JP2004166459A - Non-contact feeding device - Google Patents

Non-contact feeding device Download PDF

Info

Publication number
JP2004166459A
JP2004166459A JP2002332448A JP2002332448A JP2004166459A JP 2004166459 A JP2004166459 A JP 2004166459A JP 2002332448 A JP2002332448 A JP 2002332448A JP 2002332448 A JP2002332448 A JP 2002332448A JP 2004166459 A JP2004166459 A JP 2004166459A
Authority
JP
Japan
Prior art keywords
power
feeding
secondary battery
device
receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002332448A
Other languages
Japanese (ja)
Inventor
Manabu Sasaki
Kitao Yamamoto
学 佐々木
喜多男 山本
Original Assignee
Mitsui Eng & Shipbuild Co Ltd
三井造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Eng & Shipbuild Co Ltd, 三井造船株式会社 filed Critical Mitsui Eng & Shipbuild Co Ltd
Priority to JP2002332448A priority Critical patent/JP2004166459A/en
Publication of JP2004166459A publication Critical patent/JP2004166459A/en
Application status is Pending legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned, underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/08Propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned, underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • B63G2008/002Underwater vessels adapted for special purposes, e.g. unmanned, underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned
    • B63G2008/005Underwater vessels adapted for special purposes, e.g. unmanned, underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned remotely controlled
    • B63G2008/007Underwater vessels adapted for special purposes, e.g. unmanned, underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned remotely controlled by means of a physical link to a base, e.g. wire, cable or umbilical

Abstract

PROBLEM TO BE SOLVED: To provide a non-contact feeding device that can feed power only when a gap between a feeding position and a receiving one is within a prescribed value.
SOLUTION: A secondary battery mounted device 3 that uses a secondary battery (not shown) as a power source is provided with a feeding control portion 12. This feeding control portion 12 starts feeding power when proximity sensors 13 detect that the facing surfaces of the feeding portion 2-1 of a power supply 2 that comes close to the device 3 and feeds power by an electromagnetic induction means in a non-contact way to charge the secondary battery and of the receiving portion 3-1 of the device 3 are close to each other with a little gap. Feeding is stopped when a receiving detection sensor 11 does not detect within a certain period of time that the receiving portion 3-1 has reached a chargeable position.
COPYRIGHT: (C)2004,JPO

