JP5375032B2 - Method of designing a non-contact power transmission apparatus and the non-contact power transmission apparatus - Google Patents

Method of designing a non-contact power transmission apparatus and the non-contact power transmission apparatus Download PDF

Info

Publication number
JP5375032B2
JP5375032B2 JP2008283563A JP2008283563A JP5375032B2 JP 5375032 B2 JP5375032 B2 JP 5375032B2 JP 2008283563 A JP2008283563 A JP 2008283563A JP 2008283563 A JP2008283563 A JP 2008283563A JP 5375032 B2 JP5375032 B2 JP 5375032B2
Authority
JP
Japan
Prior art keywords
coil
power transmission
impedance
non
primary coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008283563A
Other languages
Japanese (ja)
Other versions
JP2010114965A (en
Inventor
和良 高田
定典 鈴木
健一 中田
慎平 迫田
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Priority to JP2008283563A priority Critical patent/JP5375032B2/en
Publication of JP2010114965A publication Critical patent/JP2010114965A/en
Application granted granted Critical
Publication of JP5375032B2 publication Critical patent/JP5375032B2/en
Application status is Expired - Fee Related legal-status Critical
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/50Computer-aided design
    • G06F17/5045Circuit design
    • G06F17/5063Analog circuit design, e.g. amplifiers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J5/00Circuit arrangements for transfer of electric power between ac networks and dc networks
    • H02J5/005Circuit arrangements for transfer of electric power between ac networks and dc networks with inductive power transfer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive loop type
    • H04B5/0025Near field system adaptations
    • H04B5/0037Near field system adaptations for power transfer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive loop type
    • H04B5/0075Near-field transmission systems, e.g. inductive loop type using inductive coupling
    • H04B5/0093Near-field transmission systems, e.g. inductive loop type using inductive coupling with one coil at each side, e.g. with primary and secondary coils
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings

Description

本発明は、非接触電力伝送装置及び非接触電力伝送装置の設計方法に関する。 The present invention relates to a method of designing a non-contact power transmission apparatus and the non-contact power transmission apparatus.

図6に示すように、二つの銅線コイル51,52を離れた状態で配置し、一方の銅線コイル51から他方の銅線コイル52に電磁場の共鳴によって電力を伝送することが紹介されている(例えば、非特許文献1及び特許文献1参照)。 As shown in FIG. 6, and disposed in a state leaving the two copper wire coils 51 and 52, it is introduced that transmits power from one copper wire coil 51 to the other copper wire coil 52 by resonance of the electromagnetic field It is (e.g., see non-Patent Document 1 and Patent Document 1). 具体的には、交流電源53に接続された1次コイル54で発生した磁場を銅線コイル51,52による磁場共鳴により増強し、2次コイル55により増強された銅線コイル52付近の磁場から電磁誘導を利用して電力を取り出し負荷56に供給する。 Specifically, the magnetic field generated by the primary coil 54 connected to an AC power source 53 is enhanced by magnetic field resonance by the copper wire coils 51 and 52, from the magnetic field around the copper wire coil 52 which is enhanced by the secondary coil 55 supplied to the load 56 is taken out of power using electromagnetic induction. そして、半径30cmの銅線コイル51,52を2m離して配置した場合に、負荷56としての60Wの電灯を点灯できることが確認されている。 Then, the copper wire coils 51, 52 of radius 30cm when placed apart 2m, it has been confirmed to be able to light the lamp of 60W as the load 56.
国際公開特許WO/2007/008646 A2 International Patent Publication No. WO / 2007/008646 A2

この非接触電力伝送装置において交流電源の電力を負荷に効率良く供給するには、交流電源から電力を効率良く共鳴系に供給することが必要になる。 This is efficiently supplies power of the AC power source to the load in the non-contact power transmission apparatus, it is necessary to supply power from the AC power source to efficiently resonant system. しかし、従来技術には非接触電力伝送装置の概要が記載されているだけで、具体的にどのようにすればそのような条件を満足できる非接触電力伝送装置を得ることができるのかに付いては記載されていない。 However, the prior art only an overview of the non-contact power transmission apparatus, attached to what can be obtained non-contact power transmission apparatus capable of satisfying them if such conditions how specifically It has not been described.

本発明は、前記従来の問題に鑑みてなされたものであって、その目的は、交流電源から電力を効率良く共鳴系に供給することができる非接触電力伝送装置及びその設計方法を提供することにある。 The present invention was made in view of the above problems, that the aim is to provide a non-contact power transmission apparatus and a design method thereof capable of supplying power from the AC power source to efficiently resonant system It is in.

前記の目的を達成するため、 請求項1及び2に記載の発明は、交流電源から交流電圧が印加される1次コイルと、1次側共鳴コイルと、2次側共鳴コイルと、負荷が接続される2次コイルとを有する共鳴系を備える非接触電力伝送装置である。 To achieve the above object, the invention according to claim 1 and 2, the primary coil the AC voltage from the AC power is applied, a primary side resonance coil, a secondary side resonance coil, the load is connected a non-contact power transmission apparatus comprising a resonant system having a secondary coil to be. そして、前記1次コイルのインピーダンスが、前記交流電源の出力インピーダンスと前記共鳴系の入力インピーダンスとが整合するように設定されている。 Then, the impedance of the primary coil, the input impedance of the resonance system and the output impedance of the AC power source is set to match. ここで、「交流電源」とは、交流電圧を出力する電源を意味し、直流電源から入力された直流を交流に変換して出力するものも含む。 Here, "AC power source" means a source that outputs an AC voltage, including those for converting direct current into alternating current inputted from a DC power source. また、「共鳴系の入力インピーダンス」とは、1次コイルの両端で測定した共鳴系全体のインピーダンスを指す。 Further, "the input impedance of the resonance system" refers to the impedance of the entire resonance system measured at both ends of the primary coil. このとき、2次コイルに接続される負荷の有無は問わない。 In this case, the presence or absence of a load connected to the secondary coil is not limited. さらに、「交流電源の出力インピーダンスと共鳴系の入力インピーダンスとが整合する」とは、両インピーダンスが完全に一致することだけでなく、非接触電力伝送装置として所望の性能(電力伝送効率等)を達成する範囲内で、例えば、共鳴系の入力インピーダンスと交流電源の出力インピーダンスとの差が、交流電源の出力インピーダンスに対して±10%の範囲内、好ましくは±5%の範囲内であることも意味する。 Further, "the output impedance of the AC power supply and the input impedance of the resonant system is consistent", not only that both impedance match perfectly, desired performance as a non-contact power transmission apparatus (power transmission efficiency, etc.) within that achieved for that, for example, the difference between the output impedance of the input impedance and an AC power source of the resonant system is in the range of ± 10% with respect to the output impedance of the AC power source, preferably in the range of ± 5% also it means.

これらの発明では、交流電源の出力インピーダンスと共鳴系の入力インピーダンスとが整合されているため、交流電源から効率良く電力を共鳴系に供給することができる。 In these inventions, since the output impedance of the AC power source and the input impedance of the resonant system is matched, it is possible to efficiently supply power from the AC power supply to the resonant system.
特に、請求項1に記載の発明は、前記交流電源は、前記共鳴系の入力インピーダンスと周波数との関係をグラフにした場合の極大点と極小点との間に存在するインピーダンスに対応する周波数の交流電圧を前記1次コイルに印加する。 In particular, the invention according to claim 1, before Symbol AC power supply corresponds to the impedance existing between the maximum and minimum points in the case where the relationship between the input impedance and the frequency of the resonant system to the graph Frequency applying an alternating voltage to the primary coil. この発明では、1次コイルに供給された電力を効率良く負荷に伝送できる。 In the present invention, it transmits the power supplied to the primary coil to efficiently load.

