JP2007266892A - Coil antenna - Google Patents

Coil antenna Download PDF

Info

Publication number
JP2007266892A
JP2007266892A JP2006087986A JP2006087986A JP2007266892A JP 2007266892 A JP2007266892 A JP 2007266892A JP 2006087986 A JP2006087986 A JP 2006087986A JP 2006087986 A JP2006087986 A JP 2006087986A JP 2007266892 A JP2007266892 A JP 2007266892A
Authority
JP
Japan
Prior art keywords
core
antenna
direction
coil
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006087986A
Other languages
Japanese (ja)
Inventor
Fumihito Meguro
Tatsumi Nishino
文仁 目黒
竜実 西野
Original Assignee
Sumida Corporation
スミダコーポレーション株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumida Corporation, スミダコーポレーション株式会社 filed Critical Sumida Corporation
Priority to JP2006087986A priority Critical patent/JP2007266892A/en
Publication of JP2007266892A publication Critical patent/JP2007266892A/en
Application status is Pending legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • H01Q7/06Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop with core of ferromagnetic material
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-directional coil antenna which is superior in vibration resistance and shock resistance, miniaturizable and made the space saved, and has a high packing density on a circuit board and a good reception sensitivity at a low cost. <P>SOLUTION: The antenna 10 comprises a core 20 having winding axes in at least two directions and coils 13a, 13b wound around the core 20. The core has a plurality of alternately crosswise laminated thin sheets 111, 121 made from a tape magnetic thin film such as amorphous alloy foil tape, etc. Another core having winding axes in directions orthogonal to the two directions is formed by laminating magnetic thin sheets. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば自動車のドアの施錠または開錠を操作するキーレスエントリーシステムの無線電波や、時計の時刻修正をするための標準電波等を受信するコイル式のアンテナであって、回路基板に搭載されるコイルアンテナに関する。 The present invention is, for example, radio waves or the keyless entry system for operating the locking or unlocking of the vehicle door, a coil type antenna for receiving standard radio waves for the time correction of the timepiece, mounted on a circuit board on the coil antenna to be.

従来、無線信号を送受信する小型アンテナを搭載した装置やシステムが各種提案されている。 Conventionally, devices and systems with small antenna for transmitting and receiving radio signals have been proposed. 例えば、自動車の盗難防止用のイモビライザ、自動車や住宅のキーレスエントリーシステム、電波時計、AMラジオなどが代表的である。 For example, the immobilizer for preventing vehicle theft, automobile and housing of the keyless entry system, a radio-controlled timepiece, such as AM radio is typical.

これらの装置やシステムに用いられるアンテナのうち最も一般的なものは棒状の焼成フェライトコアにコイルを巻回したバーアンテナであるが、無線信号に対する受信機の姿勢によってその受信感度が大きく変動しないよう、二本のコアの中心軸が平面内で直交するいわゆる十字アンテナが提案されている(例えば下記特許文献1を参照)。 The most common are of the antennas used in these devices and systems a bar antenna formed by winding a coil firing ferrite core rod-shaped, so that the reception sensitivity does not vary significantly depending on the posture of the receiver for radio signals , the central axis of the two cores has been proposed a so-called cross antennas orthogonal in a plane (see e.g. Patent Document 1). 十字アンテナは、前記二本の中心軸によって張られる二次元平面内での受信感度が均一化された無指向性アンテナである。 Cross antennas, the omni-directional antenna reception sensitivity in a two-dimensional plane is uniform spanned by two central axis of.
さらに近年では、フェライト製のコアの形状を工夫して、互いに直交する三軸方向に一本の巻線を巻回すことのできる受信アンテナが提案されている(下記特許文献2および3を参照)。 In more recent years, by devising the shape of the ferrite core it has been proposed receiving antenna which can wound around the single winding three axial directions orthogonal to each other (see Patent Documents 2 and 3) . かかる受信アンテナは三次元空間内のいずれの方向に対しても受信感度が変動することのない無指向性のコイルアンテナである。 The receiving antenna is omnidirectional coil antenna without receiving sensitivity varies with respect to any direction in three-dimensional space.
これらの無指向性アンテナによれば、無線信号の発信源と受信アンテナの相対的な姿勢が二次元平面内または三次元空間内で変化した場合でもアンテナの受信感度が大きく変動することがなく、安定した動作が行われるという利点がある。 According to these omni-directional antenna, without receiving sensitivity of the antenna varies greatly even if the relative orientation of a receiving antenna source of the radio signal changes in a two-dimensional plane or three-dimensional space, there is an advantage that stable operation is performed.

上記装置やシステムに用いられる無指向性アンテナにおいては、アンテナの受信感度の改善が図られる一方、回路基板への実装密度を高め、また携帯型機器などに搭載される場合は小型で持ち運びやすくするため、アンテナコイルおよびコアの小型/省スペース化が年々進められている。 In omnidirectional antenna used for the device or system, while the improvement in the receiving sensitivity of the antenna can be achieved, increasing the packaging density of the circuit board, also when it is mounted on a portable device is easy to carry in a small Therefore, the antenna coil and core size / space-saving has been advanced year by year. このため、アンテナコイルについては巻線の細径化と巻線密度の向上が、コアについては小型化と薄肉化が求められている。 Therefore, the antenna coil is increased in diameter reduction and winding density of the winding, miniaturization and thinning are required for the core.

しかし上記各特許文献に記載のコイル式アンテナでは、とくにフェライトコアの機械的強度の制約から小型化および薄肉化が容易ではなく、現時点においてコアの薄肉化はすでに限界に差し掛かっているものといえる。 However, in the coil type antenna according to the above patent documents, particularly not easy to miniaturize and thin the restriction of the mechanical strength of the ferrite core, it can be said that thinning of the core has already approaching its limit at present. これは、フェライト材料が金属酸化物と酸化第二鉄の粉体を混合して焼成したセラミックあることから脆性が高く、所定の肉厚がなければ自動車ドアの開閉衝撃や走行時の振動、または携帯型機器の落下衝撃などによって容易に破損する虞があるためである。 This ferrite material high brittle since it is ceramic and fired by mixing a powder of ferric oxide and metal oxides, vibration during closing impact or traveling otherwise if car door a predetermined thickness, or drop impact of the portable device and there is a fear that easily damaged by such.

これに対し、フェライト材料に比して耐振動・耐衝撃強度に優れ、かつ飽和磁束密度や透磁率の高い材料であるアモルファス合金の箔帯を複数枚積層した積層体を棒状コアとして用いる指向性のバーアンテナの発明が提案されている(例えば下記特許文献4,5を参照)。 In contrast, the directivity of using than the ferrite material excellent in resistance to vibration and impact strength, and the saturation magnetic flux density and laminate formed by stacking a plurality foil strip of amorphous alloy is a material having high magnetic permeability as a rod-shaped core proposed invention of the bar antenna (e.g. see Patent Document 4 and 5).

特開2004−229144号公報 JP 2004-229144 JP 特開2003−92509号公報 JP 2003-92509 JP 特開2004−15168号公報 JP 2004-15168 JP 特開平5−267922号公報 JP-5-267922 discloses 特開2003−110341号公報 JP 2003-110341 JP