Description

【0001】 [0001]
【発明の属する技術分野】 BACKGROUND OF THE INVENTION
本発明は、電磁誘導作用を利用して給電する非接触給電装置に関し、更に詳細には、例えば海中施設などに搭載する2次電池に給電装置を搭載した水中ロボットを使用して給電する際に、前記施設の受電部位にロボットの給電部位が正しく配置されたことを自動的に確認して給電を行なう非接触給電装置に関するものである。 The present invention relates to a non-contact power feeding device for feeding power by using electromagnetic induction action, more particularly, for example, when the power supply using the underwater robot equipped with a power supply device to the secondary battery to be mounted like the sea facilities relates contactless power transfer system that performs automatic check and feeding that the feeding portion of the robot to the receiving portion of the facility is correctly positioned.
【0002】 [0002]
【従来の技術】 BACKGROUND OF THE INVENTION
リチウム電池など、高性能、軽量、且つ密閉型2次電池が開発されたため、長時間電源から切り離して機器を作動させることが可能となり、またコードレス電話器、電気髭剃り器、電気自動車など各種分野で、それぞれの必要性からコンセントなどの電気接点を使用しないで充電できる非接触型給電装置、即ち電磁誘導方式を用いた給電装置が提案され、また実際に使用されるに至っている。 Such as lithium batteries, high performance, light weight, and since the sealed secondary battery has been developed, capable to operate the equipment separately from the long power supply and will also cordless telephone, electric shaving apparatus, various fields such as electric cars in, has led to the non-contact power feeding device can be charged without using electrical contacts, such as outlets from the respective needs, namely power feeding apparatus using an electromagnetic induction method have been proposed, also used in practice.
【0003】 [0003]
前記電磁誘導方式による給電上の問題として、何らかの原因で受電部位に金属が置かれると、電磁誘導作用により発熱し、装置が加熱されて故障の原因となったり、最悪の場合火災を起こすなどのおそれが生じる。 As a power supply problems by the electromagnetic induction method, the metal is placed in the receiving part for some reason, heat is generated by electromagnetic induction, or a malfunction is heated device, such as causing the worst fires there is a risk.
【0004】 [0004]
その対策として、電気髭剃り器(以下シェーバーという)の非接触充電器の小型化技術を開示した「小型高効率共振トランスを用いた非接触充電器」(松下電工技報(DEC.2001)88〜92ページ)には、充電器上にシェーバーが置かれているか否かの識別を行なう手段として、トランス1次側コアおよびトランス2次側コアにそれぞれ電力伝達用1次、 2次巻線の外に、本体検知・充電制御信号用巻線および間歇発振用巻線を設け、電力伝達時以外は間歇発振用巻線により励磁高周波電流を供給し、シェーバー本体側から受電したことを知らせる本体検知信号が出力されない限り充電操作を行なわないようにすることで、ジェーバー以外の対象に電力を供給しないようにしたものである。 As a countermeasure, the electrical shaving device "contactless charger using a small high-efficiency resonant transformer" disclosed miniaturization technology contactless charger (hereinafter referred to as shavers) (Matsushita Electric Works Technical Report (DEC.2001) 88 the to 92 pages), a means for identifying whether shaver is placed on the charger, the primary side of the transformer core and transformer secondary core to the primary, respectively for power transmission, the secondary winding of the outside, body detection and charge control signal windings and provided intermittently oscillation winding, except when power transfer supplies an excitation frequency current by intermittently oscillating winding body detection saying the receiving from the shaver main body by not perform charging operation unless the signal is output is obtained by so as not to supply power to target other than Jeba.
【0005】 [0005]
【非特許文献1】 Non-Patent Document 1]
桂 嘉志、山下 幹広、安部 秀明共著「小型高効率共振トランスを用いた非接触充電器」松下電工技報(2001年12月、p.88〜92) Katsura Yoshimikokorozashi, Yamashita Mikihiro, "non-contact charger using a compact, high-efficiency resonant transformer" Hideaki Abe co Matsushita Electric Works Technical Report (December 2001, p.88~92)
【0006】 [0006]
【発明が解決しようとする課題】 [Problems that the Invention is to Solve
ところで、例えば海水の水質などを長期間継続的に定点観測する要望が高まっている。 By the way, for example, a long period of time continue to desire to fixed-point observation water quality and sea water is increasing. そのための動力源として各種一次電池を使用すると設備費は安価となるが使い捨てであるため環境保全重視の社会的要望に反し好ましくなく、各種二次電池に太陽電池や波動発電機を組み合わせる方法は気象・海象の影響を受けるため作動の確実性に欠け、10ワット程度の小電力用としてのみ可能性があると認められる。 Not preferable contrary to the social demands of environmental conservation importance for equipment costs and use a variety of primary battery is less expensive is disposable as a power source for that, how to combine solar cells and wave power generator in various secondary battery is weather - due to the influence of sea conditions lacking in reliability of operation, it is recognized to be only possible for the small power of about 10 watts. また燃料電池は開発中の技術であり、また商用電力を直接供給するには海底ケーブルの敷設工事が必要となり経済上の問題が生じる。 The fuel cell is a technology under development, also economic problems become a supplies commercial power directly required laying submarine cable occurs.
【0007】 [0007]
したがって各種二次電池を水中施設に取り付け、水中ロボットにより充電するという組み合わせが最も実際的であると考えられる。 Thus mounting the various secondary batteries in water facilities, a combination that charged by underwater robot is considered to be the most practical. 例えば、50ワット負荷を7日間(158時間)使用すると消費電力量はで8.4kWhとなり、これを仮に2kWで充電すると約4時間で充電できる。 For example, it can be charged with the power consumption 50 wattage load of 7 days (158 hours) used in 8.4kWh next, when this provisionally charged with 2kW about 4 hours. したがって水中ロボットによる充電方式は、長期定点観測の実現性に最も高い方式の一つと考えられる。 Charging method according underwater robot therefore is considered one of the highest scheme feasibility of long-term fixed-point observation.
【0008】 [0008]
このような場合、給電方式は水中であるから当然非接触型給電方式となるが、給電装置に鉄などの透磁率の高い異物が近づいた場合、これを誘導加熱してしまうおそれがある。 In this case, the feeding method becomes naturally non-contact power supply system because it is water, if the high magnetic permeability foreign material such as iron is close to the power supply device, which may result in the induction heating it. かかる事態の回避と、視界が十分でない海中での遠隔操縦により確実に給電側と受電側の鉄心が正確に一定範囲内に接近させる必要があるという問題がある。 And avoidance of such a situation, there is a problem that visibility is reliably core of the power receiving side and the power supply side by the remote-controlled underwater not sufficient it is necessary to accurately close within a certain range.
【0009】 [0009]
本発明は、以上の問題に着目してなされたものであり、経済的理由などで送電ケーブルの敷設が困難な海中設備などに装備した2次電池に給電する給電装置において、給電部位と受電部位との間隔が所定値内にあるときに給電可能となる非接触型給電装置を提供することを目的としている。 The present invention has been made in view of the above problems, in the power supply device installed in the transmission cable, such as for economic reasons to power the secondary battery equipped like the difficult subsea equipment, the feeding portion and the power receiving portion interval is an object to provide a non-contact power feeding device that enables power supply when it is within a predetermined value.
【0010】 [0010]
【課題を解決するための手段】 In order to solve the problems]
上記目的を達成するための本発明の非接触型給電装置は、2次電池を動力源として作動する2次電池搭載装置と、前記2次電池に充電する電源装置とが、充電時にいずれかまたは相互に、また自動的にまたは遠隔操作により接近して電磁誘導手段により非接触的に給電する給電装置において、前記電源装置の給電部と、前記2次電池搭載装置の受電部とが接近し給電可能状態となると、少なくとも僅かな隙間を開けて相対する面が生じるように前記両装置を形成し、前記相対する面が予め定めた間隔以内に接近すると給電開始信号を出力する近接センサと、前記受電部が充電可能状態に達したことを検知する受電検知センサとを設け、前記近接センサが前記接近を検知すると、給電を開始し、 給電開始後一定時間内に前記受電検知センサが受 Non-contact power feeding device of the present invention for achieving the above object, a secondary battery mounting device for operating a secondary battery as a power source, a power supply unit for charging the secondary battery, either at the time of charging or another, also in the power supply device for contactlessly powered by electromagnetic induction means closer to the automatic or remote control, and power supply portion of the power supply, the power receiving portion of the secondary battery mounted device approaches the feed When the state, a proximity sensor at least slight with a gap to form the two devices so that opposing surfaces occurs, the opposing surfaces to output the power supply start signal approaches within a predetermined interval, the a receiving sensor which receiving unit detects that it has reached the charge state provided, when the proximity sensor detects the approach, and starts to supply power, the power receiving sensor is received in the feeding start after a predetermined time 電開始信号を検知すると給電を継続し、何らかの原因で前記一定時間内に前記受電開始信号を検知しないと給電を停止する給電制御部を設けたものである。 Electric start signal continues feeding and sensing, and is provided with a power supply controller to stop the power supply and does not detect the receiving start signal within said predetermined time for some reason.
【0011】 [0011]
前記何らかの原因とは、例えば近接センサが2次電池搭載装置以外の物体に反応し、誤作動した場合、前記受電部が故障している場合などである。 Wherein the some reason, for example, a proximity sensor reacts to an object other than the secondary battery mounted device, if the malfunction, or the like when the power receiving unit is faulty.