特に、請求項2に記載の発明は、前記交流電源は、前記共鳴系の入力インピーダンスが周波数の増加に伴い減少する範囲内の周波数の交流電圧を前記1次コイルに印加する。 In particular, the invention described in claim 2, prior Symbol AC power supply applies an alternating voltage of a frequency in the range where the input impedance of the resonant system is decreased with increasing frequency to the primary coil. この発明では、1次コイルに供給された電力を効率良く負荷に伝送できる。 In the present invention, it transmits the power supplied to the primary coil to efficiently load.

請求項3及び4に記載の発明は、交流電源から交流電圧が印加される1次コイルと、1次側共鳴コイルと、2次側共鳴コイルと、負荷が接続される2次コイルとを有する共鳴系を備える非接触電力伝送装置の設計方法である。 The invention according to claim 3 and 4, has a primary coil the AC voltage from the AC power is applied, a primary side resonance coil, a secondary side resonance coil and a secondary coil to which a load is connected it is a method of designing a non-contact power transmission apparatus comprising a resonant system. そして、前記交流電源から前記1次コイルへ印加する交流電圧の周波数を設定した後、当該周波数で前記交流電源の出力インピーダンスと前記共鳴系の入力インピーダンスとが整合するように前記1次コイルのインピーダンスを設定する。 Then, after setting the frequency of the AC voltage applied from the AC power source to the primary coil, the impedance of the primary coil such that the input impedance of the resonance system and the output impedance of the AC power supply in the frequency matches to set.

これらの発明は、実験を通して発明者らが得た「1次コイルのインピーダンスを変えても共鳴系全体の電力伝送特性に影響を及ぼさない」との知見に基づく。 These inventions are based on the finding that the inventors have obtained through experiments "does not affect the power transmission characteristics of the entire resonant system be changed impedance of the primary coil." すなわち、非接触電力伝送装置を設計する際に、先ず共鳴系の電力伝送特性(例えば、電力伝送効率が最大となる周波数)に基づき、交流電源から1次コイルに印加される交流電圧の周波数が設定される。 In other words, when designing a non-contact power transmission apparatus, first, the resonance system of the power transmission characteristics (e.g., frequency power transmission efficiency is maximized) on the basis of the frequency of the AC voltage applied from the AC power supply to the primary coil It is set. 次にその周波数で交流電源の出力インピーダンスと共鳴系の入力インピーダンスとが整合(マッチング)するように1次コイルのインピーダンスが設定される。 Then the input impedance of the resonant system and the output impedance of the AC power source at the frequency the impedance of the primary coil in alignment (matching) is set. このとき、1次コイルのインピーダンスを変えても共鳴系の電力伝送特性には影響を及ぼさないので、整合後に再度共鳴系や交流電源の交流周波数等を調整する必要がない。 At this time, since changing the impedance of the primary coil does not affect the power transmission characteristics of the resonant system, it is not necessary to adjust the alternating current frequency and the like again resonant system and the AC power supply after alignment. したがって、交流電源から効率良く共鳴系に電力を供給できる非接触電力伝送装置を提供できる。 Accordingly, it is possible to provide a non-contact power transmission apparatus capable of supplying power from the AC power source to efficiently resonant system. また、交流電源の出力インピーダンスと共鳴系の入力インピーダンスとの整合も容易になる。 Also it facilitates matching the output impedance of the AC power source and the input impedance of the resonant system.

特に、請求項3に記載の発明は、前記交流電源から前記1次コイルに印加する交流電圧の周波数として、前記共鳴系の入力インピーダンスと周波数との関係を調べて入力インピーダンスと周波数との関係をグラフにした場合の極大点と極小点との間の周波数を採用する。 In particular, the invention described in claim 3, prior SL as the frequency of the AC voltage applied to the primary coil from the AC power source, the relationship between the input impedance and frequency by examining the relationship between the input impedance and the frequency of the resonant system the adopting frequency between maximum and minimum points in the case of the graph. この発明では、1次コイルに供給された電力を効率良く負荷に伝送できる。 In the present invention, it transmits the power supplied to the primary coil to efficiently load.

特に、請求項4に記載の発明は、前記交流電源から前記1次コイルに印加する交流電圧の周波数として、前記共鳴系の入力インピーダンスが周波数の増加に伴い減少する範囲内の周波数を採用する。 In particular, the invention described in claim 4, as the frequency of the AC voltage applied from the previous SL AC power to the primary coil, the input impedance of the resonant system adopts a frequency within the range decreases with increasing frequency . この発明では、1次コイルに供給された電力を効率良く負荷に伝送できる。 In the present invention, it transmits the power supplied to the primary coil to efficiently load.

本発明によれば、交流電源から電力を効率良く共鳴系に供給することができる。 According to the present invention, it is possible to supply power from the AC power source to efficiently resonant system.

以下、本発明を具体化した一実施形態を図1〜図4にしたがって説明する。 Hereinafter, an embodiment embodying the present invention with reference to FIGS. 1 to 4.
図1に示すように、非接触電力伝送装置10は、交流電源11から供給される電力を非接触で伝送する共鳴系12を備える。 As shown in FIG. 1, the non-contact power transmission apparatus 10 includes a resonant system 12 for transmitting power supplied from the AC power source 11 in a non-contact manner. 共鳴系12は、交流電源11に接続される1次コイル13と、1次側共鳴コイル14と、2次側共鳴コイル15と、2次コイル16とを有する。 Resonant system 12 includes a primary coil 13 connected to an AC power source 11, the primary side resonance coil 14, the secondary side resonance coil 15, a secondary coil 16. 2次コイル16は負荷17に接続されている。 Secondary coil 16 is connected to the load 17.

交流電源11から1次コイル13に交流電圧を印加することにより1次コイル13に磁場を発生させる。 Generating a magnetic field in the primary coil 13 by applying an AC voltage from the AC power supply 11 to the primary coil 13. この磁場を1次側共鳴コイル14と2次側共鳴コイル15とによる磁場共鳴により増強し、増強された2次側共鳴コイル15付近の磁場から2次コイル16で電磁誘導を利用して電力を取り出し負荷17に供給する。 The field enhanced by the magnetic field resonance by the primary side resonance coil 14 and the secondary side resonance coil 15, the power using electromagnetic induction in the secondary coil 16 from the magnetic field of the enhanced secondary side resonance coil 15 around It is supplied to the take-out load 17.

1次コイル13、1次側共鳴コイル14、2次側共鳴コイル15及び2次コイル16は電線により形成されている。 The primary coil 13, 1, the primary side resonance coil 14, the secondary side resonance coil 15 and the secondary coil 16 is formed by the wire. コイルの径や巻数は、伝送しようとする電力の大きさ等に対応して適宜設定される。 Diameter and number of turns of the coils is suitably set corresponding to the size of the power to be transmitted. この実施形態では1次コイル13、1次側共鳴コイル14、2次側共鳴コイル15及び2次コイル16は、同じ径に形成されている。 The primary coil 13, 1, the primary side resonance coil 14, the secondary side resonance coil 15 and the secondary coil 16 in this embodiment is formed to have the same diameter.

交流電源11は、交流電圧を出力する電源である。 AC power supply 11 is a power source that outputs an AC voltage. 交流電源11の出力交流電圧の周波数、即ち、交流電源11の交流周波数は自由に変えられるようになっている。 Frequency of the output AC voltage of the AC power source 11, i.e., the AC frequency of the AC power source 11 is adapted to be freely changed. したがって、共鳴系12に印加される交流電圧の周波数は自由に変えることができる。 Therefore, the frequency of the AC voltage applied to the resonant system 12 can be freely changed.

