JPH09298847A - Non-contact charger - Google Patents

Non-contact charger

Info

Publication number
JPH09298847A
JPH09298847A JP8132646A JP13264696A JPH09298847A JP H09298847 A JPH09298847 A JP H09298847A JP 8132646 A JP8132646 A JP 8132646A JP 13264696 A JP13264696 A JP 13264696A JP H09298847 A JPH09298847 A JP H09298847A
Authority
JP
Japan
Prior art keywords
circuit
coil
non
force generating
high
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8132646A
Other languages
Japanese (ja)
Inventor
Yoji Chiba
洋治 千葉
Original Assignee
Sony Corp
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp, ソニー株式会社 filed Critical Sony Corp
Priority to JP8132646A priority Critical patent/JPH09298847A/en
Publication of JPH09298847A publication Critical patent/JPH09298847A/en
Application status is Pending legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances
    • Y02B40/90Energy efficient batteries, ultracapacitors, supercapacitors or double-layer capacitors charging or discharging systems or methods specially adapted for portable applications

Abstract

PROBLEM TO BE SOLVED: To provide a non-contact charger whereby its conversion efficiency from an AC power into a DC power can be improved and both the maximum allowable current of its element and its loss can be reduced. SOLUTION: In a non-contact charger 1, an inverter 4 converts a DC voltage fed from a constant-voltage circuit 3 into a high-frequency voltage according to the control of a control circuit 5 to generate a magnetic line of force by a magnetic-force generating coil L1. On the other hand, in a slave machine 10, a coupling coil L2 takes out a high-frequency power from the magnetic line of force of the foregoing magnetic-force generating coil L1 by an electromagnetic induction, and after rectifying the high-frequency power by a rectification circuit 11, a rectified DC voltage is fed to a charging circuit 12 to charge a battery 13 by the rectified DC voltage. Also, a pickup coil L3 takes out the leakage magnetic flux generated between the magnetic-force generating coil L1 and the coupling coil L2 to feed it to a feedback circuit 6. After the high-frequency power in response to the foregoing leakage magnetic flux is converted into a DC voltage, the feedback circuit 6 feeds back it to the constant-voltage circuit 3. A light emitting diode LED is lit by the DC voltage obtained from the leakage magnetic flux to indicating that the battery 13 is being charged.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、コードレス電話機の子機等に内蔵されたバッテリを充電する通信機用非接触充電器に関する。 The present invention relates to relates to a non-contact charger communication device to charge the battery incorporated in the handset or the like cordless telephone.

【0002】 [0002]

【従来の技術】近年、PHSやセルラ、または家庭で用いられるコードレス電話機等では、その使用環境から防水性が必須となっている。 In recent years, in such a cordless telephone used in the PHS and cellular or home, waterproof from its use environment is essential. そこで、機構面で考えた場合、問題となるのが、充電用に設けられた、筐体外部に露出する充電器とのコンタクト用端子部であり、これを回避し、全体の防水性能を向上させるために、非接触充電方式が普及してきた。 Therefore, when considering in mechanism surface, that a problem, provided for charging a contact terminal portion of the charger is exposed to the outside of the housing, to avoid this, increase the overall waterproof to the non-contact charging method has been widely used.

【0003】上記非接触充電器では、充電器側のインバータ回路で発生した高周波電力を磁力発生コイル(L [0003] The In the non-contact charger, a high frequency power magnetic force generating coil generated by the inverter circuit of the charger side (L
1)に供給し、充電される電話機側に内蔵された結合用コイル(L2)によって上記高周波電力を電磁誘導により取り出し、整流した直流電圧によりバッテリを充電するようになっている。 Supplying to 1), the high frequency power by coupling coil incorporated in the telephone side (L2) which is charged removed by electromagnetic induction, so as to charge the battery by rectified DC voltage.

【0004】 [0004]

【発明が解決しようとする課題】しかしながら、従来の非接触充電器では、磁力発生コイル(L1)と結合用コイル(L2)の結合係数kがかなり小さいため、所定の電流で電話機側のバッテリを充電するためには、損失分も含めて、充電器で多大な電力が必要となり、商用交流電源から見た場合の交流→直流の変換効率を悪化させている。 [SUMMARY OF THE INVENTION However, in the conventional non-contact charger, since the coupling coefficient k of the magnetic force generating coil (L1) and the coupling coil (L2) is rather small, the battery of the phone side at a predetermined current to charge, including the loss, significant power charger is required, thereby deteriorating the conversion efficiency of the AC → DC when viewed from a commercial AC power source. 仮に、充電器にACアダプタを接続するタイプであっても、直流電流をかなり必要とするため、アダプタそれ自体の定格容量をアップしなければならず、コストアップにつながるという問題があった。 Even if a type for connecting the AC adapter to the charger, to the direct current requires considerable, must up the rated capacity of the adapter itself, there is a problem that cost is increased.

【0005】また、上述したように、充電器における電流が大となるため、電圧レギュレータを含めた制御素子の電流定格値を大きくしなければならず、コストアップにつながるという問題があた。 Further, as described above, since the current in the charger is large, it is necessary to increase the rated current value of the control element, including a voltage regulator, a problem that increases the cost per. また、ほとんどの充電器には、充電/非充電をユーザに認知させるために、例えば、スイッチング素子等によって制御されるLED等の点灯装置が設けられているが、回路構成が複雑になるとともに、部品点数が増えるため、コストアップにつながるという問題があった。 Also, most of the charger, in order to recognize the user charge / non-charge, for example, although the lighting device such as an LED that is controlled by a switching element or the like is provided, together with a circuit configuration becomes complicated, since the number of parts is increased, there is a problem that leads to the cost up.

