JPH11188113A - Power transmission system, power transmission method and electric stimulation device provided with the power transmission system - Google Patents

Power transmission system, power transmission method and electric stimulation device provided with the power transmission system

Info

Publication number
JPH11188113A
JPH11188113A JP35951997A JP35951997A JPH11188113A JP H11188113 A JPH11188113 A JP H11188113A JP 35951997 A JP35951997 A JP 35951997A JP 35951997 A JP35951997 A JP 35951997A JP H11188113 A JPH11188113 A JP H11188113A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
voltage
transmission
coil
circuit
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35951997A
Other languages
Japanese (ja)
Inventor
Seiichi Ishikawa
清一 石川
Original Assignee
Handa Yasunobu
Hoshimiya Nozomi
Japan Science & Technology Corp
Matsuki Hidetoshi
Nec Corp
半田 康延
日本電気株式会社
星宮 望
松木 英敏
科学技術振興事業団
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

PROBLEM TO BE SOLVED: To stably transmit power without destroying the resonance state of a coil even when the distance of transmission and reception coils fluctuates. SOLUTION: This system is provided with a transmission coil 21 and a reception coil 11 oppositely arranged holding skin between them, a variable capacitor 22 for constituting a resonance circuit by being connected to the transmission coil 21, a variable capacitor 12 for constituting the resonance circuit by being connected to the reception coil 11, voltage detection circuits 23 and 13 for respectively detecting voltage levels in the transmission coil 21 and the reception coil 11, a capacity control circuit 24 for inputting the voltage level detected in the voltage detection circuit 23 and varying the capacity of the variable capacitor 22 so that the detected voltage level takes a highest value at all times and a capacity control circuit 14 for inputting the voltage level detected in the voltage detection circuit 13 and varying the capacity of the variable capacitor 12 so that the detected voltage level takes the highest value at all times.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、対向配置された1 BACKGROUND OF THE INVENTION The present invention is arranged opposite 1
対の電力供給コイルを用いて、両コイル間で電気エネルギーを伝送する電力伝送システムおよび電力伝送方法に関する。 Using the power supply coil pairs, a power transmission system and a power transmission method for transmitting electrical energy between the two coils. より具体的には、種々の生体機能の外的制御を行う装置、例えば脳卒中や脊髄損傷等、中枢性神経障害で麻痺した生体の機能を電気的刺激で治療、再建する電気刺激装置などに適用される電力伝送システムおよび電力伝送方法に関する。 Related More specifically, the apparatus for performing external control of a variety of biological functions, for example, stroke or spinal cord injury or the like, central treatment neurological disorders functional paralysis biometric with electrical stimulation, to an electric stimulator to rebuild a power transmission system and the power transmission method is. ここでいう電力伝送とは、電力の伝送だけでなく制御信号などの伝送をも含む。 Here, the power transmission referred also includes the transmission of a control signal as well as the transmission of power.

【0002】 [0002]

【従来の技術】麻痺した身体の機能を電気的刺激で治療、再建する電気刺激装置は、基本的には、体内に埋め込まれて生体の麻痺した部分を電気的に刺激する刺激装置と、体外に配置され、体内に埋め込まれた刺激装置に電力や信号を伝送して駆動する装置本体とから構成される。 BACKGROUND OF THE INVENTION Treatment with electrical stimulation of the functions of the paralyzed body, the electrical stimulator to rebuild, basically, a stimulation device for electrically stimulating paralyzed parts of the body is embedded in the body, outside the body disposed are composed of a device main body that drives by transmitting the electric power and signals to the stimulation device implanted in the body. このような電気刺激装置において、装置本体側から体内に埋め込まれた刺激装置に電力や信号を伝送する電力伝送システムとしては、皮膚を挟んで対向配置された電力供給コイル対(例えば、空芯コイルや磁芯コイルなどにより構成される)を用い、体外の電力供給コイルから体内の電力供給コイルへ電力や信号を伝送することにより、体内に埋め込まれた刺激装置に電力や信号を伝送するようにしたものが知られている。 In such an electrical stimulation device, the power transmission system for transmitting power and signals to the stimulation device implanted in the body from the apparatus main body side, oppositely disposed power supply coil pairs across the skin (e.g., air core coils and the like using the configured) by the magnetic core coils, by transmitting the electric power and signals from the outside of the power supply coil to the body of the power supply coil, so as to transmit power or signals to the stimulation device implanted in the body It has been known that. その一例として、 As an example,
例えば特開平5-317434号公報には、非接触型電力供給コイルを備えたものが開示されている。 For example, Japanese Patent Laid-Open No. 5-317434, those having a non-contact type power supply coil is disclosed.

【0003】上記公報に開示されたシステムは、電気刺激装置とともに体内に完全に埋め込まれる第1の電力供給コイルと、その第1の電力供給コイルと皮膚を介して平行に対向配置される第2の電力供給コイルとを備えており、体外に置かれた第2の電力供給コイルに高周波電力を供給することにより、その供給された高周波電力が体内の第1の電力供給コイルへ誘導的に伝送され、第1 [0003] system disclosed in the above publication, the second together with electrical stimulation device in parallel to face each other via a first power supply coil completely embedded in the body, the first power supply coil and the skin and a power supply coil, by supplying high frequency power to the second power supply coil placed outside the body, inductively transmitted the supplied high frequency power to the first power supply coil body It is, first
の電力供給コイルで所望の周波数に変換されるようになっている。 It is adapted to be converted to a desired frequency of the power supply coil.

【0004】この他、特開平4-285436号公報には、外部の送出コイルから、植え込まれた容量性要素に接続されているターゲットコイルへ電力を誘導的に伝送するシステムで、両コイル間の共振結合を維持できるようにしたものが開示されている。 [0004] In addition, JP-A-4-285436, from outside the delivery coils, a system for transferring power to the connected to the implanted capacitive element target coil inductively, between the coils It discloses that as a resonant coupling can be maintained for.

【0005】 [0005]

【発明が解決しようとする課題】上述したような、対向配置された1対の電力供給コイル間で電力伝送が行われる電力伝送システムにおいては、両コイルを共振状態として電力伝送が誘導的に行われる。 [0005] as described above, in the power transmission system power transmission is performed between oppositely disposed pair of power supply coil, inductively line power transmission both coils as a resonance state divide. しかしながら、このような従来のシステムでは、送受側のコイルの共振パラメータは固定で一定とされるため、例えば両コイル間の距離が変わったり、あるいはコイルが横ずれしたりすると、両コイルの相互インダクタンスが変化してしまい、 However, in such conventional systems, the resonance parameters of the transmitting and receiving side of the coil which is constant at a fixed, for example, or the distance between the coils is changed, or when the coil or lateral displacement, the mutual inductance of the two coils change and will be,
コイルの共振状態がくずれてしまう。 Resonant state of the coil is lost. この結果、受信側コイルにおける受信電圧が低くなり、受信コイルに接続された刺激装置などの負荷回路が動作しなくなるという問題が生じる。 As a result, the reception voltage at the receiving coil is lowered, a problem that a load circuit such as connected stimulator to the receiving coil may not work arises.

【0006】本発明の目的は、送受コイルの距離が変動しても、コイルの共振状態がくずれることがなく、安定した電力伝送を行うことができる電力伝送システムおよび電力伝送方法を提供することにある。 An object of the present invention, even if the distance of transmitting and receiving coils is changed, without resonant state of the coil is disturbed, to provide a power transmission system and a power transmission method capable of performing stable power transmission is there. さらには、その電力伝送システムを備えた電気刺激装置を提供することにある。 Another object of the present invention is to provide an electrical stimulation apparatus having the power transmission system.

【0007】 [0007]

【課題を解決するための手段】上記目的を達成するため、本発明の第1の電力伝送システムは、対向配置された1対の電力供給コイルを備え、一方を送信コイル、他方を受信コイルとして電力が誘導的に伝送される電力伝送システムにおいて、前記送信コイルと接続されて共振回路を構成する第1の可変コンデンサと、前記受信コイルと接続されて共振回路を構成する第2の可変コンデンサと、前記送信コイルにおける電圧レベルを検出する第1の電圧検出手段と、前記受信コイルにおける電圧レベルを検出する第2の電圧検出手段と、前記第1の電圧検出手段にて検出された電圧レベルを入力とし、該検出電圧レベルが常に最高値をとるように前記第1の可変コンデンサの容量を可変する第1の容量制御手段と、前記第2の電圧検出手段に To achieve the above object a solution to means for], a first power transmission system of the present invention comprises a counter arranged a pair of power supply coil, one transmission coil and the other as a receiver coil in the power transmission system power is transmitted inductively, a first variable capacitor constituting a resonance circuit wherein are connected to the transmission coil, and a second variable capacitor constituting a resonance circuit is connected to the receiving coil a first voltage detecting means for detecting the voltage level at the transmission coil, the second voltage detecting means for detecting the voltage level at the receiving coil, the voltage level detected by said first voltage detecting means as input, and the first capacity control means for varying the capacitance of the first variable capacitor to take detection voltage level is always the highest value, the second voltage detecting means 検出された電圧レベルを入力とし、該検出電圧レベルが常に最高値をとるように前記第2の可変コンデンサの容量を可変する第2の容量制御手段と、を有することを特徴とする。 And inputs the detected voltage level, and having a second capacity control means for varying the capacitance of the second variable capacitor to take always maximum voltage level said detectable, the.

【0008】本発明の第2の電力伝送システムは、対向配置された1対の電力供給コイルを備え、一方を送信コイル、他方を受信コイルとして電力が誘導的に伝送される電力伝送システムにおいて、前記送信コイルと接続されて共振回路を構成する第1の可変コンデンサと、前記受信コイルと接続されて共振回路を構成する第2の可変コンデンサと、前記受信コイルにおける電圧レベルを検出する電圧検出手段と、前記電圧検出手段にて検出された電圧レベルを入力とし、該検出電圧レベルが常に最高値をとるように前記第1および第2の可変コンデンサの容量をそれぞれ可変する容量制御手段と、を有することを特徴とする。 [0008] The second power transmission system of the present invention includes a power supply coil pair facing each other, one transmission coil, the power transmission system in which power the other as receiver coils are transmitted inductively, voltage detecting means for detecting a first variable capacitor constituting a resonance circuit is connected to the transmission coil, and a second variable capacitor constituting a resonance circuit is connected to the receiving coil, the voltage level at the receiver coil When the voltage level detected by said voltage detecting means as an input, a displacement control means for variably the capacity of the first and second variable capacitors to take always maximum voltage level said detectable, the characterized in that it has.