上記特許文献4または5に記載のコイル式アンテナは、リボン状のアモルファス合金箔帯を積層した細長形状の棒状コアを備え、コアの軸方向についてのみ高い受信感度を有する指向性のアンテナであるため、二次元平面内または三次元空間内の受信感度を均一化した無指向性アンテナとして用いることはできない。 Coil type antenna described in Patent Document 4 or 5 is provided with a rod-shaped core of elongated laminated ribbon-shaped amorphous alloy foil strip, since a directional antenna having a high reception sensitivity only for axial core It can not be used as a non-directional antenna with uniform reception sensitivity in a two-dimensional plane or three-dimensional space.
そこで本発明者らは、図5に参考例として示すように、磁性体薄膜であるアモルファス合金箔帯の積層体からなる従来の棒状コアを組み合わせて無指向性のコイル式アンテナを得ることを検討した。 The present inventors have studied to shown as a reference example, to obtain a conventional coil type antenna in combination of bar-like core omnidirectional comprising a laminate of an amorphous alloy foil strip is a magnetic thin film 5 did. 同図(a)は、X軸方向に伸びる棒状コア(X軸コア)101と、Y軸方向に伸びる二本に分割された棒状コア(Y軸コア)102とをそれぞれアモルファス合金箔帯の積層体によりまず成形したのち、X軸コア101の側面中央部に対しY軸コア102の先端面をそれぞれ接着剤にて接合して十字状のコアを構成し、さらに該コアにアンテナコイル103を巻回した十字アンテナ100の斜視図である。 FIG (a) includes a rod-like core (X-axis core) 101 extending in the X axis direction, Y-axis rod-like core (Y-axis core) which is divided into two extending in a direction 102 and the lamination of the respective amorphous alloy foil strip After first molded by the body, to the side surface center portion of the X-axis core 101 joined at the respective adhesive distal end surface of the Y-axis core 102 constitute a cross-shaped core, winding the antenna coil 103 to further the core it is a perspective view of the cross antenna 100 turned. また同図(b)は、互いにねじれ位置に置かれたX軸コア101とY軸コア102とを中間部同士で接着接合して平面視十字状のコアを構成し、これにアンテナコイル103を巻回した十字アンテナ100の斜視図である。 The figure (b) constitutes a plan view cross-shaped core by adhesive bonding the X-axis core 101 and the Y-axis core 102 placed in twisted positions from each other in the middle portions, to which the antenna coil 103 it is a perspective view of the cross antenna 100 wound.

これらの十字アンテナ100によれば、XY平面内の受信感度が平均化された無指向性アンテナとしての機能を得ることができ、かつアモルファス合金材料のもつ高い飽和磁束密度と透磁率によりその受信感度を改善することもできる。 According to these cross the antenna 100, it is possible to obtain a function as a non-directional antenna reception sensitivity in the XY plane is averaged, and the reception sensitivity high saturation magnetic flux density and permeability with the amorphous alloy material it is also possible to improve.
しかし同図(a)にかかる十字アンテナ100の場合、箔帯を複数枚積層したY軸コア102の先端面は平滑でないため、特別な表面研磨等を行うか、または接着剤を多量に塗布しない限りX軸コア101との接着性が十分には得られず、従来のフェライトコアと比較して良好な耐振動・耐衝撃強度を得ることが困難である。 However, in the case of cross antenna 100 according in FIG. 6 (a), since the distal end surface of the Y-axis core 102 where the foil strip laminating a plurality is not smooth, no large amount of coated or perform special surface polishing or the like, or an adhesive unless the adhesive is not sufficiently obtained in the X-axis core 101, it is difficult as compared with conventional ferrite cores obtain good resistance to vibration and shock strength. なお、Y軸コア102の先端面に塗布する接着剤を増量してX軸コア101と接着した場合は、非磁性材料である接着剤の存在により特にコアのY軸方向の透磁率が低下し、アンテナの無指向性や受信感度が損なわれるという問題が生じる。 In addition, when adhered to the X-axis core 101 by increasing the amount of adhesive applied to the distal end surface of the Y-axis core 102, the magnetic permeability is decreased, especially in the core of the Y-axis direction by the presence of the adhesive of a non-magnetic material , a problem that non-directivity and receiving sensitivity of the antenna is degraded occurs.

他方、同図(b)にかかる十字アンテナ100の場合、コア同士の接着が平滑な箔帯表面同士によって行われるため、かかる箇所についての接着性は良好といえる。 On the other hand, in the case of cross antenna 100 according to FIG. (B), the adhesion of the cores is carried out by the smooth foil strip surfaces on each adhesion for such locations can be said good. しかし、両コアが高さ方向(Z軸方向)にオフセットして接合されることから、アンテナに作用する振動や衝撃などの外力は接着面に剪断力として作用することとなり、また接着接合がコアの表面同士の当接部分のみで行われることから、その機械的強度が従来のフェライトコアアンテナに対して十分に高められたとは言い難い。 However, since it is bonded to offset both core height direction (Z axis direction), an external force such as vibration or impact acting on the antenna becomes to act as a shearing force on the adhesive surface, also adhesive bonding the core only carried out that in the contact portion between the surface of the, hard to say that its mechanical strength was sufficiently elevated to conventional ferrite core antenna. また棒状の両コアがねじれ位置にあることで、アンテナコアの高さ寸法は、棒状コア二本分の合計厚さに加え、更にこれにアンテナコイルの巻線厚さを加えた量に達することとなる。 Further, by on both cores twisted position of the rod-shaped, the height of the antenna core, in addition to the total thickness of the two partial rod-shaped core, to reach the amount of further added winding thickness of this antenna coil to become. したがってかかるコイルアンテナを回路基板に搭載する場合は相当の実装体積を要し、ロススペースが大きくなるため、回路基板への実装密度の向上を図るという当初の目的を達成することができないという問題がある。 Therefore requires considerable mounting volume when mounting such a coil antenna on a circuit board, since the loss space increases, making it impossible to achieve the original purpose of improving the packaging density of the circuit board is there.

本発明は上記課題を解決するためになされたものであり、耐振動・耐衝撃強度に優れ、小型化および省スペース化が可能であって回路基板への実装密度が高く、かつ低コストで受信感度の良好な無指向性のコイルアンテナを提供することを目的とするものである。 The present invention has been made to solve the above problems, is excellent in resistance to vibration and impact strength, high packaging density of the circuit board be capable of miniaturization and space saving, and received at a low cost it is an object to provide a good omnidirectional coil antenna sensitivity.

本発明は、 The present invention,
(1)帯状の磁性体薄膜からなる複数枚の薄板が互いに交差して交互に積層され少なくとも二方向の巻軸が形成されたコアと、前記コアに巻回されたコイルと、を備えるコイルアンテナ; (1) coil comprising a band-shaped core in which a plurality of thin plates are laminated alternately to cross each other at least two directions of the winding shaft is formed of a magnetic thin film, and a coil wound around the core antenna ;
(2)前記二方向と互いに直交する方向を巻軸とする他の巻芯が磁性体薄膜を積層して形成されている上記(1)に記載のコイルアンテナ; (2) The coil antenna according to directions perpendicular to each other and two directions in the above (1), other winding core to the winding shaft is formed by laminating a magnetic thin film;
(3)一本または二本以上の前記他の巻芯が、前記二方向の巻軸に挟まれた位置に、前記コアと別離して形成されている上記(2)に記載のコイルアンテナ; (3) one or two or more of the other core is in said sandwiched in two directions of the winding shaft position, the coil antenna according to (2) which is formed by the core and separation;
(4)交互に積層された薄板同士の隙間に、該薄板の法線方向を巻軸とする他のコイルが巻回されている上記(1)に記載のコイルアンテナ; (4) in the gap thin plates stacked alternately, the other coil to the winding axis in the normal direction of the thin plate according to the above (1) which is wound a coil antenna;
を要旨とする。 The the gist.

また本発明においては、 In the present invention also
(5)巻芯部を構成する薄板の積層枚数が、該巻芯部の伸びる方向ごとに相違することを特徴とする上記(1)から(4)のいずれかに記載のコイルアンテナ; (5) number of the laminated thin plates constituting the core portion, according to any one of (1), characterized in that the difference in each the extending direction of the winding core (4) coil antenna;
(6)それぞれの方向に伸びる巻芯部の長さが互いに相違することを特徴とする上記(1)から(5)に記載のコイルアンテナ; (6) coil antenna according to the length of the core portion extending in respective directions different from each other from above (1), wherein (5);
によっても上記本発明の目的を達成することができる。 It can also achieve the object of the present invention by.