【0006】そこで本発明は、交流→直流への変換効率を向上させることができ、また、素子の最大許容電流値や損失を低減することができ、さらに、特別な回路を用いることなく、充電/非充電を表示できる非接触充電器を提供することを目的としている。 [0006] The present invention can improve the conversion efficiency to the AC → DC, also it is possible to reduce the maximum allowable current value or loss of the device, further, without using a special circuit, charging / and its object is to provide a non-charging can display a non-contact charger.

【0007】 [0007]

【課題を解決するための手段】上記目的を達成するため、この発明による非接触充電器は、電子機器のバッテリを充電する充電器であって、電子機器側に設けられた結合コイルに高周波電力を誘導する磁力発生コイルを有し、前記磁力発生コイルと前記結合コイル間の電磁誘導によって非接触で前記電子機器に充電電力を供給する非接触充電器において、前記磁力発生コイル近傍に配置され、前記磁力発生コイルと前記結合コイル間における漏洩磁束による高周波電力を取り出すピックアップコイルと、前記ピックアップコイルによって取り出した高周波電力を定電圧制御回路系の電源としてフィードバックするフィードバック手段とを具備することを特徴とする。 To achieve the above object, according to an aspect of the non-contact charger according to this invention is a charger for charging the electronic device battery, the high-frequency power coupling coil provided in the electronic apparatus side has a magnetic force generating coil to induce, in a non-contact charger supplies charging power to the electronic device in a non-contact by electromagnetic induction between said magnetic force generating coil and the coupling coil is arranged near the magnetic force generating coil, and characterized by comprising a pickup coil to retrieve high-frequency power due to leakage flux between the coupling coil and the magnetic force generating coil, and a feedback means for feeding back the high frequency electric power taken out by the pick-up coil as the power supply of the constant voltage control circuit system to.

【0008】 [0008]

【発明の実施の形態】以下、本発明の実施の形態を図面を参照して説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of the present invention with reference to the drawings.

【0009】A. [0009] A. 実施の形態 A−1. Embodiment A-1 of the embodiment. 実施の形態の構成 図1は本発明の実施の形態による非接触充電器と該非接触充電器で充電される電話機の子機の略構成を示す回路図であり、図2は、非接触充電器の断面図である。 Diagram 1 of the embodiment is a circuit diagram illustrating a substantially arrangement of handset of the telephone to be charged in a non-contact charger and noncontact charger according to an embodiment of the present invention, FIG. 2, the non-contact charger it is a cross-sectional view of. 図において、非接触充電器1は、整流回路2、定電圧回路3、インバータ回路4、制御回路5、磁力発生コイルL In the figure, the contactless charger 1 includes a rectifier circuit 2, a constant voltage circuit 3, an inverter circuit 4, the control circuit 5, a magnetic force generating coil L
1、ピックアップコイルL3、およびフィードバック回路6から構成されている。 1, and a pickup coil L3 and the feedback circuit 6,. 整流回路2は、ダイオードD Rectifier circuit 2, the diode D
1〜D4からなるブリッジ回路より構成され、商用電源ACを整流し、定電圧回路(レギュレータ)3に供給する。 Is constituted by a bridge circuit consisting of 1~D4, it rectifies the commercial power AC, and supplies the constant voltage circuit (regulator) 3.

【0010】定電圧回路3は、整流された直流電圧を平滑化するとともに、所定電圧となるように制御し、インバータ回路4に供給する。 [0010] The constant-voltage circuit 3 is configured to smooth the rectified DC voltage, controlled to a predetermined voltage, and supplies the inverter circuit 4. インバータ回路4は、上記直流電圧を高周波に変換し、磁力発生コイルL1によって、磁力線を発生させる。 The inverter circuit 4 converts the DC voltage to a high frequency, by a magnetic force generating coil L1, to generate magnetic lines of force. 制御回路5は、上記インバータ回路4を制御し、所定高周波を発生させる。 The control circuit 5 controls the inverter circuit 4, thereby generating a predetermined frequency. ピックアップコイルL3は、磁力発生コイルL1と後述する子機側の結合コイルL1とによって電磁結合されなかった漏洩磁束を取り出し、フィードバック回路6に供給する。 Pickup coil L3 takes out the leakage magnetic flux that has not been electromagnetically coupled by a coupling coil L1 of the slave unit to be described later with magnetic force generating coil L1, and supplies the feedback circuit 6.

【0011】フィードバック回路6は、抵抗器R1、ツェナーダイオードZD、ダイオードD5、コンデンサC [0011] The feedback circuit 6, resistors R1, a zener diode ZD, a diode D5, a capacitor C
1、抵抗器R2、発光ダイオードLEDから構成されており、上記漏洩磁束をダイオードD5により直流電圧に変換した後、コンデンサC1により平滑化し、定電圧回路3にフィードバックするとともに、抵抗器R2、発光ダイオードLEDを点灯させる。 1, the resistor R2, is composed of a light emitting diode LED, after converting the leakage flux by the diode D5 to a DC voltage, and smoothed by capacitor C1, while the feedback to the constant voltage circuit 3, resistors R2, a light emitting diode the LED is lit. したがって、充電中の間は、ピックアップコイルL3によって漏洩磁束が取り出されるので、発光ダイオードLEDが点灯することになる。 Thus, during the charging, since the leakage flux is taken out by the pickup coil L3, so that the light emitting diode LED is turned on. また、漏洩した分の電力は、直流電圧源に供給することで、交流(AC)→直流(DC)への変換効率を向上させることができる。 Further, minute power leaked, by supplying the DC voltage source, it is possible to improve the conversion efficiency to the AC (AC) → DC (DC).