【0012】 [0012]
前記近接センサには特に限定は無く、光を利用するもの、静電容量の変化を利用するもの、超音波を利用するもの、空気圧を利用するもの、電磁誘導によるうず電流による励磁コイルの入力インピーダンス変化を利用するものなど、一般に知られたものの中から適宜選択できる。 Wherein the proximity sensor is not particularly limited, those which utilize light, those utilizing change in electrostatic capacitance, those using ultrasonic waves, those using air pressure, the input impedance of the exciting coil due to eddy currents caused by electromagnetic induction such as those that utilize changes can be appropriately selected from commonly known ones. 水中ロボットに適用するものとしては、前記うず電流方式、即ち交流電流により励磁する電磁コイルと、前記2次電池搭載装置に取り付けた透磁率の高い金属体とからなり、前記電磁コイルによる励磁で前記金属板に発生するうず電流により生じる前記電磁コイルの負荷変動を検知して前記隙間の大きさを検知する方法の採用が好ましい。 As those applied to underwater robot, the eddy current method, i.e. an electromagnetic coil for exciting the alternating current consists of a high metal body having permeability which is attached to the secondary battery mounted device, wherein in the excitation by the electromagnetic coil adoption of the method to detect the load fluctuation of the electromagnetic coil caused by eddy current generated in the metal plate to detect the size of the gap is preferred.
【0013】 [0013]
前記受電検知センサには特に限定はないが、例えば前記2次電池搭載装置が受電して発生する電圧が所定値に達すると光を発する発光素子と、前記電源装置に設けられ、前記発光により作動する受光素子とで構成する方法、前記2次電池搭載装置が受電して発生する電圧が所定値に達すると超音波を発信する超音波発信素子と、前記電源装置に設けられ、前記超音波を受信する超音波受信素子とで構成する方法などを採用することができる。 The power receiving detection is not particularly limited to sensor operation, for example, when the voltage the secondary battery mounting device is generated in the power receiving reaches a predetermined value and the light emitting element for emitting light, is provided in the power supply device, the light emitting how to configure by the light receiving element, a voltage the secondary battery mounting device is generated in the power receiving reaches a predetermined value and the ultrasonic transmitting element for transmitting ultrasonic waves, it is provided in the power supply device, the ultrasonic it can be employed as how to configure by the ultrasonic receiving elements to receive. さらに、前記発光、 超音波などの信号がノイズの影響を受けないようにするために、受電検知センサに変調・復調手段を設けることができる。 Further, the light emitting signal, such as ultrasound in order to prevent the influence of noise can be provided modulation and demodulation means for receiving sensor.
【0014】 [0014]
前記近接センサの励磁を間歇的に行なうと、うず電流による発熱により、装置が加熱をされることを少なくできるので、一般的に好ましいが、本発明はこれに限定されない。 When intermittently performing excitation of said proximity sensor, the heat generated by eddy currents, since it reduced the apparatus to be heated, although generally preferred, the present invention is not limited thereto.
【0015】 [0015]
本発明の非接触型給電装置を適用する装置には特に限定はないが、前記2次電池を動力源として作動する装置が水中に敷設された装置であり、前記給電装置の給電部を水中走行ロボットに設けたもの、前記2次電池を動力源として作動する装置が掃除ロボット、巡回監視ロボットなどの自走式作業ロボットであり、前記給電装置は該作業ロボットの待機中に充電するようにしたものなどを適用対象として例示することができる。 Although there is no particular limitation on the apparatus for applying a non-contact power feeding device of the present invention, the secondary battery is a device unit which operates as a power source is installed in the water, the water traveling the feeding portion of the feeding device that provided on the robot, the secondary battery system is a cleaning robot that operates as a power source, a self-propelled working robot such as tour monitoring robot, the power supply device has to charge while waiting for the working robot it can be exemplified ones, etc. as an application target.
【0016】 [0016]
【発明の実施の形態】 DETAILED DESCRIPTION OF THE INVENTION
以下添付の図面を参照する一実施の形態を示し本発明の非接触型給電装置を具体的に説明する。 Specifically described contactless power supply device of the present invention shows an embodiment with reference to the accompanying drawings.
【0017】 [0017]
図1に示す回路は、本発明の非接触型給電装置の基本回路を説明するものであり、中央に示す破線1の左側が電源装置2の回路部分であり、右側が2次電池搭載装置3の回路部分であり、ギャップ結合トランス4は電源装置2側と2次電池搭載装置3側とに跨って設けられている。 The circuit shown in FIG. 1 is for explaining the basic circuit of the non-contact power feeding device of the present invention, a left side circuit portion of the power unit 2 of broken line 1 shown in the center, right secondary battery mounted device 3 a circuit portion of the gap coupling transformer 4 is provided across the power supply device 2 side and the secondary battery mounted device 3 side.
【0018】 [0018]
ギャップ結合トランス4は、トランス1次側4−1とトランス2次側4−2とに分割されており、その鉄心5は、図2に示すように、互いに開口部分が向き合うコないしU状の1次側鉄心5−1および2次側鉄心5−2からなり、それぞれ1次コイル6−1および2次コイル6−2を巻きつけ、1次側鉄心5−1および2次鉄心5−2の合わせ部分のギャップΔを所定値以下とすることで過大な励磁無効電力が生じないように設計されている。 Gap coupling transformer 4 is divided into a primary side of the transformer 4-1 and transformer secondary 4-2, the core 5, as shown in FIG. 2, co to U-shaped opening portions face each other made from the primary side core 5-1 and the secondary core 5-2, respectively wound primary coil 6-1 and a secondary coil 6-2, the primary core 5-1 and the secondary core 5-2 combined excessive excitation reactive power by a predetermined value or less gap Δ portions are designed so as not to cause the.
【0019】 [0019]
なお一例として、250〜300W、周囲温度を−10〜40℃とした場合のギャップ結合トランス4として、鉄心にフェライトを使用し、 鉄心の幅を20mm、積層厚みを50mm、両側の腕状部の鉄心長さを40mm、リッツ線コイルを巻く辺の鉄心長さを120mmとし、全体を絶縁性樹脂で水密とした容器内に、ギャップΔが5mm以下とすることができる。 Note as an example, 250~300W, as the gap coupling transformer 4 in the case where the ambient temperature -10 to 40 ° C., using a ferrite core, the width of the core 20 mm, the laminated layer thickness 50 mm, on both sides of the arm portion 40mm iron core length, a core length of the side of winding the litz wire coil and 120 mm, the whole in a container that is watertight with the insulating resin, the gap Δ can be 5mm or less.
【0020】 [0020]
図1の説明に戻り、トランス1次側4−1の1次コイル6−1と電源との間にはリレーからなる電源スイッチ7および周波数変換器8を介してAC100Vなどの交流電源(以下電源E)に接続した。 Referring back to FIG. 1, the AC power supply (hereinafter the power supply, such as AC100V between the primary coil 6-1 and the power of the primary side of the transformer 4-1 via the power switch 7 and the frequency converter 8 consisting relay was connected to the E). なお周波数変換器8は低周波電源を高周波に変換するものであり、例えばA/D変換器とインバータとを組み合わせたものを使用することができる。 Incidentally frequency converter 8 is adapted to convert a low frequency power to the high frequency, it is possible to use, for example, a combination of a inverter A / D converter.
【0021】 [0021]
トランス2次側4−2の2次コイル6−2は、発生した高周波電圧を整流器9によって直流に変換し、直流電圧安定化回路10を介して2次電池(図示せず)と受電検知センサ11とに与えるようにした。 Secondary coil 6-2 of the transformer secondary 4-2 converts the generated high-frequency voltage to a DC by a rectifier 9, and the power receiving sensor 2 battery via a DC voltage stabilization circuit 10 (not shown) It was to give to the 11 and.
【0022】 [0022]
電源装置2の電源Eに対し、電源スイッチ7および周波数変換器8と並列的にマイクロコンピュータからなる給電制御部 12を設け、これに受電検知センサ11および近接センサ13−1および13−2(以下総称するときは13で表す)の出力信号を入力し、電源スイッチ7をオン・オフ制御するように構成し、近接センサ13−1および13−2から接近完了信号が出力されると、電源スイッチ7をオンすると共に計時プログラム(タイマー)を作動させ、一定時間内に受電検知センサ11から受電検知信号が出力されないと、給電制御部12は電源スイッチ7をオフするようにプログラムした。 To power supply E of the power supply device 2, the power supply control unit 12 and the power switch 7 and the frequency converter 8 consisting parallel microcomputer provided, which in the receiving sensor 11 and proximity sensors 13-1 and 13-2 (hereinafter when collectively inputs an output signal represented by 13), the power switch 7 is configured to control on-off, when approaching completion signal is output from the proximity sensors 13-1 and 13-2, a power switch 7 actuates the counting program (timer) as well as on the, when receiving the detection signal from the receiving sensor 11 within a predetermined time is not outputted, the power supply control unit 12 is programmed to turn off the power switch 7.
【0023】 [0023]
次に受電検知センサ11および近接センサ13を、図3〜5に示す第2実施の形態よって、より具体的に説明する。 Then receiving sensor 11 and proximity sensor 13, by the second embodiment shown in FIGS. 3-5 will be described more specifically. 図3は第2実施の形態による非接触型給電装置を海中14に敷設した昇降式水質計測ブイ15用の水中ステーション16と充電兼データ回収用水中ロボット(以下単に水中ロボットという)17とによって実施したものである。 Figure 3 is implemented by a non-contact power feeding device laid it was an underwater station 16 for elevating water quality measuring buoy 15 charging and data recovery underwater robot underwater 14 (hereinafter simply referred to as underwater robot) 17 according to the second embodiment one in which the. なお本発明は上記水質計測用以外の水中施設に利用できることは説明を要しないことは明らかである。 The present invention is to be utilized in the water facilities other than for the water quality measuring is clearly not self-explanatory.
