用電力は、ダイオードD1とキャパシタC1とからなる整流手段により整流され、DC/DCコンバータ3により所定電圧に降圧されて、キャパシタC2からなる平滑手段により平滑化され、インダクタL1とキャパシタC3とからなる共振手段および発振器4に供給される。 00 volt commercial power is supplied, the commercial power is rectified by the rectifier means comprising diodes D1 and a capacitor C1 Prefecture, is stepped down to a predetermined voltage by the DC / DC converter 3, smoothed by the smoothing means comprising a capacitor C2 is supplied to the resonance means and the oscillator 4 the inductor L1 and the capacitor C3 Prefecture. これにより発振器4が、所定周波数のパルス信号を電界効果トランジスタFET1のゲートに供給し、電界効果トランジスタF Thus the oscillator 4 supplies a pulse signal of a predetermined frequency to the gate of the field effect transistors FET1, FET F
ET1が所定周波数でオン・オフする。 ET1 is turned on and off at a predetermined frequency. したがって、インダクタL1とキャパシタC3とからなる共振手段に供給される整流電力が所定周波数で断続され、共振手段が共振して、インダクタL1により磁束が発生する。 Therefore, rectifying power supplied to the resonance means including an inductor L1 and a capacitor C3 Metropolitan intermittently at a predetermined frequency, resonance means resonates, magnetic flux is generated by the inductor L1. このとき、DC/DCコンバータ3により整流電力を適切に降圧しているので、スイッチングによる電界効果トランジスタFET1の損失が良好に軽減されることから、スイッチング周波数を十分に高くできる。 At this time, since the appropriately down the rectified power by the DC / DC converter 3, since the loss of the field effect transistor FET1 by switching is satisfactorily reduced, can be sufficiently high switching frequency. この結果、インダクタL1のインダクタンスを十分に小さくでき、インダクタL1を基板上にパターン化することが可能になる。 As a result, the inductance of the inductor L1 can be sufficiently reduced, so the inductor L1 can be patterned on the substrate.

【0025】たとえば、商用電源6の電圧を100ボルトとし、DC/DCコンバータ3により整流電力の電圧のピーク値を数ボルト〜数十ボルト(たとえば12ボルト)に降圧した場合、電界効果トランジスタFET1のスイッチングによる損失が許容限度になるまでスイッチングの周波数を高くすると、数百KHz〜数MHzの周波数でスイッチングすることが可能になる。 [0025] For example, the voltage of the commercial power source 6 is 100 volts, when stepping down the peak value of the voltage of the rectified power by the DC / DC converter 3 to a few volts to several tens of volts (e.g. 12 volts), the field effect transistor FET1 When loss by switching to increase the frequency of switching to a permissible limit, it is possible to switch at a frequency of a few hundred KHz~ number MHz. したがって、インダクタL1のインダクタンスをたとえば60μ Accordingly, the inductance of inductor L1 for example 60μ
H程度に小さくできる。 It can be reduced to about H. この結果、インダクタL1を基板上でパターン化できることから、装置の小型・軽量化を実現できるとともに、インダクタL1を個別部品として基板に実装する必要がなくなり、生産性の向上を実現できる。 As a result, the inductor L1 from being able patterned on the substrate, it is possible to realize the size and weight of the device, it is not necessary to implement the substrate inductor L1 as discrete components, it can realize an improvement in productivity. しかも、電界効果トランジスタFET1のドレインに印加される電圧のピーク値もたとえば37.7ボルト程度に小さくなり、電界効果トランジスタFET1 Moreover, the peak value of the voltage applied to the drain of the field effect transistor FET1 also for example, as small as 37.7 volts, the field effect transistor FET1
として耐圧の低いものを用いることができる。 Having a low withstand voltage as can be used.

