JP2006074848A - Non-contact power transmission system - Google Patents

Non-contact power transmission system Download PDF

Info

Publication number
JP2006074848A
JP2006074848A JP2004251768A JP2004251768A JP2006074848A JP 2006074848 A JP2006074848 A JP 2006074848A JP 2004251768 A JP2004251768 A JP 2004251768A JP 2004251768 A JP2004251768 A JP 2004251768A JP 2006074848 A JP2006074848 A JP 2006074848A
Authority
JP
Japan
Prior art keywords
current
primary
frequency
unit
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004251768A
Other languages
Japanese (ja)
Inventor
Yukinaga Yamauchi
幸長 山内
Hidekazu Hirase
英和 平瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Hokushin Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokushin Electric Works Ltd filed Critical Hokushin Electric Works Ltd
Priority to JP2004251768A priority Critical patent/JP2006074848A/en
Publication of JP2006074848A publication Critical patent/JP2006074848A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To conduct the efficient stabilization control of a secondary output voltage and a current in a noncontact power transmission system. <P>SOLUTION: This non-contact power transmissions system can perform secondary stabilization control at high efficiency, in a small size, and at low cost, by transmitting a signal related to a secondary voltage and a current to a primary unit using a noncontact electromagnetic coupling coil, receiving a signal transmitted from the secondary side, and varying the drive frequency of a primary inverter. This reduces ineffective power consumption on the primary side by providing it with a means which controls the secondary output voltage and the current by shifting the drive frequency to a higher side at a light load or no-load and reducing the current of the primary coil of a coupling transformer thereby controlling the stabilization of the secondary output voltage and the current. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は非接触電力伝送装置において2次側における電圧および電流を1次側にフィードバックし、2次側出力電圧、電流を安定化制御する非接触電力伝送装置に関する。 The present invention relates to a non-contact power transmission device that feeds back a voltage and current on a secondary side to a primary side in a non-contact power transmission device and stabilizes and controls a secondary output voltage and current.

非接触電力伝送装置において、2次側の安定化を計る場合、2次側に独立した安定化回路を設ける方法がある。(例えば、特許文献1、2,3参照。)。
特許公開2002−354711号 公報 特許公開2004−120915号 公報 特許出願2002−252511号 公報
In a non-contact power transmission apparatus, when measuring stabilization on the secondary side, there is a method of providing an independent stabilization circuit on the secondary side. (For example, see Patent Documents 1, 2, and 3.)
Japanese Patent Publication No. 2002-354711 Japanese Patent Publication No. 2004-120915 Japanese Patent Application No. 2002-252511

2つ目の方法として、2次側共振回路の共振用コンデンサ−の値を変える事により、共振周波数を変えて、2次側で受電出来る電力を可変する方法を用い安定化する方法がある。(例えば、特許文献4参照。)。
特許公開2004−72832号 公報
As a second method, there is a method of stabilizing by changing the value of the resonance capacitor of the secondary side resonance circuit to change the power that can be received on the secondary side by changing the resonance frequency. (For example, refer to Patent Document 4).
Japanese Patent Publication No. 2004-72832

従来方式の課題として以下のものがあげられる。すなわち2次側に独立した安定化回路を設ける方法は2次側の安定化回路の損失が有り、全体の効率を下げてしまう。
2次側が軽負荷の場合においても、結合トランスの1次側コイルの電流は少なくならず1次側コイルの消費電力が低減しない。
The following are problems of the conventional method. That is, the method of providing an independent stabilization circuit on the secondary side has a loss of the stabilization circuit on the secondary side, and lowers the overall efficiency.
Even when the secondary side is lightly loaded, the current of the primary side coil of the coupling transformer is not reduced and the power consumption of the primary side coil is not reduced.

2次側の共振回路の共振周波数を変える方法は、2次側が軽負荷の場合においても、結合トランスの1次コイルの電流は小さくならず1次側コイルの消費電力が低減しない。 In the method of changing the resonance frequency of the secondary side resonance circuit, even when the secondary side is lightly loaded, the current of the primary coil of the coupling transformer is not reduced and the power consumption of the primary side coil is not reduced.

以上に述べた従来の非接触電力伝送装置における2次側出力電圧、電流を安定化制御する方法では、全体の効率が悪い。また2次側負荷が軽負荷の場合における消費電力を低減出来ない。 The method for stabilizing and controlling the secondary output voltage and current in the conventional non-contact power transmission apparatus described above has poor overall efficiency. Moreover, power consumption cannot be reduced when the secondary load is light.

本発明は非接触電力伝送装置における2次側出力電圧、電流の安定化制御を高効率で実現することを目的とするものである。 It is an object of the present invention to realize the stabilization control of the secondary output voltage and current in the non-contact power transmission apparatus with high efficiency.

上記目的を達成するため、本発明の非接触電力伝送装置は、2次側における電圧および電流に関する信号を1次側ユニットへ非接触の電磁結合コイルを用いて1次側に送信し、1次側ユニットでは2次側から送られてきた信号を受信して、1次側ユニットのインバータの駆動周波数を可変し2次側の出力電圧及び電流を安定化制御する手段を設けたものである。 In order to achieve the above object, the non-contact power transmission apparatus of the present invention transmits a signal related to voltage and current on the secondary side to the primary side using a non-contact electromagnetic coupling coil to the primary side unit. The side unit is provided with means for receiving a signal sent from the secondary side, varying the drive frequency of the inverter of the primary side unit, and stabilizing and controlling the output voltage and current on the secondary side.

本発明の非接触電力伝送装置によれば、非接触で2次側の電圧電流情報を1次側に伝送しインバータの駆動周波数を変え出力電圧、電流を制御出来るため、閉磁路コアを用いたスイッチング電源と同じ安定化電源を実現出来る事にある。
このため2次側ユニットに独立した安定化のためのチョッパ回路やシリーズレギュレータが不要であり、2次側の安定化回路の為の損失が無いので、高効率の非接触電力伝送装置が実現出来る。2次側ユニットに独立した安定化回路が不要なのでこの回路の実装面積も不要となり小型化が可能に成りコストも低減する。
According to the non-contact power transmission device of the present invention, since the voltage / current information on the secondary side is transmitted to the primary side in a non-contact manner, the drive frequency of the inverter can be changed and the output voltage and current can be controlled. It is possible to realize the same stabilized power supply as the switching power supply.
This eliminates the need for a separate chopper circuit or series regulator for stabilization on the secondary side unit, and there is no loss for the secondary side stabilization circuit, so a highly efficient non-contact power transmission device can be realized. . Since an independent stabilization circuit is not required for the secondary unit, the mounting area of this circuit is not required, and miniaturization is possible and costs are reduced.

2次側負荷が軽負荷もしくは無負荷時において、インバータの駆動周波数を上げる制御を行う事により、駆動される結合トランスの1次側直列共振回路の共振周波数から離調するため1次側コイルの高周波電流も減る事になり、2次側負荷が軽負荷もしくは無負荷時において交流電源の消費電力を低減できる効果がある。 When the secondary load is light or no load, the control of increasing the drive frequency of the inverter is performed to detune from the resonance frequency of the primary series resonance circuit of the coupled transformer to be driven. The high-frequency current is also reduced, and the power consumption of the AC power supply can be reduced when the secondary load is light or no load.

図1は非接触電源装置に応用した回路図である。
以下本発明の実施の形態を図1から図6に基づいて説明する。
FIG. 1 is a circuit diagram applied to a non-contact power supply device.
Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1において1次側ユニットのインバータは1次側整流回路の直流出力を電源とする。前記インバータはハーフブリッジ接続され発振周波数可変2相発振器により駆動される。結合トランスの1次側コアに巻き線を巻き回し、1次側コイルを作る。この1次側コイルをL1とする。L1と直列に共振コンデンサC1を接続する。
一方、2次側ユニットでは、2次側コアに巻き線を巻き回し、2次側コイルを得る。この2次側コイルをL2とする。前記L2を用いてL1の磁力線から高周波電力を取り出す。L2にC2を直列に接続して2次側直列共振回路を得る。C2の後のブリッジ整流回路とC6から構成する2次側整流回路により整流した後、負荷に電力を供給する。
In FIG. 1, the inverter of the primary unit uses the DC output of the primary rectifier circuit as a power source. The inverter is half-bridge connected and driven by a variable oscillation frequency two-phase oscillator. A winding is wound around the primary core of the coupling transformer to form a primary coil. Let this primary side coil be L1. A resonant capacitor C1 is connected in series with L1.
On the other hand, in the secondary unit, a winding is wound around the secondary core to obtain a secondary coil. Let this secondary coil be L2. The high frequency power is extracted from the magnetic field lines of L1 using L2. A secondary side series resonance circuit is obtained by connecting C2 in series to L2. After rectification by the bridge rectifier circuit after C2 and the secondary side rectifier circuit composed of C6, power is supplied to the load.

図1のインバータは電界効果トランジスタQ1のドレインDを1次側整流回路のVCC側に接続し、Q1のソースSとQ2のドレインDを直列に接続し、Q2のソースSを1次側整流回路のGND側に接続する。
Q1のソースSとQ2のドレインDの接続点に、1次側直列共振回路のC1側を接続する。L1側をQ2のソースに接続する。
Q1のドレインDとソースSに並列にC3を、Q2のドレインDとソースSに並列にC4を接続する。
D1、D2は電界効果トランジスタで有るQ1、Q2のボディダイオードである。
In the inverter of FIG. 1, the drain D of the field effect transistor Q1 is connected to the VCC side of the primary side rectifier circuit, the source S of Q1 and the drain D of Q2 are connected in series, and the source S of Q2 is connected to the primary side rectifier circuit. Connect to the GND side.
The C1 side of the primary side series resonance circuit is connected to the connection point between the source S of Q1 and the drain D of Q2. Connect the L1 side to the source of Q2.
C3 is connected in parallel to the drain D and source S of Q1, and C4 is connected in parallel to the drain D and source S of Q2.
D1 and D2 are body diodes of Q1 and Q2, which are field effect transistors.