【0009】上記の場合、前記電力供給コイル対とは異なる、対向配置された送信コイルおよび受信コイルと、 [0009] In the above case, the different power supply coil pairs, and oppositely disposed transmitting coils and receiving coils,
前記送信コイルと接続されて第1の共振回路を構成する第1のコンデンサと、前記受信コイルと接続されて第2 A first capacitor which constitutes the first resonant circuit is connected to the transmission coil, the second is connected to the receiving coil
の共振回路を構成する第2のコンデンサと、前記容量制御手段から出力される制御信号を入力とし、該入力信号を前記第1の共振回路へ供給する信号送信手段と、前記第2の共振回路を介して受信される前記制御信号を入力とし、該入力制御信号を前記第1の可変コンデンサへ出力する信号受信手段と、をさらに有するものとしてもよい。 A second capacitor constituting a resonance circuit, the capacitance of the control signal outputted from the control means as an input, a signal transmitting means for supplying said input signal to said first resonant circuit, said second resonant circuit as input the control signal received via the signal receiving means for outputting said input control signal to said first variable capacitor, or as further having.

【0010】本発明の電気刺激装置は、上述のいずれかの電力伝送システムを備える電気刺激装置であって、前記受信コイルとともに体内に埋め込まれ、該受信コイルを介して電力供給を受けて生体の麻痺した部分を電気的に刺激する刺激手段と、前記送信コイルに接続され、体外から前記刺激手段に電力を供給して刺激動作を制御する制御手段と、を有することを特徴とする。 [0010] Electrical stimulation device of the present invention is an electrical stimulation device comprising any of the power transmission system described above, are embedded in the body together with the receiving coil, the biological supplied with power via the reception coil a stimulation means for electrically stimulating the paralyzed portion, connected to said transmitting coil, and having a control means for controlling the stimulation operation by supplying power to the stimulator from outside the body.

【0011】本発明の第1の電力伝送方法は、対向配置された1対の電力供給コイル間で、一方を送信コイル、 [0011] The first power transmission method of the present invention, among the oppositely disposed pair of power supply coil, one transmission coil,
他方を受信コイルとして電力を誘導的に伝送する電力伝送方法において、前記送信コイルおよび受信コイルにおける電圧レベルをそれぞれ検出し、それぞれの検出電圧レベルが常に最高値をとるように前記送信コイルおよび受信コイルの共振状態を制御することを特徴とする。 A power transmission method for transferring power inductively to the other as a receiver coil, the voltage level at the transmitting coil and receiving coil respectively detected, the transmission coil and receiving coils so that each of the detected voltage levels will always take the highest and controlling the resonant condition.

【0012】本発明の第2の電力伝送方法は、対向配置された1対の電力供給コイル間で、一方を送信コイル、 [0012] The second power transmission method of the present invention, among the oppositely disposed pair of power supply coil, one transmission coil,
他方を受信コイルとして電力を誘導的に伝送する電力伝送方法において、前記受信コイルにおける電圧レベルを検出し、該検出電圧レベルが常に最高値をとるように前記送信コイルおよび受信コイルの共振状態を制御することを特徴とする。 A power transmission method for transferring power inductively to the other as a receiver coil, the detected voltage level at the receiving coil, control the resonant state of the transmission coil and the receiving coil to take always maximum voltage level the detectable characterized in that it.

【0013】(作用)本発明によれば、送信コイルと第1の可変コンデンサにより共振回路が構成され、受信コイルと第2の可変コンデンサにより共振回路が構成されており、各共振回路の共振周波数はそれぞれの可変コンデンサの容量を可変することにより制御可能になっている。 According to (action) the invention is constituted resonant circuit by the transmission coil and the first variable capacitor, and the resonant circuit is constituted by the receiving coil and a second variable capacitor, the resonant frequency of each resonant circuit It has become controllable by varying the capacitance of each variable capacitor. したがって、例えば送受コイル間の距離が変動して、送受コイルの相互インダクタンスが変化しても、その変化に応じて各共振回路の共振状態を制御することができ、送受コイル間における電力伝送を常に最適な状態で行うことができる。 Thus, for example, the distance between the transmitting and receiving coils is varied, even if the mutual inductance of the transmitting and receiving coil changes, it is possible to control the resonant state of the resonance circuit in response to the change, always the power transmission between transmitting and receiving coils it can be carried out in an optimal state.

【0014】 [0014]

【発明の実施の形態】次に、本発明の実施形態について図面を参照して説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, description with reference to the accompanying drawings, embodiments of the present invention.

【0015】(実施形態1)図1は、本発明の第1の実施形態の電力伝送システムの概略構成を示すブロック図である。 [0015] (Embodiment 1) FIG. 1 is a block diagram showing a schematic configuration of a power transmission system of the first embodiment of the present invention. この電力伝送システムは、生体の機能を電気的刺激で治療、再建する電気刺激装置に適用されるもので、生体の麻痺した部分を電気的に刺激する負荷回路3 The power transmission system is treated with electrical stimulation of biological functions, intended to be applied to an electric stimulator for rebuilding, load circuit 3 electrically stimulating paralyzed parts of the body
(刺激装置)が接続され、該負荷回路3とともに体内に埋め込まれる電力受信部1と、体内に埋め込まれた負荷回路3に電力や信号を伝送して刺激動作を制御する駆動回路4(装置本体)が接続され、該駆動回路4とともに体外に設置される電力送信部2とを有する。 (Stimulator) is connected to the power receiving unit 1 to be implanted in the body with the load circuit 3, a drive circuit 4 for controlling the stimulation operation by transmitting power and signals to the load circuit 3 embedded in the body (apparatus body ) it is connected, and a power transmission unit 2 installed outside the body together with the drive circuit 4.

【0016】電力受信部1は、体外から供給される電力を受信するための受信コイル11とこれに並列に接続された可変コンデンサ12とからなるLC回路(共振回路)と、受信コイル11にて受信される電圧レベルを検出する電圧検出回路13と、該電圧検出回路13にて検出された電圧レベルを入力とし、該検出電圧レベルが常に最高値をとるように可変コンデンサ12の容量を可変する容量制御回路14と、受信コイル11にて受信される電圧を交流から直流に整流する整流回路15とを有する。 The power receiving unit 1 includes an LC circuit comprising a receiver coil 11 for receiving power supplied from the external variable capacitor 12 that this was connected in parallel (resonant circuit), by the receiving coil 11 a voltage detecting circuit 13 for detecting a voltage level received as input voltage level detected by the voltage detecting circuit 13, varying the capacitance of the variable capacitor 12 as detection voltage level is always take the highest a displacement control circuit 14, a rectifying circuit 15 for rectifying the direct current voltage received by the receiving coil 11 from the AC.

【0017】電力送信部2は、体内に埋め込まれた受信コイル11と平行に対向して配置され、該受信コイル1 The power transmission unit 2 is disposed in parallel to and facing the receiving coil 11 embedded in the body, the receiving coil 1
1へ誘導的に電力を伝送する送信コイル21とこれに並列に接続された可変コンデンサ22とからなるLC回路(共振回路)と、送信コイル21にて伝送される電圧レベルを検出する電圧検出回路23と、該電圧検出回路2 Voltage detecting circuit for detecting an LC circuit consisting of the variable capacitor 22 for inductively connected in parallel thereto a transmitter coil 21 for transmitting power to 1 (resonant circuit), the voltage level that is transmitted by the transmission coil 21 23, the voltage detection circuit 2
3にて検出された電圧レベルを入力とし、該検出電圧レベルが常に最高値をとるように可変コンデンサ22の容量を可変する容量制御回路24とを有する。 The voltage level detected by the 3 as an input, and a capacity control circuit 24 for varying the capacitance of the variable capacitor 22 so as to take the detection voltage level is always high.

【0018】送受信コイル11,21は、両コイル間で誘導的に電力伝送が可能であればどのようなものを用いてもよく、例えば空芯コイル、磁芯コイルなど種々のコイルを使用することができる。 The transceiver coil 11 and 21, inductively may be used any one so long as it is a possible power transmission, for example, air core coils, the use of various coil such magnetic core coils between the two coils can.

【0019】上述のように構成された電力伝送システムでは、駆動回路4から負荷回路3を駆動するための電力が電力送信部2の送信コイル21に供給されると、送信コイル21から電力受信部1の受信コイル11に誘導的に電力が伝送される。 [0019] In the above configured power transmission system as, the power for driving a load circuit 3 from the drive circuit 4 is supplied to the transmitter coil 21 of the power transmission unit 2, the power receiving unit from the transmitting coil 21 inductively power is transmitted to the receiving coil 11 of 1. このとき、電力搬送波の周波数に電力受信部1および電力送信部2の各共振回路が共振した状態になっていれば、駆動回路4から供給される電力のほとんどが負荷回路3にて使用され、共振していない場合には、電力受信部1の受信コイル11とこれに接続された各回路(電圧レギュレータ)で浪費される。 At this time, if the state in which the resonant circuit of the power receiving unit 1 and the power transmission unit 2 to the frequency of the power carrier wave resonates, most of the power supplied from the drive circuit 4 is used in the load circuit 3, If not resonate is wasted in each circuit (voltage regulator) connected thereto and the receiving coil 11 of the power receiving unit 1. 受信コイル11にて受信された電力は整流回路15を介して負荷回路3へ供給される。 Power received by the receiving coil 11 is supplied to the load circuit 3 via the rectifier circuit 15.