【0012】一方、子機(ハンドセット)10は、結合コイルL2、整流回路11、充電回路12、バッテリ1 Meanwhile, the slave unit (handset) 10, a coupling coil L2, a rectifying circuit 11, the charging circuit 12, the battery 1
3、主電源回路14を備えている。 3, and a main power supply circuit 14. 結合コイルL2は、 Coupling coil L2,
上記非接触充電器1の磁力発生コイルL1に対して電磁誘導により結合し、高周波電力を取り出し、整流回路1 Coupled by electromagnetic induction relative to the magnetic force generating coil L1 of the non-contact charger 1 fetches a high-frequency power, the rectifier circuit 1
1に供給する。 Supplied to the 1. 整流回路11は、ダイオードD6およびコンデンサC2から構成されており、ダイオードD6により上記高周波電力を整流し、コンデンサC2で平滑化した後、充電回路12に供給する。 Rectifier circuit 11 is constituted by a diode D6 and a capacitor C2, a diode D6 rectifies the high frequency power, after smoothed by the capacitor C2, and supplies to the charging circuit 12. 充電回路12は、上記直流電圧によりバッテリを13を充電する。 Charging circuit 12 charges the 13 battery by the DC voltage. 主電源回路14は、バッテリ13の出力電圧から図示しない通信関連の回路を駆動するための駆動電圧を生成し、各部に供給する。 Main power supply circuit 14 generates a drive voltage for driving the circuits of the communication-related (not shown) from the output voltage of the battery 13, and supplies the respective units.

【0013】上述した磁力発生コイルL1およびピックアップコイルL3は、図2に示すように、子機10が充電時に非接触充電器1に載置される面の内側に同心円状に配置されている。 [0013] magnetic force generating coil L1 and the pickup coil L3 described above, as shown in FIG. 2, the slave unit 10 is arranged concentrically on the inner surface to be placed in a non-contact charger 1 during charging. また、結合コイルL2も同様に、図2に示すように、上記磁力発生コイルL1に対向するように、同心円状に配置されている。 Similarly, the coupling coil L2, as shown in FIG. 2, so as to face the magnetic force generating coil L1, are arranged concentrically.

【0014】B. [0014] B. 実施の形態の動作 次に、上述した非接触充電器の動作について説明する。 Operation of the embodiment Next, the operation of the non-contact charger described above.
非接触充電器1では、商用電力ACが整流回路2により直流電圧に変換され、定電圧回路3により所定電圧に制御された後、インバータ4に供給される。 In the non-contact charger 1, the commercial power AC is converted to DC voltage by the rectifier circuit 2, after being controlled to a predetermined voltage by the constant voltage circuit 3 is supplied to the inverter 4. 該直流電圧は、インバータ4により、制御回路5の制御の従って高周波に変換され、磁力発生コイルL1に供給される。 The DC voltage, the inverter 4, is converted in the control of the control circuit 5 therefore high frequency, it is supplied to the magnetic force generating coil L1. この結果、磁力発生コイルL1からは磁力線が発生する。 Consequently, magnetic force lines are generated from the magnetic force generating coil L1.
一方、子機10では、結合コイルL2によって電磁誘導により上記磁力発生コイルL1の磁力線から高周波電力が取り出される。 On the other hand, the slave unit 10, high frequency power is taken out from the magnetic lines of the magnetic force generating coil L1 by electromagnetic induction by the coupling coil L2. 該高周波電力は、整流回路11により整流された後、充電回路12に供給される。 The high-frequency power is rectified by the rectifier circuit 11, it is supplied to the charging circuit 12. 充電回路1 Charging circuit 1
2では、整流された直流電圧によりバッテリ13が充電される。 In 2, the battery 13 is charged by the rectified DC voltage.

【0015】上記充電動作において、磁力発生コイルL [0015] In the charging operation, the magnetic force generating coil L
1と結合コイルL2間で結合しきなかった漏洩磁束がピックアップコイルL3によって取り出され、フィードバック回路6に供給される。 Leakage flux did Ki bound between 1 and the coupling coil L2 is taken out by the pickup coil L3, is supplied to the feedback circuit 6. 上記漏洩磁束に応じた高周波電力は、フィードバック回路6のダイオードD5によって整流され、コンデンサC1により平滑化されて、定電圧回路3にフィードバックされる。 Radio frequency power corresponding to the leakage flux is rectified by the diode D5 of the feedback circuit 6, is smoothed by the capacitor C1, it is fed back to the constant voltage circuit 3. このとき、発光ダイオードLEDが点灯することで、充電中であることが表示される。 At this time, the light emitting diode LED is lit, it appears to be charging.

【0016】このように、上述した実施の形態では、非接触充電器1にピックアップコイルL3を設け、該ピックアップコイルL3で取りだした漏洩磁束に応じた高周波電力を、フィードバック回路6によって直流電圧に変換した後、直流電圧源にフィードバックすることにより、非接触充電器1における交流(AC)→直流(D [0016] Thus, in the embodiment described above, converts the pickup coil L3 is provided in a non-contact charger 1, a radio frequency power corresponding to the leakage flux taken out by said pickup coil L3, a feedback circuit 6 into a DC voltage after, by feeding back the DC voltage source, alternating current in the non-contact charger 1 (AC) → DC (D
C)への変換効率を向上させることができる。 It is possible to improve the conversion efficiency to C). また、ピックアップコイルL3によって取り出され、漏洩磁束に応じた直流電圧によって点灯する発光ダイオードLED Moreover, it picked up by the pickup coil L3, a light emitting diode LED to be turned on by the DC voltage corresponding to the leakage flux
を設けることにより、特別なスイッチング素子を用いることなく、充電中であることを表示することができる。 By providing, without using a special switching element, it is possible to indicate that charging is in progress.
また、漏洩磁束に応じた電力を直流電圧源にフィードバックすることにより、例えば、定電圧回路の素子の供給電流を削減することができるので、同一電源で同等の磁力線を発生させる場合、素子の最大許容電流値や損失を低めに設定でき、コストダウンを図ることができる。 Moreover, if by feeding back the power corresponding to the leakage magnetic flux to the DC voltage source, for example, it is possible to reduce the supply current of the device of the constant voltage circuit, for generating an equivalent magnetic field lines at the same power, the largest element allowable current value or loss can be set lower, the cost can be reduced.