図1の発振周波数可変2相発振器は、Q1の G−S 間 及び Q2の G−S 間にデットタイムを設けて交互に電圧駆動する発振周波数可変の発振器で有る。 The oscillation frequency variable two-phase oscillator of FIG. 1 is an oscillator with variable oscillation frequency that is driven by voltage alternately by providing a dead time between GS of Q1 and GS of Q2.

図5のタイミングチャートにおいてQ1の G−S 間を駆動する電圧をQ1 VGS と表し、Q2の G−S 間を駆動する電圧をQ2 VGS と表して有る。
同様に図5のタイミングチャートにおいてQ1 VGSとQ2 VGS 間のデットタイムをDtと表して有る。
In the timing chart of FIG. 5, the voltage for driving the GS of Q1 is expressed as Q1 VGS, and the voltage for driving the GS of Q2 is expressed as Q2 VGS.
Similarly, in the timing chart of FIG. 5, the dead time between Q1 VGS and Q2 VGS is represented as Dt.

図4−Aは結合トランスの1次側直列共振回路の共振周波数と2次側直列共振回路の共振周波数対2次側負荷出力電圧の関係をグラフで表したもので有る。
縦軸は2次側負荷出力電圧を示し、横軸はインバータの駆動周波数を示す。
1次側直列共振回路の共振周波数をfpに設定し、2次側直列直列共振回路の共振周波数をfsに設定して有る。
fp < fs の関係に設定する。
駆動周波数の使用範囲は図4−Aの fsからf1までとする。
FIG. 4A is a graph showing the relationship between the resonance frequency of the primary side series resonance circuit of the coupling transformer and the resonance frequency of the secondary side series resonance circuit versus the secondary side load output voltage.
The vertical axis represents the secondary load output voltage, and the horizontal axis represents the inverter drive frequency.
The resonance frequency of the primary side series resonance circuit is set to fp, and the resonance frequency of the secondary side series resonance circuit is set to fs.
The relation of fp <fs is set.
The use range of the drive frequency is from fs to f1 in FIG.

図4−Bは駆動周波数対、1次側直列共振回路の共振周波数特性と2次側直列共振回路の共振周波数特性を合成した2次側整流電圧のカーブで有る。 FIG. 4-B is a curve of the secondary side rectified voltage obtained by synthesizing the drive frequency versus the resonance frequency characteristic of the primary side series resonance circuit and the resonance frequency characteristic of the secondary side series resonance circuit.

図4−Bのグラフにおいて、fsの点を使用範囲の最大出力電圧の点なるよう1次、2次の共振回路の共振周波数を設定しインバータの最低駆動周波数をfsに設定する。
AC入力電圧の変動や負荷の変動に応じて駆動周波数の変化範囲をf0からf1の範囲に設定する。
負荷に最大出力電圧を供給できる駆動周波数はfsの点になる。
定格負荷時は周波数をf0に設定し、AC入力電圧が低下した場合や、負荷が重たくなった場合など、周波数fsに設定する。AC入力電圧が高くなった場合や軽負荷時は、周波数をf1設定する。
fp、fs、f0、f1 の各周波数の1例を下記に示す。
fp ≒60KHz、 fs ≒74KHz 、f0 ≒77KHz、f1 ≒100KHz
In the graph of FIG. 4-B, the resonance frequency of the primary and secondary resonance circuits is set so that the point of fs becomes the point of the maximum output voltage in the use range, and the minimum drive frequency of the inverter is set to fs.
The change range of the drive frequency is set in the range of f0 to f1 according to the fluctuation of the AC input voltage and the fluctuation of the load.
The drive frequency at which the maximum output voltage can be supplied to the load is at the point fs.
At the rated load, the frequency is set to f0, and is set to the frequency fs when the AC input voltage drops or the load becomes heavy. When the AC input voltage becomes high or when the load is light, the frequency is set to f1.
An example of each frequency of fp, fs, f0, f1 is shown below.
fp ≒ 60KHz, fs ≒ 74KHz, f0 ≒ 77KHz, f1 ≒ 100KHz

図4−Bのグラフからは、インバータの駆動周波数を変化させることで出力電圧を可変出来ることが判る。2次側出力電圧が設定より下回った場合その情報を、信号制御用送信コイルを用いて非接触で1次側ユニットに送り、1次側ユニットのインバータの駆動周波数を下げる方向でフィードバック制御を行う。また、軽負荷時等において、出力電圧が設定より上回った場合は、その情報を、制御用送信コイルを用いて非接触で1次側ユニットに送り、1次側ユニットのインバータの駆動周波数を上げる方向でフィードバック制御を行う。 From the graph of FIG. 4-B, it can be seen that the output voltage can be varied by changing the drive frequency of the inverter. When the secondary output voltage falls below the setting, the information is sent to the primary unit in a non-contact manner using a signal control transmission coil, and feedback control is performed in a direction to lower the drive frequency of the primary unit inverter. . Also, when the output voltage exceeds the setting at light load, etc., the information is sent to the primary unit in a non-contact manner using the control transmission coil, and the drive frequency of the primary unit inverter is increased. Perform feedback control in the direction.

図1において2次側整流回路の出力電圧を誤差増幅器に接続し、この電圧と基準電圧を比較する。
誤差増幅器の出力を変調器に接続し変調器の出力を制御用発振回路に接続する。
制御用発振器はL4とC7の並列共振周波数で自励発振を行う。
In FIG. 1, the output voltage of the secondary side rectifier circuit is connected to an error amplifier, and this voltage is compared with a reference voltage.
The output of the error amplifier is connected to the modulator, and the output of the modulator is connected to the control oscillation circuit.
The control oscillator performs self-excited oscillation at the parallel resonance frequency of L4 and C7.

図1においてL3とC8の並列共振回路を検波回路に接続し、検波回路の出力を復調器に接続する。
復調回路の出力を発振周波数可変2相発振器に接続する。
In FIG. 1, the parallel resonant circuit of L3 and C8 is connected to the detector circuit, and the output of the detector circuit is connected to the demodulator.
The output of the demodulation circuit is connected to the oscillation frequency variable two-phase oscillator.

図3は誤差増幅器、変調器、制御用発振器、復調器、発振周波数可変2相発振器の具体例で有る。
出力電圧をR201とR202で分割しU202のオペアンプのインバータ端子(−端子)に接続する。
U202のオペアンプのノンインバータ端子(+端子)には基準電圧を印可しておく。
U202の出力を、U201のコンパレータのインバータ端子(−端子)に接続する。
三角波発振器の出力をU201のノンインバータ端子(+端子)に接続する。
三角波発振器の発信周波数を10KHz程度で有る。
制御用発振器はL4,C7の並列共振回路を用いたLC発振器で有り、8MHz程度の発振周波数である。L4は制御用送信コイルである。
U201の出力を制御用発振器に接続し、制御用発振器の発振を断続させる。
FIG. 3 shows specific examples of an error amplifier, a modulator, a control oscillator, a demodulator, and a variable oscillation frequency two-phase oscillator.
The output voltage is divided by R201 and R202 and connected to the inverter terminal (− terminal) of the operational amplifier U202.
A reference voltage is applied to the non-inverter terminal (+ terminal) of the operational amplifier U202.
The output of U202 is connected to the inverter terminal (− terminal) of the comparator of U201.
The output of the triangular wave oscillator is connected to the non-inverter terminal (+ terminal) of U201.
The transmission frequency of the triangular wave oscillator is about 10 KHz.
The control oscillator is an LC oscillator using a parallel resonant circuit of L4 and C7, and has an oscillation frequency of about 8 MHz. L4 is a control transmission coil.
The output of U201 is connected to the control oscillator, and the oscillation of the control oscillator is interrupted.