【0020】いま、電力搬送波の周波数に電力受信部1 [0020] Now, the power receiving unit 1 to the frequency of the power carrier wave
および電力送信部2の各共振回路が共振した状態で電力伝送が行われている状態とする。 And a state in which power transmission is performed in a state where the resonance circuit of the power transmission unit 2 resonates. ここで、送信コイル2 The transmission coil 2
1と受信コイル11間の距離lが変化すると、これら送受コイルの相互インダクタンスが変化し、これにより共振パラメータも変化する。 1 and the distance l between the receiving coil 11 is changed, the mutual inductance of transmitting and receiving coils is changed, thereby also changing the resonant parameters. 共振パラメータが変化すると、電力搬送波の電圧レベルが小さくなり、この電圧レベルの変化が電力受信部1および電力送信部2の各電圧検出回路13,23で検出される。 When the resonance parameters change, the voltage level of the power carrier wave is reduced, the change in the voltage level is detected by the voltage detecting circuits 13 and 23 of the power receiving unit 1 and the power transmission unit 2.

【0021】電圧レベルが低下すると、容量制御回路1 [0021] If the voltage level drops, the capacity control circuit 1
4は、電圧検出回路13の出力を基に、その検出電圧レベルが最高値になるように可変コンデンサ12の容量を可変する。 4, based on the output of the voltage detection circuit 13, varying the capacitance of the variable capacitor 12 so that the detected voltage level is the highest value. 同様に、容量制御回路24は、電圧検出回路23の出力を基に、その検出電圧レベルが最高値になるように可変コンデンサ22の容量を可変する。 Similarly, capacity control circuit 24, based on the output of the voltage detection circuit 23, varying the capacitance of the variable capacitor 22 so that the detected voltage level is the highest value. これにより、送受コイルの相互インダクタンスが変化しても、常に電力搬送波の周波数に共振した状態で電力伝送を行うことができる。 Thus, also the mutual inductance of the transmitting and receiving coils is changed, it is possible to perform power transmission at all times while the resonance frequency of the power carrier wave.

【0022】以上のように、本実施形態の電力伝送システムでは、送信電圧、受信電圧の検出をそれぞれ送信部、受信部個々に設けられた電圧検出部で行い、送信部、受信部の個々の共振回路のコンデンサの容量を共振状態を維持するように自動的に補正するようになっているので、最適の状態で電力伝送が行われる。 [0022] As described above, the power transmission system of the present embodiment, transmission voltage, respectively the transmission unit detects the received voltage, performed by the voltage detection unit provided in the receiving unit individually transmitting section, the receiving section of each since the capacitance of the capacitor of the resonance circuit is adapted to automatically corrected to maintain a resonant condition, the power transmission is performed in an optimum state.

【0023】なお、以上の説明では、生体機能の外的制御を行う装置に適用される例について説明したが、本発明はこれに限定されるものではなく、対向配置された1 [0023] In the above description, an example has been described as applied to a device for performing external control of vital functions, the present invention is not limited thereto, arranged opposite 1
対の電力供給コイルを用いて、電気エネルギーを誘導的に伝送することにより電力供給を行うことが可能な装置であればどのようなものにも適用可能である。 Using the power supply coil pairs What also is applicable to any apparatus capable of performing power supply by transmitting electrical energy inductively.

【0024】(実施形態2)上述した第1の実施形態では、送信部、受信部個々に独立して送受コイルの共振状態を制御するようになっているが、受信コイルの電圧レベルを検出して、その検出結果に基づいて送受コイルの共振状態を制御することもできる。 [0024] In a first embodiment (Embodiment 2) described above, the transmission unit, the reception unit individually independently so as to control the resonant state of the transmission and reception coils, detect the voltage level of the receiving coil Te, it is also possible to control the resonant state of the transmitting and receiving coils on the basis of the detection result.

【0025】図2は、本発明の第2の実施形態の電力伝送システムの概略構成を示すブロック図である。 FIG. 2 is a block diagram showing a schematic configuration of a power transmission system of a second embodiment of the present invention. 同図中、図1に示した第1の実施形態の構成と同じ構成には同じ符号を付してある。 In the figure, the same reference sign is assigned to the same configuration as the first embodiment shown in FIG.

【0026】本形態の電力伝送システムは、上述の第1 The power transmission system of this embodiment, first above
の実施形態の電力送信部2側の電圧検出回路23および容量制御回路24を取り除き、電力受信部1側の容量制御回路14が電圧検出回路13にて検出された電圧レベルに基づいて、可変コンデンサ12,22の容量をそれぞれ制御するようになっている。 Removing the voltage detection circuit 23 and the capacity control circuit 24 of the embodiment of the power transmission unit 2 side, based on the voltage level detected capacitance control circuit 14 of the power receiver 1 side by the voltage detection circuit 13, a variable capacitor and controls each of the capacity of 12 and 22. そのための構成として、電力受信部1側に、送信コイル17とコンデンサ1 As a configuration for the, to the power receiving unit 1 side, the transmission coil 17 and the capacitor 1
8からなる共振回路と、該共振回路に容量制御回路14 A resonant circuit composed of 8, capacity control circuit 14 to the resonant circuit
から送出された制御信号をフィードバック信号(電力送信部2側の可変コンデンサ22の容量を制御するための制御信号)として供給するフィードバック信号送信回路19とを備え、電力送信2側に、送信コイル17に平行に対向して配置された受信コイル27とコンデンサ28 And a feedback signal transmitting circuit 19 supplies the transmitted control signal a feedback signal (a control signal for controlling the capacity of the power transmission unit 2 of the variable capacitor 22) from the power transmission 2 side, the transmission coil 17 receiving coil 27 are disposed in parallel to oppose to the capacitor 28
からなる共振回路と、受信コイル27を介して受信される容量制御回路14から送出されたフィードバック信号を受け、該受信信号を制御信号として可変コンデンサ2 Receiving a resonant circuit consisting of a feedback signal transmitted from the capacity control circuit 14, which is received via the receiving coil 27, a variable capacitor 2 the received signal as a control signal
2へ出力するフィードバック信号受信回路29とを備える。 And a feedback signal receiving circuit 29 to be output to 2.

【0027】上述のように構成された電力伝送システムでは、第1の実施形態の場合と同様に、駆動回路4から負荷回路3を駆動するための電力が電力送信部2の送信コイル21に供給されると、送信コイル21から電力受信部1の受信コイル11に誘導的に電力が伝送される。 [0027] In the above configured power transmission system as, as in the first embodiment, the supply to the transmitter coil 21 power of the power transmission unit 2 for driving a load circuit 3 from the drive circuit 4 Once inductively power is transmitted from the transmitting coil 21 to the receiving coil 11 of the power receiving unit 1.
受信コイル11にて受信された電力は整流回路15を介して負荷回路3へ供給される。 Power received by the receiving coil 11 is supplied to the load circuit 3 via the rectifier circuit 15.

【0028】いま、電力搬送波の周波数に電力受信部1 [0028] Now, the power receiving unit 1 to the frequency of the power carrier wave
および電力送信部2の各共振回路が共振した状態で電力伝送が行われている状態とする。 And a state in which power transmission is performed in a state where the resonance circuit of the power transmission unit 2 resonates. ここで、送信コイル2 The transmission coil 2
1と受信コイル11間の距離lが変化すると、これら送受コイルの相互インダクタンスが変化し、これにより共振パラメータも変化する。 1 and the distance l between the receiving coil 11 is changed, the mutual inductance of transmitting and receiving coils is changed, thereby also changing the resonant parameters. 共振パラメータが変化すると、電力搬送波の電圧レベルが小さくなり、この電圧レベルの変化が電力受信部1の電圧検出回路13で検出される。 When the resonance parameters change, the voltage level of the power carrier wave is reduced, the change in the voltage level is detected by the voltage detection circuit 13 of the power receiving unit 1.

【0029】電圧レベルが低下すると、容量制御回路1 [0029] If the voltage level drops, the capacity control circuit 1
4は、電圧検出回路13の出力を基に、その検出電圧レベルが最高値になるように可変コンデンサ12の容量を可変するとともに、可変コンデンサ22の容量を可変するためフィードバック信号をフィードバック信号送信回路19へ送出する。 4, the voltage based on the output of the detection circuit 13, thereby varying the capacitance of the variable capacitor 12 so that the detected voltage level is the highest value, the feedback signal transmitting circuit a feedback signal for varying the capacitance of the variable capacitor 22 and it sends it to the 19. フィードバック信号を受けたフィードバック信号送信回路19は、該フィードバック信号を所定の周波数で変調して各共振回路を介してフィードバック信号受信回路29へ送信する。 Feedback signal transmitting circuit 19 which receives the feedback signal, and transmits the feedback signal to the feedback signal receiving circuit 29 via the respective resonant circuits is modulated at a predetermined frequency. フィードバック信号受信回路29は、受信した変調信号を復調して、これを制御信号として可変コンデンサ22へ出力する。 Feedback signal receiving circuit 29 demodulates the modulated signal received, and outputs it to the variable capacitor 22 as a control signal. これにより、可変コンデンサ22は電力受信部1の容量制御回路14によって制御されることになる。 Thus, the variable capacitor 22 will be controlled by the capacity control circuit 14 of the power receiving unit 1.

【0030】上述のようにして、電力受信部1側の容量制御回路14は、電圧検出回路13にて検出された電圧レベルに基づいて、検出電圧レベルが最高値になるように可変コンデンサ12,22の容量を可変する。 [0030] As described above, the displacement control circuit 14 of the power receiving unit 1 side, based on the voltage level detected by the voltage detection circuit 13, the variable capacitor 12 so that the detection voltage level is the highest value, the capacity of the 22 variable. これにより、送受コイル11,21の相互インダクタンスが変化しても、常に電力搬送波の周波数に共振した状態で電力伝送を行うことができる。 Accordingly, even if the mutual inductance of the transmitting and receiving coils 11 and 21 is changed, it is possible to perform power transmission at all times while the resonance frequency of the power carrier wave.