【0026】非接触式電力伝達装置1を内蔵した充電器台の上に2次側回路2を内蔵した携帯機器を載置すると、非接触式電力伝達装置1のインダクタL1により発生した磁束が、2次側回路2のインダクタLに鎖交するように、インダクタL1,L2が配置されているので、 [0026] placing the portable device with a built-in secondary circuit 2 on the charger base with built-in non-contact power transmission device 1, the magnetic flux generated by the inductor L1 of the non-contact power transmission device 1, as interlinked with the inductor L of the secondary circuit 2, since the inductors L1, L2 are arranged,
インダクタL1により発生した磁束により、インダクタL2に起電力が発生し、これによりインダクタL2とキャパシタC4とからなる並列共振回路が共振し、誘導電力がダイオードD2とキャパシタC5とからなる整流回路により整流されて、スイッチSW1が閉成していれば、充電式電池7に供給され、充電式電池7が充電される。 The magnetic flux generated by the inductor L1, an electromotive force is generated in the inductor L2, thereby the parallel resonant circuit resonates to the inductor L2 and the capacitor C4 Prefecture, induced power is rectified by the rectifier circuit consisting of diode D2 and the capacitor C5 Metropolitan Te, if the switch SW1 is closed, it is supplied to the rechargeable battery 7, a rechargeable battery 7 is charged.

【0027】すなわち、商用電源6からの電力が、インダクタL1とインダクタL2との電磁的結合により、非接触式電力伝達装置1から2次側回路2に非接触で伝達され、充電式電池7が充電される。 [0027] That is, the power from the commercial power source 6, the electromagnetic coupling between the inductor L1 and the inductor L2, is transmitted without contact from the non-contact power transmitting device 1 to the secondary side circuit 2, a rechargeable battery 7 It is charged. なお、インダクタL In addition, the inductor L
1に印加される整流電力のスイッチング周波数を高くしているので、インダクタL1により発生する磁束の周波数も高いことから、2次側回路2のインダクタL2のインダクタンスも小さくできる。 Since the higher the switching frequency of the rectifier power applied to 1, since it is also a high frequency magnetic flux generated by the inductor L1, the inductance of the inductor L2 of the secondary side circuit 2 can be reduced. したがって、インダクタL2も基板上にパターン化できるので、2次側回路2の小型・軽量化を実現できるとともに、インダクタL2を個別部品として基板に実装する必要がなくなり、生産性の向上を実現できる。 Therefore, since the inductor L2 be patterned to the substrate, it is possible to realize the size and weight of the secondary circuit 2, it is not necessary to implement the substrate inductor L2 as discrete components, can realize an improvement in productivity. 以上の結果、携帯機器やその充電器台を小型・軽量化することも可能になる。 As a result, it becomes possible to reduce the size and weight of the portable devices and the charger stand.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本願発明に係る非接触式電力伝達装置の回路図である。 1 is a circuit diagram of a contactless power transmission system according to the present invention.

【符号の説明】 DESCRIPTION OF SYMBOLS

1 非接触式電力伝達装置 2 2次側回路 3 DC/DCコンバータ 4 発振器 7 充電式電池 FET1 電界効果トランジスタ L1,L2 インダクタ C3,C4 キャパシタ 1 non-contact power transfer device 2 secondary circuit 3 DC / DC converter 4 oscillator 7 rechargeable batteries FET1 field effect transistors L1, L2 inductor C3, C4 capacitor

Claims (3)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 商用電源からの電力を整流し、その整流電力を所定周波数でスイッチングしてインダクタを含む共振手段に供給することにより、前記インダクタに電磁気的に結合可能なインダクタを含む2次側回路に非接触で電力を伝達する非接触式電力伝達装置であって、 前記整流電力の電圧を所定値に降圧させる降圧手段を設けたことを特徴とする、非接触式電力伝達装置。 1. A rectifying the power from the commercial power supply, by supplying to the resonance means including an inductor by switching the rectified power at a predetermined frequency, the secondary side including the electromagnetically couplable inductors to the inductor a non-contact power transmission device for transmitting power in a contactless circuit, characterized in that a step-down means for stepping down the voltage of the rectified power to a predetermined value, the non-contact power transmission device.
  2. 【請求項2】 前記整流電力のスイッチングは、前記整流電力を電源とする発振器と、この発振器からの発振出力に応じて前記共振手段に供給される前記整流電力をスイッチングするトランジスタとにより行われることを特徴とする、請求項1に記載の非接触式電力伝達装置。 Wherein switching of the rectifying power, an oscillator for the supply of said rectified power, be performed by a transistor for switching said rectified power supplied to the resonance means in accordance with the oscillation output from the oscillator wherein the noncontact power transmission device according to claim 1.
  3. 【請求項3】 前記2次側回路は、充電式電池を含み、 Wherein said secondary circuit includes a rechargeable battery,
    非接触で伝達された電力により前記充電式電池が充電されることを特徴とする、請求項1または請求項2に記載の非接触式電力伝達装置。 Wherein the rechargeable battery by electric power transmitted in a non-contact is charged, non-contact power transmission device according to claim 1 or claim 2.
JP7342615A 1995-12-28 1995-12-28 Non-contact type electric power transmission device Pending JPH09182323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7342615A JPH09182323A (en) 1995-12-28 1995-12-28 Non-contact type electric power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7342615A JPH09182323A (en) 1995-12-28 1995-12-28 Non-contact type electric power transmission device