次に前記のように構成された非接触電力伝送装置10の設計方法を説明する。 Next will be described how to design a non-contact power transmission apparatus 10 configured as described above.
この設計方法は、先ず、共鳴系12を構成する1次側共鳴コイル14及び2次側共鳴コイル15の仕様を設定する。 The design method first sets the specifications of the primary side resonance coil 14 and the secondary side resonance coil 15 constituting the resonant system 12. 仕様としては、例えば、1次側共鳴コイル14及び2次側共鳴コイル15を構成する電線の材質の他に電線の太さ、コイルの径、巻数、両共鳴コイル間距離等の両共鳴コイルを製作、設置するのに必要な値がある。 The specifications, for example, the primary side resonance coil 14 and the secondary side in addition to the wire thickness of the material of the wires forming the resonance coil 15, the diameter of the coil, number of turns, both the resonance coils such as the distance between the resonance coils production, there is a value required for installation. 次に、1次コイル13及び2次コイル16の仕様を設定する。 Then, set the specifications of the primary coil 13 and secondary coil 16. 仕様としては、両コイル13,16を構成する電線の材質の他に電線の太さ、コイルの径、巻数がある。 The specification, in addition to the wire thickness of the material of the wires forming the two coils 13, 16, the diameter of the coil, there is a number of turns. 通常は電線として銅線が使用される。 Usually copper wire is used as a wire.

次に設定された仕様で1次コイル13、1次側共鳴コイル14、2次側共鳴コイル15及び2次コイル16を形成するとともに、共鳴系12を組み立てる。 To form a primary coil 13, 1, the primary side resonance coil 14, the secondary side resonance coil 15 and the secondary coil 16 and then at the set specification, assembling the resonant system 12. そして、交流電源11から1次コイル13に印加する交流電圧の周波数を変更しながら、その共鳴系12の入力インピーダンス(1次コイル13の両端で測定した共鳴系12全体のインピーダンス)を測定する。 Then, while changing the frequency of the AC voltage applied from the AC power supply 11 to the primary coil 13, measures the input impedance of the resonant system 12 (the impedance of the entire resonant system 12 measured at both ends of the primary coil 13). また、負荷17を2次コイル16に接続した状態で交流電源11の交流周波数を変えながら、例えば、交流周波数に対する電力伝送効率、伝送電力等必要な共鳴系12の電力伝送特性を測定する。 Further, while changing the AC frequency of the AC power source 11 while connecting the load 17 to the secondary coil 16, for example, power transmission efficiency for the AC frequency, to measure the power transmission characteristics of the transmission power, etc. required resonant system 12. そして、所望の電力伝送特性が得られる交流周波数を駆動周波数として設定する。 Then, set the AC frequency of the desired power transmission characteristic is obtained as the driving frequency.

次にその駆動周波数で交流電源11の出力インピーダンスと共鳴系12の入力インピーダンスとが整合するように1次コイル13のインピーダンスを調整する。 Then the input impedance of the output impedance and the resonant system 12 of the AC power source 11 at the driving frequency to adjust the impedance of the primary coil 13 to match. 具体的には、1次コイル13のコイル径、巻数、巻線間隔等を調整する。 Specifically, adjusting the coil diameter of the primary coil 13, the number of turns, the winding interval and the like.

交流電源11の出力インピーダンスと共鳴系12の入力インピーダンスとを整合させるとき、両インピーダンスが完全に一致することが最も望ましいが、例えば、非接触電力伝送装置10の電力伝送効率80%以上、または、1次コイル13から交流電源11への反射電力が5%以下等、所望の性能を達成する範囲内での差異は許容される。 When matching the output impedance of the AC power source 11 and the input impedance of the resonant system 12, it is most desirable that both the impedance match completely, for example, the power transmission efficiency of 80% or more of the non-contact power transmission apparatus 10, or, such reflected power from the primary coil 13 to the AC power source 11 is less than 5%, the difference in the range to achieve the desired performance is acceptable. 例えば、共鳴系12の入力インピーダンスと交流電源11の出力インピーダンスとの差が、交流電源11の出力インピーダンスに対して±10%の範囲内、好ましくは±5%の範囲内であっても、両インピーダンスが「整合した」とする。 For example, the difference between the output impedance of the input impedance and an AC power source 11 of the resonant system 12, within a range of ± 10% with respect to the output impedance of the AC power source 11, also preferably in a range of ± 5%, both impedance is a "consistent".

この設計方法は、実験を通して発明者らが得た「1次コイルのインピーダンスを変えても共鳴系全体の電力伝送特性には影響を及ぼさない」との知見に基づく。 The design method is based on the findings of the inventors have obtained a "no effect on the power transmission characteristics of the entire resonant system be changed impedance of the primary coil" throughout the experiment. したがって、共鳴系12の電力伝送特性の設計と、交流電源11の出力インピーダンス及び共鳴系12の入力インピーダンスの整合とを独立に行うことができる。 Therefore, it is possible to perform the design of the power transmission characteristics of the resonant system 12, and a matching of the output impedance of the AC power source 11 and the input impedance of the resonant system 12 independently.

共鳴系12を構成する各コイルの電線としてサイズが0.5sq(平方mm)の自動車用薄肉ビニル絶縁低圧電線(AVS線)を使用して、1次コイル13、1次側共鳴コイル14、2次側共鳴コイル15及び2次コイル16を次の仕様で形成した。 Size as the wire of each coil constituting the resonant system 12 uses the 0.5sq automotive thin vinyl insulated low-voltage wire (sq mm) (AVS wire), the primary coil 13, 1, the primary side resonance coil 14, 2 the following side resonance coil 15 and the secondary coil 16 were formed in the following specification.

1次コイル13及び2次コイル16:巻数…2巻、径…直径150mm、密巻 両共鳴コイル14,15:巻数…45巻、径…直径150mm、密巻、両端開放 共鳴コイル間距離:200mm The primary coil 13 and secondary coil 16: number of turns ... Volume 2, diameter ... diameter 150 mm, densely wound both resonance coil 14: number of turns ... 45 vol, diameter ... diameter 150 mm, tightly wound, across open resonance coil distance: 200 mm
そして、負荷17として50Ωの抵抗を接続して、入力電圧として10Vpp(振幅5V)の正弦波1MHz〜7MHzを1次コイル13に供給して、1次コイル13のインピーダンス及び共鳴系12の入力インピーダンス並びに電力伝送効率ηを測定した。 Then, by connecting a 50Ω resistor as a load 17, a sine wave 1MHz~7MHz supplied to the primary coil 13 of 10 Vpp (amplitude 5V) as the input voltage, the impedance of the primary coil 13 and the input impedance of the resonant system 12 as well as to measure the power transmission efficiency eta. また、1次コイル13のインピーダンスの影響を調べるため、1次コイル13以外のコイルの仕様は変更せずに、1次コイル13の巻数を1巻及び4巻に変更した共鳴系12に対しても同じ条件で同じ測定を行った。 Further, in order to examine the influence of the impedance of the primary coil 13 without changing the coil specification of the non-primary coil 13, with respect to the resonant system 12 changes the number of turns of the primary coil 13 in Volume 1 and Volume 4 It was also carried out the same measured under the same conditions. 測定結果を、横軸が周波数、縦軸がインピーダンス又は電力伝送効率ηを表すグラフにしたものを図2、図3及び図4に示す。 The measurement results, Fig. 2, 3 and 4 those horizontal axis is the graph representing the frequency, the vertical axis impedance or power transmission efficiency eta. 図2〜図4では電力伝送効率ηを単に効率ηとして示している。 2-4 in just the power transmission efficiency eta is indicated as efficiency eta. なお、電力伝送効率ηは負荷での消費電力の1次コイルへの入力電力に対する割合を表し、%で示す場合は、次のようにして求められる。 Incidentally, the power transmission efficiency η represents the ratio of input power to the power consumption of the primary coil at the load, the case shown in% is determined as follows.

電力伝送効率η=(負荷での消費電力/1次コイルへの入力電力)×100[%] (Input power to the power / primary coil of the load) × 100 [%] Power transmission efficiency eta =
図2〜図4の結果から次のことが言える。 The following can be said from the results of FIGS.
1.1次コイル13のインピーダンスZ1は、巻数に拘わらず周波数が1MHzから7MHzまで増加するに伴って単調増加し、増加率は周波数の低い方が大きいことを確認することができる。 Impedance Z1 of 1.1 coil 13 can be frequency regardless of the number of turns along with increases from 1MHz to 7MHz monotonically increasing, the increasing rate confirms that lower frequency is large.