【0017】 [0017]

【発明の効果】以上説明したように、この発明によれば、電子機器のバッテリを充電する充電器であって、電子機器側に設けられた結合コイルに高周波電力を誘導する磁力発生コイルを有し、前記磁力発生コイルと前記結合コイル間の電磁誘導によって非接触で前記電子機器に充電電力を供給する非接触充電器において、前記磁力発生コイル近傍に配置され、前記磁力発生コイルと前記結合コイル間における漏洩磁束による高周波電力を取り出すピックアップコイルと、前記ピックアップコイルによって取り出した高周波電力を定電圧制御回路系の電源としてフィードバックするフィードバック手段とを具備するようにしたことにより、交流→直流への変換効率を向上させることができ、また、素子の最大許容電流値や損失を低減することが As described in the foregoing, according to the present invention, there is provided a charger for charging the electronic device battery, have a magnetic force generating coil to induce high frequency power to the coupling coil provided in the electronic apparatus side and, in the non-contact charger supplies charging power to the electronic device in a non-contact by electromagnetic induction between said magnetic force generating coil and the coupling coil is arranged near the magnetic force generating coil, said coupling coil and the magnetic force generating coil a pickup coil to retrieve high-frequency power due to leakage flux between, by which the high frequency power taken out by the pick-up coil adapted to and a feedback means for feeding back a power source of the constant voltage control circuit system, conversion to AC → DC it is possible to improve the efficiency, also it is possible to reduce the maximum allowable current value or loss of the element きるという利点が得られる。 The advantage that wear is obtained.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の実施の形態による非接触充電器と該非接触充電器により充電される子機(ハンドセット)の略構成を示す回路図である。 It is a circuit diagram illustrating a substantially arrangement of Figure 1 the non-contact charger according to an embodiment of the present invention and the non-contact charger child is charged by machine (handset).

【図2】非接触充電器と該非接触充電器により充電される子機(ハンドセット)の断面図である。 2 is a cross-sectional view of a non-contact charger and handset to be charged by noncontact charger (handset).

【符号の説明】 DESCRIPTION OF SYMBOLS

1……非接触充電器、2……整流回路、3……定電圧回路、4……インバータ回路、5……制御回路、6……フィードバック回路(フィードバック手段)、10……子機、11……整流回路、12……充電回路、13……バッテリ、14……主電源回路、L1……磁力発生コイル、L2……結合コイル、L3……ピックアップコイル、D5……ダイオード(整流手段)、LED……発光ダイオード(表示手段)。 1 ...... contactless battery charger, 2 ...... rectifier circuit, 3 ...... constant voltage circuit, 4 ...... inverter circuit, 5 ...... control circuit, 6 ...... feedback circuit (feedback means), 10 ...... handset, 11 ...... rectifier circuit, 12 ...... charging circuit, 13 ...... battery, 14 ...... main power supply circuit, L1 ...... force generating coil, L2 ...... coupling coil, L3 ...... pickup coil, D5 ...... diode (rectifying means) , LED ...... emitting diode (display means).

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl. 6識別記号 庁内整理番号 FI 技術表示箇所 H02J 17/00 H02J 17/00 B H04M 1/00 H04M 1/00 N ────────────────────────────────────────────────── ─── front page continued (51) Int.Cl. 6 Docket No. FI technique in identification symbol Agency display portion H02J 17/00 H02J 17/00 B H04M 1/00 H04M 1/00 N

Claims (3)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 電子機器のバッテリを充電する充電器であって、電子機器側に設けられた結合コイルに高周波電力を誘導する磁力発生コイルを有し、前記磁力発生コイルと前記結合コイル間の電磁誘導によって非接触で前記電子機器に充電電力を供給する非接触充電器において、 前記磁力発生コイル近傍に配置され、前記磁力発生コイルと前記結合コイル間における漏洩磁束による高周波電力を取り出すピックアップコイルと、 前記ピックアップコイルによって取り出した高周波電力を定電圧制御回路系の電源としてフィードバックするフィードバック手段とを具備することを特徴とする非接触充電器。 1. A battery charger for charging the electronic device battery has a magnetic force generating coil to induce high frequency power to the coupling coil provided in the electronic device side, and the magnetic force generating coil between the coupling coil the non-contact charger supplies charging power to the electronic device in a non-contact by the electromagnetic induction, is arranged near the magnetic force generating coil, a pickup coil to retrieve high-frequency power due to leakage flux between said magnetic force generating coil and the coupling coil , contactless charger characterized by comprising a feedback means for feeding back the high frequency electric power taken out by the pick-up coil as the power supply of the constant voltage control circuit system.
  2. 【請求項2】 前記ピックアップコイルによって取り出した高周波電力によって点灯する表示手段を具備することを特徴とする請求項1記載の非接触充電器。 2. A non-contact charger according to claim 1, characterized by comprising display means for lighting the high frequency power taken out by the pickup coil.
  3. 【請求項3】 前記フィードバック手段は、前記高周波電力を直流に変換する整流手段を具備することを特徴とする請求項1記載の非接触充電器。 Wherein said feedback means is a non-contact charger according to claim 1, characterized by comprising a rectifying means for converting the high-frequency power into direct current.
JP8132646A 1996-04-30 1996-04-30 Non-contact charger Pending JPH09298847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8132646A JPH09298847A (en) 1996-04-30 1996-04-30 Non-contact charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8132646A JPH09298847A (en) 1996-04-30 1996-04-30 Non-contact charger