本発明にかかるコイルアンテナによれば、第一に、磁性体薄膜からなる帯状の薄板を複数枚積層してなるコア材料を用いることにより、その靭性ゆえフェライトコアアンテナに比べて特に耐振動・耐衝撃強度が向上する。 According to the coil antenna according to the present invention, first, by using a core material comprising a strip-shaped thin plate made of a magnetic thin film laminating a plurality, especially vibration resistance compared to its toughness because ferrite core antenna the impact strength can be improved. このためコアを全体に小型化および薄肉化した場合も所定の機械的強度を維持することができ、アンテナ全体の省スペース化が可能となる。 Therefore when miniaturized and thinned over the entire core also can maintain predetermined mechanical strength, it is possible to space saving of the entire antenna.
第二に、少なくとも二方向に伸びる巻芯部が形成されることにより、例えばこれを略直交させることで二次元平面内における無指向性が得られる。 Secondly, by the core portion extending in at least two directions are formed, non-directivity can be obtained in the two-dimensional plane by causing for example which are substantially orthogonal.
第三に、本発明においては、帯状の磁性体薄膜からなる薄板を互いに交差するよう交互に積層して一体化する方式を採るため、薄板の接合面が磁性体薄膜の表面同士となる。 Thirdly, in the present invention, for taking a method of integrally laminating alternately to cross the thin plate made of a strip-shaped magnetic thin film to each other, joint surfaces of the thin plate is surface between the magnetic thin film. このため、例えば図5(a)に図示の如く予めブロック状に積層成形したコアの積層端面を接着する方式と異なり、良好な接合性が得られる。 Thus, for example, unlike the method of adhering the laminated end surface of the core laminated molded in advance in a block shape as shown in FIG. 5 (a), good bonding can be obtained. また本発明によれば、コアの各軸方向とも、ひと続きの帯状の磁性体薄膜が通じていることとなり、途中でこれが非磁性体の接着剤層によって分断されることがないため、コアの高い透磁率を得ることができる。 According to the invention, in each axial direction of the core, will be magnetic thin strip of stretch is communicated, it is not possible to this in the middle is divided by the adhesive layer of non-magnetic material, the core it is possible to obtain a high magnetic permeability.
第四に、薄板同士が交互に積層して接合されることにより、例えば図5(b)に図示の接合方法に比べ、両コアがオフセットして接合されることがなく重心安定性に優れ、また両コアの接合面が各薄板の上下面にそれぞれ形成されるため十分な機械的強度が得られ、振動や衝撃などの外力に対する強度が格段に向上するという利点がある。 Fourth, by thin plates are joined by alternately laminating, for example, compared to the bonding method shown in FIG. 5 (b), both cores are excellent in the center of gravity stability without being joined offset, the sufficient mechanical strength can not be obtained because the bonding surfaces of both the core are respectively formed on upper and lower surfaces of the sheet, the strength against an external force such as vibration or impact is the advantage of greatly improved.
第五に、例えば予め十字状に打ち抜いたアモルファス合金シートを単純に厚さ方向に積層してコアを得る方法と異なり、帯状の薄膜を各軸方向ごとに長さを揃え、これらを交互に積層して一体に接合するだけで本発明にかかるコアが得られるため、材料どりに一切の無駄が生じることがなく、また加工コストが低いという利点がある。 Fifth, for example unlike the method of obtaining the core by laminating amorphous alloy sheets punched out in advance in a cross shape for simplicity the thickness direction, align the length of the strip of film for each axis direction, are alternately stacked since the core of the present invention can be obtained simply by joining together by, without waste of any material removal occurs, also processing cost it is advantageous in that low.
第六に、本発明においては、例えば二方向に伸びる複数枚の薄板がその略中央部で互いに交差して巻芯部が積層形成される場合についていえば、薄板同士が交差する中央の交差部ではコアの厚さが他の部分の約二倍になるものの、かかる厚肉の交差部にはアンテナコイルが巻回されることがないため、図5(b)に図示の如き十字アンテナに比べ、アンテナコイルの巻線厚さに相当する分だけロススペースを削減することができる。 Sixth, in the present invention, for example, As for the case where a plurality of thin plates extending in two directions winding core intersect each other at a substantially central portion thereof is laminated, the center of the intersection of thin plates crosses in although thickness of the core is approximately twice the other part, the intersection of such thick since no antenna coil is wound, compared to such the illustrated cross antenna in FIG. 5 (b) it can be reduced by an amount loss space corresponding to the winding thickness of the antenna coil.

また本発明にかかるコイルアンテナにおいては、巻芯部の伸びる平面の法線方向を巻軸方向とする他の巻芯を形成することにより、三次元空間内にわたって受信感度を均一化した無指向性アンテナを得ることができる。 In the coil antenna according to the present invention, by forming the other core to the normal direction of the plane extending the winding core and the winding axis direction, omnidirectional were uniformly the receiving sensitivity over a three-dimensional space it is possible to obtain an antenna.
さらに本発明にかかるコイルアンテナにおいては、交互に積層された薄板同士の間に所定の隙間が形成される場合があることから、かかる隙間に他のコイルを挿通して巻回すことにより、新たな巻芯を設けることなく、薄板の交差部を巻芯として、三次元空間内の受信感度を均一化した無指向性アンテナが得られる。 In the coil antenna according to the invention, since the case is a predetermined gap between the thin plates laminated alternately is formed by turning the winding by inserting another coil in such a gap, a new without providing a winding core, a cross-section of the sheet as a core, omni-directional antenna that equalizing the reception sensitivity of the three-dimensional space is obtained.

以下、本発明を実施するための最良の形態について図面を用いて具体的に説明する。 Hereinafter, best mode for carrying out the present invention will be described with reference to the drawings. 図1(a)は本発明の実施の形態にかかるコイルアンテナの斜視図であり、同図(b)はそのb−b断面図である。 1 (a) is a perspective view of a coil antenna according to an embodiment of the present invention, FIG. (B) is a b-b cross section. コイルアンテナ10は、複数枚の薄板111,121が互いに交差して交互に積層され、少なくとも二方向の巻軸が形成されたコア20に、コイル13aおよび13bを巻回してなる。 Coil antenna 10 is alternately laminated plurality of thin plates 111, 121 intersect each other, the core 20 at least two directions of the winding shaft is formed, by winding the coils 13a and 13b.
巻軸が二方向の場合、同図に示すように薄板111および121をそれぞれの長手方向の中央部で互いに直交するよう交差させることで、コイルアンテナ10はいわゆる十字アンテナとなり、二方向の巻軸によって張られる平面内での受信感度がもっとも平均化される。 If the winding shaft is bidirectional, that are crossed to mutually orthogonal in the central portion of the respective longitudinal thin plate 111 and 121 as shown in the figure, the coil antenna 10 is a so-called cross antennas, two directions of the winding shaft reception sensitivity in the plane spanned by is most averaged.

ただし本発明においては、例えば巻軸を120度間隔で三方向に配するなど、コア20の備える巻軸の方向は二方向以上であれば特に限定されるものではない。 However, in the present invention, for example, placing a winding axis in the three directions at intervals of 120 degrees, the direction of the winding shaft provided in the core 20 is not particularly limited as long as two or more directions.
また例えば巻軸が二方向の場合、これを構成する薄板111および121の交差する角度は同図に示すように90度であるほか、60度や45度など各種を採り得る。 Also for example, when the winding shaft is bidirectional, intersecting angles of the thin plate 111 and 121 constituting this addition is 90 degrees as shown in the figure, it may take a variety of such 60 degrees and 45 degrees. すなわち本発明にかかるコイルアンテナ10においては、巻軸を少なくとも二方向に設けることで単方向性のバーアンテナよりも受信角度を拡大させつつ、例えば無線信号が送信される蓋然性の高い所定の方向について特に高い受信感度を得ることもできる。 Specifically, in the coil antenna 10 according to the present invention, while a larger reception angle than unidirectional bar antenna by providing at least two directions the winding shaft, the probable predetermined direction, for example, a radio signal is transmitted it is also possible to obtain a particularly high reception sensitivity. なお、本発明にかかる無指向性のコイルアンテナ10を回路基板に搭載するに際しては、表面実装方式とすることも、ピン挿入方式とすることもできる。 Note that when mounting the omnidirectional coil antenna 10 according to the present invention on a circuit board, to the surface mounting method, or may be a pin insertion type.

以下本実施の形態および実施例においては、X方向に長手方向が揃えられた薄板111を複数枚積層したX方向巻芯部11と、Y方向に長手方向が揃えられた薄板121を複数枚積層したY方向巻芯部12とからなる十字状のコア20について説明する。 Hereinafter in the present embodiments and examples, the X-direction core portion 11 in which a plurality of stacked thin plates 111 in the longitudinal direction are aligned in the X direction, a plurality of laminated thin plates 121 in the longitudinal direction are aligned in the Y-direction the cross-shaped core 20 made of the Y-direction core portion 12. explained. すなわち薄板111と薄板121とはそれぞれの長手方向の中央で互いに直交して交差し、また両者は交互に積層および一体化されて、XY平面内で中心軸が直交するX方向巻芯部11およびY方向巻芯部12を有するコア20が形成されている。 That is a thin plate 111 and the thin plate 121 intersect orthogonally to each other at the center of the respective longitudinal and both are laminated and integrated alternately, X-direction core portion 11 the central axes are orthogonal to the XY plane and the core 20 having a Y-direction core portion 12 is formed.