【0031】本実施形態では、送信コイル17と受信コイル27における信号伝送は、送信コイル21と受信コイル11間で行われる誘導的な電力伝送と同じ原理で行われるが、これら送受コイル17,27と接続されるコンデンサ18,28は変調周波数に応じて所定の容量のものが用いられる。 [0031] In this embodiment, the signal transmission in the receiving coil 27 and the transmission coil 17 is carried out on the same principle as the inductive power transfer to be performed between the receiving coil 11 and the transmitter coil 21, these transmitting and receiving coils 17, 27 capacitors 18, 28 connected to the those of the predetermined volume in accordance with the modulation frequency is used. このようなフィードバック系では、 In such a feedback system,
共振パラメータが固定であるため、送受コイル17,2 Since the resonance parameters are fixed, transmitting and receiving coils 17,2
7間の距離が変動すると、受信されるフィードバック信号の電圧レベルが変動することが予想されるが、この変動は刺激装置への電力の供給に直接影響するものではないので問題とはならない。 When the distance between 7 varies, the voltage level of the feedback signal received is expected to vary, not a problem because the variation does not directly affect the supply of power to the stimulator. しかも、フィードバック信号を受信する部分は体外に設けられる装置本体側に設けられるので、増幅回路など付加することができ、これによりフィードバック信号の電圧レベルの変動を回避することもできる。 Moreover, since the portion that receives the feedback signal is provided on the apparatus body side provided outside the body, it can be added such as amplification circuit, thereby also avoiding the fluctuation of the voltage level of the feedback signal.

【0032】 [0032]

【発明の効果】以上説明したように構成される本発明によれば、送受コイルの相互インダクタンスの変化に応じてコイルの共振状態を制御することができるので、送受コイルの距離が変動しても、コイルの共振状態がくずれることがなく、安定した電力伝送を行うことができるという効果がある。 According to the present invention configured as described above, according to the present invention, it is possible to control the resonant state of the coil in response to a change in the mutual inductance of the transmitting and receiving coils, the distance of transmission and reception coils may vary , without resonant state of the coil is disturbed, there is an effect that it is possible to perform stable power transmission.

【0033】受信コイルにおける電圧レベルを検出し、 [0033] detects the voltage level at the receiving coil,
該電圧レベルが常に最高値をとるように送受コイルの共振状態を制御する発明においては、より確実に受信コイルを電力搬送波の周波数で共振するようにでき、より安定的に電力伝送を行うことができるという効果がある。 In the invention the voltage level is always controlled resonant state of the transmission and reception coils to take the highest value, can receive coils more securely to resonate at the frequency of the power carrier wave, it is possible to more stably power transmission there is an effect that can be.

【0034】本発明の電力伝送システムを備える電気刺激装置においては、体内に埋め込まれた刺激装置に安定して電力供給を行うことができるので、従来のような受信側コイルにおける受信電圧が低下して刺激装置などの負荷回路が動作しなくなるといった問題を防止でき、信頼性の高い電気刺激装置を提供することができる。 [0034] In electrical stimulation device comprising a power transmission system of the present invention, it is possible to perform stable power supply to the stimulation device implanted in the body, receiving the voltage in the conventional receiving coil, such as decreases a load circuit, such as a stimulator Te prevents problem may not operate, it is possible to provide a highly reliable electrical stimulator.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の第1の実施形態の電力伝送システムの概略構成を示すブロック図である。 1 is a block diagram showing a schematic configuration of a power transmission system of the first embodiment of the present invention.

【図2】本発明の第2の実施形態の電力伝送システムの概略構成を示すブロック図である。 2 is a block diagram showing a schematic configuration of a power transmission system of a second embodiment of the present invention.

【符号の説明】 DESCRIPTION OF SYMBOLS

1 電力受信部 2 電力伝送部 3 負荷回路 4 駆動回路 11,27 受信コイル 12,22 可変コンデンサ 13,23 電圧検出回路 14,24 容量制御回路 15 整流回路 17,21 送信コイル 18,28 コンデンサ 19 フィードバック信号送信回路 29 フィードバック信号受信回路 3 the load circuit 1 power receiver 2 power transmission unit 4 driving circuit 11, 27 receiving coils 12 and 22 variable capacitor 13, 23 voltage detection circuit 14 and 24 volume control circuit 15 rectifying circuit 17, 21 the transmission coil 18, 28 capacitor 19 Feedback signal transmitting circuit 29 a feedback signal receiving circuit

───────────────────────────────────────────────────── フロントページの続き (71)出願人 392013648 松木 英敏 宮城県仙台市太白区八木山本町2−36−4 (72)発明者 石川 清一 東京都港区芝五丁目7番1号 日本電気株 式会社内 ────────────────────────────────────────────────── ─── of the front page continued (71) applicants 392,013,648 Hidetoshi Matsuki Sendai, Miyagi Prefecture Taebaek-ku, Yagiyamahon-cho 2-36-4 (72) inventor Seiichi Ishikawa Tokyo, Minato-ku, Shiba 5-chome No. 7 No. 1 NEC shares in the company

Claims (8)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 対向配置された1対の電力供給コイルを備え、一方を送信コイル、他方を受信コイルとして電力が誘導的に伝送される電力伝送システムにおいて、 前記送信コイルと接続されて共振回路を構成する第1の可変コンデンサと、 前記受信コイルと接続されて共振回路を構成する第2の可変コンデンサと、 前記送信コイルにおける電圧レベルを検出する第1の電圧検出手段と、 前記受信コイルにおける電圧レベルを検出する第2の電圧検出手段と、 前記第1の電圧検出手段にて検出された電圧レベルを入力とし、該検出電圧レベルが常に最高値をとるように前記第1の可変コンデンサの容量を可変する第1の容量制御手段と、 前記第2の電圧検出手段にて検出された電圧レベルを入力とし、該検出電圧レベルが常に最高値をとるよ [Claim 1 further comprising a counter arranged a pair of power supply coil, one transmission coil, the power transmission system in which power the other as receiver coils are transmitted inductively, coupled to the transmission coil resonant circuit a first variable capacitor that constitutes a second variable capacitor constituting a resonance circuit connected to said receiving coil, and a first voltage detecting means for detecting the voltage level at the transmitting coil, in the receiving coil a second voltage detecting means for detecting a voltage level, said first inputs the voltage level detected by the voltage detecting means, said first variable capacitor to take always maximum voltage level the detectable a first capacity control means for varying the capacitance, an input voltage level detected by said second voltage detecting means, taking the detection voltage level is always the highest value うに前記第2の可変コンデンサの容量を可変する第2の容量制御手段と、を有することを特徴とする電力伝送システム。 Power transmission system, characterized in that it comprises a second capacity control means, the for varying the urchin capacitance of the second variable capacitor.
  2. 【請求項2】 請求項1に記載の電力伝送システムにおいて、 前記第1の容量制御手段が、電力搬送波の周波数で前記送信コイルおよび第1の可変コンデンサからなる共振回路が共振するように制御し、 前記第2の容量制御手段が、電力搬送波の周波数で前記受信コイルおよび第2の可変コンデンサからなる共振回路が共振するように制御することを特徴とする電力伝送システム。 2. A power transmission system according to claim 1, wherein the first capacity control means controls so that the resonance circuit consisting of the transmitter coil and the first variable capacitor at the frequency of the power carrier wave resonates the second capacity control means, the power transmission system resonant circuit at the frequency of power carrier wave comprising the receiving coil and a second variable capacitor and controls to resonate.
  3. 【請求項3】 対向配置された1対の電力供給コイルを備え、一方を送信コイル、他方を受信コイルとして電力が誘導的に伝送される電力伝送システムにおいて、 前記送信コイルと接続されて共振回路を構成する第1の可変コンデンサと、 前記受信コイルと接続されて共振回路を構成する第2の可変コンデンサと、 前記受信コイルにおける電圧レベルを検出する電圧検出手段と、 前記電圧検出手段にて検出された電圧レベルを入力とし、該検出電圧レベルが常に最高値をとるように前記第1および第2の可変コンデンサの容量をそれぞれ可変する容量制御手段と、を有することを特徴とする電力伝送システム。 3. A comprising a counter arranged a pair of power supply coil, one transmission coil, the power transmission system in which power the other as receiver coils are transmitted inductively, coupled to the transmission coil resonant circuit a first variable capacitor that constitutes a second variable capacitor constituting a resonance circuit connected to said receiving coil, and a voltage detecting means for detecting a voltage level at the receiving coil, detected by said voltage detecting means power transmission system, characterized by having a capacity control means for varying the respective capacitance of said first and second variable capacitors so as to the voltage level as the input was, always takes a maximum value in voltage level said detectable .
  4. 【請求項4】 請求項3に記載の電力伝送システムにおいて、 前記電力供給コイル対とは異なる、対向配置された送信コイルおよび受信コイルと、 前記送信コイルと接続されて第1の共振回路を構成する第1のコンデンサと、 前記受信コイルと接続されて第2の共振回路を構成する第2のコンデンサと、 前記容量制御手段から出力される制御信号を入力とし、 4. A power transmission system according to claim 3, configuration different, a transmit coil and a receive coil arranged opposite, the first resonant circuit is connected to the transmission coil and the power supply coil pairs to be a first capacitor, a second capacitor constituting the second resonance circuit is connected to the receiving coil, and inputs the control signal outputted from said displacement control means,
    該入力信号を前記第1の共振回路へ供給する信号送信手段と、 前記第2の共振回路を介して受信される前記制御信号を入力とし、該入力制御信号を前記第1の可変コンデンサへ出力する信号受信手段と、をさらに有することを特徴とする電力伝送システム。 A signal transmitting means for supplying said input signal to said first resonant circuit, and inputs the control signal received via the second resonant circuit, outputs the input control signal to said first variable capacitor power transmission system, characterized in that it further comprises a signal receiving unit that, the.
  5. 【請求項5】 請求項1乃至請求項4のいずれかに記載の電力伝送システムを備える電気刺激装置であって、 前記受信コイルとともに体内に埋め込まれ、該受信コイルを介して電力供給を受けて生体の麻痺した部分を電気的に刺激する刺激手段と、 前記送信コイルに接続され、体外から前記刺激手段に電力を供給して刺激動作を制御する制御手段と、を有することを特徴とする電気刺激装置。 5. An electrical stimulation device comprising a power transmission system according to any of claims 1 to 4, embedded in the body along with the receiver coil, supplied with power via the reception coil a stimulation means for electrically stimulating the paralyzed parts of the body, connected to said transmission coil, electricity and having a control means for controlling the stimulation operation by supplying power to the stimulation unit from outside the body stimulation device.
  6. 【請求項6】 対向配置された1対の電力供給コイル間で、一方を送信コイル、他方を受信コイルとして電力を誘導的に伝送する電力伝送方法において、 前記送信コイルおよび受信コイルにおける電圧レベルをそれぞれ検出し、それぞれの検出電圧レベルが常に最高値をとるように前記送信コイルおよび受信コイルの共振状態を制御することを特徴とする電力伝送方法。 6. between oppositely disposed pair of power supply coil, one transmission coil, the power transmission method for transmitting electric power and the other as a receiving coil inductively, the voltage level at the transmitting coil and the receiving coil respectively detected, power transmission method characterized in that each of the detected voltage level is always to control the resonant state of the transmission coil and the receiving coil to take the highest value.
  7. 【請求項7】 対向配置された1対の電力供給コイル間で、一方を送信コイル、他方を受信コイルとして電力を誘導的に伝送する電力伝送方法において、 前記受信コイルにおける電圧レベルを検出し、該検出電圧レベルが常に最高値をとるように前記送信コイルおよび受信コイルの共振状態を制御することを特徴とする電力伝送方法。 Between 7. oppositely disposed pair of power supply coil, one transmission coil, the power transfer method for transferring power inductively to the other as a receiver coil for detecting the voltage level at the receiving coil, power transmission method and controlling a resonant state of the transmission coil and the receiving coil as the detection voltage level is always take the highest value.
  8. 【請求項8】 請求項6または請求項7に記載の電力伝送方法において、 電力搬送波の周波数で前記送信コイルおよび受信コイルが共振するように制御することをことを特徴とする電力伝送方法。 8. A power transmission method according to claim 6 or claim 7, power transmission wherein the in that said transmitting coil and the receiving coil at the frequency of the power carrier wave is controlled so as to resonate.
JP35951997A 1997-12-26 1997-12-26 Power transmission system, power transmission method and electric stimulation device provided with the power transmission system Pending JPH11188113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35951997A JPH11188113A (en) 1997-12-26 1997-12-26 Power transmission system, power transmission method and electric stimulation device provided with the power transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35951997A JPH11188113A (en) 1997-12-26 1997-12-26 Power transmission system, power transmission method and electric stimulation device provided with the power transmission system