Publications (1)

Publication Number Publication Date
JPH09298847A true JPH09298847A (en) 1997-11-18

Family

ID=15086200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8132646A Pending JPH09298847A (en) 1996-04-30 1996-04-30 Non-contact charger

Country Status (1)

Country Link
JP (1) JPH09298847A (en)

Cited By (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010239838A (en) * 2009-03-31 2010-10-21 Fujitsu Ltd Power transmission apparatus
EP2267864A2 (en) 2009-06-25 2010-12-29 Panasonic Electric Works Co., Ltd. Non-contact charger with an indicator
EP2267865A2 (en) 2009-06-25 2010-12-29 Panasonic Electric Works Co., Ltd. Chargeable electric device
WO2013020138A3 (en) * 2011-08-04 2013-04-04 Witricity Corporation Tunable wireless power architectures
JP2013212043A (en) * 2012-02-28 2013-10-10 Hitachi Maxell Ltd Small electrical apparatus having non-contact charging device and non-contact type charging system
US8692412B2 (en) 2008-09-27 2014-04-08 Witricity Corporation Temperature compensation in a wireless transfer system
WO2014132486A1 (en) * 2013-02-27 2014-09-04 日立マクセル株式会社 Small electric device provided with non-contact charger and non-contact charging system
US8847548B2 (en) 2008-09-27 2014-09-30 Witricity Corporation Wireless energy transfer for implantable devices
US8901778B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with variable size resonators for implanted medical devices
US8901779B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with resonator arrays for medical applications
US8907531B2 (en) 2008-09-27 2014-12-09 Witricity Corporation Wireless energy transfer with variable size resonators for medical applications
US8912687B2 (en) 2008-09-27 2014-12-16 Witricity Corporation Secure wireless energy transfer for vehicle applications
US8922066B2 (en) 2008-09-27 2014-12-30 Witricity Corporation Wireless energy transfer with multi resonator arrays for vehicle applications
US8928276B2 (en) 2008-09-27 2015-01-06 Witricity Corporation Integrated repeaters for cell phone applications
US8933594B2 (en) 2008-09-27 2015-01-13 Witricity Corporation Wireless energy transfer for vehicles
US8937408B2 (en) 2008-09-27 2015-01-20 Witricity Corporation Wireless energy transfer for medical applications
US8946938B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Safety systems for wireless energy transfer in vehicle applications
US8947186B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Wireless energy transfer resonator thermal management
US8957549B2 (en) 2008-09-27 2015-02-17 Witricity Corporation Tunable wireless energy transfer for in-vehicle applications
US8963488B2 (en) 2008-09-27 2015-02-24 Witricity Corporation Position insensitive wireless charging
US9035499B2 (en) 2008-09-27 2015-05-19 Witricity Corporation Wireless energy transfer for photovoltaic panels
JP2015100161A (en) * 2013-11-18 2015-05-28 株式会社Ihi Non-contact power supply system
US9065286B2 (en) 2005-07-12 2015-06-23 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US9065423B2 (en) 2008-09-27 2015-06-23 Witricity Corporation Wireless energy distribution system
US9093853B2 (en) 2008-09-27 2015-07-28 Witricity Corporation Flexible resonator attachment
JP2015139257A (en) * 2014-01-21 2015-07-30 株式会社Ihi Non-contact power feeding system
US9095729B2 (en) 2007-06-01 2015-08-04 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9106203B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Secure wireless energy transfer in medical applications
US9105959B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Resonator enclosure
US9160203B2 (en) 2008-09-27 2015-10-13 Witricity Corporation Wireless powered television
US9184595B2 (en) 2008-09-27 2015-11-10 Witricity Corporation Wireless energy transfer in lossy environments
US9246336B2 (en) 2008-09-27 2016-01-26 Witricity Corporation Resonator optimizations for wireless energy transfer
US9287607B2 (en) 2012-07-31 2016-03-15 Witricity Corporation Resonator fine tuning
US9306635B2 (en) 2012-01-26 2016-04-05 Witricity Corporation Wireless energy transfer with reduced fields
US9318257B2 (en) 2011-10-18 2016-04-19 Witricity Corporation Wireless energy transfer for packaging
US9318922B2 (en) 2008-09-27 2016-04-19 Witricity Corporation Mechanically removable wireless power vehicle seat assembly
US9343922B2 (en) 2012-06-27 2016-05-17 Witricity Corporation Wireless energy transfer for rechargeable batteries
US9369182B2 (en) 2008-09-27 2016-06-14 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US9396867B2 (en) 2008-09-27 2016-07-19 Witricity Corporation Integrated resonator-shield structures
US9404954B2 (en) 2012-10-19 2016-08-02 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9421388B2 (en) 2007-06-01 2016-08-23 Witricity Corporation Power generation for implantable devices
US9442172B2 (en) 2011-09-09 2016-09-13 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9444520B2 (en) 2008-09-27 2016-09-13 Witricity Corporation Wireless energy transfer converters
US9444265B2 (en) 2005-07-12 2016-09-13 Massachusetts Institute Of Technology Wireless energy transfer
US9449757B2 (en) 2012-11-16 2016-09-20 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US9515494B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless power system including impedance matching network
US9544683B2 (en) 2008-09-27 2017-01-10 Witricity Corporation Wirelessly powered audio devices
US9595378B2 (en) 2012-09-19 2017-03-14 Witricity Corporation Resonator enclosure
US9601266B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Multiple connected resonators with a single electronic circuit
US9601270B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Low AC resistance conductor designs
US9602168B2 (en) 2010-08-31 2017-03-21 Witricity Corporation Communication in wireless energy transfer systems
US9744858B2 (en) 2008-09-27 2017-08-29 Witricity Corporation System for wireless energy distribution in a vehicle
US9754718B2 (en) 2008-09-27 2017-09-05 Witricity Corporation Resonator arrays for wireless energy transfer
US9780573B2 (en) 2014-02-03 2017-10-03 Witricity Corporation Wirelessly charged battery system
US9831682B2 (en) 2008-10-01 2017-11-28 Massachusetts Institute Of Technology Efficient near-field wireless energy transfer using adiabatic system variations
US9837860B2 (en) 2014-05-05 2017-12-05 Witricity Corporation Wireless power transmission systems for elevators
US9843217B2 (en) 2015-01-05 2017-12-12 Witricity Corporation Wireless energy transfer for wearables
US9842687B2 (en) 2014-04-17 2017-12-12 Witricity Corporation Wireless power transfer systems with shaped magnetic components
US9842688B2 (en) 2014-07-08 2017-12-12 Witricity Corporation Resonator balancing in wireless power transfer systems
US9857821B2 (en) 2013-08-14 2018-01-02 Witricity Corporation Wireless power transfer frequency adjustment
US9892849B2 (en) 2014-04-17 2018-02-13 Witricity Corporation Wireless power transfer systems with shield openings
US9929721B2 (en) 2015-10-14 2018-03-27 Witricity Corporation Phase and amplitude detection in wireless energy transfer systems
US9948145B2 (en) 2011-07-08 2018-04-17 Witricity Corporation Wireless power transfer for a seat-vest-helmet system
US9954375B2 (en) 2014-06-20 2018-04-24 Witricity Corporation Wireless power transfer systems for surfaces
US9952266B2 (en) 2014-02-14 2018-04-24 Witricity Corporation Object detection for wireless energy transfer systems
US10018744B2 (en) 2014-05-07 2018-07-10 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10063104B2 (en) 2016-02-08 2018-08-28 Witricity Corporation PWM capacitor control
US10063110B2 (en) 2015-10-19 2018-08-28 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10075019B2 (en) 2015-11-20 2018-09-11 Witricity Corporation Voltage source isolation in wireless power transfer systems
US10141788B2 (en) 2015-10-22 2018-11-27 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US10218224B2 (en) 2008-09-27 2019-02-26 Witricity Corporation Tunable wireless energy transfer systems
US10248899B2 (en) 2015-10-06 2019-04-02 Witricity Corporation RFID tag and transponder detection in wireless energy transfer systems
US10263473B2 (en) 2016-02-02 2019-04-16 Witricity Corporation Controlling wireless power transfer systems
US10320243B2 (en) 2014-01-21 2019-06-11 Ihi Corporation Wireless power supply system