薄板111および121は、それぞれ帯状の磁性体薄膜を1枚または複数枚積層した積層体からなる。 Sheet 111 and 121, a laminate obtained by laminating one or a plurality of magnetic thin film of the strip, respectively. 本発明において磁性体薄膜とは軟磁性材料からなる可撓性薄膜であって、一例として塩素化ポリエチレン、ポリエステル樹脂、ポリ塩化ビニル、フェノール樹脂、ポリイミド樹脂、エポキシ樹脂もしくはシリコン樹脂などの樹脂材料をバインダーとして、センダスト(鉄シリコンアルミ合金粉末)、鉄コバルト合金、コバルト系アモルファス合金、鉄系アモルファス合金もしくはモリブデンパーマロイなどの磁性体粉末を混成したもの、またはアモルファス合金を溶湯急冷法によって薄膜化した箔帯や、いわゆるナノ結晶磁性体合金材料やパーマロイ(鉄ニッケル合金)からなる可撓性薄膜を挙げることができる。 The magnetic thin film in the present invention there is provided a flexible film made of a soft magnetic material, chlorinated polyethylene as an example, polyester resins, polyvinyl chloride, phenol resin, polyimide resin, a resin material such as epoxy resin or silicone resin as a binder, sendust (iron silicon aluminum alloy powder), iron-cobalt alloys, cobalt-based amorphous alloy, that hybrid of magnetic powder such as iron-based amorphous alloy or molybdenum permalloy, or an amorphous alloy thin film by melt-quenching method foil band and, mention may be made of flexible thin film made of a so-called nanocrystalline magnetic alloy material or permalloy (iron-nickel alloy). 上記可撓性薄膜であれば、磁性特性上および材料物性上から、受信感度と機械的強度に優れるコイルアンテナを得ることができる。 If the flexible membrane, can be from the magnetic properties and material properties on to obtain a coil antenna having excellent receiving sensitivity and the mechanical strength. 本発明に用いる磁性体薄膜は15〜35μm程度の厚さとし、さらに幅数mm乃至数十mmの帯状に切断して得ることができる。 Magnetic thin film used in the present invention can be obtained by cutting the belt-shaped thick Satoshi, further width of several mm to several tens mm in order 15~35Myuemu. また薄板111および121には、巻軸方向ごとまたは積層される薄板ごとに異なる磁性体薄膜を使用してもよい。 The thin plate 111 and 121 may use a magnetic thin film that is different for each sheet being each winding axis direction or lamination. また薄板111および121の幅および厚さは個々に相違してもよい。 The width and thickness of the thin plate 111 and 121 may differ individually. すなわち薄板111、121の幅をそれぞれ均一とすることで、X方向巻芯部11、Y方向巻芯部12は縦断面が矩形となる。 That is, by the uniform width of the sheet 111 and 121, respectively, X-direction core portion 11, Y-direction core portion 12 is a longitudinal section is rectangular. また例えば薄板111について、高さ(Z)方向の上方および下方の幅を小さく、中間部の幅を大きくすることで縦断面が円形のX方向巻芯部11を得ることもできるなどコア20の寸法や形状は特に限定されない。 For another example sheet 111, the height (Z) upward and reduce the width of the lower, longitudinal section by increasing the width of the intermediate portion of the core 20 such as may be obtained circular X-direction core portion 11 size and shape are not particularly limited.

帯状の複数枚の磁性体薄膜を積層して薄板111または121を得る場合は、例えばエポキシ系などの熱硬化性接着剤を用いて磁性体薄膜同士を接着接合することができるほか、磁性体薄膜が熱可塑性の樹脂バインダーに磁性体粉末を混成してなる場合は薄膜同士を熱融着により一体化することもできる。 When a plurality of magnetic thin film of the strip by laminating obtain thin plates 111 or 121, for example addition it can be adhesively bonded magnetic material thin films by using a thermosetting adhesive such as an epoxy, a magnetic thin film If is formed by hybridizing magnetic powder in a thermoplastic resin binder it can also be integrated by thermal fusion thin films.
また、交差する薄板111および121を交互に積層してコア20を得るにあたっては、例えばその全面に熱硬化性接着剤を塗布し、全体を加熱押圧して一体成形することができる。 Further, in obtaining a core 20 of thin plate 111 and 121 intersect by alternately stacking, for example a thermosetting adhesive is applied to the entire surface thereof, it can be molded integrally by hot-pressing the whole.

コア20は、薄板111および121の交差する交差部21が高さ(Z)方向に膨出し、幅(X)方向および奥行(Y)方向の先端部では肉厚がこれよりも小さくなる。 Core 20, intersections 21 at the intersection of the thin plate 111 and 121 are bulged height (Z) direction, the wall thickness is smaller than this width (X) direction and depth (Y) direction of the distal end portion. ただし図1(b)に示すように、肉厚の薄いコア20の各先端部にはコイル13a、13bが所定の巻厚にて巻回されることから、コイルの最外面とコア中央の膨出部とはほぼ面一となり、膨出部の厚さがアンテナ実装時にロススペースを生じる要因とはならない。 However, as shown in FIG. 1 (b), the coil 13a and each tip portion of a thin core 20 of the wall thickness, since 13b is wound in a predetermined winding thickness, the outermost surface and the core center of the coil Rise out section almost flush with the, the thickness of the bulging portion is not a factor that results in a loss of space at the time of the antenna mounting.
なお、コア20の中央の膨出部と両端部との間には薄板111または121の厚さに相当する隙間14が形成されるが、後述するようにコイルを巻回す挿通孔として利用する場合のほかは、これを接着剤などによって充填してもよい。 In the case between the central bulge portion and both end portions of the core 20 but the gaps 14 corresponding to the thickness of the thin plate 111 or 121 is formed, to be used as insertion holes wound around a coil as described below other, which may be filled by an adhesive or the like.
コイル13aの巻軸であるX方向巻芯部11の中心軸と、コイル13bの巻軸であるY方向巻芯部12の中心軸とは略同一のXY平面内にあるため、本実施の形態によれば、該平面内の受信感度が均一化された無指向性のコイルアンテナ10を得ることができる。 And the center axis of the X-direction core portion 11 is a winding axis of the coil 13a, since the center axis of the Y-direction core portion 12 is a winding axis of the coil 13b in the substantially same XY plane, the present embodiment According to, it is possible to obtain the coil antenna 10 of the omni-directional receiving sensitivity in the plane is uniform.

本実施の形態にかかるコイルアンテナ10は、磁性体薄膜の靭性により、従来のフェライトコアアンテナに比べて特に耐振動・耐衝撃強度が向上する。 Coil antenna 10 according to this embodiment, the toughness of the magnetic thin film, resistance to vibration and shock strength is improved particularly in comparison with the conventional ferrite core antenna. 特に磁性体薄膜を接着剤によって互いに積層接着する場合は、更に接着剤の靭性および衝撃吸収性がコア20に付与されるため、さらに高い耐振動・耐衝撃強度が発揮される。 Particularly when laminated and bonded together by adhesive magnetic thin film is further for toughness and shock absorption of the adhesive is applied to the core 20, exhibits even higher resistance to vibration and shock strength. また交互に積層される薄板111および121がそれぞれ交差部21の上下面で互いに接着されることから十分な接着面積が確保され、全体に小型化・薄肉化が可能である。 The sufficient adhesion area since the sheet 111 and 121 are stacked are bonded to each other at the upper and lower surfaces of the respective intersections 21 is secured alternately, it can be miniaturized and thinner as a whole.
また中心軸が互いに直交する二方向の巻芯部を有するコア20をもつことにより、該二方向の張る平面内において受信感度が均一化する。 Also by having a core 20 having two directions of the winding core portion central axis are perpendicular to each other, to equalize the reception sensitivity in the plane spanned by the two directions. また二方向に伸びる薄板111および121を構成するアモルファスリボン箔帯は、コイルアンテナ10の幅方向および奥行方向の途中で分断されることがないため、コア20の高い透磁率が得られる。 The amorphous ribbon Hakutai constituting the thin plate 111 and 121 extending in two directions, there is no be divided in the middle in the width direction and the depth direction of the coil antenna 10, has high core 20 permeability obtained.