Publications (1)

Publication Number Publication Date
JPH11188113A true true JPH11188113A (en) 1999-07-13

Family

ID=18464923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35951997A Pending JPH11188113A (en) 1997-12-26 1997-12-26 Power transmission system, power transmission method and electric stimulation device provided with the power transmission system

Country Status (1)

Country Link
JP (1) JPH11188113A (en)

Cited By (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008032746A1 (en) * 2006-09-12 2008-03-20 The University Of Tokyo Power supply sheet and electrically connecting circuit
JP2008508842A (en) * 2004-07-29 2008-03-21 ジェーシー プロテク カンパニー リミテッド Electromagnetic wave amplifying repeater and a wireless power converter using the same
US7522878B2 (en) 1999-06-21 2009-04-21 Access Business Group International Llc Adaptive inductive power supply with communication
WO2009131121A1 (en) * 2008-04-22 2009-10-29 オリンパス株式会社 Power transmission system
US7622891B2 (en) 2002-10-28 2009-11-24 Access Business Group International Llc Contact-less power transfer
EP2127105A2 (en) * 2007-03-02 2009-12-02 Qualcomm Incorporated Wireless power apparatus and methods
US7639514B2 (en) 1999-06-21 2009-12-29 Access Business Group International Llc Adaptive inductive power supply
JP2010098878A (en) * 2008-10-17 2010-04-30 Kyokko Denki Kk Electric power supply system
JP2010130800A (en) * 2008-11-28 2010-06-10 Nagano Japan Radio Co Non-contact power transmission system
JP2010154700A (en) * 2008-12-26 2010-07-08 Hitachi Ltd Noncontacting power transmission system and load device thereof
JP2010239769A (en) * 2009-03-31 2010-10-21 Fujitsu Ltd Wireless power supply system
JP2010252468A (en) * 2009-04-14 2010-11-04 Sony Corp Power transmission device and method, power receiving device and method, and power transmission system
JP2011508578A (en) * 2007-11-16 2011-03-10 クゥアルコム・インコーポレイテッドQualcomm Incorporated Wireless power bridge
CN102005827A (en) * 2009-08-26 2011-04-06 索尼公司 Non-contact electric power feeding apparatus, non-contact electric power receiving apparatus, non-contact electric power feeding method, non-contact electric power receiving method and non-contact electric power feeding system
CN102035267A (en) * 2009-10-05 2011-04-27 索尼公司 Power transmission apparatus, power reception apparatus and power transmission system
JP2011091999A (en) * 2008-09-18 2011-05-06 Toyota Motor Corp Non-contact power receiving apparatus and non-contact power transmitter
WO2011061821A1 (en) * 2009-11-18 2011-05-26 株式会社 東芝 Wireless power transmission device
JP2011523336A (en) * 2008-05-13 2011-08-04 クゥアルコム・インコーポレイテッドQualcomm Incorporated Method and apparatus for adaptive tuning of the wireless power transfer
JP2012502602A (en) * 2007-03-27 2012-01-26 マサチューセッツ インスティテュート オブ テクノロジー Wireless energy transfer device
US8129864B2 (en) 2008-01-07 2012-03-06 Access Business Group International Llc Inductive power supply with duty cycle control
JP2012110154A (en) * 2010-11-18 2012-06-07 Toshiba Corp Wireless power transmission device
US8222827B2 (en) 1999-06-21 2012-07-17 Access Business Group International Llc Inductively coupled ballast circuit
JP2012523210A (en) * 2009-04-03 2012-09-27 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Maschines Corporation Wireless power infrastructure
US8338990B2 (en) 2008-03-13 2012-12-25 Access Business Group International Llc Inductive power supply system with multiple coil primary
CN102884712A (en) * 2010-05-14 2013-01-16 株式会社丰田自动织机 Resonance-type non-contact power supply system, and adjustment method for matching unit during charging of resonance-type non-contact power supply system
CN102884705A (en) * 2010-05-14 2013-01-16 株式会社丰田自动织机 Power reception equipment for resonance-type non-contact power supply system
US8400017B2 (en) 2008-09-27 2013-03-19 Witricity Corporation Wireless energy transfer for computer peripheral applications
US8410636B2 (en) 2008-09-27 2013-04-02 Witricity Corporation Low AC resistance conductor designs
JP2013070590A (en) * 2011-09-21 2013-04-18 Pioneer Electronic Corp Non-contact power transmission device, non-contact power reception device and non-contact power supply system
US8441154B2 (en) 2008-09-27 2013-05-14 Witricity Corporation Multi-resonator wireless energy transfer for exterior lighting
JP2013135379A (en) * 2011-12-27 2013-07-08 Denso Corp Power line communication system for vehicles
WO2014030689A1 (en) * 2012-08-23 2014-02-27 株式会社 豊田自動織機 Non-contact power transmission device and power-receiving apparatus
US8692410B2 (en) 2008-09-27 2014-04-08 Witricity Corporation Wireless energy transfer with frequency hopping
US8692412B2 (en) 2008-09-27 2014-04-08 Witricity Corporation Temperature compensation in a wireless transfer system
JP2014155303A (en) * 2013-02-07 2014-08-25 Nec Saitama Ltd Charger and charging method
US8836172B2 (en) 2008-10-01 2014-09-16 Massachusetts Institute Of Technology Efficient near-field wireless energy transfer using adiabatic system variations
US8847548B2 (en) 2008-09-27 2014-09-30 Witricity Corporation Wireless energy transfer for implantable devices
US8854224B2 (en) 2009-02-10 2014-10-07 Qualcomm Incorporated Conveying device information relating to wireless charging
US8875086B2 (en) 2011-11-04 2014-10-28 Witricity Corporation Wireless energy transfer modeling tool
US8878393B2 (en) 2008-05-13 2014-11-04 Qualcomm Incorporated Wireless power transfer for vehicles
US8901778B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with variable size resonators for implanted medical devices
US8901779B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with resonator arrays for medical applications
US8907531B2 (en) 2008-09-27 2014-12-09 Witricity Corporation Wireless energy transfer with variable size resonators for medical applications
US8912687B2 (en) 2008-09-27 2014-12-16 Witricity Corporation Secure wireless energy transfer for vehicle applications
US8922066B2 (en) 2008-09-27 2014-12-30 Witricity Corporation Wireless energy transfer with multi resonator arrays for vehicle applications
US8928276B2 (en) 2008-09-27 2015-01-06 Witricity Corporation Integrated repeaters for cell phone applications
US8933594B2 (en) 2008-09-27 2015-01-13 Witricity Corporation Wireless energy transfer for vehicles
US8937408B2 (en) 2008-09-27 2015-01-20 Witricity Corporation Wireless energy transfer for medical applications
US8947186B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Wireless energy transfer resonator thermal management
US8946938B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Safety systems for wireless energy transfer in vehicle applications
US8957549B2 (en) 2008-09-27 2015-02-17 Witricity Corporation Tunable wireless energy transfer for in-vehicle applications
US8963488B2 (en) 2008-09-27 2015-02-24 Witricity Corporation Position insensitive wireless charging
JP2015050932A (en) * 2013-08-30 2015-03-16 サムソン エレクトロ−メカニックス カンパニーリミテッド. Power supply apparatus
US8994326B2 (en) 2010-05-14 2015-03-31 Kabushiki Kaisha Toyota Jidoshokki Resonance-type non-contact power supply system
US9035499B2 (en) 2008-09-27 2015-05-19 Witricity Corporation Wireless energy transfer for photovoltaic panels
JP2015109769A (en) * 2013-12-05 2015-06-11 トヨタ自動車株式会社 Non-contact power transmission system
US9065286B2 (en) 2005-07-12 2015-06-23 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US9065423B2 (en) 2008-09-27 2015-06-23 Witricity Corporation Wireless energy distribution system
US9093853B2 (en) 2008-09-27 2015-07-28 Witricity Corporation Flexible resonator attachment
US9095729B2 (en) 2007-06-01 2015-08-04 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9105959B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Resonator enclosure
US9106203B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Secure wireless energy transfer in medical applications
JP2015149890A (en) * 2010-09-30 2015-08-20 インテル コーポレイション Wireless power transfer apparatus and method thereof
US9124120B2 (en) 2007-06-11 2015-09-01 Qualcomm Incorporated Wireless power system and proximity effects
US9130602B2 (en) 2006-01-18 2015-09-08 Qualcomm Incorporated Method and apparatus for delivering energy to an electrical or electronic device via a wireless link
US9160203B2 (en) 2008-09-27 2015-10-13 Witricity Corporation Wireless powered television
US9184595B2 (en) 2008-09-27 2015-11-10 Witricity Corporation Wireless energy transfer in lossy environments
US9246336B2 (en) 2008-09-27 2016-01-26 Witricity Corporation Resonator optimizations for wireless energy transfer
US9287607B2 (en) 2012-07-31 2016-03-15 Witricity Corporation Resonator fine tuning
US9306635B2 (en) 2012-01-26 2016-04-05 Witricity Corporation Wireless energy transfer with reduced fields
US9312924B2 (en) 2009-02-10 2016-04-12 Qualcomm Incorporated Systems and methods relating to multi-dimensional wireless charging
US9318922B2 (en) 2008-09-27 2016-04-19 Witricity Corporation Mechanically removable wireless power vehicle seat assembly
US9318257B2 (en) 2011-10-18 2016-04-19 Witricity Corporation Wireless energy transfer for packaging
US9343225B2 (en) 2012-01-13 2016-05-17 Kabushiki Kaisha Toshiba Power receiving device, power transmitting device and control device
US9343922B2 (en) 2012-06-27 2016-05-17 Witricity Corporation Wireless energy transfer for rechargeable batteries
US9369182B2 (en) 2008-09-27 2016-06-14 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US9384885B2 (en) 2011-08-04 2016-07-05 Witricity Corporation Tunable wireless power architectures
US9396867B2 (en) 2008-09-27 2016-07-19 Witricity Corporation Integrated resonator-shield structures
US9404954B2 (en) 2012-10-19 2016-08-02 Witricity Corporation Foreign object detection in wireless energy transfer systems
EP2328253A3 (en) * 2009-11-30 2016-08-03 Broadcom Corporation Device with integrated wireless power receiver
US9421388B2 (en) 2007-06-01 2016-08-23 Witricity Corporation Power generation for implantable devices
US9442172B2 (en) 2011-09-09 2016-09-13 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9444520B2 (en) 2008-09-27 2016-09-13 Witricity Corporation Wireless energy transfer converters
US9444265B2 (en) 2005-07-12 2016-09-13 Massachusetts Institute Of Technology Wireless energy transfer
US9449757B2 (en) 2012-11-16 2016-09-20 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US9515494B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless power system including impedance matching network
US9544683B2 (en) 2008-09-27 2017-01-10 Witricity Corporation Wirelessly powered audio devices
US9559550B2 (en) 2011-02-15 2017-01-31 Toyota Jidosha Kabushiki Kaisha Contactless power receiving apparatus and vehicle incorporating same, contactless power feeding facility, method of controlling contactless power receiving apparatus, and method of controlling contactless power feeding facility
US9583953B2 (en) 2009-02-10 2017-02-28 Qualcomm Incorporated Wireless power transfer for portable enclosures
US9595378B2 (en) 2012-09-19 2017-03-14 Witricity Corporation Resonator enclosure
US9601267B2 (en) 2013-07-03 2017-03-21 Qualcomm Incorporated Wireless power transmitter with a plurality of magnetic oscillators
US9601270B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Low AC resistance conductor designs
US9602168B2 (en) 2010-08-31 2017-03-21 Witricity Corporation Communication in wireless energy transfer systems
US9601261B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Wireless energy transfer using repeater resonators
US9601266B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Multiple connected resonators with a single electronic circuit
US9744858B2 (en) 2008-09-27 2017-08-29 Witricity Corporation System for wireless energy distribution in a vehicle
US9754718B2 (en) 2008-09-27 2017-09-05 Witricity Corporation Resonator arrays for wireless energy transfer
US9780573B2 (en) 2014-02-03 2017-10-03 Witricity Corporation Wirelessly charged battery system
US9837860B2 (en) 2014-05-05 2017-12-05 Witricity Corporation Wireless power transmission systems for elevators
US9843217B2 (en) 2015-01-05 2017-12-12 Witricity Corporation Wireless energy transfer for wearables
US9842688B2 (en) 2014-07-08 2017-12-12 Witricity Corporation Resonator balancing in wireless power transfer systems
US9842687B2 (en) 2014-04-17 2017-12-12 Witricity Corporation Wireless power transfer systems with shaped magnetic components
US9857821B2 (en) 2013-08-14 2018-01-02 Witricity Corporation Wireless power transfer frequency adjustment
US9892849B2 (en) 2014-04-17 2018-02-13 Witricity Corporation Wireless power transfer systems with shield openings
US9929721B2 (en) 2015-10-14 2018-03-27 Witricity Corporation Phase and amplitude detection in wireless energy transfer systems
US9948145B2 (en) 2011-07-08 2018-04-17 Witricity Corporation Wireless power transfer for a seat-vest-helmet system
US9954375B2 (en) 2014-06-20 2018-04-24 Witricity Corporation Wireless power transfer systems for surfaces
US9952266B2 (en) 2014-02-14 2018-04-24 Witricity Corporation Object detection for wireless energy transfer systems