Cited By (113)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10097044B2 (en) 2005-07-12 2018-10-09 Massachusetts Institute Of Technology Wireless energy transfer
US9509147B2 (en) 2005-07-12 2016-11-29 Massachusetts Institute Of Technology Wireless energy transfer
US9450422B2 (en) 2005-07-12 2016-09-20 Massachusetts Institute Of Technology Wireless energy transfer
US9450421B2 (en) 2005-07-12 2016-09-20 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US9444265B2 (en) 2005-07-12 2016-09-13 Massachusetts Institute Of Technology Wireless energy transfer
US10141790B2 (en) 2005-07-12 2018-11-27 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US9831722B2 (en) 2005-07-12 2017-11-28 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US9065286B2 (en) 2005-07-12 2015-06-23 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US9318898B2 (en) 2007-06-01 2016-04-19 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9421388B2 (en) 2007-06-01 2016-08-23 Witricity Corporation Power generation for implantable devices
US9101777B2 (en) 2007-06-01 2015-08-11 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9843230B2 (en) 2007-06-01 2017-12-12 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9943697B2 (en) 2007-06-01 2018-04-17 Witricity Corporation Power generation for implantable devices
US9095729B2 (en) 2007-06-01 2015-08-04 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9662161B2 (en) 2008-09-27 2017-05-30 Witricity Corporation Wireless energy transfer for medical applications
US8928276B2 (en) 2008-09-27 2015-01-06 Witricity Corporation Integrated repeaters for cell phone applications
US8933594B2 (en) 2008-09-27 2015-01-13 Witricity Corporation Wireless energy transfer for vehicles
US8937408B2 (en) 2008-09-27 2015-01-20 Witricity Corporation Wireless energy transfer for medical applications
US8946938B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Safety systems for wireless energy transfer in vehicle applications
US8947186B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Wireless energy transfer resonator thermal management
US8957549B2 (en) 2008-09-27 2015-02-17 Witricity Corporation Tunable wireless energy transfer for in-vehicle applications
US8963488B2 (en) 2008-09-27 2015-02-24 Witricity Corporation Position insensitive wireless charging
US9035499B2 (en) 2008-09-27 2015-05-19 Witricity Corporation Wireless energy transfer for photovoltaic panels
US10084348B2 (en) 2008-09-27 2018-09-25 Witricity Corporation Wireless energy transfer for implantable devices
US8912687B2 (en) 2008-09-27 2014-12-16 Witricity Corporation Secure wireless energy transfer for vehicle applications
US9065423B2 (en) 2008-09-27 2015-06-23 Witricity Corporation Wireless energy distribution system
US9093853B2 (en) 2008-09-27 2015-07-28 Witricity Corporation Flexible resonator attachment
US8907531B2 (en) 2008-09-27 2014-12-09 Witricity Corporation Wireless energy transfer with variable size resonators for medical applications
US8901779B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with resonator arrays for medical applications
US8901778B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with variable size resonators for implanted medical devices
US9106203B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Secure wireless energy transfer in medical applications
US9105959B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Resonator enclosure
US9160203B2 (en) 2008-09-27 2015-10-13 Witricity Corporation Wireless powered television
US9184595B2 (en) 2008-09-27 2015-11-10 Witricity Corporation Wireless energy transfer in lossy environments
US9246336B2 (en) 2008-09-27 2016-01-26 Witricity Corporation Resonator optimizations for wireless energy transfer
US9843228B2 (en) 2008-09-27 2017-12-12 Witricity Corporation Impedance matching in wireless power systems
US8847548B2 (en) 2008-09-27 2014-09-30 Witricity Corporation Wireless energy transfer for implantable devices
US9806541B2 (en) 2008-09-27 2017-10-31 Witricity Corporation Flexible resonator attachment
US9318922B2 (en) 2008-09-27 2016-04-19 Witricity Corporation Mechanically removable wireless power vehicle seat assembly
US10097011B2 (en) 2008-09-27 2018-10-09 Witricity Corporation Wireless energy transfer for photovoltaic panels
US9780605B2 (en) 2008-09-27 2017-10-03 Witricity Corporation Wireless power system with associated impedance matching network
US9369182B2 (en) 2008-09-27 2016-06-14 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US9515495B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless energy transfer in lossy environments
US9396867B2 (en) 2008-09-27 2016-07-19 Witricity Corporation Integrated resonator-shield structures
US9754718B2 (en) 2008-09-27 2017-09-05 Witricity Corporation Resonator arrays for wireless energy transfer
US8692412B2 (en) 2008-09-27 2014-04-08 Witricity Corporation Temperature compensation in a wireless transfer system
US9744858B2 (en) 2008-09-27 2017-08-29 Witricity Corporation System for wireless energy distribution in a vehicle
US9444520B2 (en) 2008-09-27 2016-09-13 Witricity Corporation Wireless energy transfer converters
US10218224B2 (en) 2008-09-27 2019-02-26 Witricity Corporation Tunable wireless energy transfer systems
US10230243B2 (en) 2008-09-27 2019-03-12 Witricity Corporation Flexible resonator attachment
US9742204B2 (en) 2008-09-27 2017-08-22 Witricity Corporation Wireless energy transfer in lossy environments
US10264352B2 (en) 2008-09-27 2019-04-16 Witricity Corporation Wirelessly powered audio devices
US9711991B2 (en) 2008-09-27 2017-07-18 Witricity Corporation Wireless energy transfer converters
US9496719B2 (en) 2008-09-27 2016-11-15 Witricity Corporation Wireless energy transfer for implantable devices
US10300800B2 (en) 2008-09-27 2019-05-28 Witricity Corporation Shielding in vehicle wireless power systems
US9515494B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless power system including impedance matching network