さらに薄板111もしくは121の積層枚数、または薄板111,121をそれぞれ構成する磁性体薄膜の積層枚数を変化させることにより、X方向巻芯部11もしくはY方向巻芯部12の肉厚を任意に調整することができる。 Furthermore the number of stacked thin plates 111 or 121, or the thin plate 111 and 121 to varying the number of stacked magnetic thin films constituting each arbitrarily adjust the thickness of the X-direction core portion 11 or the Y-direction core portion 12 can do. また薄板111および121の交差角度、X方向巻芯部11またはY方向巻芯部12の長さ、交差部21の長手方向位置などについても巻軸方向ごとに任意に調整することができるなど、薄板を積層してコア20を成形する本発明は、フェライトコアアンテナに比べて設計自由度が格段に向上する。 The crossing angle of the thin plate 111 and 121, the length of the X-direction core portion 11 or the Y-direction core portion 12, etc. can be adjusted arbitrarily in each winding axis direction for such longitudinal position of the intersection 21, the present invention for forming the core 20 by laminating thin plates, the degree of freedom is greatly improved design compared to the ferrite core antenna. このため、例えば回路基板に対する実装上の制約から所定方向の巻芯部の長さが十分に確保されない場合は、該方向の薄板を短くするかわりにその肉厚や幅を拡大することで受信感度を維持するなど、軸単位でのアンテナ特性の設計が可能になるという利点がある。 Thus, for example, if the length of the winding core portion of the predetermined direction from the implementation of constraints on the circuit board is not sufficiently secured, the receiving sensitivity by enlarging the thickness or width, instead of shortening the direction of the sheet etc. to maintain, there is an advantage that it is possible to design the antenna characteristics in each axis.

図2は、本発明の第一の実施例にかかるコイルアンテナ10の斜視図である。 Figure 2 is a perspective view of a coil antenna 10 according to a first embodiment of the present invention. 本実施例にかかるコイルアンテナ10は、X軸方向をコイルの巻軸とするX方向巻芯部11と、Y軸方向をコイルの巻軸とするY方向巻芯部12とが直交して形成された十字状のコア20に加え、これらの二方向と互いに直交するZ方向を巻軸とする他の巻芯であるZ方向巻芯部30を備えることを特徴とする。 Coil antenna 10 according to the present embodiment, form an X-axis direction and X-direction winding core 11, winding axis of the coil, and perpendicular to the Y-direction core portion 12 for the Y-axis direction and the winding axis of the coil has been added to the cross-shaped core 20, characterized in that it comprises a Z-direction core portion 30 is a Z-direction perpendicular to these two directions mutually other winding core to the winding shaft. 四本のZ方向巻芯部30がコア20と別離して形成され、これらは図示しないアンテナ基板に載置および固定されている。 Four of Z-direction core portion 30 is formed by separation and the core 20, which are mounted and fixed to the antenna substrate (not shown). またZ方向巻芯部30にはそれぞれコイル13cが巻回されている。 Also each of the Z-direction core portion 30 the coil 13c is wound. 四本のZ方向巻芯部30は、それぞれX方向巻芯部11とY方向巻芯部12に挟まれる位置に設けられ、またコア20の厚さと同程度のZ方向長さを有している。 Four of Z-direction core portion 30 is provided at a position where each sandwiched in the X direction winding core 11 and the Y-direction core portion 12, also have a Z-direction length comparable to the thickness of the core 20 there. このため、本実施例にかかるコイルアンテナ10は、X,Y,Zの三軸方向に受信感度が均一化された無指向性を有するとともに、その全体を包絡する実装体積は図1に図示のコイルアンテナと同程度である。 Thus, the coil antenna 10 according to this embodiment, X, Y, and has a non-directional receiving sensitivity is uniform in the directions of three axes Z, mounting volume is shown in Figure 1 to envelope the entire a coil antenna and the same degree. Z方向巻芯部30は、磁性体薄膜を積層した薄板131から構成することができる。 Z-direction core portion 30 may be composed of a thin plate 131 formed by laminating magnetic thin film. かかる構成とすることで、コア20と同程度の機械的強度を得ることができるとともに、Z方向の受信感度の設計自由度を高めることができ好適である。 With such a configuration, it is possible to obtain a mechanical strength substantially equal to that of the core 20, it is preferable can increase the design flexibility of the receiving sensitivity of the Z-direction. Z軸方向巻芯部30を構成する磁性体薄膜と、X軸方向またはY軸方向巻芯部を構成する磁性体薄膜とは同一材料であっても互いに相違してもよく、各軸方向に求められる磁性特性や荷重負荷環境などに基づいてそれぞれ決定することができる。 A magnetic thin film constituting the Z-axis direction core portion 30 may be different from each other even with the same material as the magnetic thin film constituting the X-axis or Y-axis direction core portion, each axial it can be determined respectively based such as magnetic properties and load bearing environments required.

すなわち本実施例では、十字状のコア20の二方向の巻軸をXY平面の座標軸と見立てた場合の第一乃至第四象限に相当する領域に、Z軸方向を巻軸とする一本または二本以上の巻芯を配設することにより、実装空間を有効に利用することができる。 That is, in this embodiment, in a region corresponding to two directions of the winding shaft of the cross-shaped core 20 in the first to fourth quadrants when regarded as a coordinate axis of the XY plane, one and the winding axis of the Z-axis direction or by arranging two or more of the core, it is possible to effectively use the mounting space. 特に、X方向巻芯部11およびY方向巻芯部12の各先端を通る円を仮想した場合、かかる円の内部に収まる位置にZ方向巻芯部30が配設された場合、十字状のコア20を収納するための図示しないアンテナハウジングを拡大する必要がなく、高い実装効率を得ることができる。 In particular, when the virtual circles through each tip of the X-direction winding core 11 and the Y-direction core portion 12, if the Z-direction core portion 30 is disposed at a position that will fit within such a circle, a cross-shaped it is not necessary to expand the antenna housing (not shown) for accommodating the core 20, it is possible to obtain a high mounting efficiency.
なおZ方向巻芯部30は、図示のように各象限に一本ずつ合計四本を配置する態様に限らず、例えば十字アンテナの交差部21を中心に点対称の位置に二本配置してもよい。 Note Z-direction core portion 30 is not limited to the embodiments to place a total of four one by one in each quadrant as shown, for example, by placing two at positions of point symmetry about the intersection 21 of the cross antenna it may be.

図3は、本発明の第二の実施例にかかるコイルアンテナ10の斜視図である。 Figure 3 is a perspective view of a coil antenna 10 according to a second embodiment of the present invention. 本実施例にかかるコイルアンテナ10は、X方向巻芯部11およびY方向巻芯部12を有する十字状のコア20の外周に、Z軸方向を巻軸とするコイル13cが巻回されている。 Coil antenna 10 according to this embodiment, the outer periphery of the cross-shaped core 20 having an X-direction core portion 11 and the Y-direction core portion 12, a coil 13c to the winding axis in the Z-axis direction is wound . すなわち本実施例にかかるコイルアンテナ10では、放射状に伸びる巻芯部を備えるコア20の先端面を他の巻軸として用い、Z軸方向を巻軸とするコイル13cを巻成している。 That is, in the coil antenna 10 according to the present embodiment, using the front end face of the core 20 with a winding core portion extending radially other winding shaft, and form wound coils 13c to winding axis in the Z-axis direction.
かかるコイルアンテナ10によれば、X,Y,Zの三軸方向に受信感度を均一化した無指向性アンテナの機能を得ることができる。 According to the coil antenna 10, it is possible to obtain X, Y, the function of the non-directional antenna with uniform reception sensitivity directions of three axes Z. またZ軸方向を巻軸とするコイル13cは、他のコイル13a、13bよりも口径が大きく、巻数あたりの受信感度がX軸方向およびY軸方向よりも高いことから、逆にいえばコイル13cは少ない巻数でコイルアンテナ10の無指向性を得ることができる。 The coil 13c to the winding axis in the Z axis direction, the other coil 13a, larger diameter than 13b, since the reception sensitivity per number of turns greater than the X-axis direction and the Y-axis direction, a coil 13c conversely can be obtained omnidirectional coil antenna 10 is small number of turns. したがって同図に示すようにZ軸方向の巻軸の長さはコア20の厚さ程度で足り、またコア20の先端に膨出するコイル13cの巻厚も小さくてよいことから、コイルアンテナ10を包絡する体積を実質的に拡張することがない。 Thus the length of the winding shaft in the Z-axis direction as shown in the figure sufficient at about the thickness of the core 20, and since it may be smaller winding thickness of the coil 13c that bulges to the tip of the core 20, the coil antenna 10 not be substantially expanded the volume enveloping.