Cited By (185)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9036371B2 (en) 1999-06-21 2015-05-19 Access Business Group International Llc Adaptive inductive power supply
US8222827B2 (en) 1999-06-21 2012-07-17 Access Business Group International Llc Inductively coupled ballast circuit
US7522878B2 (en) 1999-06-21 2009-04-21 Access Business Group International Llc Adaptive inductive power supply with communication
US7953369B2 (en) 1999-06-21 2011-05-31 Access Business Group International Llc System and method for inductive power supply control using remote device power requirements
US9299493B2 (en) 1999-06-21 2016-03-29 Access Business Group International Llc Inductively coupled ballast circuit
US8855558B2 (en) 1999-06-21 2014-10-07 Access Business Group International Llc Adaptive inductive power supply with communication
US9368976B2 (en) 1999-06-21 2016-06-14 Access Business Group International Llc Adaptive inductive power supply with communication
US9397524B2 (en) 1999-06-21 2016-07-19 Access Business Group International Llc Inductively coupled ballast circuit
US7639514B2 (en) 1999-06-21 2009-12-29 Access Business Group International Llc Adaptive inductive power supply
US9590456B2 (en) 1999-06-21 2017-03-07 Access Business Group International Llc Inductively coupled ballast circuit
US8116681B2 (en) 1999-06-21 2012-02-14 Access Business Group International Llc Adaptive inductive power supply with communication
US7622891B2 (en) 2002-10-28 2009-11-24 Access Business Group International Llc Contact-less power transfer
US9190874B2 (en) 2003-02-04 2015-11-17 Access Business Group International Llc Adaptive inductive power supply
US8116683B2 (en) 2003-02-04 2012-02-14 Access Business Group International Llc Adaptive inductive power supply with communication
JP2009213351A (en) * 2003-02-04 2009-09-17 Access Business Group Internatl Llc Adaptive induction power supply having communication means
US9013895B2 (en) 2003-02-04 2015-04-21 Access Business Group International Llc Adaptive inductive power supply
US9906049B2 (en) 2003-02-04 2018-02-27 Access Business Group International Llc Adaptive inductive power supply
US8259429B2 (en) 2004-07-29 2012-09-04 Samsung Electronics Co., Ltd. Amplification relay device of electromagnetic wave and a radio electric power conversion apparatus using the device
JP2008508842A (en) * 2004-07-29 2008-03-21 ジェーシー プロテク カンパニー リミテッド Electromagnetic wave amplifying repeater and a wireless power converter using the same
US7885050B2 (en) 2004-07-29 2011-02-08 Jc Protek Co., Ltd. Amplification relay device of electromagnetic wave and a radio electric power conversion apparatus using the above device
JP2011120470A (en) * 2004-07-29 2011-06-16 Jc Protek Co Ltd Electromagnetic wave amplifying repeater and wireless power converter using the same
US8681465B2 (en) 2004-07-29 2014-03-25 Jc Protek Co., Ltd. Amplification relay device of electromagnetic wave and a radio electric power conversion apparatus using the device
US9509147B2 (en) 2005-07-12 2016-11-29 Massachusetts Institute Of Technology Wireless energy transfer
US9450421B2 (en) 2005-07-12 2016-09-20 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US9450422B2 (en) 2005-07-12 2016-09-20 Massachusetts Institute Of Technology Wireless energy transfer
US9831722B2 (en) 2005-07-12 2017-11-28 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US9065286B2 (en) 2005-07-12 2015-06-23 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US9444265B2 (en) 2005-07-12 2016-09-13 Massachusetts Institute Of Technology Wireless energy transfer
US9130602B2 (en) 2006-01-18 2015-09-08 Qualcomm Incorporated Method and apparatus for delivering energy to an electrical or electronic device via a wireless link
WO2008032746A1 (en) * 2006-09-12 2008-03-20 The University Of Tokyo Power supply sheet and electrically connecting circuit
JP2016007131A (en) * 2007-03-02 2016-01-14 クゥアルコム・インコーポレイテッドQualcomm Incorporated Wireless power apparatus and methods
JP2010520716A (en) * 2007-03-02 2010-06-10 クゥアルコム・インコーポレイテッドQualcomm Incorporated Wireless power apparatus and method
US9774086B2 (en) 2007-03-02 2017-09-26 Qualcomm Incorporated Wireless power apparatus and methods
EP2127105A2 (en) * 2007-03-02 2009-12-02 Qualcomm Incorporated Wireless power apparatus and methods
EP2127105A4 (en) * 2007-03-02 2013-01-16 Qualcomm Inc Wireless power apparatus and methods
JP2014039468A (en) * 2007-03-02 2014-02-27 Qualcomm Incorporated Wireless power apparatus and methods
JP2014060917A (en) * 2007-03-27 2014-04-03 Massachusetts Institute Of Technology Wireless energy transfer device
JP2012502602A (en) * 2007-03-27 2012-01-26 マサチューセッツ インスティテュート オブ テクノロジー Wireless energy transfer device
US9101777B2 (en) 2007-06-01 2015-08-11 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9843230B2 (en) 2007-06-01 2017-12-12 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9943697B2 (en) 2007-06-01 2018-04-17 Witricity Corporation Power generation for implantable devices
US9318898B2 (en) 2007-06-01 2016-04-19 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9095729B2 (en) 2007-06-01 2015-08-04 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9421388B2 (en) 2007-06-01 2016-08-23 Witricity Corporation Power generation for implantable devices
US9124120B2 (en) 2007-06-11 2015-09-01 Qualcomm Incorporated Wireless power system and proximity effects
US9966188B2 (en) 2007-11-16 2018-05-08 Qualcomm Incorporated Wireless power bridge
JP2011508578A (en) * 2007-11-16 2011-03-10 クゥアルコム・インコーポレイテッドQualcomm Incorporated Wireless power bridge
US8729734B2 (en) 2007-11-16 2014-05-20 Qualcomm Incorporated Wireless power bridge
US9257851B2 (en) 2008-01-07 2016-02-09 Access Business Group International Llc Inductive power supply with duty cycle control
US8129864B2 (en) 2008-01-07 2012-03-06 Access Business Group International Llc Inductive power supply with duty cycle control
US8653698B2 (en) 2008-03-13 2014-02-18 David W. Baarman Inductive power supply system with multiple coil primary
US8338990B2 (en) 2008-03-13 2012-12-25 Access Business Group International Llc Inductive power supply system with multiple coil primary
JP2009268181A (en) * 2008-04-22 2009-11-12 Olympus Corp Energy supply apparatus
WO2009131121A1 (en) * 2008-04-22 2009-10-29 オリンパス株式会社 Power transmission system
US8965461B2 (en) 2008-05-13 2015-02-24 Qualcomm Incorporated Reverse link signaling via receive antenna impedance modulation
US9184632B2 (en) 2008-05-13 2015-11-10 Qualcomm Incorporated Wireless power transfer for furnishings and building elements
US9190875B2 (en) 2008-05-13 2015-11-17 Qualcomm Incorporated Method and apparatus with negative resistance in wireless power transfers
US9236771B2 (en) 2008-05-13 2016-01-12 Qualcomm Incorporated Method and apparatus for adaptive tuning of wireless power transfer
US9991747B2 (en) 2008-05-13 2018-06-05 Qualcomm Incorporated Signaling charging in wireless power environment
US9130407B2 (en) 2008-05-13 2015-09-08 Qualcomm Incorporated Signaling charging in wireless power environment
US9954399B2 (en) 2008-05-13 2018-04-24 Qualcomm Incorporated Reverse link signaling via receive antenna impedance modulation
US8878393B2 (en) 2008-05-13 2014-11-04 Qualcomm Incorporated Wireless power transfer for vehicles
US8892035B2 (en) 2008-05-13 2014-11-18 Qualcomm Incorporated Repeaters for enhancement of wireless power transfer
US9178387B2 (en) 2008-05-13 2015-11-03 Qualcomm Incorporated Receive antenna for wireless power transfer
JP2011523336A (en) * 2008-05-13 2011-08-04 クゥアルコム・インコーポレイテッドQualcomm Incorporated Method and apparatus for adaptive tuning of the wireless power transfer
JP2011091999A (en) * 2008-09-18 2011-05-06 Toyota Motor Corp Non-contact power receiving apparatus and non-contact power transmitter
US9584189B2 (en) 2008-09-27 2017-02-28 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US8912687B2 (en) 2008-09-27 2014-12-16 Witricity Corporation Secure wireless energy transfer for vehicle applications
US8922066B2 (en) 2008-09-27 2014-12-30 Witricity Corporation Wireless energy transfer with multi resonator arrays for vehicle applications
US9515494B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless power system including impedance matching network
US8933594B2 (en) 2008-09-27 2015-01-13 Witricity Corporation Wireless energy transfer for vehicles
US8937408B2 (en) 2008-09-27 2015-01-20 Witricity Corporation Wireless energy transfer for medical applications
US8947186B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Wireless energy transfer resonator thermal management
US8946938B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Safety systems for wireless energy transfer in vehicle applications
US8957549B2 (en) 2008-09-27 2015-02-17 Witricity Corporation Tunable wireless energy transfer for in-vehicle applications
US8907531B2 (en) 2008-09-27 2014-12-09 Witricity Corporation Wireless energy transfer with variable size resonators for medical applications
US8963488B2 (en) 2008-09-27 2015-02-24 Witricity Corporation Position insensitive wireless charging
US8901779B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with resonator arrays for medical applications
US9496719B2 (en) 2008-09-27 2016-11-15 Witricity Corporation Wireless energy transfer for implantable devices
US8901778B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with variable size resonators for implanted medical devices
US9035499B2 (en) 2008-09-27 2015-05-19 Witricity Corporation Wireless energy transfer for photovoltaic panels
US9515495B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless energy transfer in lossy environments
US9577436B2 (en) 2008-09-27 2017-02-21 Witricity Corporation Wireless energy transfer for implantable devices
US8847548B2 (en) 2008-09-27 2014-09-30 Witricity Corporation Wireless energy transfer for implantable devices
US9184595B2 (en) 2008-09-27 2015-11-10 Witricity Corporation Wireless energy transfer in lossy environments
US9065423B2 (en) 2008-09-27 2015-06-23 Witricity Corporation Wireless energy distribution system
US9093853B2 (en) 2008-09-27 2015-07-28 Witricity Corporation Flexible resonator attachment
US9596005B2 (en) 2008-09-27 2017-03-14 Witricity Corporation Wireless energy transfer using variable size resonators and systems monitoring
US9105959B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Resonator enclosure
US9601270B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Low AC resistance conductor designs
US9106203B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Secure wireless energy transfer in medical applications
US9601261B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Wireless energy transfer using repeater resonators
US8692412B2 (en) 2008-09-27 2014-04-08 Witricity Corporation Temperature compensation in a wireless transfer system
US8692410B2 (en) 2008-09-27 2014-04-08 Witricity Corporation Wireless energy transfer with frequency hopping
US9601266B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Multiple connected resonators with a single electronic circuit
US9444520B2 (en) 2008-09-27 2016-09-13 Witricity Corporation Wireless energy transfer converters