一方1次側ユニットにおいて、L3はL4と電磁結合された制御用受信コイルで有る。L3,C8の並列共振回路は制御用発振器の発振周波数に同調させる値とする。
L3,C8の並列共振回路をD3、C9で構成された検波回路に接続する。
検波回路の出力をU101のコンパレータのノンインバータ端子(+端子)に接続する。U101のコンパレータのインバータ端子(−端子)には、+12VをR103とR104で分割した電圧を印可する。
検波回路の出力をR103とR104で分割した電圧と比較しU101の出力とする。U101の出力をNPNトランジスタQ103のベースへ抵抗を介して接続する。
Q103のコレクタをPNPトランジスタQ102のベースへ抵抗を介して接続する。Q102のエミッタを+12V電源に接続する。
Q102のエミッタにD101,L101,C102から構成するパルス幅−電圧変換回路に接続する。
パルス幅−電圧変換回路の出力をNPNトランジスタQ101のベースへ抵抗を介して接続する。
Q101のエミッタにR102を接続し回路のGNDに接続する。
2相発振回路はC101とR101のCR発振器を構成して有る。
Q101のコレクタをR101に接続する。R101はR101とQ101のコレクタ−エミッタを通して並列接続されている。
2相発振回路の出力はA相とB相の2出力を持ち、それぞれ逆相で出力される。
2相発振回路の出力をデットタイム生成回路に接続し、A相とB相間に僅かなデッドタイムを設ける。
デットタイム生成回路の出力をハーフブリッジドライバーに接続する。
ハーフブリッジドライバーに接続されているD101とC102はハイサイドスイッチのQ1の駆動電源を作る目的でブーストアップ回路を構成してある。
ハーフブリッジドライバーの出力はQ1のゲート、ソース間とQ2のゲート、ソース間に接続する。
Q1とQ2のゲートソース間電圧波形は図5のQ1VGSとQ2VGSになる。
On the other hand, in the primary unit, L3 is a control receiving coil that is electromagnetically coupled to L4. The parallel resonant circuit of L3 and C8 is a value that is tuned to the oscillation frequency of the control oscillator.
The parallel resonance circuit of L3 and C8 is connected to the detection circuit composed of D3 and C9.
The output of the detection circuit is connected to the non-inverter terminal (+ terminal) of the comparator of U101. A voltage obtained by dividing +12 V by R103 and R104 is applied to the inverter terminal (− terminal) of the comparator of U101.
The output of the detection circuit is compared with the voltage divided by R103 and R104 to obtain the output of U101. The output of U101 is connected to the base of NPN transistor Q103 via a resistor.
The collector of Q103 is connected to the base of PNP transistor Q102 via a resistor. Connect the emitter of Q102 to the + 12V power supply.
The emitter of Q102 is connected to a pulse width-voltage conversion circuit composed of D101, L101, C102.
The output of the pulse width-voltage conversion circuit is connected to the base of the NPN transistor Q101 via a resistor.
R102 is connected to the emitter of Q101 and connected to the GND of the circuit.
The two-phase oscillation circuit constitutes a CR oscillator of C101 and R101.
Connect the collector of Q101 to R101. R101 is connected in parallel through the collector-emitter of R101 and Q101.
The output of the two-phase oscillation circuit has two outputs, the A phase and the B phase, which are output in opposite phases.
The output of the two-phase oscillation circuit is connected to the dead time generation circuit, and a slight dead time is provided between the A phase and the B phase.
Connect the output of the dead time generation circuit to the half bridge driver.
D101 and C102 connected to the half-bridge driver constitute a boost-up circuit for the purpose of creating a driving power source for the high-side switch Q1.
The output of the half bridge driver is connected between the gate and source of Q1 and between the gate and source of Q2.
The gate-source voltage waveforms of Q1 and Q2 are Q1VGS and Q2VGS in FIG.

図2にU字型コアを用いた結合トランスの一例をしめす。
1次側ユニットに設けたU字型コアの胴部に1次巻き線 L1を巻き回する。
2次側ユニットに設けたU字型コアの胴部に2次巻き線 L2を巻き回する。
結合トランスの1次2次間は、1次側ユニットの樹脂製外郭と2次側ユニットの樹脂製外郭で隔てられている。
結合トランスの1次側U字型コアの脚部の先端と2次側U字型コアの脚部の先端とは、数mmの間隔を隔てて対向している。
1次側U字コアの両脚の中央と1次側ユニットの樹脂製外郭の内側の境界面にL3を配置し、2次側U字コアの両脚の中央と2次側ユニットの樹脂製外郭の内側の境界面にL4を配置する。
L3、L4は空芯コイルを用いる。
FIG. 2 shows an example of a coupling transformer using a U-shaped core.
The primary winding L1 is wound around the body of the U-shaped core provided in the primary unit.
The secondary winding L2 is wound around the trunk of the U-shaped core provided in the secondary unit.
The primary and secondary sides of the coupling transformer are separated by a resin outer shell of the primary unit and a resin outer shell of the secondary unit.
The tip of the leg part of the primary U-shaped core of the coupling transformer and the tip of the leg part of the secondary U-shaped core are opposed to each other with an interval of several mm.
L3 is arranged at the boundary between the center of both legs of the primary U-shaped core and the resin outer shell of the primary unit, and between the center of both legs of the secondary U-shaped core and the resin outer casing of the secondary unit. L4 is arranged on the inner boundary surface.
L3 and L4 use air-core coils.

フィードバック制御の説明を図3、図4、図6を用いて説明する。
1次側ユニットから2次側ユニットへ非接触で電力を伝送している状態において2次側ユニットの出力電圧が設定値より高い場合、(図6の左側部分)オペアンプU202のインバータ端子(―端子)の電圧である、R201とR202で出力電圧を分割した電圧とノンインバータ端子(+端子)に接続してある基準電圧の比較でインバータ端子(―端子)の方が高いため、U202の出力電圧は低い方へ変化する。
U202の出力電圧はコンパレータのU201のインバータ端子(―端子)に接続してあり、U201のノンインバータ端子(+端子)には三角波を印加してある為、三角波の振幅が、U201のインバータ端子より高い期間、Hiレベル出力電圧になる。三角波は固定周波数で有るためその周期も固定である。一定周期の期間においてU201の出力がU201のインバータ端子の電圧に応じてU201のパルス幅が変化する為、パルス幅変調の動作といえる。
2次側ユニットの出力電圧が設定値より高い場合、U201のON幅が広がる結果になる。
The feedback control will be described with reference to FIGS. 3, 4, and 6. FIG.
When the output voltage of the secondary unit is higher than the set value in the state where power is transmitted from the primary unit to the secondary unit in a non-contact manner (left side in FIG. 6), the inverter terminal (-terminal) of the operational amplifier U202 ), The voltage obtained by dividing the output voltage by R201 and R202 and the reference voltage connected to the non-inverter terminal (+ terminal) is higher at the inverter terminal (− terminal). Changes to lower.
Since the output voltage of U202 is connected to the inverter terminal (-terminal) of U201 of the comparator and a triangular wave is applied to the non-inverter terminal (+ terminal) of U201, the amplitude of the triangular wave is greater than that of the inverter terminal of U201. During a high period, the output voltage becomes Hi level. Since the triangular wave has a fixed frequency, its period is also fixed. Since the pulse width of U201 changes in the output of U201 in accordance with the voltage of the inverter terminal of U201 in the period of a fixed period, it can be said to be an operation of pulse width modulation.
When the output voltage of the secondary unit is higher than the set value, the result is that the ON width of U201 is widened.

U201の出力で制御用発振器の発振を断続する制御を行う。
U201の出力がHiレベルの状態で制御用発振器が発振し、U201の出力がLowレベルの状態で制御用発振器の発振が停止する。
U201の出力がONの期間制御用発振器が発振し、出力がOFFの期間制御用発振器が発振を停止する。
2次側ユニットの出力電圧が設定値より高い場合、制御用発振器が発振している期間が長くなる。
Control to intermittently oscillate the control oscillator is performed by the output of U201.
The control oscillator oscillates when the output of U201 is at the Hi level, and the oscillation of the control oscillator stops when the output of U201 is at the Low level.
The control oscillator oscillates while the output of U201 is ON, and the control oscillator oscillates while the output is OFF.
When the output voltage of the secondary unit is higher than the set value, the period during which the control oscillator is oscillating becomes long.

1次側ユニットに設けられたL3は2次側ユニットのL4と電磁結合しているためL3、C8の並列共振回路の高周波誘導電圧は、制御用発振器の発振の断続に応じて断続する。 Since L3 provided in the primary unit is electromagnetically coupled to L4 of the secondary unit, the high frequency induced voltage of the parallel resonant circuit of L3 and C8 is intermittent according to the intermittent oscillation of the control oscillator.

L3、C8に接続された検波回路の出力はU201の出力がONの時ON、U201の出力がOFFの時、OFFとなり、検波回路のON幅は、U201の出力のON幅に同期する。 The output of the detection circuit connected to L3 and C8 is ON when the output of U201 is ON, and is OFF when the output of U201 is OFF, and the ON width of the detection circuit is synchronized with the ON width of the output of U201.

復調器のU101は検波回路電圧を増幅する目的のコンパレータで有る。
検波回路の出力電圧をU101のノンインバータ端子(+端子)に接続して有るためR103とR104で生成した基準電圧よりU101のインバータ端子(―端子)の電圧が高いと、U101の出力はON、NPNタイプのQ103がON、PNPタイプのQ102がONとなる。
Q102のON幅はU201のON幅と同じになる。
The demodulator U101 is a comparator for the purpose of amplifying the detection circuit voltage.
Since the output voltage of the detection circuit is connected to the non-inverter terminal (+ terminal) of U101, if the voltage of the inverter terminal (−terminal) of U101 is higher than the reference voltage generated by R103 and R104, the output of U101 is ON, The NPN type Q103 is ON and the PNP type Q102 is ON.
The ON width of Q102 is the same as the ON width of U201.

L201、D101、C102を用いたパルス幅―電圧変換回路はフィードフォワードタイプのスイッチング電源回路の2次側整流回路に用いられるものと同じ構成である。
従ってQ102のON幅に比例した出力電圧が得られる。
結果U201のON幅に比例した出力電圧が得られる。
以上から2次側ユニットの出力電圧が設定値より高い場合、パルス幅―電圧変換回路の出力電圧も高くなる。
The pulse width-voltage conversion circuit using L201, D101, and C102 has the same configuration as that used in the secondary rectifier circuit of the feedforward type switching power supply circuit.
Therefore, an output voltage proportional to the ON width of Q102 is obtained.
An output voltage proportional to the ON width of the result U201 is obtained.
From the above, when the output voltage of the secondary unit is higher than the set value, the output voltage of the pulse width-voltage conversion circuit also becomes high.