図4は、本発明の第三の実施例にかかるコイルアンテナであり、同図(a)はその斜視図、同図(b)はそのb−b断面図である。 Figure 4 is a coil antenna according to a third embodiment of the present invention, FIG. (A) is a perspective view thereof, FIG. (B) is a b-b cross section. 本実施例にかかるコイルアンテナ10は、交互に積層された薄板111と121との隙間14にコイル13cを巻回してなることを特徴とするものである。 Coil antenna 10 according to this embodiment is characterized in that comprising turning the coil 13c wound in a gap 14 between the thin plate 111 and 121 which are alternately stacked. すなわち、コア20のうち薄板111および121の交差部21の周囲には、それぞれの板厚に相当する隙間14が形成されるため、かかる隙間14に巻線を挿通することで、交差部21を巻芯としてコイル13cを設けることができる。 That is, around the intersection 21 of the thin plate 111 and 121 of the core 20, a gap 14 corresponding to the respective thickness is formed, by inserting such a gap 14 wound around the intersecting portions 21 it can be provided coil 13c as a winding core. 換言すると、交差部21をZ方向巻芯部として利用することで、コア20の包絡域を拡大することなくその内部にコイル13cを設けたものである。 In other words, by using the cross-section 21 as the Z-direction core portion, it is provided with a coil 13c therein without enlarging the envelope area of ​​the core 20.
これにより、X,Y,Zの三軸方向に受信感度を均一化することができるとともに、その占有体積が図1に示す態様と実質的に同等となるため、高い実装効率が得られる。 Thus, X, Y, it is possible to equalize the reception sensitivity in directions of three axes Z, since the occupied volume of the embodiment is substantially equivalent to that shown in FIG. 1, a high implementation efficiency.
なお、隙間14には一本または二本以上の巻線を挿通することができるため、コイルアンテナ10のZ軸方向の受信感度は、隙間14ごとの巻数によって調整可能である。 Since the gap 14 which can be inserted through one or two or more windings, the receiving sensitivity of the Z-axis direction of the coil antenna 10 can be adjusted by the turns of each gap 14. また、磁性体薄膜を交互に積層する構造は、一枚ずつ交互積層するものであっても、任意の一枚または複数枚ごとに交互積層するものであってもよい。 The structure of laminating a magnetic thin film alternately, be one which alternately stacked one by one, or may be alternately stacked on each any one or more sheets.

本発明の実施の形態にかかるコイルアンテナであり、(a)はその斜視図、(b)はそのb−b断面図である。 A coil antenna according to an embodiment of the present invention, (a) is its perspective view, (b) is its b-b cross section. 第一の実施例にかかるコイルアンテナの斜視図である。 It is a perspective view of a coil antenna according to the first embodiment. 第二の実施例にかかるコイルアンテナの斜視図である。 It is a perspective view of a coil antenna in the second embodiment. 第三の実施例にかかるコイルアンテナであり、(a)はその斜視図、(b)はそのb−b断面図である。 A coil antenna according to the third embodiment, (a) represents the perspective view, (b) is its b-b cross section. 参考例にかかる十字アンテナの斜視図である。 It is a perspective view of a cross antenna according to the reference example.

符号の説明 DESCRIPTION OF SYMBOLS

10 コイルアンテナ11 X方向巻芯部12 Y方向巻芯部13a,13b,13c コイル20 コア30 Z方向巻芯部111,121,131 薄板 10 coil antenna 11 X-direction core portion 12 Y-direction core portion 13a, 13b, 13c coil 20 core 30 Z-direction core portion 111, 121 and 131 sheet

Claims (4)

  1. 帯状の磁性体薄膜からなる複数枚の薄板が互いに交差して交互に積層され少なくとも二方向の巻軸が形成されたコアと、前記コアに巻回されたコイルと、を備えるコイルアンテナ。 Coil antenna comprising: a belt-like core in which a plurality of thin plates are laminated alternately to cross each other at least two directions of the winding shaft is formed of a magnetic thin film, and a coil wound around the core.
  2. 前記二方向と互いに直交する方向を巻軸とする他の巻芯が磁性体薄膜を積層して形成されている請求項1に記載のコイルアンテナ。 Coil antenna according to claim 1, further winding core to the winding axis and a direction perpendicular to each other and the two directions is formed by laminating a magnetic thin film.
  3. 一本または二本以上の前記他の巻芯が、前記二方向の巻軸に挟まれた位置に、前記コアと別離して形成されている請求項2に記載のコイルアンテナ。 One or two or more of the other winding core is, the sandwiched by positions in two directions of the winding shaft, the core and the separation and coil antenna according to claim 2 which is formed.
  4. 交互に積層された薄板同士の隙間に、該薄板の法線方向を巻軸とする他のコイルが巻回されている請求項1に記載のコイルアンテナ。 The gap between the thin plates stacked alternately, the coil antenna according to claim 1, further coils to the winding axis in the normal direction of the thin plate is wound.
JP2006087986A 2006-03-28 2006-03-28 Coil antenna Pending JP2007266892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006087986A JP2007266892A (en) 2006-03-28 2006-03-28 Coil antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006087986A JP2007266892A (en) 2006-03-28 2006-03-28 Coil antenna

Publications (1)

Publication Number Publication Date
JP2007266892A true JP2007266892A (en) 2007-10-11

Family

ID=38639458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006087986A Pending JP2007266892A (en) 2006-03-28 2006-03-28 Coil antenna

Country Status (1)

Country Link
JP (1) JP2007266892A (en)