2. 2. 共鳴系12の入力インピーダンスZinは、2MHz以下及び6MHz以上では1次コイル13のインピーダンスとほぼ一致するように変化し、共鳴周波数付近においては並列共振、直列共振が順に生じて、極大点Pmax及び極小点Pminが生じるように変化する。 Input impedance Zin of the resonant system 12, a 2MHz or less and 6MHz or varied to substantially match the impedance of the primary coil 13, the parallel resonance in the vicinity of the resonance frequency, the series resonance occurs in the order, maximum point Pmax and minimum changes as a point Pmin occurs.

3. 3. 電力伝送効率ηは、1次コイル13の巻数に拘わらずほぼ同じ周波数で最大になる。 The power transmission efficiency eta, maximized at approximately the same frequency regardless of the number of turns of the primary coil 13. ここで、電力伝送効率ηが最大になる周波数をその共鳴系12における共鳴周波数と定義する。 Here, the power transmission efficiency η is defined as the resonance frequency at the resonant system 12 a frequency that maximizes.

4. 4. 共鳴系12の入力インピーダンスZinの極大点Pmax及び極小点Pminが生じる周波数の値は1次コイル13の巻数に拘わらずほぼ一定になる。 Frequency value maximum point Pmax and the local minimum point Pmin occurs of the input impedance Zin of the resonant system 12 is substantially constant regardless of the number of turns of the primary coil 13.
5. 5. 共鳴系12の入力インピーダンスZinが極大点Pmaxとなる周波数と極小点Pminとなる周波数の間の周波数で、電力伝送効率ηが高くなる。 At a frequency between frequencies the input impedance Zin of the resonant system 12 is frequency and minimum point Pmin as the maximum point Pmax, the power transmission efficiency η is increased. 特に、この周波数範囲内であって、共鳴系12の入力インピーダンスZinと1次コイル13のインピーダンスZ1とが等しくなる周波数付近で電力伝送効率ηが最大となる。 In particular, be within this frequency range, the power transmission efficiency η becomes maximum at the resonant system 12 input impedance Zin and near a frequency that is the impedance Z1 of the primary coil 13 equals the.

6. 6. 共鳴系12の入力インピーダンスZinが周波数の増加に伴い減少する周波数の範囲内で、電力伝送効率が高くなる。 Within the range of frequencies the input impedance Zin of the resonant system 12 is decreased with an increase in frequency, the power transmission efficiency is increased. 特に、この周波数範囲内であって、共鳴系の入力インピーダンスZinと1次コイル13のインピーダンスZ1とが等しくなる周波数付近で電力伝送効率ηが最大となる。 In particular, be within this frequency range, the power transmission efficiency η is maximum near the frequency of the input impedance Zin of the resonant system and the impedance Z1 of the primary coil 13 is equal.

この実施形態によれば、以下に示す効果を得ることができる。 According to this embodiment, it is possible to obtain the following effects.
(1)非接触電力伝送装置10は、交流電源11から交流電圧を印加される1次コイル13と、1次側共鳴コイル14と、2次側共鳴コイル15と、負荷17が接続される2次コイル16とを有する共鳴系12を備えている。 (1) non-contact power transmission apparatus 10 includes a primary coil 13 which is applied an AC voltage from an AC power source 11, the primary side resonance coil 14, the secondary side resonance coil 15, 2 the load 17 is connected and a resonant system 12 with the next coil 16. そして、交流電源11の出力インピーダンスと共鳴系12の入力インピーダンスZinとが整合されている。 The output impedance of the AC power source 11 and the input impedance Zin of the resonant system 12 are matched. したがって、交流電源11から効率良く電力を共鳴系12に供給することができる。 Therefore, it is possible to supply from the AC power supply 11 power efficiently to the resonant system 12. また、共鳴系12の入力インピーダンスZinと交流電源11の出力インピーダンスとを整合させる際に、共鳴系12の入力インピーダンスZinに代えて1次コイル13のインピーダンスZ1のみを測定すればよい。 Further, when aligning the output impedance of the input impedance Zin and the AC power supply 11 of the resonant system 12 may be measured only impedance Z1 of the primary coil 13 instead of the input impedance Zin of the resonant system 12. したがって、容易に両インピーダンスを整合させることができる。 Therefore, it is possible to easily align the two impedances.

(2)交流電源11は、共鳴系12における入力インピーダンスZinが極大点Pmaxとなる周波数と極小点Pminとなる周波数との間の周波数の交流電圧を1次コイル13に印加する。 (2) AC power supply 11 applies an AC voltage of a frequency between the frequencies of the frequency and the minimum point Pmin of the input impedance Zin becomes the maximum point Pmax of the resonant system 12 to the primary coil 13. したがって、共鳴系12の電力伝送効率ηが高くなる。 Therefore, the power transmission efficiency η of the resonant system 12 is increased. 特に、このような周波数の範囲内であって、共鳴系12の入力インピーダンスZinと1次コイル13のインピーダンスZ1とが等しくなる周波数の交流電圧を1次コイルに印加した場合、共鳴系12の電力伝送効率ηは最大となる。 In particular, in a range of such frequencies, when an AC voltage is applied to the input impedance Zin and the frequency where the impedance Z1 of the primary coil 13 equals the resonant system 12 to the primary coil, the power of the resonant system 12 transmission efficiency η is maximized.

(3)交流電源11は、共鳴系12における入力インピーダンスZinが周波数の増加に伴い減少する範囲内の周波数の交流電圧を1次コイル13に印加する。 (3) AC power source 11 applies an AC voltage of a frequency in a range where the input impedance Zin of the resonant system 12 is decreased with increasing frequency to the primary coil 13. したがって、共鳴系12の電力伝送効率ηが高くなる。 Therefore, the power transmission efficiency η of the resonant system 12 is increased. 特に、このような周波数の範囲内であって、共鳴系12の入力インピーダンスZinと1次コイル13のインピーダンスZ1とが等しくなる周波数の交流電圧を1次コイル13に印加した場合、共鳴系12の電力伝送効率ηは最大となる。 In particular, in a range of such frequencies, when an AC voltage is applied with a frequency and the impedance Z1 of the input impedance Zin and the primary coil 13 of the resonant system 12 is equal to the primary coil 13, the resonant system 12 power transmission efficiency η is maximum.

(4)1次コイル13のインピーダンスZ1を変更しても共鳴系12の共鳴周波数は変化しない。 (4) the resonant frequency of the resonant system 12 also changes the impedance Z1 of the primary coil 13 does not change. したがって、1次コイル13のインピーダンスZ1を調整するだけで、共鳴周波数を変化させずに、交流電源11の出力インピーダンスと共鳴系12の入力インピーダンスZinとを整合することができ、非接触電力伝送装置10の設計、調整が容易となる。 Therefore, only by adjusting the impedance Z1 of the primary coil 13, without changing the resonance frequency, it is possible to match the output impedance of the AC power source 11 and the input impedance Zin of the resonant system 12, the non-contact power transmission apparatus 10 design, it is easy to adjust.

(5)1次コイル13、1次側共鳴コイル14、2次側共鳴コイル15及び2次コイル16は同じ径に形成されている。 (5) the primary coil 13, 1, the primary side resonance coil 14, the secondary side resonance coil 15 and secondary coil 16 are formed on the same diameter. したがって、1次コイル13及び1次側共鳴コイル14を一つの筒に巻くことで入力側の両コイルを容易に製作することができ、2次側共鳴コイル15及び2次コイル16を一つの筒に巻くことで出力側の両コイルを容易に製作することができる。 Therefore, it is possible to easily fabricate the coil on the input side by winding the primary coil 13 and the primary side resonance coil 14 to one cylinder, one cylinder secondary side resonance coil 15 and the secondary coil 16 both coils of the output side can be easily fabricated by winding a.