Publications (1)

Publication Number Publication Date
JPH09182323A true JPH09182323A (en) 1997-07-11

Family

ID=18355151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7342615A Pending JPH09182323A (en) 1995-12-28 1995-12-28 Non-contact type electric power transmission device

Country Status (1)

Country Link
JP (1) JPH09182323A (en)

Cited By (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012045050A2 (en) * 2010-09-30 2012-04-05 Intel Corporation Wireless power transfer apparatus and method thereof
US20120086867A1 (en) * 2008-09-27 2012-04-12 Kesler Morris P Modular upgrades for wirelessly powered televisions
CN103094942A (en) * 2011-11-04 2013-05-08 海洋王照明科技股份有限公司 Constant voltage current-limiting charging circuit and lamp
US8836172B2 (en) 2008-10-01 2014-09-16 Massachusetts Institute Of Technology Efficient near-field wireless energy transfer using adiabatic system variations
US8847548B2 (en) 2008-09-27 2014-09-30 Witricity Corporation Wireless energy transfer for implantable devices
US8875086B2 (en) 2011-11-04 2014-10-28 Witricity Corporation Wireless energy transfer modeling tool
US8901779B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with resonator arrays for medical applications
US8901778B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with variable size resonators for implanted medical devices
US8907531B2 (en) 2008-09-27 2014-12-09 Witricity Corporation Wireless energy transfer with variable size resonators for medical applications
US8912687B2 (en) 2008-09-27 2014-12-16 Witricity Corporation Secure wireless energy transfer for vehicle applications
US8922066B2 (en) 2008-09-27 2014-12-30 Witricity Corporation Wireless energy transfer with multi resonator arrays for vehicle applications
US8928276B2 (en) 2008-09-27 2015-01-06 Witricity Corporation Integrated repeaters for cell phone applications
US8933594B2 (en) 2008-09-27 2015-01-13 Witricity Corporation Wireless energy transfer for vehicles
US8937408B2 (en) 2008-09-27 2015-01-20 Witricity Corporation Wireless energy transfer for medical applications
US8946938B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Safety systems for wireless energy transfer in vehicle applications
US8947186B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Wireless energy transfer resonator thermal management
US8957549B2 (en) 2008-09-27 2015-02-17 Witricity Corporation Tunable wireless energy transfer for in-vehicle applications
US8963488B2 (en) 2008-09-27 2015-02-24 Witricity Corporation Position insensitive wireless charging
US9035499B2 (en) 2008-09-27 2015-05-19 Witricity Corporation Wireless energy transfer for photovoltaic panels
US9065286B2 (en) 2005-07-12 2015-06-23 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US9065423B2 (en) 2008-09-27 2015-06-23 Witricity Corporation Wireless energy distribution system
US9093853B2 (en) 2008-09-27 2015-07-28 Witricity Corporation Flexible resonator attachment
US9095729B2 (en) 2007-06-01 2015-08-04 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9106203B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Secure wireless energy transfer in medical applications
US9105959B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Resonator enclosure
US9160203B2 (en) 2008-09-27 2015-10-13 Witricity Corporation Wireless powered television
US9184595B2 (en) 2008-09-27 2015-11-10 Witricity Corporation Wireless energy transfer in lossy environments
US9246336B2 (en) 2008-09-27 2016-01-26 Witricity Corporation Resonator optimizations for wireless energy transfer
US9287607B2 (en) 2012-07-31 2016-03-15 Witricity Corporation Resonator fine tuning
US9306635B2 (en) 2012-01-26 2016-04-05 Witricity Corporation Wireless energy transfer with reduced fields
US9318257B2 (en) 2011-10-18 2016-04-19 Witricity Corporation Wireless energy transfer for packaging
US9318922B2 (en) 2008-09-27 2016-04-19 Witricity Corporation Mechanically removable wireless power vehicle seat assembly