【0024】 [0024]
第2実施の形態による非接触型給電装置のギャップ型結合トランス4のトランス1次側4−1(図4)は、水中ロボット17の給電部3−1に設け、信号伝送、索条などの機能を有する電源ケーブル19によって母船18に搭載した発電機(図示せず)を電源とし給電制御部(図3および4に図示せず)に接続した。 Transformer primary side of gap coupling transformer 4 contactless power supply device according to a second embodiment 4-1 (FIG. 4) is provided in the feeding section 3-1 of underwater robot 17, the signal transmission, such as rope the power cable 19 having the function mother ship 18 equipped with a generator connected to the (not shown) as a power supply feed control unit (not shown in FIGS. 3 and 4). またトランス2次側4−2(図4)を収容する受電部3−2は、水中ステーション16(図3)に設けた電源部(2次電池)20と一体的に取り付けた。 The power receiving unit 3-2 that accommodates the secondary side of the transformer 4-2 (FIG. 4) is mounted integrally with the power supply unit (secondary battery) 20 provided in the water station 16 (FIG. 3). 図4に示すギャップ結合トランス4のギャップΔは、図4に示す2箇所の間隙δ およびδ の和の1/2(δ / 2+δ / 2)に一致する。 Gap Δ gap coupling transformer 4 illustrated in FIG. 4 corresponds to 1/2 (δ 1/2 + δ 2/2) of the two portions of the gap [delta] 1 and [delta] 2 of the sum shown in FIG.
【0025】 [0025]
ここで図3に示す水中ステーション16および水中ロボット17に図示されている部材について説明する。 Here it is shown the water station 16 and the underwater robot 17 shown in FIG. 3 are the members will be described. 水中ステーション16に付した符号16aは昇降式水質計測ブイ15を水中ステーション16に係留し、且つブイ16内の機器を作動させる電源用リード線、観測に必要とする信号を伝達する信号線等を組み込んだケーブル、16bはケーブル16aを巻き取り・繰り出す電動機内臓のドラム、16cは観測用電子機器容器、16dは水中ロボット17にデータを伝送する音響リンク、16eは海底の岩盤等に固定するための脚部である。 Code 16a which was subjected to water station 16 to anchor the elevating water quality measuring buoy 15 in the water station 16, and the power supply lead wire to operate the equipment in the buoy 16, a signal line or the like for transmitting signals requiring the observation incorporating the cable, 16b the drum motor built for feeding winding the cable 16a ·, 16c observations electronics container, 16d acoustic link for transmitting data to the underwater robot 17, 16e is for fixing to rock like a submarine a leg.
【0026】 [0026]
また水中ロボット17に付した符号17aはスラスタであり前進・後退用スラスタが3機、上昇・下降用スラスタが2機、側方移動用スラスタが1機使用されており、 17bは水中ロボット本体、17cは前記本体17bの端部を覆う透明アクリル樹脂製のドームであり、その中心軸上に操縦用CCDカメラを備えている。 The given code 17a is a thruster for advance and return thruster three aircraft in the water robot 17, up and down for thrusters two aircraft are used lateral movement for thrusters 1 aircraft, 17b underwater robot body, 17c is the main body 17b is a transparent acrylic resin dome covering the end portion of, and a steering CCD camera on its central axis. 17dはヘッドライト、17eは超音波ソナー、17fは保護用フレームである。 17d headlight, 17e ultrasonic sonar, 17f is a protective frame. また図4に示す符号4aは水密とした樹脂製容器である。 The code 4a shown in FIG. 4 is a resin container was watertight.
【0027】 [0027]
第2実施の形態のギャップ結合トランス4は、結合されると図2に示したギャップ結合トランス4と同じであるが、1次側鉄心5−1は、図4に示すように鉄心の1辺の一部を切り出した形状とし、したがって1次コイル6−1も幅を狭く、分厚く巻き付け、外見上は平板状に形成した。 Gap coupling transformer 4 of the second embodiment, when combined is the same as the gap coupling transformer 4 illustrated in FIG. 2, the primary core 5-1, one side of the core as shown in FIG. 4 some and the cut-out shape, and thus the primary coil 6-1 is also narrower, winding thick, apparently formed in a plate shape. 2次コイル6−2は、図1に示したものと同様にした。 Secondary coil 6-2 were the same as those shown in FIG. 2点鎖線で示した2次側鉄心5−2および2次コイル6−2は、水中ロボット17に設けた給電部2−1が受電部3−1に結合すると図1で示した非接触型給電装置の基本回路が形成され、前記説明の手順に従って充電できることを示している。 Secondary core 5-2 and the secondary coil indicated by the two-dot chain line 6-2, noncontact power feeding section 2-1 provided in the underwater robot 17 is shown in FIG. 1 when bound to the receiving unit 3-1 basic circuit of the power supply apparatus is formed, indicating that can be charged according to the procedure of the description.
【0028】 [0028]
ところで、第2の実施の形態で使用した受電検知センサ11の信号出力素子11−2には発光素子、例えば発光ダイオードを使用し、光による受電検知信号回路11−1にはフォトトランジスタを使用したが、フォトダイオードなどたの受光素子を使用することもできる。 Meanwhile, the light emitting element to the signal output device 11-2 of the receiving sensor 11 used in the second embodiment, for example, using light-emitting diodes, the power receiving detection signal circuit 11-1 by light using a photo-transistor but it is also possible to use a light receiving element of the other such as a photodiode. 更に超音波を使用することもでき、 これらの信号を変調し、ノイズによる作動ミスを防止することもできる。 It is possible to further use an ultrasonic, modulates these signals, it is possible to prevent the operation error due to noise. また近接センサ13の金属板13aにうず電流を発生させる電磁コイル13bの鉄心13cにはコないしU状鉄心を使用した。 Further to no co the iron core 13c of the electromagnetic coil 13b which generates eddy currents in the metal plate 13a of the proximity sensor 13 using U-shaped iron core. 但し、棒状鉄心を使用することもできる。 However, it is also possible to use a rod-like core.
【0029】 [0029]
なお第2実施の形態による近接センサ13が検出する隙間は、第1実施の形態のギャップΔではなく、1次側鉄心5−1の軸心と、これと向き合う2次側鉄心5−2の軸心5a(図 4)との不一致の許容範囲である。 Incidentally gap proximity sensor 13 according to the second embodiment is detected, rather than the gap Δ in the first embodiment, the axis of the primary core 5-1, the secondary core 5-2 facing thereto a tolerance of mismatch between the axis 5a (Figure 4). したがって、受電部3−1に給電部2−1を結合させるには、最終段階で給電部2−1を前進・後退のみの動きとする必要がある。 Therefore, in order to couple the feeding portion 2-1 to the power receiving unit 3-1, it is necessary to make the movement of only the forward and backward feeding unit 2-1 in the final stage. したがって、前進後退のみの動きとする場合近接センサ13は少なくとも1個設けるのでもよい。 Therefore, when the proximity sensor 13, movement of the forward and backward only may than at least one provided. なお、図4に示す符号11aは光透過用の窓である。 Reference numeral 11a shown in FIG. 4 is a window for transmitting light.
【0030】 [0030]
そのために、例えば図5に示すような先端が拡開した鞘状ガイド21−1と挿入棒21−2を、受電検知センサ11および近接センサ13それぞれの給電部2−1および受電部3−1に設ける前面22の複数箇所、例えば4箇所に突き出し状に設けるとよい。 Therefore, for example, a sheath guide 21-1 tip is expanded as shown in FIG. 5 the insertion bars 21-2, receiving sensor 11 and the proximity sensor 13 each feeding unit 2-1 and the power receiving unit 3-1 it may be provided to form protruding at a plurality of locations, for example, four positions of the front 22 provided on. 但し本発明はこのガイドに限定されず、水中ロボット17を正確に誘導できるものであればいずれのものも使用できる。 However, the present invention is not limited to this guide, it can be used either as long as it can accurately guide the underwater robot 17.
【0031】 [0031]
【発明の効果】 【Effect of the invention】
以上説明したように本発明の非接触型給電装置は、ギャップ結合トランスが許容範囲内に接近したことを検知すると給電を開始し、一定時間内に受電したことが確認されないと給電を停止するようにしたので、受電装置以外の金属体などに給電し、過熱による事故の発生を無くすことができるし、異物が間にはさまって給電できない場合も検知することができる。 Non-contact power feeding device of the present invention as described above, so that the gap coupling transformer begins to feed and detects that approached within the allowable range, stopping the power supply and is not confirmed that the receiving within a predetermined period of time since the, and feed such as metal bodies other than the power receiving apparatus, to be able to eliminate the occurrence of accidents due to overheating, it is possible to detect if the foreign matter can not be powered caught between.
【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS
【図1】本発明の第1の実施の形態による非接触型給電装置の基本回路図である。 1 is a basic circuit diagram of a non-contact power feeding device according to the first embodiment of the present invention.
【図2】図1に示す給電装置に使用したギャップ結合トランスの鉄心形状を示す平面説明図である。 2 is a plan view showing a gap coupling transformer core shape using the power supply device shown in FIG.
【図3】本発明の第2の実施の形態による非接触型給電装置の全体の構成を示す説明図である。 3 is an explanatory diagram showing an overall structure of a non-contact power feeding device according to a second embodiment of the present invention.
【図4】図3に示すギャップ結合トランスの構成を示す説明図である。 4 is an explanatory diagram showing the configuration of the gap coupling transformer shown in FIG.
【図5】図3に示す給電装置の給電部および受電部に設けたガイドの一例を示す側面図である。 5 is a side view showing an example of a guide provided in the power supply unit and the power receiving unit of the power supply apparatus shown in FIG.
【符号の説明】 DESCRIPTION OF SYMBOLS
2 電源装置(例えば水中ロボット17) 2 power supply (e.g. underwater robot 17)
2−1 給電部3 2次電池搭載装置(例えば水中ステーション16) 2-1 feeding portion 3 secondary battery mounted device (e.g. water station 16)
3−1 受電部11 受電検知センサ12 給電制御部13−1 近接センサ13−2 近接センサ 3-1 power receiving portion 11 receiving sensor 12 power supply control unit 13-1 proximity sensor 13-2 proximity sensor