US9748039B2 (en) 2008-09-27 2017-08-29 Witricity Corporation Wireless energy transfer resonator thermal management
US9544683B2 (en) 2008-09-27 2017-01-10 Witricity Corporation Wirelessly powered audio devices
US9577436B2 (en) 2008-09-27 2017-02-21 Witricity Corporation Wireless energy transfer for implantable devices
US9584189B2 (en) 2008-09-27 2017-02-28 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US9698607B2 (en) 2008-09-27 2017-07-04 Witricity Corporation Secure wireless energy transfer
US9596005B2 (en) 2008-09-27 2017-03-14 Witricity Corporation Wireless energy transfer using variable size resonators and systems monitoring
US9601266B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Multiple connected resonators with a single electronic circuit
US9601270B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Low AC resistance conductor designs
US8922066B2 (en) 2008-09-27 2014-12-30 Witricity Corporation Wireless energy transfer with multi resonator arrays for vehicle applications
US9831682B2 (en) 2008-10-01 2017-11-28 Massachusetts Institute Of Technology Efficient near-field wireless energy transfer using adiabatic system variations
US8542018B2 (en) 2009-03-31 2013-09-24 Fujitsu Limited Power transmitting apparatus
JP2010239838A (en) * 2009-03-31 2010-10-21 Fujitsu Ltd Power transmission apparatus
EP2267864A2 (en) 2009-06-25 2010-12-29 Panasonic Electric Works Co., Ltd. Non-contact charger with an indicator
EP2267865A2 (en) 2009-06-25 2010-12-29 Panasonic Electric Works Co., Ltd. Chargeable electric device
EP2267864A3 (en) * 2009-06-25 2014-07-02 Panasonic Corporation Non-contact charger with an indicator
US9602168B2 (en) 2010-08-31 2017-03-21 Witricity Corporation Communication in wireless energy transfer systems
US9948145B2 (en) 2011-07-08 2018-04-17 Witricity Corporation Wireless power transfer for a seat-vest-helmet system
WO2013020138A3 (en) * 2011-08-04 2013-04-04 Witricity Corporation Tunable wireless power architectures
US9787141B2 (en) 2011-08-04 2017-10-10 Witricity Corporation Tunable wireless power architectures
US9384885B2 (en) 2011-08-04 2016-07-05 Witricity Corporation Tunable wireless power architectures
US9442172B2 (en) 2011-09-09 2016-09-13 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10027184B2 (en) 2011-09-09 2018-07-17 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9318257B2 (en) 2011-10-18 2016-04-19 Witricity Corporation Wireless energy transfer for packaging
US9306635B2 (en) 2012-01-26 2016-04-05 Witricity Corporation Wireless energy transfer with reduced fields
JP2013212043A (en) * 2012-02-28 2013-10-10 Hitachi Maxell Ltd Small electrical apparatus having non-contact charging device and non-contact type charging system
US10158251B2 (en) 2012-06-27 2018-12-18 Witricity Corporation Wireless energy transfer for rechargeable batteries
US9343922B2 (en) 2012-06-27 2016-05-17 Witricity Corporation Wireless energy transfer for rechargeable batteries
US9287607B2 (en) 2012-07-31 2016-03-15 Witricity Corporation Resonator fine tuning
US9595378B2 (en) 2012-09-19 2017-03-14 Witricity Corporation Resonator enclosure
US9465064B2 (en) 2012-10-19 2016-10-11 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10211681B2 (en) 2012-10-19 2019-02-19 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9404954B2 (en) 2012-10-19 2016-08-02 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9449757B2 (en) 2012-11-16 2016-09-20 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US9842684B2 (en) 2012-11-16 2017-12-12 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US10186372B2 (en) 2012-11-16 2019-01-22 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
WO2014132486A1 (en) * 2013-02-27 2014-09-04 日立マクセル株式会社 Small electric device provided with non-contact charger and non-contact charging system
US9857821B2 (en) 2013-08-14 2018-01-02 Witricity Corporation Wireless power transfer frequency adjustment
JP2015100161A (en) * 2013-11-18 2015-05-28 株式会社Ihi Non-contact power supply system
US10320243B2 (en) 2014-01-21 2019-06-11 Ihi Corporation Wireless power supply system
JP2015139257A (en) * 2014-01-21 2015-07-30 株式会社Ihi Non-contact power feeding system
US9780573B2 (en) 2014-02-03 2017-10-03 Witricity Corporation Wirelessly charged battery system
US9952266B2 (en) 2014-02-14 2018-04-24 Witricity Corporation Object detection for wireless energy transfer systems
US10186373B2 (en) 2014-04-17 2019-01-22 Witricity Corporation Wireless power transfer systems with shield openings
US9892849B2 (en) 2014-04-17 2018-02-13 Witricity Corporation Wireless power transfer systems with shield openings
US9842687B2 (en) 2014-04-17 2017-12-12 Witricity Corporation Wireless power transfer systems with shaped magnetic components
US9837860B2 (en) 2014-05-05 2017-12-05 Witricity Corporation Wireless power transmission systems for elevators
US10018744B2 (en) 2014-05-07 2018-07-10 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9954375B2 (en) 2014-06-20 2018-04-24 Witricity Corporation Wireless power transfer systems for surfaces
US9842688B2 (en) 2014-07-08 2017-12-12 Witricity Corporation Resonator balancing in wireless power transfer systems
US9843217B2 (en) 2015-01-05 2017-12-12 Witricity Corporation Wireless energy transfer for wearables
US10248899B2 (en) 2015-10-06 2019-04-02 Witricity Corporation RFID tag and transponder detection in wireless energy transfer systems
US9929721B2 (en) 2015-10-14 2018-03-27 Witricity Corporation Phase and amplitude detection in wireless energy transfer systems
US10063110B2 (en) 2015-10-19 2018-08-28 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10141788B2 (en) 2015-10-22 2018-11-27 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US10075019B2 (en) 2015-11-20 2018-09-11 Witricity Corporation Voltage source isolation in wireless power transfer systems
US10263473B2 (en) 2016-02-02 2019-04-16 Witricity Corporation Controlling wireless power transfer systems
US10063104B2 (en) 2016-02-08 2018-08-28 Witricity Corporation PWM capacitor control