US9343922B2 (en) 2012-06-27 2016-05-17 Witricity Corporation Wireless energy transfer for rechargeable batteries
US9369182B2 (en) 2008-09-27 2016-06-14 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US9384885B2 (en) 2011-08-04 2016-07-05 Witricity Corporation Tunable wireless power architectures
US9396867B2 (en) 2008-09-27 2016-07-19 Witricity Corporation Integrated resonator-shield structures
US9404954B2 (en) 2012-10-19 2016-08-02 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9421388B2 (en) 2007-06-01 2016-08-23 Witricity Corporation Power generation for implantable devices
US9444265B2 (en) 2005-07-12 2016-09-13 Massachusetts Institute Of Technology Wireless energy transfer
US9442172B2 (en) 2011-09-09 2016-09-13 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9444520B2 (en) 2008-09-27 2016-09-13 Witricity Corporation Wireless energy transfer converters
US9449757B2 (en) 2012-11-16 2016-09-20 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US9515494B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless power system including impedance matching network
US9544683B2 (en) 2008-09-27 2017-01-10 Witricity Corporation Wirelessly powered audio devices
US9595378B2 (en) 2012-09-19 2017-03-14 Witricity Corporation Resonator enclosure
US9601266B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Multiple connected resonators with a single electronic circuit
US9601270B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Low AC resistance conductor designs
US9602168B2 (en) 2010-08-31 2017-03-21 Witricity Corporation Communication in wireless energy transfer systems
US9601261B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Wireless energy transfer using repeater resonators
US9744858B2 (en) 2008-09-27 2017-08-29 Witricity Corporation System for wireless energy distribution in a vehicle
US9754718B2 (en) 2008-09-27 2017-09-05 Witricity Corporation Resonator arrays for wireless energy transfer
US9780573B2 (en) 2014-02-03 2017-10-03 Witricity Corporation Wirelessly charged battery system
US9837860B2 (en) 2014-05-05 2017-12-05 Witricity Corporation Wireless power transmission systems for elevators
US9843217B2 (en) 2015-01-05 2017-12-12 Witricity Corporation Wireless energy transfer for wearables
US9842688B2 (en) 2014-07-08 2017-12-12 Witricity Corporation Resonator balancing in wireless power transfer systems
US9842687B2 (en) 2014-04-17 2017-12-12 Witricity Corporation Wireless power transfer systems with shaped magnetic components
US9857821B2 (en) 2013-08-14 2018-01-02 Witricity Corporation Wireless power transfer frequency adjustment
US9892849B2 (en) 2014-04-17 2018-02-13 Witricity Corporation Wireless power transfer systems with shield openings
US9929721B2 (en) 2015-10-14 2018-03-27 Witricity Corporation Phase and amplitude detection in wireless energy transfer systems
US9948145B2 (en) 2011-07-08 2018-04-17 Witricity Corporation Wireless power transfer for a seat-vest-helmet system
US9952266B2 (en) 2014-02-14 2018-04-24 Witricity Corporation Object detection for wireless energy transfer systems
US9954375B2 (en) 2014-06-20 2018-04-24 Witricity Corporation Wireless power transfer systems for surfaces
US10018744B2 (en) 2014-05-07 2018-07-10 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10063104B2 (en) 2016-02-08 2018-08-28 Witricity Corporation PWM capacitor control
US10063110B2 (en) 2015-10-19 2018-08-28 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10075019B2 (en) 2015-11-20 2018-09-11 Witricity Corporation Voltage source isolation in wireless power transfer systems
US10141788B2 (en) 2015-10-22 2018-11-27 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US10218224B2 (en) 2008-09-27 2019-02-26 Witricity Corporation Tunable wireless energy transfer systems
US10248899B2 (en) 2015-10-06 2019-04-02 Witricity Corporation RFID tag and transponder detection in wireless energy transfer systems
US10263473B2 (en) 2016-02-02 2019-04-16 Witricity Corporation Controlling wireless power transfer systems