Claims (7)

  1. 2次電池を動力源として作動する2次電池搭載装置と、前記2次電池に充電する電源装置とが、充電時にいずれかまたは相互に、また自動的にまたは遠隔操作により接近して電磁誘導手段により非接触的に給電する給電装置において、前記電源装置の給電部と、前記2次電池搭載装置の受電部とが接近し給電可能状態となると、少なくとも僅かな隙間を開けて相対する面が生じるように前記両装置を形成し、前記相対する面が予め定めた間隔以内に接近すると給電開始信号を出力する近接センサと、前記受電部が充電可能状態に達したことを検知する受電検知センサとを設け、前記近接センサが前記接近を検知すると、給電を開始し、 給電開始後一定時間内に前記受電検知センサが受電開始信号を検知すると給電を継続し、何らかの原因で前 A secondary battery mounted device operating as a power source a secondary battery, wherein the the power supply unit for charging the secondary battery, to either or each other during charging, also electromagnetic induction means closer to the automatic or remote control in the power feeding device for feeding a non-contact manner, and a power supply portion of the power supply device, when the power receiving portion of the secondary battery mounted device is closely powered state, opposing surfaces open at least a slight gap is caused by the two devices formed as a proximity sensor the opposing surfaces to output the power supply start signal approaches within a predetermined interval, a power receiving sensor which detects that the power receiving unit has reached a charged state the provided, when the proximity sensor detects the approach, and starts to supply power, the power receiving sensor continues to feed and detects the receiving start signal to the power feeding start after a certain time, before some reason 記一定時間内に前記受電開始信号を検知しないと給電を停止する給電制御部を設けた非接触給電装置。 Serial predetermined time non-contact power feeding device to the power receiving start signal the feeding control unit to stop the power supply and not detected within.
  2. 前記近接センサが、交流電流により励磁する電磁コイルと、前記2次電池搭載装置に取り付けた透磁率の高い金属体とからなり、前記電磁コイルによる励磁で前記金属板に発生するうず電流により生じる前記電磁コイルの負荷変動を検知して前記隙間の大きさを検知することからなる請求項1記載の非接触給電装置。 Wherein said proximity sensor, an electromagnetic coil for exciting the alternating current consists of a high metal body having permeability which is attached to the secondary battery mounted device, caused by the eddy current generated in the metal plate by the excitation by the electromagnetic coil non-contact power feeding device according to claim 1, wherein by detecting the load variation of the electromagnetic coil consists of detecting the size of the gap.
  3. 前記受電検知センサが、前記2次電池搭載装置が受電して発生する電圧が所定値に達すると光を発する発光素子と、前記電源装置に設けられ、前記発光により作動する受光素子とで構成することからなる請求項1〜2のいずれかに記載の非接触給電装置。 The power receiving sensor includes a light emitting element that emits light when voltage the secondary battery mounting device is generated in the power receiving reaches a predetermined value, is provided in the power supply device, composed of a light receiving element that operates by the light-emitting non-contact power feeding device according to any one of claims 1-2 which comprises.
  4. 前記受電検知センサが、前記2次電池搭載装置が受電して発生する電圧が所定値に達すると超音波を発信する超音波発信素子と、前記電源装置に設けられ、前記超音波を受信する超音波受信素子とで構成することからなる請求項1〜2のいずれかに記載の非接触給電装置。 Ultra the power receiving detection sensor, the voltage which the secondary battery mounting device is generated in the power receiving and the ultrasonic transmitting element that transmits an ultrasonic reaches a predetermined value, is provided in the power supply, receives the ultrasonic non-contact power feeding device according to any one of claims 1-2 which comprises composed of a wave receiving element.
  5. 前記近接センサの励磁を間歇的に行なうようにした請求項1〜4のいずれかに記載の非接触給電装置。 Non-contact power feeding device according to claim 1 which is adapted intermittently perform excitation of the proximity sensor.
  6. 前記2次電池を動力源として作動する装置が水中に敷設された装置であり、前記給電装置の給電部を水中走行ロボットに設けたことからなる請求項1〜5記載の非接触給電装置。 The secondary battery is a device unit which operates as a power source is installed in water, the non-contact power feeding apparatus of claims 1 to 5, wherein which comprises a feeding portion of the feeding device is provided in the water traveling robot.
  7. 前記2次電池を動力源として作動する装置が自走式作業ロボットであり、前記給電装置は該作業ロボットの待機中に充電するようにしたことからなる請求項1〜5記載の非接触給電装置。 The secondary battery is a device self-propelled working robot which operates as a power source, the power supply device non-contact power supply system of claims 1 to 5, wherein consists was to charge while waiting for the working robot .
JP2002332448A 2002-11-15 2002-11-15 Non-contact feeding device Pending JP2004166459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002332448A JP2004166459A (en) 2002-11-15 2002-11-15 Non-contact feeding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002332448A JP2004166459A (en) 2002-11-15 2002-11-15 Non-contact feeding device

Publications (1)

Publication Number Publication Date
JP2004166459A true JP2004166459A (en) 2004-06-10

Family

ID=32809526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002332448A Pending JP2004166459A (en) 2002-11-15 2002-11-15 Non-contact feeding device

Country Status (1)

Country Link
JP (1) JP2004166459A (en)