(6)前記非接触電力伝送装置10の設計方法は、交流電源11から1次コイル13へ印加する交流電圧の周波数を設定した後、当該周波数で交流電源11の出力インピーダンスと共鳴系12の入力インピーダンスとが整合するように1次コイル13のインピーダンスを設定する。 (6) The method of designing a non-contact power transmission apparatus 10, after setting the frequency of the AC voltage applied from the AC power supply 11 to the primary coil 13, the input of the output impedance and the resonant system 12 of the AC power source 11 in the frequency impedance and sets the impedance of the primary coil 13 to match. このとき、1次コイル13のインピーダンスを変えても共鳴系12の電力伝送特性には影響を及ぼさないので、整合後に再度共鳴系12や交流電源11の交流周波数等を調整する必要がない。 At this time, since it does not affect the power transmission characteristics of the resonant system 12 be changed impedance of the primary coil 13, there is no need to adjust the alternating current frequency and the like again resonant system 12 and the AC power supply 11 after alignment. したがって、交流電源11から効率良く共鳴系12に電力を供給できる非接触電力伝送装置10を提供できる。 Accordingly, it is possible to provide a non-contact power transmission apparatus 10 capable of supplying power from the AC power supply 11 is efficiently resonant system 12. また、交流電源11の出力インピーダンスと共鳴系12の入力インピーダンスとの整合も容易になる。 Also it facilitates matching the output impedance of the AC power source 11 and the input impedance of the resonant system 12.

実施形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。 Embodiment is not limited to the above, for example, it may be embodied as follows.
○ 1次コイル13のインピーダンスZ1を調整する場合、1次コイル13の巻数を変更したり、径を変更したり、電線の太さを変更したり、電線の材質を変更したりすることで対応することができる。 When adjusting the impedance Z1 of ○ primary coil 13, to change the number of turns of the primary coil 13, to change the size, change the thickness of the wire, corresponding with or change the material of the wire can do. しかし、コイルの巻数及び径を変更するのが簡単である。 However, it is easy to change the number of turns and diameter of the coil.

○ 電線を巻回してコイルを形成する場合、コイルは円筒状に限らない。 When forming a coil ○ wire winding, the coil is not limited to a cylindrical shape. 例えば、三角筒状、四角筒状、六角筒状等の多角筒状や楕円筒状等の単純な形状の筒状としたり、対称図形ではなく他の異形断面の筒状としたりしてもよい。 For example, a triangular tube shape, rectangular tubular shape, or a cylindrical simple shape polygonal tubular or elliptical cylindrical shape such as a hexagonal tubular shape, it may be or other irregular cross section of the tubular not symmetrical shapes .

○ 1次側共鳴コイル14及び2次側共鳴コイル15は、電線が筒状に巻回されたコイルに限らず、例えば、図5に示すように、電線が一平面上で周回するように巻回された形状としてもよい。 ○ 1 primary side resonance coil 14 and the secondary side resonance coil 15, the wire is not limited to the coil wound into a cylindrical shape, for example, as shown in FIG. 5, the winding as the wire circulates in one plane it may be wound shape.

○ コイルは、電線が密巻されて隣接する巻回部が接触する構成でも、巻回部が接触しないように巻回部の間隔を空けて電線が巻回された構成であってもよい。 ○ coil be configured to winding section wires are adjacent are tightly wound contacts may be configured wire is wound at intervals of winding portion as the winding portion do not contact.
○ 1次コイル13、1次側共鳴コイル14、2次側共鳴コイル15及び2次コイル16が全て同じ径に形成されている必要はない。 ○ 1 primary coil 13,1 primary side resonance coil 14, the secondary side resonance coil 15 and the secondary coil 16 do not need to be formed to the same diameter all. 例えば、1次側共鳴コイル14及び2次側共鳴コイル15は同じ径で、1次コイル13及び2次コイル16は異なる径としてもよい。 For example, the primary side resonance coil 14 and the secondary side resonance coil 15 in the same diameter, the primary coil 13 and secondary coil 16 may have different diameters.

○ 非接触電力伝送装置10の設計方法は、共鳴系12を構成する1次側共鳴コイル14及び2次側共鳴コイル15の仕様を設定した後、交流電源11の仕様を設定し、その交流電源11の出力インピーダンスと共鳴系12の入力インピーダンスが整合するように1次コイル13のインピーダンスを設定する方法に限らない。 ○ a method of designing a non-contact power transmission apparatus 10, after setting the specifications of the primary side resonance coil 14 and the secondary side resonance coil 15 constituting the resonant system 12, to set the specifications of the AC power source 11, the AC power source input impedance of the output impedance and the resonant system 12 of the 11 is not limited to the method of setting the impedance of the primary coil 13 to match. 例えば、先ず、交流電源11の仕様を設定し、その仕様に合わせて共鳴系12を構成する1次側共鳴コイル14及び2次側共鳴コイル15の仕様及び1次コイル13のインピーダンスを設定してもよい。 For example, first, the AC to set the specifications of the power supply 11, by setting the impedance of the specification and the primary coil 13 of the primary side resonance coil 14 and the secondary side resonance coil 15 constituting the resonant system 12 in accordance with the the specification it may be. 交流電源11の仕様を共鳴系12の仕様より先に設定するということは、共鳴系12の仕様を設定する際に、共鳴周波数が決められた状態で1次側共鳴コイル14及び2次側共鳴コイル15を構成する電線の材質、電線の太さ、コイルの径、巻数、両共鳴コイル間距離等の値を設定することになる。 That the specifications of the AC power supply 11 is set before the specifications of the resonant system 12, the resonant system in setting the 12 specifications, the primary side resonance coil 14 and the secondary side resonance in a state where the resonance frequency was determined the material of the wires forming the coil 15, the thickness of the wire, the diameter of the coil, number of turns, will set the value of the distance and the like between the resonance coils.

実施形態の非接触電力伝送装置の構成図。 Diagram of the non-contact power transmission apparatus embodiment. 1次コイルの巻数1巻の場合における1次コイル単体のインピーダンス、共鳴系の入力インピーダンス及び電力伝送効率と周波数との関係を示すグラフ。 The primary coil only impedance in the case of turns, Volume 1 of the primary coil, a graph showing the relationship between the input impedance and power transmission efficiency and frequency of the resonant system. 1次コイルの巻数2巻の場合における1次コイル単体のインピーダンス、共鳴系の入力インピーダンス及び電力伝送効率と周波数との関係を示すグラフ。 The primary coil only impedance in the case of turns, Volume 2 of the primary coil, a graph showing the relationship between the input impedance and power transmission efficiency and frequency of the resonant system. 1次コイルの巻数4巻の場合における1次コイル単体のインピーダンス、共鳴系の入力インピーダンス及び電力伝送効率と周波数との関係を示すグラフ。 The primary coil only impedance in the case of turns four volumes of the primary coil, a graph showing the relationship between the input impedance and power transmission efficiency and frequency of the resonant system. 別の実施形態の入力側共鳴コイル及び出力側共鳴コイルの模式図。 Schematic diagram of the input-side resonance coil and the output-side resonance coil of another embodiment. 従来技術の非接触電力伝送装置の構成図。 Configuration diagram of a contactless power transmission apparatus of the prior art.

符号の説明 DESCRIPTION OF SYMBOLS

Pmax…極大点、Pmin…極小点、10…非接触電力伝送装置、11…交流電源、12…共鳴系、13…1次コイル、14…1次側共鳴コイル、15…2次側共鳴コイル、16…2次コイル、17…負荷。 Pmax ... local maximum point, Pmin ... local minimum point, 10 ... non-contact power transmission apparatus, 11 ... AC power source, 12 ... resonant system, 13 ... primary coil, 14 ... primary resonance coil, 15 ... secondary resonance coil, 16 ... secondary coil, 17 ... load.