Cited By (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9444265B2 (en) 2005-07-12 2016-09-13 Massachusetts Institute Of Technology Wireless energy transfer
US9509147B2 (en) 2005-07-12 2016-11-29 Massachusetts Institute Of Technology Wireless energy transfer
US9831722B2 (en) 2005-07-12 2017-11-28 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US9450422B2 (en) 2005-07-12 2016-09-20 Massachusetts Institute Of Technology Wireless energy transfer
US10141790B2 (en) 2005-07-12 2018-11-27 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US9450421B2 (en) 2005-07-12 2016-09-20 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US10097044B2 (en) 2005-07-12 2018-10-09 Massachusetts Institute Of Technology Wireless energy transfer
US9065286B2 (en) 2005-07-12 2015-06-23 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US9095729B2 (en) 2007-06-01 2015-08-04 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9843230B2 (en) 2007-06-01 2017-12-12 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9421388B2 (en) 2007-06-01 2016-08-23 Witricity Corporation Power generation for implantable devices
US9943697B2 (en) 2007-06-01 2018-04-17 Witricity Corporation Power generation for implantable devices
US9101777B2 (en) 2007-06-01 2015-08-11 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9318898B2 (en) 2007-06-01 2016-04-19 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9473209B2 (en) 2008-08-20 2016-10-18 Intel Corporation Wireless power transfer apparatus and method thereof
US9711991B2 (en) 2008-09-27 2017-07-18 Witricity Corporation Wireless energy transfer converters
US8947186B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Wireless energy transfer resonator thermal management
US8957549B2 (en) 2008-09-27 2015-02-17 Witricity Corporation Tunable wireless energy transfer for in-vehicle applications
US8963488B2 (en) 2008-09-27 2015-02-24 Witricity Corporation Position insensitive wireless charging
US9035499B2 (en) 2008-09-27 2015-05-19 Witricity Corporation Wireless energy transfer for photovoltaic panels
US8946938B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Safety systems for wireless energy transfer in vehicle applications
US9065423B2 (en) 2008-09-27 2015-06-23 Witricity Corporation Wireless energy distribution system
US9093853B2 (en) 2008-09-27 2015-07-28 Witricity Corporation Flexible resonator attachment
US8937408B2 (en) 2008-09-27 2015-01-20 Witricity Corporation Wireless energy transfer for medical applications
US8933594B2 (en) 2008-09-27 2015-01-13 Witricity Corporation Wireless energy transfer for vehicles
US8928276B2 (en) 2008-09-27 2015-01-06 Witricity Corporation Integrated repeaters for cell phone applications
US10097011B2 (en) 2008-09-27 2018-10-09 Witricity Corporation Wireless energy transfer for photovoltaic panels
US9160203B2 (en) 2008-09-27 2015-10-13 Witricity Corporation Wireless powered television
US9184595B2 (en) 2008-09-27 2015-11-10 Witricity Corporation Wireless energy transfer in lossy environments
US9246336B2 (en) 2008-09-27 2016-01-26 Witricity Corporation Resonator optimizations for wireless energy transfer
US10084348B2 (en) 2008-09-27 2018-09-25 Witricity Corporation Wireless energy transfer for implantable devices
US8922066B2 (en) 2008-09-27 2014-12-30 Witricity Corporation Wireless energy transfer with multi resonator arrays for vehicle applications
US8912687B2 (en) 2008-09-27 2014-12-16 Witricity Corporation Secure wireless energy transfer for vehicle applications
US9843228B2 (en) 2008-09-27 2017-12-12 Witricity Corporation Impedance matching in wireless power systems
US9318922B2 (en) 2008-09-27 2016-04-19 Witricity Corporation Mechanically removable wireless power vehicle seat assembly
US8907531B2 (en) 2008-09-27 2014-12-09 Witricity Corporation Wireless energy transfer with variable size resonators for medical applications
US9369182B2 (en) 2008-09-27 2016-06-14 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US8901778B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with variable size resonators for implanted medical devices
US9396867B2 (en) 2008-09-27 2016-07-19 Witricity Corporation Integrated resonator-shield structures
US9806541B2 (en) 2008-09-27 2017-10-31 Witricity Corporation Flexible resonator attachment
US9106203B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Secure wireless energy transfer in medical applications
US8901779B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with resonator arrays for medical applications
US9780605B2 (en) 2008-09-27 2017-10-03 Witricity Corporation Wireless power system with associated impedance matching network
US9444520B2 (en) 2008-09-27 2016-09-13 Witricity Corporation Wireless energy transfer converters
US8847548B2 (en) 2008-09-27 2014-09-30 Witricity Corporation Wireless energy transfer for implantable devices
US9754718B2 (en) 2008-09-27 2017-09-05 Witricity Corporation Resonator arrays for wireless energy transfer
US10218224B2 (en) 2008-09-27 2019-02-26 Witricity Corporation Tunable wireless energy transfer systems
US9748039B2 (en) 2008-09-27 2017-08-29 Witricity Corporation Wireless energy transfer resonator thermal management
US10230243B2 (en) 2008-09-27 2019-03-12 Witricity Corporation Flexible resonator attachment
US9496719B2 (en) 2008-09-27 2016-11-15 Witricity Corporation Wireless energy transfer for implantable devices
US20120086867A1 (en) * 2008-09-27 2012-04-12 Kesler Morris P Modular upgrades for wirelessly powered televisions
US9515494B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless power system including impedance matching network
US9515495B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless energy transfer in lossy environments
US9544683B2 (en) 2008-09-27 2017-01-10 Witricity Corporation Wirelessly powered audio devices