パルス幅―電圧変換回路の出力を、抵抗を介してNPNのQ101のベースに接続して有るため、パルス幅―電圧変換回路の出力電圧が高くなるとQ101のコレクタ電流が増える。
Q101のコレクタ電流が増える事は、等価的にR101の抵抗値が減る事になる。
Since the output of the pulse width-voltage conversion circuit is connected to the base of the NPN Q101 via a resistor, the collector current of the Q101 increases as the output voltage of the pulse width-voltage conversion circuit increases.
Increasing the collector current of Q101 equivalently decreases the resistance value of R101.

2相発振器はCR発振器で構成されているため、R101の抵抗値が減ると2相発振器の発振周波数は高くなる。2相発振器の発振周波数が高くなるとインバータの駆動周波数が高くなる。図4−Bから駆動周波数が高くなると2次側ユニットの出力電圧が低くなる事が判る。 Since the two-phase oscillator is composed of a CR oscillator, the oscillation frequency of the two-phase oscillator increases as the resistance value of R101 decreases. As the oscillation frequency of the two-phase oscillator increases, the drive frequency of the inverter increases. FIG. 4B shows that the output voltage of the secondary unit decreases as the drive frequency increases.

2次側ユニットの出力電圧が設定値より低くい場合は図6の右側に示すとおりU201のコンパレータのON幅が狭まり、制御用発振器の発振幅が狭まりL4の高周波電流の発振幅が狭まる。 When the output voltage of the secondary unit is lower than the set value, the ON width of the comparator of U201 is narrowed as shown on the right side of FIG. 6, the emission amplitude of the control oscillator is reduced, and the emission amplitude of the high-frequency current of L4 is reduced.

制御用発振器の発振幅が狭まりL4の高周波電流の発振幅が狭まると、検波回路の出力のON幅が狭まり、パルス幅―電圧変換回路の出力電圧が低くなり、Q101のコレクタ電流が減る。Q101のコレクタ電流が減ると等価的にR101の抵抗値に近づく事になる。 When the oscillation amplitude of the control oscillator is narrowed and the oscillation amplitude of the high frequency current of L4 is narrowed, the ON width of the output of the detection circuit is narrowed, the output voltage of the pulse width-voltage conversion circuit is lowered, and the collector current of Q101 is reduced. When the collector current of Q101 is reduced, the resistance value of R101 is equivalently approached.

2相発振器はCR発振器で構成されているため、2相発振器の発振周波数は低くなる。2相発振器の発振周波数が低くなるとインバータの駆動周波数が低くなる。
図4−Bから駆動周波数が低くなると2次側ユニットの出力電圧が高くなる事が判る。
Since the two-phase oscillator is composed of a CR oscillator, the oscillation frequency of the two-phase oscillator is low. When the oscillation frequency of the two-phase oscillator is lowered, the drive frequency of the inverter is lowered.
It can be seen from FIG. 4-B that the output voltage of the secondary unit increases as the drive frequency decreases.

以上の様に2次側電圧情報が1次側にフィードバックされ、インバータの駆動周波数を変え、2次側の出力電圧を安定化する。 As described above, the secondary side voltage information is fed back to the primary side, and the drive frequency of the inverter is changed to stabilize the secondary side output voltage.

同様な手法を用いて2次側の電流情報を1次側にフィードバックされ、インバータの駆動周波数を変え、2次側の出力電流を安定化することが出来る。 By using the same method, the secondary side current information is fed back to the primary side, and the drive frequency of the inverter can be changed to stabilize the secondary side output current.

本発明の実施形態を示す、概略回路図である。It is a schematic circuit diagram which shows embodiment of this invention. 結合トランスの構造図。Structure diagram of coupling transformer. フィードバック制御の為の詳細回路図。Detailed circuit diagram for feedback control. 駆動周波数対、1次側直列共振回路の共振周波数特性と2次側直列共振回路の共振周波数特性と2次側整流電圧の関係を表した説明図。FIG. 4 is an explanatory diagram showing a relationship between a drive frequency, a resonance frequency characteristic of a primary side series resonance circuit, a resonance frequency characteristic of a secondary side series resonance circuit, and a secondary side rectified voltage. インバータ回路と結合トランスの動作を説明するタイムチャート。The time chart explaining operation | movement of an inverter circuit and a coupling transformer. フィードバック制御の動作を説明するタイムチャート。The time chart explaining operation | movement of feedback control.

符号の説明Explanation of symbols

L1:結合トランスの1次側巻き線インダクタンス。
L2:結合トランスの2次側巻き線インダクタンス。
C1:1次側直列共振用コンデンサ。
C2:2次側直列共振用コンデンサ。
L3:制御用受信コイル。
L4:制御用送信コイル。
C7:L4の並列共振用コンデンサ−。
C8:L3の並列共振用コンデンサ−。
fp:1次側直列共振回路の共振周波数。
fs :2次側共振回路の共振周波数。
f1 :定格負荷時のインバータ駆動周波数。
f0:重負荷時のインバータ駆動周波数。
f2:軽負荷時のインバータ駆動周波数。

L1: Primary winding inductance of the coupling transformer.
L2: Secondary winding inductance of the coupling transformer.
C1: Capacitor for primary side series resonance.
C2: Secondary side series resonance capacitor.
L3: Control receiving coil.
L4: Transmitter coil for control.
C7: L4 parallel resonance capacitor.
C8: L3 parallel resonance capacitor.
fp: resonance frequency of the primary side series resonance circuit.
fs: resonance frequency of the secondary side resonance circuit.
f1: Inverter drive frequency at rated load.
f0: inverter drive frequency under heavy load.
f2: inverter drive frequency at light load.

Claims (2)

結合トランスの1次側と2次側を個別に収容して、相互に分離可能に構成してなる1次側ユニットと2次側ユニットを具備し、前記1次側ユニットから2次側ユニットへ電磁誘導作用を利用して非接触で電力を供給する非接触電力伝送装置において、前記2次側ユニットは、前記結合トランスの2次側における電圧および電流に関する信号を前記2次側ユニットから前記1次側ユニットへ制御用送信コイルを用いて送信する送信手段を備え、前記1次側ユニットは、前記制御用送信コイルと電磁結合された制御用受信コイルをもちいて2次側における電圧および電流に関する信号を受信して、結合トランスの1次側コイルの高周波電流を可変し2次側の出力電圧及び電流を安定化制御する手段を具備して構成したことを特徴とする非接触電力伝送装置。 The primary side and secondary side of the coupling transformer are individually accommodated and configured so as to be separable from each other, and the primary side unit to the secondary side unit are provided. In the non-contact power transmission apparatus that supplies electric power in a non-contact manner using electromagnetic induction, the secondary unit transmits signals related to the voltage and current on the secondary side of the coupling transformer from the secondary unit. A transmission means for transmitting to a secondary unit using a control transmission coil is provided, and the primary unit relates to a voltage and current on the secondary side using a control reception coil electromagnetically coupled to the control transmission coil. Non-contact power characterized by comprising means for receiving a signal, changing the high-frequency current of the primary side coil of the coupling transformer, and stabilizing the output voltage and current on the secondary side Feeding apparatus. 結合トランスの1次側と2次側を個別に収容して、相互に分離可能に構成してなる1次側ユニットと2次側ユニットを具備した非接触電力伝送装置であって1次側直列共振回路の共振周波数と駆動周波数を離調させて設定し、前記1次側直列共振回路の共振周波数と駆動周波数の離調の程度により1次側直列共振回路の電流を制限すること及び2次側直列共振回路の共振周波数を1次側駆動周波数にほぼ等しくする様に1次と2次の直列共振回路の共振周波数を設定した状態において、1次側の駆動周波数を可変することにより2次側出力電圧又は電流を可変する事を特徴とする非接触電力伝送装置。
A non-contact power transmission apparatus including a primary side unit and a secondary side unit configured to separately accommodate a primary side and a secondary side of a coupling transformer so as to be separable from each other. The resonance frequency and the driving frequency of the resonance circuit are set to be detuned, and the current of the primary side series resonance circuit is limited by the degree of detuning of the resonance frequency and the driving frequency of the primary side series resonance circuit, and the secondary In the state where the resonance frequency of the primary and secondary series resonance circuits is set so that the resonance frequency of the side series resonance circuit is substantially equal to the primary side drive frequency, the secondary side drive frequency is varied to change the secondary side. A non-contact power transmission device characterized by varying the side output voltage or current.
JP2004251768A 2004-08-31 2004-08-31 Non-contact power transmission system Pending JP2006074848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004251768A JP2006074848A (en) 2004-08-31 2004-08-31 Non-contact power transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004251768A JP2006074848A (en) 2004-08-31 2004-08-31 Non-contact power transmission system

Publications (1)

Publication Number Publication Date
JP2006074848A true JP2006074848A (en) 2006-03-16

Family

ID=36154852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004251768A Pending JP2006074848A (en) 2004-08-31 2004-08-31 Non-contact power transmission system

Country Status (1)

Country Link
JP (1) JP2006074848A (en)