Claims (4)

  1. 交流電源から交流電圧が印加される1次コイルと、1次側共鳴コイルと、2次側共鳴コイルと、負荷が接続される2次コイルとを有する共鳴系を備える非接触電力伝送装置であって、 A primary coil the AC voltage from the AC power is applied, there in a non-contact power transmission apparatus comprising a primary side resonance coil, a secondary side resonance coil, a resonance system having a secondary coil to which a load is connected Te,
    前記1次コイルのインピーダンスが、前記交流電源の出力インピーダンスと前記共鳴系の入力インピーダンスとが整合するように設定されており、 Wherein the impedance of the primary coil, is set so that the output impedance of the AC power source and the input impedance of the resonant system is aligned,
    前記交流電源は、前記共鳴系の入力インピーダンスと周波数との関係をグラフにした場合の極大点と極小点との間に存在するインピーダンスに対応する周波数の交流電圧を前記1次コイルに印加することを特徴とする非接触電力伝送装置。 The AC power source, applying an alternating voltage of a frequency corresponding to the impedance existing between the maximum and minimum points in the case where the relationship between the input impedance and the frequency of the resonant system in the graph to the primary coil non-contact power transmission apparatus according to claim.
  2. 交流電源から交流電圧が印加される1次コイルと、1次側共鳴コイルと、2次側共鳴コイルと、負荷が接続される2次コイルとを有する共鳴系を備える非接触電力伝送装置であって、 A primary coil the AC voltage from the AC power is applied, there in a non-contact power transmission apparatus comprising a primary side resonance coil, a secondary side resonance coil, a resonance system having a secondary coil to which a load is connected Te,
    前記1次コイルのインピーダンスが、前記交流電源の出力インピーダンスと前記共鳴系の入力インピーダンスとが整合するように設定されており、 Wherein the impedance of the primary coil, is set so that the output impedance of the AC power source and the input impedance of the resonant system is aligned,
    前記交流電源は、前記共鳴系の入力インピーダンスが周波数の増加に伴い減少する範囲内の周波数の交流電圧を前記1次コイルに印加することを特徴とする非接触電力伝送装置。 The AC power supply, non-contact power transmission apparatus characterized by applying an alternating voltage of a frequency in the range where the input impedance of the resonant system is decreased with increasing frequency to the primary coil.
  3. 交流電源から交流電圧が印加される1次コイルと、1次側共鳴コイルと、2次側共鳴コイルと、負荷が接続される2次コイルとを有する共鳴系を備える非接触電力伝送装置の設計方法であって、 A primary coil the AC voltage from the AC power is applied, a primary side resonance coil, a secondary side resonance coil, design of the resonant system non-contact power transmission device comprising a and a secondary coil to which a load is connected there is provided a method,
    前記交流電源から前記1次コイルに印加する交流電圧の周波数を設定した後、当該周波数で前記交流電源の出力インピーダンスと前記共鳴系の入力インピーダンスとが整合するように前記1次コイルのインピーダンスを設定し、 After setting the frequency of the AC voltage applied to the primary coil from the AC power supply, setting an impedance of the primary coil such that the input impedance of the output impedance of the AC power supply in the frequency and the resonant system is aligned and,
    前記交流電源から前記1次コイルに印加する交流電圧の周波数として、前記共鳴系の入力インピーダンスと周波数との関係を調べて入力インピーダンスと周波数との関係をグラフにした場合の極大点と極小点との間の周波数を採用することを特徴とする非接触電力伝送装置の設計方法。 As the frequency of the AC voltage applied to the primary coil from the AC power source, the maximum and minimum points in the case of the graph the relationship between the input impedance and frequency by examining the relationship between the input impedance and the frequency of the resonant system method of designing a non-contact power transmission apparatus characterized by employing a frequency between.
  4. 交流電源から交流電圧が印加される1次コイルと、1次側共鳴コイルと、2次側共鳴コイルと、負荷が接続される2次コイルとを有する共鳴系を備える非接触電力伝送装置の設計方法であって、 A primary coil the AC voltage from the AC power is applied, a primary side resonance coil, a secondary side resonance coil, design of the resonant system non-contact power transmission device comprising a and a secondary coil to which a load is connected there is provided a method,
    前記交流電源から前記1次コイルに印加する交流電圧の周波数を設定した後、当該周波数で前記交流電源の出力インピーダンスと前記共鳴系の入力インピーダンスとが整合するように前記1次コイルのインピーダンスを設定し、 After setting the frequency of the AC voltage applied to the primary coil from the AC power supply, setting an impedance of the primary coil such that the input impedance of the output impedance of the AC power supply in the frequency and the resonant system is aligned and,
    前記交流電源から前記1次コイルに印加する交流電圧の周波数として、前記共鳴系の入力インピーダンスが周波数の増加に伴い減少する範囲内の周波数を採用することを特徴とする非接触電力伝送装置の設計方法。 As the frequency of the AC voltage applied from the AC power source to the primary coil, the design of the non-contact power transmission apparatus characterized by employing a frequency in the range where the input impedance of the resonant system is decreased with increasing frequency Method.
JP2008283563A 2008-11-04 2008-11-04 Method of designing a non-contact power transmission apparatus and the non-contact power transmission apparatus Expired - Fee Related JP5375032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008283563A JP5375032B2 (en) 2008-11-04 2008-11-04 Method of designing a non-contact power transmission apparatus and the non-contact power transmission apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008283563A JP5375032B2 (en) 2008-11-04 2008-11-04 Method of designing a non-contact power transmission apparatus and the non-contact power transmission apparatus
US12/611,508 US8432066B2 (en) 2008-11-04 2009-11-03 Non-contact power transmission apparatus and method for designing non-contact power transmission apparatus

Publications (2)

Publication Number Publication Date
JP2010114965A JP2010114965A (en) 2010-05-20
JP5375032B2 true JP5375032B2 (en) 2013-12-25

Family

ID=42133029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008283563A Expired - Fee Related JP5375032B2 (en) 2008-11-04 2008-11-04 Method of designing a non-contact power transmission apparatus and the non-contact power transmission apparatus

Country Status (2)

Country Link
US (1) US8432066B2 (en)
JP (1) JP5375032B2 (en)