Cited By (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009050690A (en) * 2007-07-30 2009-03-12 Fujifilm Corp Radiographic system and radiation detection cassette
JP2009050691A (en) * 2007-07-30 2009-03-12 Fujifilm Corp Radiographic system
JP2011229244A (en) * 2010-04-16 2011-11-10 Mec Engineering Service Co Ltd Power transmission apparatus
JP2012245944A (en) * 2011-05-31 2012-12-13 Sugino Gomu Kagaku Kogyosho:Kk Seabed exploration apparatus
JP2013051855A (en) * 2011-08-31 2013-03-14 Toshiba Corp Navigation system, searching device, searched device, and navigation method
JP2013063702A (en) * 2011-09-16 2013-04-11 Tokyo Univ Of Marine Science & Technology Underwater robot
JP2013513350A (en) * 2009-12-04 2013-04-18 パワーマッド テクノロジーズ リミテッド System and method for controlling the connection to the inductive power outlet from a power source
WO2013085030A1 (en) 2011-12-07 2013-06-13 株式会社Ihi Power transmission system
WO2013154097A1 (en) 2012-04-11 2013-10-17 株式会社Ihi Underwater power supply system
US8618696B2 (en) 2008-09-27 2013-12-31 Witricity Corporation Wireless energy transfer systems
US8629578B2 (en) 2008-09-27 2014-01-14 Witricity Corporation Wireless energy transfer systems
US8643326B2 (en) 2008-09-27 2014-02-04 Witricity Corporation Tunable wireless energy transfer systems
US8667452B2 (en) 2011-11-04 2014-03-04 Witricity Corporation Wireless energy transfer modeling tool
US8669676B2 (en) 2008-09-27 2014-03-11 Witricity Corporation Wireless energy transfer across variable distances using field shaping with magnetic materials to improve the coupling factor
US8692412B2 (en) 2008-09-27 2014-04-08 Witricity Corporation Temperature compensation in a wireless transfer system
US8716903B2 (en) 2008-09-27 2014-05-06 Witricity Corporation Low AC resistance conductor designs
US8723366B2 (en) 2008-09-27 2014-05-13 Witricity Corporation Wireless energy transfer resonator enclosures
US8729737B2 (en) 2008-09-27 2014-05-20 Witricity Corporation Wireless energy transfer using repeater resonators
WO2014080651A1 (en) * 2012-11-21 2014-05-30 独立行政法人海洋研究開発機構 Underwater observation instrument
US8772973B2 (en) 2008-09-27 2014-07-08 Witricity Corporation Integrated resonator-shield structures
WO2014109144A1 (en) * 2013-01-08 2014-07-17 株式会社Ihi Non-contact power supply system
US8805530B2 (en) 2007-06-01 2014-08-12 Witricity Corporation Power generation for implantable devices
JP2014150697A (en) * 2013-02-04 2014-08-21 Ihi Corp Non-contact power feeding system
US8836172B2 (en) 2008-10-01 2014-09-16 Massachusetts Institute Of Technology Efficient near-field wireless energy transfer using adiabatic system variations
US8847548B2 (en) 2008-09-27 2014-09-30 Witricity Corporation Wireless energy transfer for implantable devices
KR101462138B1 (en) * 2013-05-16 2014-11-21 재단법인 포항산업과학연구원 Underwater wireless power transmission system using the electromagnetic coupled resonance method
US8901778B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with variable size resonators for implanted medical devices
US8901779B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with resonator arrays for medical applications
US8907531B2 (en) 2008-09-27 2014-12-09 Witricity Corporation Wireless energy transfer with variable size resonators for medical applications
US8912687B2 (en) 2008-09-27 2014-12-16 Witricity Corporation Secure wireless energy transfer for vehicle applications
US8922066B2 (en) 2008-09-27 2014-12-30 Witricity Corporation Wireless energy transfer with multi resonator arrays for vehicle applications
US8928276B2 (en) 2008-09-27 2015-01-06 Witricity Corporation Integrated repeaters for cell phone applications
US8933594B2 (en) 2008-09-27 2015-01-13 Witricity Corporation Wireless energy transfer for vehicles
US8937408B2 (en) 2008-09-27 2015-01-20 Witricity Corporation Wireless energy transfer for medical applications
US8946938B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Safety systems for wireless energy transfer in vehicle applications
US8947186B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Wireless energy transfer resonator thermal management
US8957549B2 (en) 2008-09-27 2015-02-17 Witricity Corporation Tunable wireless energy transfer for in-vehicle applications
US8963488B2 (en) 2008-09-27 2015-02-24 Witricity Corporation Position insensitive wireless charging
US9035499B2 (en) 2008-09-27 2015-05-19 Witricity Corporation Wireless energy transfer for photovoltaic panels
US9065423B2 (en) 2008-09-27 2015-06-23 Witricity Corporation Wireless energy distribution system
US9065286B2 (en) 2005-07-12 2015-06-23 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US9093853B2 (en) 2008-09-27 2015-07-28 Witricity Corporation Flexible resonator attachment
US9106203B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Secure wireless energy transfer in medical applications
US9105959B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Resonator enclosure
US9160203B2 (en) 2008-09-27 2015-10-13 Witricity Corporation Wireless powered television
US9184595B2 (en) 2008-09-27 2015-11-10 Witricity Corporation Wireless energy transfer in lossy environments
US9246336B2 (en) 2008-09-27 2016-01-26 Witricity Corporation Resonator optimizations for wireless energy transfer
US9287607B2 (en) 2012-07-31 2016-03-15 Witricity Corporation Resonator fine tuning
US9306635B2 (en) 2012-01-26 2016-04-05 Witricity Corporation Wireless energy transfer with reduced fields
US9318922B2 (en) 2008-09-27 2016-04-19 Witricity Corporation Mechanically removable wireless power vehicle seat assembly
US9318257B2 (en) 2011-10-18 2016-04-19 Witricity Corporation Wireless energy transfer for packaging
US9343922B2 (en) 2012-06-27 2016-05-17 Witricity Corporation Wireless energy transfer for rechargeable batteries
US9369182B2 (en) 2008-09-27 2016-06-14 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US9384885B2 (en) 2011-08-04 2016-07-05 Witricity Corporation Tunable wireless power architectures
US9396867B2 (en) 2008-09-27 2016-07-19 Witricity Corporation Integrated resonator-shield structures
US9404954B2 (en) 2012-10-19 2016-08-02 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9421388B2 (en) 2007-06-01 2016-08-23 Witricity Corporation Power generation for implantable devices
US9444265B2 (en) 2005-07-12 2016-09-13 Massachusetts Institute Of Technology Wireless energy transfer
US9444520B2 (en) 2008-09-27 2016-09-13 Witricity Corporation Wireless energy transfer converters
US9442172B2 (en) 2011-09-09 2016-09-13 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9449757B2 (en) 2012-11-16 2016-09-20 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US9461714B2 (en) 2008-03-05 2016-10-04 Qualcomm Incorporated Packaging and details of a wireless power device
US9515494B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless power system including impedance matching network
US9544683B2 (en) 2008-09-27 2017-01-10 Witricity Corporation Wirelessly powered audio devices
US9559526B2 (en) 2009-01-22 2017-01-31 Qualcomm Incorporated Adaptive power control for wireless charging of devices
US9595378B2 (en) 2012-09-19 2017-03-14 Witricity Corporation Resonator enclosure
US9601266B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Multiple connected resonators with a single electronic circuit
US9602168B2 (en) 2010-08-31 2017-03-21 Witricity Corporation Communication in wireless energy transfer systems
US9601270B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Low AC resistance conductor designs
JP2017135898A (en) * 2016-01-29 2017-08-03 日立マクセル株式会社 Wireless power supply system
US9744858B2 (en) 2008-09-27 2017-08-29 Witricity Corporation System for wireless energy distribution in a vehicle
US9754718B2 (en) 2008-09-27 2017-09-05 Witricity Corporation Resonator arrays for wireless energy transfer
US9780573B2 (en) 2014-02-03 2017-10-03 Witricity Corporation Wirelessly charged battery system
US9837860B2 (en) 2014-05-05 2017-12-05 Witricity Corporation Wireless power transmission systems for elevators
US9842688B2 (en) 2014-07-08 2017-12-12 Witricity Corporation Resonator balancing in wireless power transfer systems
US9843217B2 (en) 2015-01-05 2017-12-12 Witricity Corporation Wireless energy transfer for wearables
US9842687B2 (en) 2014-04-17 2017-12-12 Witricity Corporation Wireless power transfer systems with shaped magnetic components
US9857821B2 (en) 2013-08-14 2018-01-02 Witricity Corporation Wireless power transfer frequency adjustment
US9892849B2 (en) 2014-04-17 2018-02-13 Witricity Corporation Wireless power transfer systems with shield openings
US9929721B2 (en) 2015-10-14 2018-03-27 Witricity Corporation Phase and amplitude detection in wireless energy transfer systems
US9948145B2 (en) 2011-07-08 2018-04-17 Witricity Corporation Wireless power transfer for a seat-vest-helmet system
US9954375B2 (en) 2014-06-20 2018-04-24 Witricity Corporation Wireless power transfer systems for surfaces
US9952266B2 (en) 2014-02-14 2018-04-24 Witricity Corporation Object detection for wireless energy transfer systems
US10018744B2 (en) 2014-05-07 2018-07-10 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10063110B2 (en) 2015-10-19 2018-08-28 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10063104B2 (en) 2016-02-08 2018-08-28 Witricity Corporation PWM capacitor control
US10075019B2 (en) 2015-11-20 2018-09-11 Witricity Corporation Voltage source isolation in wireless power transfer systems
WO2018172493A1 (en) * 2017-03-23 2018-09-27 Naval Group Submerged system for storing an underwater vehicle such as a drone and keeping it in operational condition
CN108820171A (en) * 2018-05-23 2018-11-16 山东交通学院 Underwater networking continuous observing system and method adopting renewable energy
US10141788B2 (en) 2015-10-22 2018-11-27 Witricity Corporation Dynamic tuning in wireless energy transfer systems
EP3457524A1 (en) 2014-06-06 2019-03-20 IHI Corporation Power-transmitting device, power-receiving device, and wireless power supply system
US10248899B2 (en) 2015-10-06 2019-04-02 Witricity Corporation RFID tag and transponder detection in wireless energy transfer systems
US10263473B2 (en) 2016-02-02 2019-04-16 Witricity Corporation Controlling wireless power transfer systems