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009049840A (en) * 2007-08-22 2009-03-05 Panasonic Corp Antenna apparatus and radio communication system
EP2131444A1 (en) * 2008-06-03 2009-12-09 Sumida Corporation Antenna coil for receiving an external magnetic field
JP2012504387A (en) * 2008-09-27 2012-02-16 ウィトリシティ コーポレーション Wireless energy transfer system
US8847548B2 (en) 2008-09-27 2014-09-30 Witricity Corporation Wireless energy transfer for implantable devices
US8875086B2 (en) 2011-11-04 2014-10-28 Witricity Corporation Wireless energy transfer modeling tool
US8901778B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with variable size resonators for implanted medical devices
US8901779B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with resonator arrays for medical applications
US8907531B2 (en) 2008-09-27 2014-12-09 Witricity Corporation Wireless energy transfer with variable size resonators for medical applications
US8912687B2 (en) 2008-09-27 2014-12-16 Witricity Corporation Secure wireless energy transfer for vehicle applications
US8922066B2 (en) 2008-09-27 2014-12-30 Witricity Corporation Wireless energy transfer with multi resonator arrays for vehicle applications
US8928276B2 (en) 2008-09-27 2015-01-06 Witricity Corporation Integrated repeaters for cell phone applications
US8933594B2 (en) 2008-09-27 2015-01-13 Witricity Corporation Wireless energy transfer for vehicles
US8937408B2 (en) 2008-09-27 2015-01-20 Witricity Corporation Wireless energy transfer for medical applications
US8947186B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Wireless energy transfer resonator thermal management
US8946938B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Safety systems for wireless energy transfer in vehicle applications
US8963488B2 (en) 2008-09-27 2015-02-24 Witricity Corporation Position insensitive wireless charging
US9035499B2 (en) 2008-09-27 2015-05-19 Witricity Corporation Wireless energy transfer for photovoltaic panels
US9065423B2 (en) 2008-09-27 2015-06-23 Witricity Corporation Wireless energy distribution system
US9093853B2 (en) 2008-09-27 2015-07-28 Witricity Corporation Flexible resonator attachment
US9095729B2 (en) 2007-06-01 2015-08-04 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9105959B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Resonator enclosure
US9106203B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Secure wireless energy transfer in medical applications
US9160203B2 (en) 2008-09-27 2015-10-13 Witricity Corporation Wireless powered television
US9184595B2 (en) 2008-09-27 2015-11-10 Witricity Corporation Wireless energy transfer in lossy environments
US9246336B2 (en) 2008-09-27 2016-01-26 Witricity Corporation Resonator optimizations for wireless energy transfer
US9287607B2 (en) 2012-07-31 2016-03-15 Witricity Corporation Resonator fine tuning
US9306635B2 (en) 2012-01-26 2016-04-05 Witricity Corporation Wireless energy transfer with reduced fields
US9318257B2 (en) 2011-10-18 2016-04-19 Witricity Corporation Wireless energy transfer for packaging
US9318922B2 (en) 2008-09-27 2016-04-19 Witricity Corporation Mechanically removable wireless power vehicle seat assembly
US9343922B2 (en) 2012-06-27 2016-05-17 Witricity Corporation Wireless energy transfer for rechargeable batteries
US9369182B2 (en) 2008-09-27 2016-06-14 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US9384885B2 (en) 2011-08-04 2016-07-05 Witricity Corporation Tunable wireless power architectures
US9396867B2 (en) 2008-09-27 2016-07-19 Witricity Corporation Integrated resonator-shield structures
US9404954B2 (en) 2012-10-19 2016-08-02 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9421388B2 (en) 2007-06-01 2016-08-23 Witricity Corporation Power generation for implantable devices
US9442172B2 (en) 2011-09-09 2016-09-13 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9444520B2 (en) 2008-09-27 2016-09-13 Witricity Corporation Wireless energy transfer converters
US9449757B2 (en) 2012-11-16 2016-09-20 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US9515494B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless power system including impedance matching network
US9544683B2 (en) 2008-09-27 2017-01-10 Witricity Corporation Wirelessly powered audio devices
US9595378B2 (en) 2012-09-19 2017-03-14 Witricity Corporation Resonator enclosure
US9602168B2 (en) 2010-08-31 2017-03-21 Witricity Corporation Communication in wireless energy transfer systems
US9601266B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Multiple connected resonators with a single electronic circuit
US9601261B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Wireless energy transfer using repeater resonators
US9601270B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Low AC resistance conductor designs
US9744858B2 (en) 2008-09-27 2017-08-29 Witricity Corporation System for wireless energy distribution in a vehicle
US9754718B2 (en) 2008-09-27 2017-09-05 Witricity Corporation Resonator arrays for wireless energy transfer
US9780573B2 (en) 2014-02-03 2017-10-03 Witricity Corporation Wirelessly charged battery system
US9837860B2 (en) 2014-05-05 2017-12-05 Witricity Corporation Wireless power transmission systems for elevators
US9842687B2 (en) 2014-04-17 2017-12-12 Witricity Corporation Wireless power transfer systems with shaped magnetic components
US9842688B2 (en) 2014-07-08 2017-12-12 Witricity Corporation Resonator balancing in wireless power transfer systems
US9843217B2 (en) 2015-01-05 2017-12-12 Witricity Corporation Wireless energy transfer for wearables
US9857821B2 (en) 2013-08-14 2018-01-02 Witricity Corporation Wireless power transfer frequency adjustment
US9892849B2 (en) 2014-04-17 2018-02-13 Witricity Corporation Wireless power transfer systems with shield openings
US9929721B2 (en) 2015-10-14 2018-03-27 Witricity Corporation Phase and amplitude detection in wireless energy transfer systems
US9948145B2 (en) 2011-07-08 2018-04-17 Witricity Corporation Wireless power transfer for a seat-vest-helmet system
US9952266B2 (en) 2014-02-14 2018-04-24 Witricity Corporation Object detection for wireless energy transfer systems
US9954375B2 (en) 2014-06-20 2018-04-24 Witricity Corporation Wireless power transfer systems for surfaces
US10018744B2 (en) 2014-05-07 2018-07-10 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10063104B2 (en) 2016-02-08 2018-08-28 Witricity Corporation PWM capacitor control
US10063110B2 (en) 2015-10-19 2018-08-28 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10075019B2 (en) 2015-11-20 2018-09-11 Witricity Corporation Voltage source isolation in wireless power transfer systems
EP3404768A1 (en) * 2017-05-18 2018-11-21 Premo, S.L. Low profile triaxial antenna
US10141788B2 (en) 2015-10-22 2018-11-27 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US10218224B2 (en) 2008-09-27 2019-02-26 Witricity Corporation Tunable wireless energy transfer systems
US10248899B2 (en) 2015-10-06 2019-04-02 Witricity Corporation RFID tag and transponder detection in wireless energy transfer systems
US10263473B2 (en) 2016-02-02 2019-04-16 Witricity Corporation Controlling wireless power transfer systems