Families Citing this family (117)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7825543B2 (en) 2005-07-12 2010-11-02 Massachusetts Institute Of Technology Wireless energy transfer
US8115448B2 (en) 2007-06-01 2012-02-14 Michael Sasha John Systems and methods for wireless power
US9421388B2 (en) 2007-06-01 2016-08-23 Witricity Corporation Power generation for implantable devices
US9396867B2 (en) 2008-09-27 2016-07-19 Witricity Corporation Integrated resonator-shield structures
US8076801B2 (en) * 2008-05-14 2011-12-13 Massachusetts Institute Of Technology Wireless energy transfer, including interference enhancement
US8907531B2 (en) 2008-09-27 2014-12-09 Witricity Corporation Wireless energy transfer with variable size resonators for medical applications
US9065423B2 (en) 2008-09-27 2015-06-23 Witricity Corporation Wireless energy distribution system
US8461720B2 (en) * 2008-09-27 2013-06-11 Witricity Corporation Wireless energy transfer using conducting surfaces to shape fields and reduce loss
US8772973B2 (en) 2008-09-27 2014-07-08 Witricity Corporation Integrated resonator-shield structures
US8587155B2 (en) * 2008-09-27 2013-11-19 Witricity Corporation Wireless energy transfer using repeater resonators
US9184595B2 (en) 2008-09-27 2015-11-10 Witricity Corporation Wireless energy transfer in lossy environments
US8643326B2 (en) 2008-09-27 2014-02-04 Witricity Corporation Tunable wireless energy transfer systems
US9515494B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless power system including impedance matching network
US8598743B2 (en) 2008-09-27 2013-12-03 Witricity Corporation Resonator arrays for wireless energy transfer
US8723366B2 (en) 2008-09-27 2014-05-13 Witricity Corporation Wireless energy transfer resonator enclosures
US8933594B2 (en) 2008-09-27 2015-01-13 Witricity Corporation Wireless energy transfer for vehicles
US9601261B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Wireless energy transfer using repeater resonators
US8324759B2 (en) * 2008-09-27 2012-12-04 Witricity Corporation Wireless energy transfer using magnetic materials to shape field and reduce loss
US9602168B2 (en) 2010-08-31 2017-03-21 Witricity Corporation Communication in wireless energy transfer systems
US9105959B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Resonator enclosure
US8901778B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with variable size resonators for implanted medical devices
US9160203B2 (en) 2008-09-27 2015-10-13 Witricity Corporation Wireless powered television
US8466583B2 (en) 2008-09-27 2013-06-18 Witricity Corporation Tunable wireless energy transfer for outdoor lighting applications
US9601270B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Low AC resistance conductor designs
US8937408B2 (en) 2008-09-27 2015-01-20 Witricity Corporation Wireless energy transfer for medical applications
US9318922B2 (en) 2008-09-27 2016-04-19 Witricity Corporation Mechanically removable wireless power vehicle seat assembly
US8692412B2 (en) 2008-09-27 2014-04-08 Witricity Corporation Temperature compensation in a wireless transfer system
US8922066B2 (en) 2008-09-27 2014-12-30 Witricity Corporation Wireless energy transfer with multi resonator arrays for vehicle applications
US8686598B2 (en) 2008-09-27 2014-04-01 Witricity Corporation Wireless energy transfer for supplying power and heat to a device
US8629578B2 (en) 2008-09-27 2014-01-14 Witricity Corporation Wireless energy transfer systems
US8587153B2 (en) 2008-09-27 2013-11-19 Witricity Corporation Wireless energy transfer using high Q resonators for lighting applications
US9093853B2 (en) 2008-09-27 2015-07-28 Witricity Corporation Flexible resonator attachment
US8569914B2 (en) 2008-09-27 2013-10-29 Witricity Corporation Wireless energy transfer using object positioning for improved k
US8957549B2 (en) 2008-09-27 2015-02-17 Witricity Corporation Tunable wireless energy transfer for in-vehicle applications
US9246336B2 (en) 2008-09-27 2016-01-26 Witricity Corporation Resonator optimizations for wireless energy transfer
US8441154B2 (en) 2008-09-27 2013-05-14 Witricity Corporation Multi-resonator wireless energy transfer for exterior lighting
EP3185432B1 (en) 2008-09-27 2018-07-11 WiTricity Corporation Wireless energy transfer systems
US8461722B2 (en) 2008-09-27 2013-06-11 Witricity Corporation Wireless energy transfer using conducting surfaces to shape field and improve K
US9544683B2 (en) 2008-09-27 2017-01-10 Witricity Corporation Wirelessly powered audio devices
US9744858B2 (en) 2008-09-27 2017-08-29 Witricity Corporation System for wireless energy distribution in a vehicle
US8552592B2 (en) * 2008-09-27 2013-10-08 Witricity Corporation Wireless energy transfer with feedback control for lighting applications
US8669676B2 (en) 2008-09-27 2014-03-11 Witricity Corporation Wireless energy transfer across variable distances using field shaping with magnetic materials to improve the coupling factor
US8482158B2 (en) 2008-09-27 2013-07-09 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US8946938B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Safety systems for wireless energy transfer in vehicle applications
US8471410B2 (en) 2008-09-27 2013-06-25 Witricity Corporation Wireless energy transfer over distance using field shaping to improve the coupling factor
US8912687B2 (en) 2008-09-27 2014-12-16 Witricity Corporation Secure wireless energy transfer for vehicle applications
US8963488B2 (en) 2008-09-27 2015-02-24 Witricity Corporation Position insensitive wireless charging
US8947186B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Wireless energy transfer resonator thermal management
US9601266B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Multiple connected resonators with a single electronic circuit
US9106203B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Secure wireless energy transfer in medical applications
US8461721B2 (en) 2008-09-27 2013-06-11 Witricity Corporation Wireless energy transfer using object positioning for low loss
US9035499B2 (en) 2008-09-27 2015-05-19 Witricity Corporation Wireless energy transfer for photovoltaic panels
US8487480B1 (en) 2008-09-27 2013-07-16 Witricity Corporation Wireless energy transfer resonator kit
US8497601B2 (en) 2008-09-27 2013-07-30 Witricity Corporation Wireless energy transfer converters
US8304935B2 (en) * 2008-09-27 2012-11-06 Witricity Corporation Wireless energy transfer using field shaping to reduce loss
US8901779B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with resonator arrays for medical applications
US8692410B2 (en) * 2008-09-27 2014-04-08 Witricity Corporation Wireless energy transfer with frequency hopping
US9577436B2 (en) 2008-09-27 2017-02-21 Witricity Corporation Wireless energy transfer for implantable devices
US8410636B2 (en) 2008-09-27 2013-04-02 Witricity Corporation Low AC resistance conductor designs
US20100259110A1 (en) * 2008-09-27 2010-10-14 Kurs Andre B Resonator optimizations for wireless energy transfer
US8400017B2 (en) 2008-09-27 2013-03-19 Witricity Corporation Wireless energy transfer for computer peripheral applications
US8928276B2 (en) 2008-09-27 2015-01-06 Witricity Corporation Integrated repeaters for cell phone applications
US8476788B2 (en) 2008-09-27 2013-07-02 Witricity Corporation Wireless energy transfer with high-Q resonators using field shaping to improve K
US8362651B2 (en) * 2008-10-01 2013-01-29 Massachusetts Institute Of Technology Efficient near-field wireless energy transfer using adiabatic system variations
DE102009006970A1 (en) * 2009-02-02 2010-08-05 Siemens Aktiengesellschaft Potential isolated functional testing of components
JP5625263B2 (en) * 2009-05-18 2014-11-19 トヨタ自動車株式会社 Coil units, non-contact power transmission apparatus, a contactless power supply system and an electric vehicle
JP2011142559A (en) * 2010-01-08 2011-07-21 Sony Corp Power feeding device, power receiving device, and wireless feeding system
JP5146488B2 (en) * 2010-05-26 2013-02-20 トヨタ自動車株式会社 Power supply system and a vehicle
JP5177187B2 (en) * 2010-08-10 2013-04-03 株式会社村田製作所 Power transmission system
JP5126324B2 (en) * 2010-09-10 2013-01-23 トヨタ自動車株式会社 The method of the power supply apparatus, and power supply system
RU2538762C1 (en) * 2010-11-12 2015-01-10 Ниссан Мотор Ко., Лтд. Device of non-contact power supply
WO2012086051A1 (en) * 2010-12-24 2012-06-28 トヨタ自動車株式会社 Contactless power supply system, vehicle, power supply facility, and contactless power supply system control method
JP2012143117A (en) * 2011-01-06 2012-07-26 Toyota Industries Corp Non-contact power transmission device
CN103443883B (en) * 2011-01-14 2016-10-12 香港城市大学 Wireless power transmission apparatus and method for
CN103370849B (en) * 2011-02-15 2017-03-22 丰田自动车株式会社 Non-contact power receiving apparatus and a vehicle equipped with the apparatus, the non-contact power supply device, a control method of a non-contact power receiving apparatus and a control method of a non-contact power feeding device
DE102011050342A1 (en) * 2011-05-13 2012-11-15 Dr. Hahn Gmbh & Co. Kg Method and device for contactless transmission of electrical energy between a wall and secured to this wall wings
US9027236B2 (en) * 2011-05-31 2015-05-12 General Electric Company Resonator structures and method of making
JP5590237B2 (en) * 2011-06-13 2014-09-17 株式会社村田製作所 The power transmission system and the power receiving device
US9893566B2 (en) 2011-06-30 2018-02-13 Yazaki Corporation Power supply system
EP2728710B1 (en) * 2011-06-30 2017-11-01 Yazaki Corporation Electrical supply system
WO2013002240A1 (en) * 2011-06-30 2013-01-03 矢崎総業株式会社 Power feeding system design method and power feeding system
US9948145B2 (en) 2011-07-08 2018-04-17 Witricity Corporation Wireless power transfer for a seat-vest-helmet system
EP3435389A1 (en) 2011-08-04 2019-01-30 WiTricity Corporation Tunable wireless power architectures
CA2848040A1 (en) 2011-09-09 2013-03-14 Witricity Corporation Foreign object detection in wireless energy transfer systems
JP5927826B2 (en) * 2011-09-28 2016-06-01 日産自動車株式会社 Non-contact power feeding device
JP5781882B2 (en) * 2011-09-29 2015-09-24 トヨタ自動車株式会社 Power transmitting device, a vehicle and a power transmission system
US9318257B2 (en) 2011-10-18 2016-04-19 Witricity Corporation Wireless energy transfer for packaging
AU2012332131A1 (en) 2011-11-04 2014-05-22 Witricity Corporation Wireless energy transfer modeling tool
EP2807720A4 (en) 2012-01-26 2015-12-02 Witricity Corp Wireless energy transfer with reduced fields
US9431989B2 (en) 2012-03-30 2016-08-30 Panasonic Intellectual Property Management Co., Ltd. Power transmitting device, electronic equipment and wireless power transmission system
US9343922B2 (en) 2012-06-27 2016-05-17 Witricity Corporation Wireless energy transfer for rechargeable batteries
JP5867607B2 (en) * 2012-07-30 2016-02-24 日産自動車株式会社 Non-contact power feeding device
US9287607B2 (en) 2012-07-31 2016-03-15 Witricity Corporation Resonator fine tuning
US9697951B2 (en) * 2012-08-29 2017-07-04 General Electric Company Contactless power transfer system
US9595378B2 (en) 2012-09-19 2017-03-14 Witricity Corporation Resonator enclosure
CN104885327B (en) 2012-10-19 2019-03-29 无线电力公司 External analyte detection in wireless energy transfer system
US9449757B2 (en) 2012-11-16 2016-09-20 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
JP2016534698A (en) 2013-08-14 2016-11-04 ワイトリシティ コーポレーションWitricity Corporation Impedance tuning
FR3010252B1 (en) * 2013-08-30 2015-08-21 Continental Automotive France Device and charging method by magnetic coupling dual-mode for motor vehicle
US9780573B2 (en) 2014-02-03 2017-10-03 Witricity Corporation Wirelessly charged battery system
US9952266B2 (en) 2014-02-14 2018-04-24 Witricity Corporation Object detection for wireless energy transfer systems
US9892849B2 (en) 2014-04-17 2018-02-13 Witricity Corporation Wireless power transfer systems with shield openings
US9842687B2 (en) 2014-04-17 2017-12-12 Witricity Corporation Wireless power transfer systems with shaped magnetic components
US9837860B2 (en) 2014-05-05 2017-12-05 Witricity Corporation Wireless power transmission systems for elevators
EP3140680A1 (en) 2014-05-07 2017-03-15 WiTricity Corporation Foreign object detection in wireless energy transfer systems
US9954375B2 (en) 2014-06-20 2018-04-24 Witricity Corporation Wireless power transfer systems for surfaces
WO2016007674A1 (en) 2014-07-08 2016-01-14 Witricity Corporation Resonator balancing in wireless power transfer systems
US9843217B2 (en) 2015-01-05 2017-12-12 Witricity Corporation Wireless energy transfer for wearables
JP6512600B2 (en) * 2015-04-13 2019-05-15 一般財団法人電力中央研究所 Contactless power transmission circuit and contactless power supply system
US10224752B2 (en) 2015-08-28 2019-03-05 Qualcomm Incorporated Method and apparatus for computer aided designing, tuning and matching of wireless power transfer systems
WO2017062647A1 (en) 2015-10-06 2017-04-13 Witricity Corporation Rfid tag and transponder detection in wireless energy transfer systems
CN108700620A (en) 2015-10-14 2018-10-23 无线电力公司 Phase and amplitude detection in wireless energy transfer systems
WO2017070227A1 (en) 2015-10-19 2017-04-27 Witricity Corporation Foreign object detection in wireless energy transfer systems
CN108781002A (en) 2015-10-22 2018-11-09 韦特里西提公司 Dynamic tuning in wireless energy transfer systems
US10075019B2 (en) 2015-11-20 2018-09-11 Witricity Corporation Voltage source isolation in wireless power transfer systems
CA3012325A1 (en) 2016-02-02 2017-08-10 Witricity Corporation Controlling wireless power transfer systems
US10063104B2 (en) 2016-02-08 2018-08-28 Witricity Corporation PWM capacitor control