Cited By (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008104295A (en) * 2006-10-19 2008-05-01 Voltex:Kk Non-contact power supply unit
JP2010505379A (en) * 2006-09-29 2010-02-18 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー System and method for inductively charging batteries
JP2011120450A (en) * 2009-10-30 2011-06-16 Tdk Corp Wireless power feeder, wireless power transmission system, and table and table lamp using the same
JP2011177015A (en) * 2007-07-13 2011-09-08 Hanrim Postech Co Ltd Battery pack for non-contact charging, and method of controlling the same
JP2011182012A (en) * 2010-02-26 2011-09-15 Mitsubishi Electric Corp Non-contact setting device and program
EP2367263A2 (en) 2010-03-19 2011-09-21 TDK Corporation Wireless power feeder, wireless power receiver, and wireless power transmission system
EP2375531A2 (en) 2010-04-05 2011-10-12 TDK Corporation Wireless power receiver and wireless power transmission system
US8258652B2 (en) 2008-12-02 2012-09-04 Casio Computer Co., Ltd Power transmission device
JP2012522482A (en) * 2009-03-25 2012-09-20 クアルコム,インコーポレイテッド Optimizing wireless power devices to charge batteries
US8362651B2 (en) 2008-10-01 2013-01-29 Massachusetts Institute Of Technology Efficient near-field wireless energy transfer using adiabatic system variations
JP2013504298A (en) * 2009-09-02 2013-02-04 クアルコム,インコーポレイテッド Detuning in wireless power reception
JP2013504740A (en) * 2009-09-10 2013-02-07 クアルコム,インコーポレイテッド Wireless power for heating or cooling
US8395283B2 (en) 2005-07-12 2013-03-12 Massachusetts Institute Of Technology Wireless energy transfer over a distance at high efficiency
KR101278399B1 (en) * 2009-03-17 2013-06-24 후지쯔 가부시끼가이샤 Wireless power supply system
KR101288433B1 (en) * 2007-03-27 2013-07-26 메사추세츠 인스티튜트 오브 테크놀로지 Wireless energy transfer
WO2013111917A1 (en) * 2012-01-25 2013-08-01 엘지전자 주식회사 Method and apparatus for setting frequency of wireless power transmission
US8729735B2 (en) 2009-11-30 2014-05-20 Tdk Corporation Wireless power feeder, wireless power receiver, and wireless power transmission system
US8742627B2 (en) 2011-03-01 2014-06-03 Tdk Corporation Wireless power feeder
WO2014129178A1 (en) * 2013-02-20 2014-08-28 パナソニック株式会社 Non-contact charging device and non-contact charging method
US8829729B2 (en) 2010-08-18 2014-09-09 Tdk Corporation Wireless power feeder, wireless power receiver, and wireless power transmission system
US8829727B2 (en) 2009-10-30 2014-09-09 Tdk Corporation Wireless power feeder, wireless power transmission system, and table and table lamp using the same
CN104052163A (en) * 2013-03-13 2014-09-17 株式会社东芝 Wireless power supply system, power transmission controlling apparatus and power reception controlling apparatus
US8847548B2 (en) 2008-09-27 2014-09-30 Witricity Corporation Wireless energy transfer for implantable devices
JP2014187784A (en) * 2013-03-22 2014-10-02 Toshiba Corp Wireless power-feeding system, power-receiving control device, and power-transmitting control device
US8875086B2 (en) 2011-11-04 2014-10-28 Witricity Corporation Wireless energy transfer modeling tool
US8901779B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with resonator arrays for medical applications
US8901778B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with variable size resonators for implanted medical devices
US8907531B2 (en) 2008-09-27 2014-12-09 Witricity Corporation Wireless energy transfer with variable size resonators for medical applications
WO2014196239A1 (en) * 2013-06-04 2014-12-11 株式会社Ihi Power supply device, and non-contact power supply system
US8912687B2 (en) 2008-09-27 2014-12-16 Witricity Corporation Secure wireless energy transfer for vehicle applications
WO2014203442A1 (en) * 2013-06-18 2014-12-24 パナソニックIpマネジメント株式会社 Wireless power transmission system
US8922066B2 (en) 2008-09-27 2014-12-30 Witricity Corporation Wireless energy transfer with multi resonator arrays for vehicle applications
US8928276B2 (en) 2008-09-27 2015-01-06 Witricity Corporation Integrated repeaters for cell phone applications
US8933594B2 (en) 2008-09-27 2015-01-13 Witricity Corporation Wireless energy transfer for vehicles
US8937408B2 (en) 2008-09-27 2015-01-20 Witricity Corporation Wireless energy transfer for medical applications
US8947186B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Wireless energy transfer resonator thermal management
US8946938B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Safety systems for wireless energy transfer in vehicle applications
US8957549B2 (en) 2008-09-27 2015-02-17 Witricity Corporation Tunable wireless energy transfer for in-vehicle applications
US8963488B2 (en) 2008-09-27 2015-02-24 Witricity Corporation Position insensitive wireless charging
JP2015084642A (en) * 2010-05-19 2015-04-30 クアルコム,インコーポレイテッド Apparatus and method for wireless power transfer, and apparatus for wirelessly receiving power in electric vehicle
US9035499B2 (en) 2008-09-27 2015-05-19 Witricity Corporation Wireless energy transfer for photovoltaic panels
US9065423B2 (en) 2008-09-27 2015-06-23 Witricity Corporation Wireless energy distribution system
US9093853B2 (en) 2008-09-27 2015-07-28 Witricity Corporation Flexible resonator attachment
US9095729B2 (en) 2007-06-01 2015-08-04 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9106203B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Secure wireless energy transfer in medical applications
US9105959B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Resonator enclosure
US9160203B2 (en) 2008-09-27 2015-10-13 Witricity Corporation Wireless powered television
US9184595B2 (en) 2008-09-27 2015-11-10 Witricity Corporation Wireless energy transfer in lossy environments
US9246336B2 (en) 2008-09-27 2016-01-26 Witricity Corporation Resonator optimizations for wireless energy transfer
US9287607B2 (en) 2012-07-31 2016-03-15 Witricity Corporation Resonator fine tuning
US9306635B2 (en) 2012-01-26 2016-04-05 Witricity Corporation Wireless energy transfer with reduced fields
US9318922B2 (en) 2008-09-27 2016-04-19 Witricity Corporation Mechanically removable wireless power vehicle seat assembly
US9318257B2 (en) 2011-10-18 2016-04-19 Witricity Corporation Wireless energy transfer for packaging
US9343922B2 (en) 2012-06-27 2016-05-17 Witricity Corporation Wireless energy transfer for rechargeable batteries
US9369182B2 (en) 2008-09-27 2016-06-14 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US9384885B2 (en) 2011-08-04 2016-07-05 Witricity Corporation Tunable wireless power architectures
US9396867B2 (en) 2008-09-27 2016-07-19 Witricity Corporation Integrated resonator-shield structures
US9404954B2 (en) 2012-10-19 2016-08-02 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9421388B2 (en) 2007-06-01 2016-08-23 Witricity Corporation Power generation for implantable devices
US9444265B2 (en) 2005-07-12 2016-09-13 Massachusetts Institute Of Technology Wireless energy transfer
US9442172B2 (en) 2011-09-09 2016-09-13 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9444520B2 (en) 2008-09-27 2016-09-13 Witricity Corporation Wireless energy transfer converters
US9449757B2 (en) 2012-11-16 2016-09-20 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US9515494B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless power system including impedance matching network
US9544683B2 (en) 2008-09-27 2017-01-10 Witricity Corporation Wirelessly powered audio devices
US9595378B2 (en) 2012-09-19 2017-03-14 Witricity Corporation Resonator enclosure
US9601261B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Wireless energy transfer using repeater resonators
US9602168B2 (en) 2010-08-31 2017-03-21 Witricity Corporation Communication in wireless energy transfer systems
US9601266B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Multiple connected resonators with a single electronic circuit
US9601270B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Low AC resistance conductor designs
US9744858B2 (en) 2008-09-27 2017-08-29 Witricity Corporation System for wireless energy distribution in a vehicle
US9754718B2 (en) 2008-09-27 2017-09-05 Witricity Corporation Resonator arrays for wireless energy transfer
US9780573B2 (en) 2014-02-03 2017-10-03 Witricity Corporation Wirelessly charged battery system
US9837860B2 (en) 2014-05-05 2017-12-05 Witricity Corporation Wireless power transmission systems for elevators
US9842687B2 (en) 2014-04-17 2017-12-12 Witricity Corporation Wireless power transfer systems with shaped magnetic components
US9842688B2 (en) 2014-07-08 2017-12-12 Witricity Corporation Resonator balancing in wireless power transfer systems
US9843217B2 (en) 2015-01-05 2017-12-12 Witricity Corporation Wireless energy transfer for wearables
US9857821B2 (en) 2013-08-14 2018-01-02 Witricity Corporation Wireless power transfer frequency adjustment
US9892849B2 (en) 2014-04-17 2018-02-13 Witricity Corporation Wireless power transfer systems with shield openings
US9904306B2 (en) 2013-11-13 2018-02-27 Samsung Electronics Co., Ltd. Voltage converter, wireless power reception device and wireless power transmission system including the same
US9929721B2 (en) 2015-10-14 2018-03-27 Witricity Corporation Phase and amplitude detection in wireless energy transfer systems
KR101842611B1 (en) 2007-01-02 2018-03-29 필립스 아이피 벤쳐스 비.브이. Inductive power supply with device identification
CN107925273A (en) * 2015-08-03 2018-04-17 罗伯特·博世有限公司 Method for induction type energy transmission to the induction charging device and the inductive charging for sensing accumulator equipment of sensing accumulator equipment
US9948145B2 (en) 2011-07-08 2018-04-17 Witricity Corporation Wireless power transfer for a seat-vest-helmet system
US9952266B2 (en) 2014-02-14 2018-04-24 Witricity Corporation Object detection for wireless energy transfer systems
US9954375B2 (en) 2014-06-20 2018-04-24 Witricity Corporation Wireless power transfer systems for surfaces
US10018744B2 (en) 2014-05-07 2018-07-10 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10063110B2 (en) 2015-10-19 2018-08-28 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10063104B2 (en) 2016-02-08 2018-08-28 Witricity Corporation PWM capacitor control
WO2018159030A1 (en) * 2017-03-02 2018-09-07 オムロン株式会社 Noncontact power supply apparatus
US10075019B2 (en) 2015-11-20 2018-09-11 Witricity Corporation Voltage source isolation in wireless power transfer systems
US10097012B2 (en) 2013-07-19 2018-10-09 Ihi Corporation Power supplying device and wireless power-supplying system
US10141788B2 (en) 2015-10-22 2018-11-27 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US10153643B2 (en) 2014-07-30 2018-12-11 Funai Electric Co., Ltd. Wireless power supply device and wireless power supply system
US10218224B2 (en) 2008-09-27 2019-02-26 Witricity Corporation Tunable wireless energy transfer systems
US10248899B2 (en) 2015-10-06 2019-04-02 Witricity Corporation RFID tag and transponder detection in wireless energy transfer systems
US10263473B2 (en) 2016-02-02 2019-04-16 Witricity Corporation Controlling wireless power transfer systems
US10424976B2 (en) 2011-09-12 2019-09-24 Witricity Corporation Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems
CN110326187A (en) * 2017-03-02 2019-10-11 欧姆龙株式会社 Contactless power supply device
US10574091B2 (en) 2014-07-08 2020-02-25 Witricity Corporation Enclosures for high power wireless power transfer systems
US11031818B2 (en) 2017-06-29 2021-06-08 Witricity Corporation Protection and control of wireless power systems
FR3107791A1 (en) * 2020-03-02 2021-09-03 Radiall Wireless and contactless electrical energy transfer kit including an improved transfer energy regulation system.
JP7538289B2 (en) 2016-02-03 2024-08-21 ゼネラル・エレクトリック・カンパニイ SYSTEM AND METHOD FOR PROTECTING A WIRELESS POWER TRANSFER SYSTEM - Patent application
KR102713319B1 (en) * 2021-12-15 2024-10-04 서울시립대학교 산학협력단 Wireless charging system for electric car