US9577436B2 (en) 2008-09-27 2017-02-21 Witricity Corporation Wireless energy transfer for implantable devices
US9584189B2 (en) 2008-09-27 2017-02-28 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US9596005B2 (en) 2008-09-27 2017-03-14 Witricity Corporation Wireless energy transfer using variable size resonators and systems monitoring
US9744858B2 (en) 2008-09-27 2017-08-29 Witricity Corporation System for wireless energy distribution in a vehicle
US9601266B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Multiple connected resonators with a single electronic circuit
US9601270B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Low AC resistance conductor designs
US9742204B2 (en) 2008-09-27 2017-08-22 Witricity Corporation Wireless energy transfer in lossy environments
US9601261B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Wireless energy transfer using repeater resonators
US9662161B2 (en) 2008-09-27 2017-05-30 Witricity Corporation Wireless energy transfer for medical applications
US9698607B2 (en) 2008-09-27 2017-07-04 Witricity Corporation Secure wireless energy transfer
US9105959B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Resonator enclosure
US10264352B2 (en) 2008-09-27 2019-04-16 Witricity Corporation Wirelessly powered audio devices
US8836172B2 (en) 2008-10-01 2014-09-16 Massachusetts Institute Of Technology Efficient near-field wireless energy transfer using adiabatic system variations
US9831682B2 (en) 2008-10-01 2017-11-28 Massachusetts Institute Of Technology Efficient near-field wireless energy transfer using adiabatic system variations
US9602168B2 (en) 2010-08-31 2017-03-21 Witricity Corporation Communication in wireless energy transfer systems
WO2012045050A2 (en) * 2010-09-30 2012-04-05 Intel Corporation Wireless power transfer apparatus and method thereof
WO2012045050A3 (en) * 2010-09-30 2012-06-21 Intel Corporation Wireless power transfer apparatus and method thereof
US9948145B2 (en) 2011-07-08 2018-04-17 Witricity Corporation Wireless power transfer for a seat-vest-helmet system
US9787141B2 (en) 2011-08-04 2017-10-10 Witricity Corporation Tunable wireless power architectures
US9384885B2 (en) 2011-08-04 2016-07-05 Witricity Corporation Tunable wireless power architectures
US10027184B2 (en) 2011-09-09 2018-07-17 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9442172B2 (en) 2011-09-09 2016-09-13 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9318257B2 (en) 2011-10-18 2016-04-19 Witricity Corporation Wireless energy transfer for packaging
US8875086B2 (en) 2011-11-04 2014-10-28 Witricity Corporation Wireless energy transfer modeling tool
CN103094942A (en) * 2011-11-04 2013-05-08 海洋王照明科技股份有限公司 Constant voltage current-limiting charging circuit and lamp
US9306635B2 (en) 2012-01-26 2016-04-05 Witricity Corporation Wireless energy transfer with reduced fields
US10158251B2 (en) 2012-06-27 2018-12-18 Witricity Corporation Wireless energy transfer for rechargeable batteries
US9343922B2 (en) 2012-06-27 2016-05-17 Witricity Corporation Wireless energy transfer for rechargeable batteries
US9287607B2 (en) 2012-07-31 2016-03-15 Witricity Corporation Resonator fine tuning
US9595378B2 (en) 2012-09-19 2017-03-14 Witricity Corporation Resonator enclosure
US9465064B2 (en) 2012-10-19 2016-10-11 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9404954B2 (en) 2012-10-19 2016-08-02 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10211681B2 (en) 2012-10-19 2019-02-19 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9842684B2 (en) 2012-11-16 2017-12-12 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US9449757B2 (en) 2012-11-16 2016-09-20 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US10186372B2 (en) 2012-11-16 2019-01-22 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US9857821B2 (en) 2013-08-14 2018-01-02 Witricity Corporation Wireless power transfer frequency adjustment
US9780573B2 (en) 2014-02-03 2017-10-03 Witricity Corporation Wirelessly charged battery system
US9952266B2 (en) 2014-02-14 2018-04-24 Witricity Corporation Object detection for wireless energy transfer systems
US10186373B2 (en) 2014-04-17 2019-01-22 Witricity Corporation Wireless power transfer systems with shield openings
US9892849B2 (en) 2014-04-17 2018-02-13 Witricity Corporation Wireless power transfer systems with shield openings
US9842687B2 (en) 2014-04-17 2017-12-12 Witricity Corporation Wireless power transfer systems with shaped magnetic components
US9837860B2 (en) 2014-05-05 2017-12-05 Witricity Corporation Wireless power transmission systems for elevators
US10018744B2 (en) 2014-05-07 2018-07-10 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9954375B2 (en) 2014-06-20 2018-04-24 Witricity Corporation Wireless power transfer systems for surfaces
US9842688B2 (en) 2014-07-08 2017-12-12 Witricity Corporation Resonator balancing in wireless power transfer systems
US9843217B2 (en) 2015-01-05 2017-12-12 Witricity Corporation Wireless energy transfer for wearables
US10248899B2 (en) 2015-10-06 2019-04-02 Witricity Corporation RFID tag and transponder detection in wireless energy transfer systems
US9929721B2 (en) 2015-10-14 2018-03-27 Witricity Corporation Phase and amplitude detection in wireless energy transfer systems
US10063110B2 (en) 2015-10-19 2018-08-28 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10141788B2 (en) 2015-10-22 2018-11-27 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US10075019B2 (en) 2015-11-20 2018-09-11 Witricity Corporation Voltage source isolation in wireless power transfer systems
US10263473B2 (en) 2016-02-02 2019-04-16 Witricity Corporation Controlling wireless power transfer systems
US10063104B2 (en) 2016-02-08 2018-08-28 Witricity Corporation PWM capacitor control