Cited By (145)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9831722B2 (en) 2005-07-12 2017-11-28 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US9065286B2 (en) 2005-07-12 2015-06-23 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US9450422B2 (en) 2005-07-12 2016-09-20 Massachusetts Institute Of Technology Wireless energy transfer
US9450421B2 (en) 2005-07-12 2016-09-20 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US10141790B2 (en) 2005-07-12 2018-11-27 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US10097044B2 (en) 2005-07-12 2018-10-09 Massachusetts Institute Of Technology Wireless energy transfer
US9509147B2 (en) 2005-07-12 2016-11-29 Massachusetts Institute Of Technology Wireless energy transfer
US9444265B2 (en) 2005-07-12 2016-09-13 Massachusetts Institute Of Technology Wireless energy transfer
US9843230B2 (en) 2007-06-01 2017-12-12 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9421388B2 (en) 2007-06-01 2016-08-23 Witricity Corporation Power generation for implantable devices
US9318898B2 (en) 2007-06-01 2016-04-19 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9095729B2 (en) 2007-06-01 2015-08-04 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9101777B2 (en) 2007-06-01 2015-08-11 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9943697B2 (en) 2007-06-01 2018-04-17 Witricity Corporation Power generation for implantable devices
US8805530B2 (en) 2007-06-01 2014-08-12 Witricity Corporation Power generation for implantable devices
JP2009050690A (en) * 2007-07-30 2009-03-12 Fujifilm Corp Radiographic system and radiation detection cassette
JP2009050691A (en) * 2007-07-30 2009-03-12 Fujifilm Corp Radiographic system
US9461714B2 (en) 2008-03-05 2016-10-04 Qualcomm Incorporated Packaging and details of a wireless power device
KR101768404B1 (en) * 2008-03-05 2017-08-14 퀄컴 인코포레이티드 Packaging and details of a wireless power device
US8901778B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with variable size resonators for implanted medical devices
US8772973B2 (en) 2008-09-27 2014-07-08 Witricity Corporation Integrated resonator-shield structures
US9806541B2 (en) 2008-09-27 2017-10-31 Witricity Corporation Flexible resonator attachment
US9780605B2 (en) 2008-09-27 2017-10-03 Witricity Corporation Wireless power system with associated impedance matching network
US9496719B2 (en) 2008-09-27 2016-11-15 Witricity Corporation Wireless energy transfer for implantable devices
US9754718B2 (en) 2008-09-27 2017-09-05 Witricity Corporation Resonator arrays for wireless energy transfer
US9744858B2 (en) 2008-09-27 2017-08-29 Witricity Corporation System for wireless energy distribution in a vehicle
US8847548B2 (en) 2008-09-27 2014-09-30 Witricity Corporation Wireless energy transfer for implantable devices
US9748039B2 (en) 2008-09-27 2017-08-29 Witricity Corporation Wireless energy transfer resonator thermal management
US9742204B2 (en) 2008-09-27 2017-08-22 Witricity Corporation Wireless energy transfer in lossy environments
US8723366B2 (en) 2008-09-27 2014-05-13 Witricity Corporation Wireless energy transfer resonator enclosures
US8901779B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with resonator arrays for medical applications
US8907531B2 (en) 2008-09-27 2014-12-09 Witricity Corporation Wireless energy transfer with variable size resonators for medical applications
US8716903B2 (en) 2008-09-27 2014-05-06 Witricity Corporation Low AC resistance conductor designs
US8912687B2 (en) 2008-09-27 2014-12-16 Witricity Corporation Secure wireless energy transfer for vehicle applications
US8922066B2 (en) 2008-09-27 2014-12-30 Witricity Corporation Wireless energy transfer with multi resonator arrays for vehicle applications
US8928276B2 (en) 2008-09-27 2015-01-06 Witricity Corporation Integrated repeaters for cell phone applications
US8933594B2 (en) 2008-09-27 2015-01-13 Witricity Corporation Wireless energy transfer for vehicles
US8937408B2 (en) 2008-09-27 2015-01-20 Witricity Corporation Wireless energy transfer for medical applications
US8692412B2 (en) 2008-09-27 2014-04-08 Witricity Corporation Temperature compensation in a wireless transfer system
US8946938B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Safety systems for wireless energy transfer in vehicle applications
US8947186B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Wireless energy transfer resonator thermal management
US8957549B2 (en) 2008-09-27 2015-02-17 Witricity Corporation Tunable wireless energy transfer for in-vehicle applications
US8963488B2 (en) 2008-09-27 2015-02-24 Witricity Corporation Position insensitive wireless charging
US9035499B2 (en) 2008-09-27 2015-05-19 Witricity Corporation Wireless energy transfer for photovoltaic panels
US9065423B2 (en) 2008-09-27 2015-06-23 Witricity Corporation Wireless energy distribution system
US8669676B2 (en) 2008-09-27 2014-03-11 Witricity Corporation Wireless energy transfer across variable distances using field shaping with magnetic materials to improve the coupling factor
US9093853B2 (en) 2008-09-27 2015-07-28 Witricity Corporation Flexible resonator attachment
US9711991B2 (en) 2008-09-27 2017-07-18 Witricity Corporation Wireless energy transfer converters
US9106203B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Secure wireless energy transfer in medical applications
US8643326B2 (en) 2008-09-27 2014-02-04 Witricity Corporation Tunable wireless energy transfer systems
US9105959B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Resonator enclosure
US9160203B2 (en) 2008-09-27 2015-10-13 Witricity Corporation Wireless powered television
US9184595B2 (en) 2008-09-27 2015-11-10 Witricity Corporation Wireless energy transfer in lossy environments
US9246336B2 (en) 2008-09-27 2016-01-26 Witricity Corporation Resonator optimizations for wireless energy transfer
US8629578B2 (en) 2008-09-27 2014-01-14 Witricity Corporation Wireless energy transfer systems
US9698607B2 (en) 2008-09-27 2017-07-04 Witricity Corporation Secure wireless energy transfer
US8618696B2 (en) 2008-09-27 2013-12-31 Witricity Corporation Wireless energy transfer systems
US9318922B2 (en) 2008-09-27 2016-04-19 Witricity Corporation Mechanically removable wireless power vehicle seat assembly
US9662161B2 (en) 2008-09-27 2017-05-30 Witricity Corporation Wireless energy transfer for medical applications
US9601270B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Low AC resistance conductor designs
US9369182B2 (en) 2008-09-27 2016-06-14 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US9601266B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Multiple connected resonators with a single electronic circuit
US9396867B2 (en) 2008-09-27 2016-07-19 Witricity Corporation Integrated resonator-shield structures
US9596005B2 (en) 2008-09-27 2017-03-14 Witricity Corporation Wireless energy transfer using variable size resonators and systems monitoring
US10264352B2 (en) 2008-09-27 2019-04-16 Witricity Corporation Wirelessly powered audio devices
US10084348B2 (en) 2008-09-27 2018-09-25 Witricity Corporation Wireless energy transfer for implantable devices
US10097011B2 (en) 2008-09-27 2018-10-09 Witricity Corporation Wireless energy transfer for photovoltaic panels
US9584189B2 (en) 2008-09-27 2017-02-28 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US10218224B2 (en) 2008-09-27 2019-02-26 Witricity Corporation Tunable wireless energy transfer systems
US9577436B2 (en) 2008-09-27 2017-02-21 Witricity Corporation Wireless energy transfer for implantable devices
US10230243B2 (en) 2008-09-27 2019-03-12 Witricity Corporation Flexible resonator attachment
US9544683B2 (en) 2008-09-27 2017-01-10 Witricity Corporation Wirelessly powered audio devices
US8729737B2 (en) 2008-09-27 2014-05-20 Witricity Corporation Wireless energy transfer using repeater resonators
US9515495B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless energy transfer in lossy environments
US9515494B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless power system including impedance matching network
US9444520B2 (en) 2008-09-27 2016-09-13 Witricity Corporation Wireless energy transfer converters
US9843228B2 (en) 2008-09-27 2017-12-12 Witricity Corporation Impedance matching in wireless power systems
US8836172B2 (en) 2008-10-01 2014-09-16 Massachusetts Institute Of Technology Efficient near-field wireless energy transfer using adiabatic system variations
US9831682B2 (en) 2008-10-01 2017-11-28 Massachusetts Institute Of Technology Efficient near-field wireless energy transfer using adiabatic system variations
US9559526B2 (en) 2009-01-22 2017-01-31 Qualcomm Incorporated Adaptive power control for wireless charging of devices
JP2013513350A (en) * 2009-12-04 2013-04-18 パワーマッド テクノロジーズ リミテッド System and method for controlling the connection to the inductive power outlet from a power source
JP2011229244A (en) * 2010-04-16 2011-11-10 Mec Engineering Service Co Ltd Power transmission apparatus
US9602168B2 (en) 2010-08-31 2017-03-21 Witricity Corporation Communication in wireless energy transfer systems
JP2012245944A (en) * 2011-05-31 2012-12-13 Sugino Gomu Kagaku Kogyosho:Kk Seabed exploration apparatus
US9948145B2 (en) 2011-07-08 2018-04-17 Witricity Corporation Wireless power transfer for a seat-vest-helmet system
US9384885B2 (en) 2011-08-04 2016-07-05 Witricity Corporation Tunable wireless power architectures
US9787141B2 (en) 2011-08-04 2017-10-10 Witricity Corporation Tunable wireless power architectures
JP2013051855A (en) * 2011-08-31 2013-03-14 Toshiba Corp Navigation system, searching device, searched device, and navigation method
US9442172B2 (en) 2011-09-09 2016-09-13 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10027184B2 (en) 2011-09-09 2018-07-17 Witricity Corporation Foreign object detection in wireless energy transfer systems
JP2013063702A (en) * 2011-09-16 2013-04-11 Tokyo Univ Of Marine Science & Technology Underwater robot
US9318257B2 (en) 2011-10-18 2016-04-19 Witricity Corporation Wireless energy transfer for packaging
US8875086B2 (en) 2011-11-04 2014-10-28 Witricity Corporation Wireless energy transfer modeling tool
US8667452B2 (en) 2011-11-04 2014-03-04 Witricity Corporation Wireless energy transfer modeling tool
CN105966578A (en) * 2011-12-07 2016-09-28 株式会社Ihi Power transmission device and power receiving device
US9577462B2 (en) 2011-12-07 2017-02-21 Ihi Corporation Power transmission system
EP3076517A1 (en) 2011-12-07 2016-10-05 IHI Corporation Power transmission system
JP2015015901A (en) * 2011-12-07 2015-01-22 株式会社Ihi Power transmission apparatus
WO2013085030A1 (en) 2011-12-07 2013-06-13 株式会社Ihi Power transmission system
US9306635B2 (en) 2012-01-26 2016-04-05 Witricity Corporation Wireless energy transfer with reduced fields
CN104205556B (en) * 2012-04-11 2018-09-11 株式会社Ihi Underwater electric power supply system
CN104205556A (en) * 2012-04-11 2014-12-10 株式会社Ihi Underwater power supply system
US9467005B2 (en) 2012-04-11 2016-10-11 Ihi Corporation Underwater power supply system
WO2013154097A1 (en) 2012-04-11 2013-10-17 株式会社Ihi Underwater power supply system
JP2013219972A (en) * 2012-04-11 2013-10-24 Ihi Corp Underwater power supply system
US9343922B2 (en) 2012-06-27 2016-05-17 Witricity Corporation Wireless energy transfer for rechargeable batteries
US10158251B2 (en) 2012-06-27 2018-12-18 Witricity Corporation Wireless energy transfer for rechargeable batteries
US9287607B2 (en) 2012-07-31 2016-03-15 Witricity Corporation Resonator fine tuning
US9595378B2 (en) 2012-09-19 2017-03-14 Witricity Corporation Resonator enclosure
US9465064B2 (en) 2012-10-19 2016-10-11 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9404954B2 (en) 2012-10-19 2016-08-02 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10211681B2 (en) 2012-10-19 2019-02-19 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9842684B2 (en) 2012-11-16 2017-12-12 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US9449757B2 (en) 2012-11-16 2016-09-20 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US10186372B2 (en) 2012-11-16 2019-01-22 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
WO2014080651A1 (en) * 2012-11-21 2014-05-30 独立行政法人海洋研究開発機構 Underwater observation instrument
US9817139B2 (en) 2012-11-21 2017-11-14 Japan Agency For Marine-Earth Science And Technology Underwater observation apparatus
US9634524B2 (en) 2013-01-08 2017-04-25 Ihi Corporation Wireless power supply system
WO2014109144A1 (en) * 2013-01-08 2014-07-17 株式会社Ihi Non-contact power supply system
JP2014135797A (en) * 2013-01-08 2014-07-24 Ihi Corp Non-contact power supply system
JP2014150697A (en) * 2013-02-04 2014-08-21 Ihi Corp Non-contact power feeding system
KR101462138B1 (en) * 2013-05-16 2014-11-21 재단법인 포항산업과학연구원 Underwater wireless power transmission system using the electromagnetic coupled resonance method
US9857821B2 (en) 2013-08-14 2018-01-02 Witricity Corporation Wireless power transfer frequency adjustment
US9780573B2 (en) 2014-02-03 2017-10-03 Witricity Corporation Wirelessly charged battery system
US9952266B2 (en) 2014-02-14 2018-04-24 Witricity Corporation Object detection for wireless energy transfer systems
US9892849B2 (en) 2014-04-17 2018-02-13 Witricity Corporation Wireless power transfer systems with shield openings
US9842687B2 (en) 2014-04-17 2017-12-12 Witricity Corporation Wireless power transfer systems with shaped magnetic components
US10186373B2 (en) 2014-04-17 2019-01-22 Witricity Corporation Wireless power transfer systems with shield openings
US9837860B2 (en) 2014-05-05 2017-12-05 Witricity Corporation Wireless power transmission systems for elevators
US10018744B2 (en) 2014-05-07 2018-07-10 Witricity Corporation Foreign object detection in wireless energy transfer systems
EP3457524A1 (en) 2014-06-06 2019-03-20 IHI Corporation Power-transmitting device, power-receiving device, and wireless power supply system
US9954375B2 (en) 2014-06-20 2018-04-24 Witricity Corporation Wireless power transfer systems for surfaces
US9842688B2 (en) 2014-07-08 2017-12-12 Witricity Corporation Resonator balancing in wireless power transfer systems
US9843217B2 (en) 2015-01-05 2017-12-12 Witricity Corporation Wireless energy transfer for wearables
US10248899B2 (en) 2015-10-06 2019-04-02 Witricity Corporation RFID tag and transponder detection in wireless energy transfer systems
US9929721B2 (en) 2015-10-14 2018-03-27 Witricity Corporation Phase and amplitude detection in wireless energy transfer systems
US10063110B2 (en) 2015-10-19 2018-08-28 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10141788B2 (en) 2015-10-22 2018-11-27 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US10075019B2 (en) 2015-11-20 2018-09-11 Witricity Corporation Voltage source isolation in wireless power transfer systems
JP2017135898A (en) * 2016-01-29 2017-08-03 日立マクセル株式会社 Wireless power supply system
US10263473B2 (en) 2016-02-02 2019-04-16 Witricity Corporation Controlling wireless power transfer systems
US10063104B2 (en) 2016-02-08 2018-08-28 Witricity Corporation PWM capacitor control
FR3064246A1 (en) * 2017-03-23 2018-09-28 Dcns System immersed storage and operational maintenance of an underwater vehicle such as a drone
WO2018172493A1 (en) * 2017-03-23 2018-09-27 Naval Group Submerged system for storing an underwater vehicle such as a drone and keeping it in operational condition
CN108820171A (en) * 2018-05-23 2018-11-16 山东交通学院 Underwater networking continuous observing system and method adopting renewable energy