Cited By (220)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8772972B2 (en) 2005-07-12 2014-07-08 Massachusetts Institute Of Technology Wireless energy transfer across a distance to a moving device
US8760008B2 (en) 2005-07-12 2014-06-24 Massachusetts Institute Of Technology Wireless energy transfer over variable distances between resonators of substantially similar resonant frequencies
US10097044B2 (en) 2005-07-12 2018-10-09 Massachusetts Institute Of Technology Wireless energy transfer
US9509147B2 (en) 2005-07-12 2016-11-29 Massachusetts Institute Of Technology Wireless energy transfer
US10141790B2 (en) 2005-07-12 2018-11-27 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US11685270B2 (en) 2005-07-12 2023-06-27 Mit Wireless energy transfer
US11685271B2 (en) 2005-07-12 2023-06-27 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US9065286B2 (en) 2005-07-12 2015-06-23 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US8791599B2 (en) 2005-07-12 2014-07-29 Massachusetts Institute Of Technology Wireless energy transfer to a moving device between high-Q resonators
US8772971B2 (en) 2005-07-12 2014-07-08 Massachusetts Institute Of Technology Wireless energy transfer across variable distances with high-Q capacitively-loaded conducting-wire loops
US8766485B2 (en) 2005-07-12 2014-07-01 Massachusetts Institute Of Technology Wireless energy transfer over distances to a moving device
US9831722B2 (en) 2005-07-12 2017-11-28 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US8760007B2 (en) 2005-07-12 2014-06-24 Massachusetts Institute Of Technology Wireless energy transfer with high-Q to more than one device
US8395282B2 (en) 2005-07-12 2013-03-12 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US8400018B2 (en) 2005-07-12 2013-03-19 Massachusetts Institute Of Technology Wireless energy transfer with high-Q at high efficiency
US8400023B2 (en) 2005-07-12 2013-03-19 Massachusetts Institute Of Technology Wireless energy transfer with high-Q capacitively loaded conducting loops
US8400022B2 (en) 2005-07-12 2013-03-19 Massachusetts Institute Of Technology Wireless energy transfer with high-Q similar resonant frequency resonators
US8400024B2 (en) 2005-07-12 2013-03-19 Massachusetts Institute Of Technology Wireless energy transfer across variable distances
US8400021B2 (en) 2005-07-12 2013-03-19 Massachusetts Institute Of Technology Wireless energy transfer with high-Q sub-wavelength resonators
US10666091B2 (en) 2005-07-12 2020-05-26 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US9444265B2 (en) 2005-07-12 2016-09-13 Massachusetts Institute Of Technology Wireless energy transfer
US9450421B2 (en) 2005-07-12 2016-09-20 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US8395283B2 (en) 2005-07-12 2013-03-12 Massachusetts Institute Of Technology Wireless energy transfer over a distance at high efficiency
US9450422B2 (en) 2005-07-12 2016-09-20 Massachusetts Institute Of Technology Wireless energy transfer
KR101581103B1 (en) * 2006-09-29 2015-12-30 액세스 비지니스 그룹 인터내셔날 엘엘씨 System and method for inductively charging a battery
US8872472B2 (en) 2006-09-29 2014-10-28 Access Business Group International Llc System and method for inductively charging a battery
JP2014135890A (en) * 2006-09-29 2014-07-24 Access Business Group International Llc System and method for inductively charging battery
KR101399688B1 (en) * 2006-09-29 2014-05-27 액세스 비지니스 그룹 인터내셔날 엘엘씨 System and method for inductively charging a battery
JP2013179829A (en) * 2006-09-29 2013-09-09 Access Business Group Internatl Llc System and method for inductively charging battery
JP2010505379A (en) * 2006-09-29 2010-02-18 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー System and method for inductively charging batteries
KR20140012189A (en) * 2006-09-29 2014-01-29 액세스 비지니스 그룹 인터내셔날 엘엘씨 System and method for inductively charging a battery
US8593105B2 (en) 2006-09-29 2013-11-26 Access Business Group International Llc System and method for inductively charging a battery
JP2008104295A (en) * 2006-10-19 2008-05-01 Voltex:Kk Non-contact power supply unit
KR101842611B1 (en) 2007-01-02 2018-03-29 필립스 아이피 벤쳐스 비.브이. Inductive power supply with device identification
KR101288433B1 (en) * 2007-03-27 2013-07-26 메사추세츠 인스티튜트 오브 테크놀로지 Wireless energy transfer
US10420951B2 (en) 2007-06-01 2019-09-24 Witricity Corporation Power generation for implantable devices
US10348136B2 (en) 2007-06-01 2019-07-09 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9318898B2 (en) 2007-06-01 2016-04-19 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9101777B2 (en) 2007-06-01 2015-08-11 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9095729B2 (en) 2007-06-01 2015-08-04 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9421388B2 (en) 2007-06-01 2016-08-23 Witricity Corporation Power generation for implantable devices
US9943697B2 (en) 2007-06-01 2018-04-17 Witricity Corporation Power generation for implantable devices
US9843230B2 (en) 2007-06-01 2017-12-12 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
JP2011177015A (en) * 2007-07-13 2011-09-08 Hanrim Postech Co Ltd Battery pack for non-contact charging, and method of controlling the same
US9662161B2 (en) 2008-09-27 2017-05-30 Witricity Corporation Wireless energy transfer for medical applications
US9780605B2 (en) 2008-09-27 2017-10-03 Witricity Corporation Wireless power system with associated impedance matching network
US8847548B2 (en) 2008-09-27 2014-09-30 Witricity Corporation Wireless energy transfer for implantable devices
US10097011B2 (en) 2008-09-27 2018-10-09 Witricity Corporation Wireless energy transfer for photovoltaic panels
US8901779B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with resonator arrays for medical applications
US8901778B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with variable size resonators for implanted medical devices
US10218224B2 (en) 2008-09-27 2019-02-26 Witricity Corporation Tunable wireless energy transfer systems
US8907531B2 (en) 2008-09-27 2014-12-09 Witricity Corporation Wireless energy transfer with variable size resonators for medical applications
US11479132B2 (en) 2008-09-27 2022-10-25 Witricity Corporation Wireless power transmission system enabling bidirectional energy flow
US8912687B2 (en) 2008-09-27 2014-12-16 Witricity Corporation Secure wireless energy transfer for vehicle applications
US11114897B2 (en) 2008-09-27 2021-09-07 Witricity Corporation Wireless power transmission system enabling bidirectional energy flow
US8922066B2 (en) 2008-09-27 2014-12-30 Witricity Corporation Wireless energy transfer with multi resonator arrays for vehicle applications
US11114896B2 (en) 2008-09-27 2021-09-07 Witricity Corporation Wireless power system modules
US8928276B2 (en) 2008-09-27 2015-01-06 Witricity Corporation Integrated repeaters for cell phone applications
US8933594B2 (en) 2008-09-27 2015-01-13 Witricity Corporation Wireless energy transfer for vehicles
US8937408B2 (en) 2008-09-27 2015-01-20 Witricity Corporation Wireless energy transfer for medical applications
US8947186B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Wireless energy transfer resonator thermal management
US8946938B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Safety systems for wireless energy transfer in vehicle applications
US8957549B2 (en) 2008-09-27 2015-02-17 Witricity Corporation Tunable wireless energy transfer for in-vehicle applications
US8963488B2 (en) 2008-09-27 2015-02-24 Witricity Corporation Position insensitive wireless charging
US10230243B2 (en) 2008-09-27 2019-03-12 Witricity Corporation Flexible resonator attachment
US9035499B2 (en) 2008-09-27 2015-05-19 Witricity Corporation Wireless energy transfer for photovoltaic panels
US9065423B2 (en) 2008-09-27 2015-06-23 Witricity Corporation Wireless energy distribution system
US10264352B2 (en) 2008-09-27 2019-04-16 Witricity Corporation Wirelessly powered audio devices
US9093853B2 (en) 2008-09-27 2015-07-28 Witricity Corporation Flexible resonator attachment
US10300800B2 (en) 2008-09-27 2019-05-28 Witricity Corporation Shielding in vehicle wireless power systems
US10340745B2 (en) 2008-09-27 2019-07-02 Witricity Corporation Wireless power sources and devices
US9106203B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Secure wireless energy transfer in medical applications
US9105959B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Resonator enclosure
US9160203B2 (en) 2008-09-27 2015-10-13 Witricity Corporation Wireless powered television
US9843228B2 (en) 2008-09-27 2017-12-12 Witricity Corporation Impedance matching in wireless power systems