US9160203B2 (en) 2008-09-27 2015-10-13 Witricity Corporation Wireless powered television
US9662161B2 (en) 2008-09-27 2017-05-30 Witricity Corporation Wireless energy transfer for medical applications
US9698607B2 (en) 2008-09-27 2017-07-04 Witricity Corporation Secure wireless energy transfer
US8441154B2 (en) 2008-09-27 2013-05-14 Witricity Corporation Multi-resonator wireless energy transfer for exterior lighting
US9742204B2 (en) 2008-09-27 2017-08-22 Witricity Corporation Wireless energy transfer in lossy environments
US8410636B2 (en) 2008-09-27 2013-04-02 Witricity Corporation Low AC resistance conductor designs
US9748039B2 (en) 2008-09-27 2017-08-29 Witricity Corporation Wireless energy transfer resonator thermal management
US8400017B2 (en) 2008-09-27 2013-03-19 Witricity Corporation Wireless energy transfer for computer peripheral applications
US9744858B2 (en) 2008-09-27 2017-08-29 Witricity Corporation System for wireless energy distribution in a vehicle
US9246336B2 (en) 2008-09-27 2016-01-26 Witricity Corporation Resonator optimizations for wireless energy transfer
US9396867B2 (en) 2008-09-27 2016-07-19 Witricity Corporation Integrated resonator-shield structures
US9754718B2 (en) 2008-09-27 2017-09-05 Witricity Corporation Resonator arrays for wireless energy transfer
US9780605B2 (en) 2008-09-27 2017-10-03 Witricity Corporation Wireless power system with associated impedance matching network
US9806541B2 (en) 2008-09-27 2017-10-31 Witricity Corporation Flexible resonator attachment
US9843228B2 (en) 2008-09-27 2017-12-12 Witricity Corporation Impedance matching in wireless power systems
US9369182B2 (en) 2008-09-27 2016-06-14 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US9318922B2 (en) 2008-09-27 2016-04-19 Witricity Corporation Mechanically removable wireless power vehicle seat assembly
US8928276B2 (en) 2008-09-27 2015-01-06 Witricity Corporation Integrated repeaters for cell phone applications
US9544683B2 (en) 2008-09-27 2017-01-10 Witricity Corporation Wirelessly powered audio devices
US9831682B2 (en) 2008-10-01 2017-11-28 Massachusetts Institute Of Technology Efficient near-field wireless energy transfer using adiabatic system variations
US8836172B2 (en) 2008-10-01 2014-09-16 Massachusetts Institute Of Technology Efficient near-field wireless energy transfer using adiabatic system variations
JP2010098878A (en) * 2008-10-17 2010-04-30 Kyokko Denki Kk Electric power supply system
JP2010130800A (en) * 2008-11-28 2010-06-10 Nagano Japan Radio Co Non-contact power transmission system
JP2010154700A (en) * 2008-12-26 2010-07-08 Hitachi Ltd Noncontacting power transmission system and load device thereof
US8531059B2 (en) 2008-12-26 2013-09-10 Hitachi Consumer Electronics Co., Ltd. Wireless power transfer system and a load apparatus in the same wireless power transfer system
US8854224B2 (en) 2009-02-10 2014-10-07 Qualcomm Incorporated Conveying device information relating to wireless charging
US9312924B2 (en) 2009-02-10 2016-04-12 Qualcomm Incorporated Systems and methods relating to multi-dimensional wireless charging
US9583953B2 (en) 2009-02-10 2017-02-28 Qualcomm Incorporated Wireless power transfer for portable enclosures
JP2010239769A (en) * 2009-03-31 2010-10-21 Fujitsu Ltd Wireless power supply system
JP2012523210A (en) * 2009-04-03 2012-09-27 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Maschines Corporation Wireless power infrastructure
JP2010252468A (en) * 2009-04-14 2010-11-04 Sony Corp Power transmission device and method, power receiving device and method, and power transmission system
CN102005827A (en) * 2009-08-26 2011-04-06 索尼公司 Non-contact electric power feeding apparatus, non-contact electric power receiving apparatus, non-contact electric power feeding method, non-contact electric power receiving method and non-contact electric power feeding system
EP2290782A3 (en) * 2009-08-26 2012-09-12 Sony Corporation Non-contact electric power feeding apparatus, non-contact electric power receiving apparatus, non-contact electric power feeding method, non-contact electric power receiving method and non-contact electric power feeding system
US8912685B2 (en) 2009-08-26 2014-12-16 Sony Corporation Noncontact electric power feeding apparatus, noncontact electric power receiving apparatus, noncontact electric power feeding method, noncontact electric power receiving method, and noncontact electric power feeding system
CN102035267A (en) * 2009-10-05 2011-04-27 索尼公司 Power transmission apparatus, power reception apparatus and power transmission system
US9257850B2 (en) 2009-10-05 2016-02-09 Sony Corporation Power transmission apparatus, power reception apparatus and power transmission system
WO2011061821A1 (en) * 2009-11-18 2011-05-26 株式会社 東芝 Wireless power transmission device
US9231413B2 (en) 2009-11-18 2016-01-05 Kabushiki Kaisha Toshiba Wireless power transmission device
EP2515414A4 (en) * 2009-11-18 2016-04-06 Toshiba Kk Wireless power transmission device
JP5580333B2 (en) * 2009-11-18 2014-08-27 株式会社東芝 Wireless power transmission apparatus
KR101423406B1 (en) * 2009-11-18 2014-07-24 가부시끼가이샤 도시바 Wireless power transmission device
US9590444B2 (en) 2009-11-30 2017-03-07 Broadcom Corporation Device with integrated wireless power receiver configured to make a charging determination based on a level of battery life and charging efficiency
EP2328253A3 (en) * 2009-11-30 2016-08-03 Broadcom Corporation Device with integrated wireless power receiver
CN102884705A (en) * 2010-05-14 2013-01-16 株式会社丰田自动织机 Power reception equipment for resonance-type non-contact power supply system
US8994326B2 (en) 2010-05-14 2015-03-31 Kabushiki Kaisha Toyota Jidoshokki Resonance-type non-contact power supply system
CN102884712A (en) * 2010-05-14 2013-01-16 株式会社丰田自动织机 Resonance-type non-contact power supply system, and adjustment method for matching unit during charging of resonance-type non-contact power supply system
US9142972B2 (en) 2010-05-14 2015-09-22 Kabushiki Kaisha Toyota Jidoshokki Power reception equipment for resonance-type non-contact power supply system
US9391468B2 (en) 2010-05-14 2016-07-12 Kabushiki Kaisha Toyota Jidoshokki Resonance-type non-contact power supply system, and adjustment method for matching unit during charging of resonance-type non-contact power supply system
EP2571140A4 (en) * 2010-05-14 2014-04-30 Toyota Jidoshokki Kk Resonance-type non-contact power supply system, and adjustment method for matching unit during charging of resonance-type non-contact power supply system
EP2571140A1 (en) * 2010-05-14 2013-03-20 Kabushiki Kaisha Toyota Jidoshokki Resonance-type non-contact power supply system, and adjustment method for matching unit during charging of resonance-type non-contact power supply system
US9602168B2 (en) 2010-08-31 2017-03-21 Witricity Corporation Communication in wireless energy transfer systems
JP2017099278A (en) * 2010-09-30 2017-06-01 インテル コーポレイション Wireless power transfer device and method of the same
JP2015149890A (en) * 2010-09-30 2015-08-20 インテル コーポレイション Wireless power transfer apparatus and method thereof
JP2012110154A (en) * 2010-11-18 2012-06-07 Toshiba Corp Wireless power transmission device
US9559550B2 (en) 2011-02-15 2017-01-31 Toyota Jidosha Kabushiki Kaisha Contactless power receiving apparatus and vehicle incorporating same, contactless power feeding facility, method of controlling contactless power receiving apparatus, and method of controlling contactless power feeding facility
US9948145B2 (en) 2011-07-08 2018-04-17 Witricity Corporation Wireless power transfer for a seat-vest-helmet system
US9384885B2 (en) 2011-08-04 2016-07-05 Witricity Corporation Tunable wireless power architectures
US9787141B2 (en) 2011-08-04 2017-10-10 Witricity Corporation Tunable wireless power architectures
US9442172B2 (en) 2011-09-09 2016-09-13 Witricity Corporation Foreign object detection in wireless energy transfer systems
JP2013070590A (en) * 2011-09-21 2013-04-18 Pioneer Electronic Corp Non-contact power transmission device, non-contact power reception device and non-contact power supply system
US9318257B2 (en) 2011-10-18 2016-04-19 Witricity Corporation Wireless energy transfer for packaging
US8875086B2 (en) 2011-11-04 2014-10-28 Witricity Corporation Wireless energy transfer modeling tool
JP2013135379A (en) * 2011-12-27 2013-07-08 Denso Corp Power line communication system for vehicles
US9343225B2 (en) 2012-01-13 2016-05-17 Kabushiki Kaisha Toshiba Power receiving device, power transmitting device and control device
US9306635B2 (en) 2012-01-26 2016-04-05 Witricity Corporation Wireless energy transfer with reduced fields
US9343922B2 (en) 2012-06-27 2016-05-17 Witricity Corporation Wireless energy transfer for rechargeable batteries
US9287607B2 (en) 2012-07-31 2016-03-15 Witricity Corporation Resonator fine tuning
WO2014030689A1 (en) * 2012-08-23 2014-02-27 株式会社 豊田自動織機 Non-contact power transmission device and power-receiving apparatus
US9595378B2 (en) 2012-09-19 2017-03-14 Witricity Corporation Resonator enclosure
US9465064B2 (en) 2012-10-19 2016-10-11 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9404954B2 (en) 2012-10-19 2016-08-02 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9449757B2 (en) 2012-11-16 2016-09-20 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US9842684B2 (en) 2012-11-16 2017-12-12 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
JP2014155303A (en) * 2013-02-07 2014-08-25 Nec Saitama Ltd Charger and charging method
US9601267B2 (en) 2013-07-03 2017-03-21 Qualcomm Incorporated Wireless power transmitter with a plurality of magnetic oscillators
US9711991B2 (en) 2013-07-19 2017-07-18 Witricity Corporation Wireless energy transfer converters
US9857821B2 (en) 2013-08-14 2018-01-02 Witricity Corporation Wireless power transfer frequency adjustment
JP2015050932A (en) * 2013-08-30 2015-03-16 サムソン エレクトロ−メカニックス カンパニーリミテッド. Power supply apparatus
JP2015109769A (en) * 2013-12-05 2015-06-11 トヨタ自動車株式会社 Non-contact power transmission system
WO2015083573A1 (en) * 2013-12-05 2015-06-11 トヨタ自動車株式会社 Contactless power transmission system and electric transmission device
US9780573B2 (en) 2014-02-03 2017-10-03 Witricity Corporation Wirelessly charged battery system
US9952266B2 (en) 2014-02-14 2018-04-24 Witricity Corporation Object detection for wireless energy transfer systems
US9892849B2 (en) 2014-04-17 2018-02-13 Witricity Corporation Wireless power transfer systems with shield openings
US9842687B2 (en) 2014-04-17 2017-12-12 Witricity Corporation Wireless power transfer systems with shaped magnetic components
US9837860B2 (en) 2014-05-05 2017-12-05 Witricity Corporation Wireless power transmission systems for elevators
US9954375B2 (en) 2014-06-20 2018-04-24 Witricity Corporation Wireless power transfer systems for surfaces
US9842688B2 (en) 2014-07-08 2017-12-12 Witricity Corporation Resonator balancing in wireless power transfer systems
US9843217B2 (en) 2015-01-05 2017-12-12 Witricity Corporation Wireless energy transfer for wearables
US9929721B2 (en) 2015-10-14 2018-03-27 Witricity Corporation Phase and amplitude detection in wireless energy transfer systems