Similar Documents

Publication Publication Date Title
US9656564B2 (en) Adaptive wireless energy transfer system
JP6275721B2 (en) Power control in a wireless power transfer system
EP2652877B1 (en) Wireless energy transfer and continuous radio station signal coexistence
US9685795B2 (en) Transmission-guard system and method for an inductive power supply
CN101873014B (en) Non-contact power supply system
CN103249592B (en) Method and apparatus for an electric vehicle power or charge
US4654573A (en) Power transfer device
US8692413B2 (en) Noncontact electric power receiving device, noncontact electric power transmitting device, noncontact electric power feeding system, and vehicle
CN101919139B (en) Contactless power transmission device
CN102318160B (en) From the wireless power charging system and method of renewable energy
US8129942B2 (en) Contactless charging method for charging battery
KR101923741B1 (en) Wireless power transmission in electric vehicles
JP5351499B2 (en) Contactless power transmission system
CN101667754B (en) Electromagnetic resonance non-contact power transmission device
US8519569B2 (en) Wireless power supply system and wireless power supply method
US20100225173A1 (en) Power transmission control device, power transmission device, power reception control device, power reception device, electronic apparatus, and contactless power transmission system
US6154005A (en) Inductive charger coupling for electric vehicles
US7936147B2 (en) Non-contact charger capable of wireless data and power transmission and related battery pack and mobile device
KR101950688B1 (en) Wireless power transmitter and method for controlling thereof
RU2557785C1 (en) Non-contact power supply device
JP4815485B2 (en) Non-contact power transmission apparatus
KR101253670B1 (en) Apparatus for wireless power transmission using multi antenna and Method for controlling thereof
EP2773019A1 (en) Non-contact power receiving apparatus, non-contact power transmitting apparatus, and non-contact power transmitting/receiving system
JP2015502729A (en) Wireless energy transmission modeling tool
JP2014113058A (en) Noncontact charger, electronic equipment and noncontact charging system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070313