US9184595B2 (en) 2008-09-27 2015-11-10 Witricity Corporation Wireless energy transfer in lossy environments
US10410789B2 (en) 2008-09-27 2019-09-10 Witricity Corporation Integrated resonator-shield structures
US10446317B2 (en) 2008-09-27 2019-10-15 Witricity Corporation Object and motion detection in wireless power transfer systems
US9246336B2 (en) 2008-09-27 2016-01-26 Witricity Corporation Resonator optimizations for wireless energy transfer
US10536034B2 (en) 2008-09-27 2020-01-14 Witricity Corporation Wireless energy transfer resonator thermal management
US9806541B2 (en) 2008-09-27 2017-10-31 Witricity Corporation Flexible resonator attachment
US10559980B2 (en) 2008-09-27 2020-02-11 Witricity Corporation Signaling in wireless power systems
US9754718B2 (en) 2008-09-27 2017-09-05 Witricity Corporation Resonator arrays for wireless energy transfer
US9318922B2 (en) 2008-09-27 2016-04-19 Witricity Corporation Mechanically removable wireless power vehicle seat assembly
US9748039B2 (en) 2008-09-27 2017-08-29 Witricity Corporation Wireless energy transfer resonator thermal management
US11958370B2 (en) 2008-09-27 2024-04-16 Witricity Corporation Wireless power system modules
US9744858B2 (en) 2008-09-27 2017-08-29 Witricity Corporation System for wireless energy distribution in a vehicle
US9369182B2 (en) 2008-09-27 2016-06-14 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US9742204B2 (en) 2008-09-27 2017-08-22 Witricity Corporation Wireless energy transfer in lossy environments
US9396867B2 (en) 2008-09-27 2016-07-19 Witricity Corporation Integrated resonator-shield structures
US9711991B2 (en) 2008-09-27 2017-07-18 Witricity Corporation Wireless energy transfer converters
US9698607B2 (en) 2008-09-27 2017-07-04 Witricity Corporation Secure wireless energy transfer
US10084348B2 (en) 2008-09-27 2018-09-25 Witricity Corporation Wireless energy transfer for implantable devices
US9601270B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Low AC resistance conductor designs
US9444520B2 (en) 2008-09-27 2016-09-13 Witricity Corporation Wireless energy transfer converters
US9601266B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Multiple connected resonators with a single electronic circuit
US9601261B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Wireless energy transfer using repeater resonators
US9596005B2 (en) 2008-09-27 2017-03-14 Witricity Corporation Wireless energy transfer using variable size resonators and systems monitoring
US9584189B2 (en) 2008-09-27 2017-02-28 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US9496719B2 (en) 2008-09-27 2016-11-15 Witricity Corporation Wireless energy transfer for implantable devices
US9577436B2 (en) 2008-09-27 2017-02-21 Witricity Corporation Wireless energy transfer for implantable devices
US9515494B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless power system including impedance matching network
US9515495B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless energy transfer in lossy environments
US9544683B2 (en) 2008-09-27 2017-01-10 Witricity Corporation Wirelessly powered audio devices
US10673282B2 (en) 2008-09-27 2020-06-02 Witricity Corporation Tunable wireless energy transfer systems
US9831682B2 (en) 2008-10-01 2017-11-28 Massachusetts Institute Of Technology Efficient near-field wireless energy transfer using adiabatic system variations
US8836172B2 (en) 2008-10-01 2014-09-16 Massachusetts Institute Of Technology Efficient near-field wireless energy transfer using adiabatic system variations
US8362651B2 (en) 2008-10-01 2013-01-29 Massachusetts Institute Of Technology Efficient near-field wireless energy transfer using adiabatic system variations
US8258652B2 (en) 2008-12-02 2012-09-04 Casio Computer Co., Ltd Power transmission device
US9685825B2 (en) 2009-03-17 2017-06-20 Fujitsu Limited Wireless power supply system
KR101278399B1 (en) * 2009-03-17 2013-06-24 후지쯔 가부시끼가이샤 Wireless power supply system
KR101341258B1 (en) * 2009-03-17 2013-12-13 후지쯔 가부시끼가이샤 Wireless power supply system
US9283894B2 (en) 2009-03-17 2016-03-15 Fujitsu Limited Wireless power supply system
JP2012522482A (en) * 2009-03-25 2012-09-20 クアルコム,インコーポレイテッド Optimizing wireless power devices to charge batteries
JP2013504298A (en) * 2009-09-02 2013-02-04 クアルコム,インコーポレイテッド Detuning in wireless power reception
JP2013504740A (en) * 2009-09-10 2013-02-07 クアルコム,インコーポレイテッド Wireless power for heating or cooling
JP2014224674A (en) * 2009-09-10 2014-12-04 クアルコム,インコーポレイテッド Wireless power for heating or cooling
JP2011120450A (en) * 2009-10-30 2011-06-16 Tdk Corp Wireless power feeder, wireless power transmission system, and table and table lamp using the same
US8829727B2 (en) 2009-10-30 2014-09-09 Tdk Corporation Wireless power feeder, wireless power transmission system, and table and table lamp using the same
US8729735B2 (en) 2009-11-30 2014-05-20 Tdk Corporation Wireless power feeder, wireless power receiver, and wireless power transmission system
JP2011182012A (en) * 2010-02-26 2011-09-15 Mitsubishi Electric Corp Non-contact setting device and program
US8829725B2 (en) 2010-03-19 2014-09-09 Tdk Corporation Wireless power feeder, wireless power receiver, and wireless power transmission system
EP2367263A3 (en) * 2010-03-19 2014-03-26 TDK Corporation Wireless power feeder, wireless power receiver, and wireless power transmission system
EP2367263A2 (en) 2010-03-19 2011-09-21 TDK Corporation Wireless power feeder, wireless power receiver, and wireless power transmission system
EP2375531A2 (en) 2010-04-05 2011-10-12 TDK Corporation Wireless power receiver and wireless power transmission system
JP2015084642A (en) * 2010-05-19 2015-04-30 クアルコム,インコーポレイテッド Apparatus and method for wireless power transfer, and apparatus for wirelessly receiving power in electric vehicle
KR101760632B1 (en) * 2010-05-19 2017-07-21 퀄컴 인코포레이티드 Adaptive wireless energy transfer system
US9656564B2 (en) 2010-05-19 2017-05-23 Qualcomm Incorporated Adaptive wireless energy transfer system
US8829729B2 (en) 2010-08-18 2014-09-09 Tdk Corporation Wireless power feeder, wireless power receiver, and wireless power transmission system
US9602168B2 (en) 2010-08-31 2017-03-21 Witricity Corporation Communication in wireless energy transfer systems
US8742627B2 (en) 2011-03-01 2014-06-03 Tdk Corporation Wireless power feeder
US9948145B2 (en) 2011-07-08 2018-04-17 Witricity Corporation Wireless power transfer for a seat-vest-helmet system
US9384885B2 (en) 2011-08-04 2016-07-05 Witricity Corporation Tunable wireless power architectures
US9787141B2 (en) 2011-08-04 2017-10-10 Witricity Corporation Tunable wireless power architectures
US11621585B2 (en) 2011-08-04 2023-04-04 Witricity Corporation Tunable wireless power architectures
US10734842B2 (en) 2011-08-04 2020-08-04 Witricity Corporation Tunable wireless power architectures
US9442172B2 (en) 2011-09-09 2016-09-13 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10027184B2 (en) 2011-09-09 2018-07-17 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10778047B2 (en) 2011-09-09 2020-09-15 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10424976B2 (en) 2011-09-12 2019-09-24 Witricity Corporation Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems
US11097618B2 (en) 2011-09-12 2021-08-24 Witricity Corporation Reconfigurable control architectures and algorithms for electric vehicle wireless energy transfer systems
US9318257B2 (en) 2011-10-18 2016-04-19 Witricity Corporation Wireless energy transfer for packaging
US8875086B2 (en) 2011-11-04 2014-10-28 Witricity Corporation Wireless energy transfer modeling tool
US9722540B2 (en) 2012-01-25 2017-08-01 Lg Electronics Inc. Method and apparatus for setting frequency of wireless power transmission
WO2013111917A1 (en) * 2012-01-25 2013-08-01 엘지전자 주식회사 Method and apparatus for setting frequency of wireless power transmission
US9306635B2 (en) 2012-01-26 2016-04-05 Witricity Corporation Wireless energy transfer with reduced fields
US10158251B2 (en) 2012-06-27 2018-12-18 Witricity Corporation Wireless energy transfer for rechargeable batteries
US9343922B2 (en) 2012-06-27 2016-05-17 Witricity Corporation Wireless energy transfer for rechargeable batteries
US9287607B2 (en) 2012-07-31 2016-03-15 Witricity Corporation Resonator fine tuning
US9595378B2 (en) 2012-09-19 2017-03-14 Witricity Corporation Resonator enclosure