Similar Documents

Publication Publication Date Title
US6115636A (en) Telemetry for implantable devices using the body as an antenna
US4445063A (en) Energizing circuit for ultrasonic transducer
US6307468B1 (en) Impedance matching network and multidimensional electromagnetic field coil for a transponder interrogator
US6889086B2 (en) Passive telemetry system for implantable medical device
US6079622A (en) Non-contact information storage medium and data transmission method for the medium
US7738964B2 (en) Telemetry duty cycle management system for an implantable medical device
US7989986B2 (en) Inductive power supply with device identification
US7107103B2 (en) Full-body charger for battery-powered patient implantable device
US7092762B1 (en) Low-power, high-modulation-index amplifier for use in battery-powered device
US7860574B2 (en) Implantable medical device with two or more telemetry systems
US8116683B2 (en) Adaptive inductive power supply with communication
US8129942B2 (en) Contactless charging method for charging battery
US20100069992A1 (en) Implantable Medical Device with Single Coil for Charging and Communicating
US20120262108A1 (en) Recharge tuning techniques for an implantable device
US5146920A (en) Wireless low-frequency medical treatment device with pulse interruption based upon electrode contact with the body
US5519386A (en) Data exchange system
US20050107847A1 (en) Assembly for wireless energy communication to an implanted device
WO2010106636A1 (en) Wireless power supply system
EP0558316A1 (en) An inductive loop power transmission system
US6430444B1 (en) Transcutaneous energy transfer device
JPH1188241A (en) Data carrier system
JP2010130800A (en) Non-contact power transmission system
US20070296393A1 (en) Inductively Powered Mobile Sensor System
JP2004159456A (en) Energy supplier
US7209792B1 (en) RF-energy modulation system through dynamic coil detuning