Cited By (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10348136B2 (en) 2007-06-01 2019-07-09 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9318898B2 (en) 2007-06-01 2016-04-19 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9101777B2 (en) 2007-06-01 2015-08-11 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9843230B2 (en) 2007-06-01 2017-12-12 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9943697B2 (en) 2007-06-01 2018-04-17 Witricity Corporation Power generation for implantable devices
US9421388B2 (en) 2007-06-01 2016-08-23 Witricity Corporation Power generation for implantable devices
US9095729B2 (en) 2007-06-01 2015-08-04 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
JP2009049840A (en) * 2007-08-22 2009-03-05 Panasonic Corp Antenna apparatus and radio communication system
EP2131444A1 (en) * 2008-06-03 2009-12-09 Sumida Corporation Antenna coil for receiving an external magnetic field
US8077106B2 (en) 2008-06-03 2011-12-13 Sumida Corporation Receiving antenna coil
KR101789214B1 (en) * 2008-09-27 2017-10-23 위트리시티 코포레이션 Wireless energy transfer systems
US8928276B2 (en) 2008-09-27 2015-01-06 Witricity Corporation Integrated repeaters for cell phone applications
US8922066B2 (en) 2008-09-27 2014-12-30 Witricity Corporation Wireless energy transfer with multi resonator arrays for vehicle applications
US8937408B2 (en) 2008-09-27 2015-01-20 Witricity Corporation Wireless energy transfer for medical applications
US8947186B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Wireless energy transfer resonator thermal management
US8946938B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Safety systems for wireless energy transfer in vehicle applications
US8963488B2 (en) 2008-09-27 2015-02-24 Witricity Corporation Position insensitive wireless charging
US9035499B2 (en) 2008-09-27 2015-05-19 Witricity Corporation Wireless energy transfer for photovoltaic panels
US9065423B2 (en) 2008-09-27 2015-06-23 Witricity Corporation Wireless energy distribution system
US9093853B2 (en) 2008-09-27 2015-07-28 Witricity Corporation Flexible resonator attachment
US8912687B2 (en) 2008-09-27 2014-12-16 Witricity Corporation Secure wireless energy transfer for vehicle applications
US8907531B2 (en) 2008-09-27 2014-12-09 Witricity Corporation Wireless energy transfer with variable size resonators for medical applications
US9105959B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Resonator enclosure
US9106203B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Secure wireless energy transfer in medical applications
US9160203B2 (en) 2008-09-27 2015-10-13 Witricity Corporation Wireless powered television
US9184595B2 (en) 2008-09-27 2015-11-10 Witricity Corporation Wireless energy transfer in lossy environments
US9246336B2 (en) 2008-09-27 2016-01-26 Witricity Corporation Resonator optimizations for wireless energy transfer
US10300800B2 (en) 2008-09-27 2019-05-28 Witricity Corporation Shielding in vehicle wireless power systems
US10264352B2 (en) 2008-09-27 2019-04-16 Witricity Corporation Wirelessly powered audio devices
US10230243B2 (en) 2008-09-27 2019-03-12 Witricity Corporation Flexible resonator attachment
US8901779B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with resonator arrays for medical applications
US9318922B2 (en) 2008-09-27 2016-04-19 Witricity Corporation Mechanically removable wireless power vehicle seat assembly
US10218224B2 (en) 2008-09-27 2019-02-26 Witricity Corporation Tunable wireless energy transfer systems
US9369182B2 (en) 2008-09-27 2016-06-14 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US8901778B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with variable size resonators for implanted medical devices
US9396867B2 (en) 2008-09-27 2016-07-19 Witricity Corporation Integrated resonator-shield structures
US10097011B2 (en) 2008-09-27 2018-10-09 Witricity Corporation Wireless energy transfer for photovoltaic panels
US10340745B2 (en) 2008-09-27 2019-07-02 Witricity Corporation Wireless power sources and devices
US9780605B2 (en) 2008-09-27 2017-10-03 Witricity Corporation Wireless power system with associated impedance matching network
US9444520B2 (en) 2008-09-27 2016-09-13 Witricity Corporation Wireless energy transfer converters
US10084348B2 (en) 2008-09-27 2018-09-25 Witricity Corporation Wireless energy transfer for implantable devices
US8847548B2 (en) 2008-09-27 2014-09-30 Witricity Corporation Wireless energy transfer for implantable devices
US9496719B2 (en) 2008-09-27 2016-11-15 Witricity Corporation Wireless energy transfer for implantable devices
US9515495B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless energy transfer in lossy environments
US9515494B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless power system including impedance matching network
US9544683B2 (en) 2008-09-27 2017-01-10 Witricity Corporation Wirelessly powered audio devices
US9577436B2 (en) 2008-09-27 2017-02-21 Witricity Corporation Wireless energy transfer for implantable devices
US9584189B2 (en) 2008-09-27 2017-02-28 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US9843228B2 (en) 2008-09-27 2017-12-12 Witricity Corporation Impedance matching in wireless power systems
US9596005B2 (en) 2008-09-27 2017-03-14 Witricity Corporation Wireless energy transfer using variable size resonators and systems monitoring
US8933594B2 (en) 2008-09-27 2015-01-13 Witricity Corporation Wireless energy transfer for vehicles
US9601266B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Multiple connected resonators with a single electronic circuit
US9601261B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Wireless energy transfer using repeater resonators
US9601270B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Low AC resistance conductor designs
US9662161B2 (en) 2008-09-27 2017-05-30 Witricity Corporation Wireless energy transfer for medical applications
US9698607B2 (en) 2008-09-27 2017-07-04 Witricity Corporation Secure wireless energy transfer
US9711991B2 (en) 2008-09-27 2017-07-18 Witricity Corporation Wireless energy transfer converters
US9742204B2 (en) 2008-09-27 2017-08-22 Witricity Corporation Wireless energy transfer in lossy environments
US9748039B2 (en) 2008-09-27 2017-08-29 Witricity Corporation Wireless energy transfer resonator thermal management
US9744858B2 (en) 2008-09-27 2017-08-29 Witricity Corporation System for wireless energy distribution in a vehicle
US9754718B2 (en) 2008-09-27 2017-09-05 Witricity Corporation Resonator arrays for wireless energy transfer
JP2012504387A (en) * 2008-09-27 2012-02-16 ウィトリシティ コーポレーション Wireless energy transfer system
US9806541B2 (en) 2008-09-27 2017-10-31 Witricity Corporation Flexible resonator attachment
US9602168B2 (en) 2010-08-31 2017-03-21 Witricity Corporation Communication in wireless energy transfer systems
US9948145B2 (en) 2011-07-08 2018-04-17 Witricity Corporation Wireless power transfer for a seat-vest-helmet system
US9384885B2 (en) 2011-08-04 2016-07-05 Witricity Corporation Tunable wireless power architectures
US9787141B2 (en) 2011-08-04 2017-10-10 Witricity Corporation Tunable wireless power architectures
US10027184B2 (en) 2011-09-09 2018-07-17 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9442172B2 (en) 2011-09-09 2016-09-13 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9318257B2 (en) 2011-10-18 2016-04-19 Witricity Corporation Wireless energy transfer for packaging
US8875086B2 (en) 2011-11-04 2014-10-28 Witricity Corporation Wireless energy transfer modeling tool
US9306635B2 (en) 2012-01-26 2016-04-05 Witricity Corporation Wireless energy transfer with reduced fields
US9343922B2 (en) 2012-06-27 2016-05-17 Witricity Corporation Wireless energy transfer for rechargeable batteries
US10158251B2 (en) 2012-06-27 2018-12-18 Witricity Corporation Wireless energy transfer for rechargeable batteries
US9287607B2 (en) 2012-07-31 2016-03-15 Witricity Corporation Resonator fine tuning
US9595378B2 (en) 2012-09-19 2017-03-14 Witricity Corporation Resonator enclosure
US9465064B2 (en) 2012-10-19 2016-10-11 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10211681B2 (en) 2012-10-19 2019-02-19 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9404954B2 (en) 2012-10-19 2016-08-02 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9449757B2 (en) 2012-11-16 2016-09-20 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US9842684B2 (en) 2012-11-16 2017-12-12 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US10186372B2 (en) 2012-11-16 2019-01-22 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US9857821B2 (en) 2013-08-14 2018-01-02 Witricity Corporation Wireless power transfer frequency adjustment
US9780573B2 (en) 2014-02-03 2017-10-03 Witricity Corporation Wirelessly charged battery system
US9952266B2 (en) 2014-02-14 2018-04-24 Witricity Corporation Object detection for wireless energy transfer systems
US9892849B2 (en) 2014-04-17 2018-02-13 Witricity Corporation Wireless power transfer systems with shield openings
US10186373B2 (en) 2014-04-17 2019-01-22 Witricity Corporation Wireless power transfer systems with shield openings
US9842687B2 (en) 2014-04-17 2017-12-12 Witricity Corporation Wireless power transfer systems with shaped magnetic components
US9837860B2 (en) 2014-05-05 2017-12-05 Witricity Corporation Wireless power transmission systems for elevators
US10018744B2 (en) 2014-05-07 2018-07-10 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9954375B2 (en) 2014-06-20 2018-04-24 Witricity Corporation Wireless power transfer systems for surfaces
US9842688B2 (en) 2014-07-08 2017-12-12 Witricity Corporation Resonator balancing in wireless power transfer systems
US9843217B2 (en) 2015-01-05 2017-12-12 Witricity Corporation Wireless energy transfer for wearables
US10248899B2 (en) 2015-10-06 2019-04-02 Witricity Corporation RFID tag and transponder detection in wireless energy transfer systems
US9929721B2 (en) 2015-10-14 2018-03-27 Witricity Corporation Phase and amplitude detection in wireless energy transfer systems
US10063110B2 (en) 2015-10-19 2018-08-28 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10141788B2 (en) 2015-10-22 2018-11-27 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US10075019B2 (en) 2015-11-20 2018-09-11 Witricity Corporation Voltage source isolation in wireless power transfer systems
US10263473B2 (en) 2016-02-02 2019-04-16 Witricity Corporation Controlling wireless power transfer systems
US10063104B2 (en) 2016-02-08 2018-08-28 Witricity Corporation PWM capacitor control
EP3404768A1 (en) * 2017-05-18 2018-11-21 Premo, S.L. Low profile triaxial antenna

Similar Documents

Publication Publication Date Title
JP5041075B2 (en) Wireless ic devices and wireless ic module
US7405709B2 (en) Magnetic core member, antenna module, and mobile communication terminal having the same
JP4462388B2 (en) Wireless ic device
JP6283615B2 (en) A wireless chargers magnetic shielding sheet and a manufacturing method thereof, a wireless chargers receiver using the same
US8031127B2 (en) Semiconductor memory module incorporating antenna
US20140091758A1 (en) Communication apparatus
KR100831804B1 (en) Inductive device and method for manufacturing same
JP4885093B2 (en) Booster antenna coil
EP2402891A2 (en) Antenna coil to be mounted on a circuit board and antenna device
WO2013121729A1 (en) Contactless charging module and mobile terminal provided with same
US20120098724A1 (en) Antenna device and communication terminal apparatus
JP4325621B2 (en) Writer and a mobile communication device
EP2811816A1 (en) Magnetic field shielding sheet for digitizer, manufacturing method thereof, and portable terminal device using same
EP1965396A1 (en) Flexible coil
US8042742B2 (en) Noncontact IC label and method and apparatus for manufacturing the same
JP2007537637A (en) Using inductive energy transmission antenna device and the antenna device
JPWO2007083575A1 (en) Wireless ic device
JP2008197714A (en) Non-contact data carrier device, and auxiliary antenna for non-contact data carrier
KR20150142653A (en) Hybrid Type Magnetic Field Shield Sheet and Antenna Module Using the Same
JP5757345B2 (en) Wireless communication device
JPWO2010122888A1 (en) The antenna device
US9825482B2 (en) Electromagnetic booster for wireless charging and method of manufacturing the same
JP2007172527A (en) Non-contact type data carrier device
JP2015111852A (en) Antenna device and electronic apparatus
JP2004213582A (en) Rfid tag, reader/writer and rfid system with tag