Similar Documents

Publication Publication Date Title
JP4429377B2 (en) adapter
CN101630861B (en) Inductively powered sleeve for mobile electronic device
US6756765B2 (en) System and method for charging users to recharge power supplies in portable devices
JP2803943B2 (en) A contactless power supply device
KR101524904B1 (en) Inductive receivers for electrical devices
US5455466A (en) Inductive coupling system for power and data transfer
US5781422A (en) Uninterruptible power supply with AC and DC power inputs
KR101615669B1 (en) Inductive power transmission system and method for concurrently transmitting digital messages
CN101335470B (en) Power transmission control device, power transmission device, electronic instrument, and non-contact power transmission system
CN102355037B (en) Means for receiving a wireless transmission apparatus to a plurality of power power
US6914340B2 (en) Handheld generator
US7999417B2 (en) Electronic device
EP2683051A2 (en) Contactless multi-charger system and controlling method thereof
CN1298097C (en) Non-contact power supply system
US7414380B2 (en) Apparatus for inductively recharging batteries of a portable convenience device
KR100853889B1 (en) Contact-less chargeable Battery and Charging Device, Battery Charging Set, and Method for Charging Control thereof
US20060061324A1 (en) Inductive charging pad with alignment indicator
US7880338B2 (en) Power transmission control device, power transmitting device, power receiving device, non-contact power transmission system, electronic instrument, secondary coil position detection method, and primary coil positioning method
CN101873014B (en) Non-contact power supply system
CN1205826C (en) Charging system of portable machine
US8314513B2 (en) Power transmission control device, power transmission device, power reception control device, power reception device, electronic apparatus, and contactless power transmission system
JP4930093B2 (en) The power transmission control device, the power reception control device, non-contact power transmission system, the power transmission device, a power receiving device, and electronic equipment
US20100244579A1 (en) Coil unit, and power transmission device and power reception device using the coil unit
US7408272B2 (en) Method and device for supplying electric energy power to an appliance
US9225195B2 (en) Wireless power receiver for increased charging efficiency