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2306616A3 (en) * 2005-07-12 2017-07-05 Massachusetts Institute of Technology (MIT) Wireless non-radiative energy transfer
US7825543B2 (en) * 2005-07-12 2010-11-02 Massachusetts Institute Of Technology Wireless energy transfer
JP2008125198A (en) * 2006-11-09 2008-05-29 Ishida Co Ltd Non-contact feeder system
JP5190108B2 (en) 2007-03-27 2013-04-24 マサチューセッツ インスティテュート オブ テクノロジー Wireless energy transfer device
US8610312B2 (en) * 2007-09-17 2013-12-17 Hideo Kikuchi Induced power transmission circuit
JP4453741B2 (en) 2007-10-25 2010-04-21 トヨタ自動車株式会社 Electric vehicles and vehicle power supply system
RU2469880C1 (en) * 2008-09-25 2012-12-20 Тойота Дзидося Кабусики Кайся Power supply system and electrically driven vehicle

Also Published As

Publication number Publication date
US20100115474A1 (en) 2010-05-06
US8432066B2 (en) 2013-04-30
JP2010114965A (en) 2010-05-20

Similar Documents

Publication Publication Date Title
RU2488207C1 (en) Method and device for transmission of power
EP1741113B1 (en) A device and method of non-contact energy transmission
KR101248453B1 (en) Non-contact power transmission apparatus and power transmission method using a non-contact power transmission apparatus
KR101859191B1 (en) Method and apparatus for controlling wireless power transmission and reception, and wireless power transmission system
EP2903121A1 (en) Contactless power transfer system and method
CN102577026B (en) The wireless power transmission apparatus includes a power generation apparatus and the wireless power transmission apparatus
CN103187629B (en) Increase factor of the resonator q
CN104682573B (en) Transmission coil unit and a wireless power transmission apparatus
EP2216878A2 (en) Non-contact power transmission apparatus
EP2395628A1 (en) Non-contact power transmission device
CN101023600B (en) An amplification relay device of electromagnetic wave and a radio electric power conversion apparatus using the above device
US20090303760A1 (en) Resonant transformer systems and methods of use
JP5350378B2 (en) Wireless energy transfer using coupled antennas
JP2010539876A (en) Antenna for wireless power applications
JP2014113040A (en) Long range low frequency resonator and materials
JP4258505B2 (en) Power supply system
JP5114371B2 (en) Non-contact power transmission apparatus
CN101785073B (en) Power transmitting apparatus, power transmitter and power receiver for power transmitting apparatus and method for operating power transmitting apparatus
CN101849342A (en) High efficiency and power transfer in wireless power magnetic resonators
JP5459058B2 (en) Resonance type non-contact power transmission apparatus
CN102122848A (en) Power feed device, power receiving device, and wireless power feed system
JP2011142724A (en) Noncontact power transmission device and near field antenna for same
JPH06215955A (en) Electronic tuning adjusting circuit using variable inductive element and tuning tank circuit
JP2011229360A (en) Contactless power supply device and contactless power supply method
JP5114372B2 (en) Power transmission method and the non-contact power transmission apparatus in the non-contact power transmission apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130909

LAPS Cancellation because of no payment of annual fees