Similar Documents

Publication Publication Date Title
US6683438B2 (en) Contactless battery charger
JP4930093B2 (en) The power transmission control device, the power reception control device, non-contact power transmission system, the power transmission device, a power receiving device, and electronic equipment
JP4725664B2 (en) Power transmission control device, the power transmission device, the power reception control device, a power receiving device, an electronic device, the power transmission control method, and a power receiving control method
JP5417907B2 (en) Power transmission control device, the power transmission device, the power reception control device, a power receiving device, electronic equipment and non-contact power transmission system
CN101375483B (en) Non-contact power supply, non-contact charger systems and method for charging rechargeable battery cell
CN102792552B (en) A communication network using wireless charging method
US8054036B2 (en) Power transmission control device, power reception control device, non-contact power transmission system, power transmission device, power reception device, and electronic instrument
CN101789636B (en) Non-contact power transmission system
EP2683051A2 (en) Contactless multi-charger system and controlling method thereof
US20020130642A1 (en) Inductive coupling system with capacitive parallel compensation of the mutual self-inductance between the primary and the secondary windings
US9209636B2 (en) Power reception control device and power reception control method for non-contact power transmission
US6980446B2 (en) Circuit for starting power source apparatus
US20040150934A1 (en) Adapter
US20080197802A1 (en) Power transmission control device, power reception control device, non-contact power transmission system, power transmission device, power reception device, and electronic instrument
US8026694B2 (en) Power transmission control device, power transmission device, non-contact power transmission system, and electronic instrument
CN1311605C (en) Wire or wireless system for power tool and method for power supply
EP2756581B1 (en) Device and system for power transmission
JP2803943B2 (en) A contactless power supply device
US20110199046A1 (en) Frequency modulation type wirelss power supply and charger system
US20080174267A1 (en) Power transmission control device, power reception control device, non-contact power transmission system, power transmission device, power reception device and electronic instrument
EP2642628B1 (en) Wireless power transmitting apparatus and method thereof
US8981598B2 (en) Energy efficient inductive power transmission system and method
US8427101B2 (en) Wireless energy repeater
CN1123107C (en) Power for transfering and voltage level conversion, power and circuit and power system
US7511454B1 (en) Battery label with wireless battery charging circuit