US10211681B2 (en) 2012-10-19 2019-02-19 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10686337B2 (en) 2012-10-19 2020-06-16 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9404954B2 (en) 2012-10-19 2016-08-02 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9465064B2 (en) 2012-10-19 2016-10-11 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10186372B2 (en) 2012-11-16 2019-01-22 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US9449757B2 (en) 2012-11-16 2016-09-20 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US9842684B2 (en) 2012-11-16 2017-12-12 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
CN108400641A (en) * 2013-02-20 2018-08-14 松下知识产权经营株式会社 Non-contact power transmission device
JPWO2014129178A1 (en) * 2013-02-20 2017-02-02 パナソニックIpマネジメント株式会社 Non-contact charging device and non-contact charging method
CN108400641B (en) * 2013-02-20 2021-05-04 松下知识产权经营株式会社 Non-contact power transmission device
US9831712B2 (en) 2013-02-20 2017-11-28 Panasonic Intellectual Property Management Co., Ltd. Non-contact charging device and non-contact charging method
EP2961024A4 (en) * 2013-02-20 2016-01-27 Panasonic Ip Man Co Ltd Non-contact charging device and non-contact charging method
WO2014129178A1 (en) * 2013-02-20 2014-08-28 パナソニック株式会社 Non-contact charging device and non-contact charging method
EP2961024A1 (en) * 2013-02-20 2015-12-30 Panasonic Intellectual Property Management Co., Ltd. Non-contact charging device and non-contact charging method
CN104981961A (en) * 2013-02-20 2015-10-14 松下知识产权经营株式会社 Non-contact charging device and non-contact charging method
CN104052163A (en) * 2013-03-13 2014-09-17 株式会社东芝 Wireless power supply system, power transmission controlling apparatus and power reception controlling apparatus
JP2014180078A (en) * 2013-03-13 2014-09-25 Toshiba Corp Radio power feeding system, power transmission unit, power receiving unit, power transmission control apparatus, and power receiving control apparatus
JP2014187784A (en) * 2013-03-22 2014-10-02 Toshiba Corp Wireless power-feeding system, power-receiving control device, and power-transmitting control device
US10256675B2 (en) 2013-06-04 2019-04-09 Ihi Corporation Power-supplying device and wireless power supply system
WO2014196239A1 (en) * 2013-06-04 2014-12-11 株式会社Ihi Power supply device, and non-contact power supply system
JPWO2014196239A1 (en) * 2013-06-04 2017-02-23 株式会社Ihi Power feeding device and non-contact power feeding system
JP2015002643A (en) * 2013-06-18 2015-01-05 パナソニックIpマネジメント株式会社 Non-contact power transmission system
WO2014203442A1 (en) * 2013-06-18 2014-12-24 パナソニックIpマネジメント株式会社 Wireless power transmission system
US10097012B2 (en) 2013-07-19 2018-10-09 Ihi Corporation Power supplying device and wireless power-supplying system
US11112814B2 (en) 2013-08-14 2021-09-07 Witricity Corporation Impedance adjustment in wireless power transmission systems and methods
US11720133B2 (en) 2013-08-14 2023-08-08 Witricity Corporation Impedance adjustment in wireless power transmission systems and methods
US9857821B2 (en) 2013-08-14 2018-01-02 Witricity Corporation Wireless power transfer frequency adjustment
US9904306B2 (en) 2013-11-13 2018-02-27 Samsung Electronics Co., Ltd. Voltage converter, wireless power reception device and wireless power transmission system including the same
US9780573B2 (en) 2014-02-03 2017-10-03 Witricity Corporation Wirelessly charged battery system
US9952266B2 (en) 2014-02-14 2018-04-24 Witricity Corporation Object detection for wireless energy transfer systems
US9842687B2 (en) 2014-04-17 2017-12-12 Witricity Corporation Wireless power transfer systems with shaped magnetic components
US9892849B2 (en) 2014-04-17 2018-02-13 Witricity Corporation Wireless power transfer systems with shield openings
US10186373B2 (en) 2014-04-17 2019-01-22 Witricity Corporation Wireless power transfer systems with shield openings
US9837860B2 (en) 2014-05-05 2017-12-05 Witricity Corporation Wireless power transmission systems for elevators
US10371848B2 (en) 2014-05-07 2019-08-06 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10018744B2 (en) 2014-05-07 2018-07-10 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9954375B2 (en) 2014-06-20 2018-04-24 Witricity Corporation Wireless power transfer systems for surfaces
US11637458B2 (en) 2014-06-20 2023-04-25 Witricity Corporation Wireless power transfer systems for surfaces
US10923921B2 (en) 2014-06-20 2021-02-16 Witricity Corporation Wireless power transfer systems for surfaces
US10574091B2 (en) 2014-07-08 2020-02-25 Witricity Corporation Enclosures for high power wireless power transfer systems
US9842688B2 (en) 2014-07-08 2017-12-12 Witricity Corporation Resonator balancing in wireless power transfer systems
US10153643B2 (en) 2014-07-30 2018-12-11 Funai Electric Co., Ltd. Wireless power supply device and wireless power supply system
US9843217B2 (en) 2015-01-05 2017-12-12 Witricity Corporation Wireless energy transfer for wearables
CN107925273A (en) * 2015-08-03 2018-04-17 罗伯特·博世有限公司 Method for induction type energy transmission to the induction charging device and the inductive charging for sensing accumulator equipment of sensing accumulator equipment
US10248899B2 (en) 2015-10-06 2019-04-02 Witricity Corporation RFID tag and transponder detection in wireless energy transfer systems
US9929721B2 (en) 2015-10-14 2018-03-27 Witricity Corporation Phase and amplitude detection in wireless energy transfer systems
US10063110B2 (en) 2015-10-19 2018-08-28 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10651688B2 (en) 2015-10-22 2020-05-12 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US10651689B2 (en) 2015-10-22 2020-05-12 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US10141788B2 (en) 2015-10-22 2018-11-27 Witricity Corporation Dynamic tuning in wireless energy transfer systems
US10075019B2 (en) 2015-11-20 2018-09-11 Witricity Corporation Voltage source isolation in wireless power transfer systems
US10637292B2 (en) 2016-02-02 2020-04-28 Witricity Corporation Controlling wireless power transfer systems
US10263473B2 (en) 2016-02-02 2019-04-16 Witricity Corporation Controlling wireless power transfer systems
JP7538289B2 (en) 2016-02-03 2024-08-21 ゼネラル・エレクトリック・カンパニイ SYSTEM AND METHOD FOR PROTECTING A WIRELESS POWER TRANSFER SYSTEM - Patent application
US10913368B2 (en) 2016-02-08 2021-02-09 Witricity Corporation PWM capacitor control
US11807115B2 (en) 2016-02-08 2023-11-07 Witricity Corporation PWM capacitor control
US10063104B2 (en) 2016-02-08 2018-08-28 Witricity Corporation PWM capacitor control
WO2018159030A1 (en) * 2017-03-02 2018-09-07 オムロン株式会社 Noncontact power supply apparatus
US10944293B2 (en) 2017-03-02 2021-03-09 Omron Corporation Noncontact power supply apparatus
US11128173B2 (en) 2017-03-02 2021-09-21 Omron Corporation Noncontact power supply apparatus
CN110121827B (en) * 2017-03-02 2024-03-12 欧姆龙株式会社 Non-contact power supply device
CN110326187A (en) * 2017-03-02 2019-10-11 欧姆龙株式会社 Contactless power supply device
CN110121827A (en) * 2017-03-02 2019-08-13 欧姆龙株式会社 Contactless power supply device
US11031818B2 (en) 2017-06-29 2021-06-08 Witricity Corporation Protection and control of wireless power systems
US11637452B2 (en) 2017-06-29 2023-04-25 Witricity Corporation Protection and control of wireless power systems
US11588351B2 (en) 2017-06-29 2023-02-21 Witricity Corporation Protection and control of wireless power systems
US11043848B2 (en) 2017-06-29 2021-06-22 Witricity Corporation Protection and control of wireless power systems
US11309748B2 (en) 2020-03-02 2022-04-19 Radiall Wireless and contactless electrical energy transfer assembly comprising an improved system for regulating the transferred energy
FR3107791A1 (en) * 2020-03-02 2021-09-03 Radiall Wireless and contactless electrical energy transfer kit including an improved transfer energy regulation system.
KR102713319B1 (en) * 2021-12-15 2024-10-04 서울시립대학교 산학협력단 Wireless charging system for electric car

Similar Documents

Publication Publication Date Title
JP2006074848A (en) Non-contact power transmission system
US5896278A (en) Non-contact electric power transmission apparatus
US8212415B2 (en) Noncontact electric power transmission system
WO2015173847A1 (en) Contactless power transfer device
WO2005106901A3 (en) A wireless powering device, an energizable load, a wireless system and a method for a wireless energy transfer
JP5699470B2 (en) Switching power supply
JP2000295796A (en) Non-contact power supply
JP2008283858A (en) Noncontact power transmission device
KR102497624B1 (en) Control apparatus for transmiting power wirelessly and apparatus for transmiting power wirelessly
JP2008236917A (en) Non-contact power transmission apparatus
JP2000134830A (en) Electromagnetic induction type power supply unit
US9312778B2 (en) Power supply device
KR20110112921A (en) Resonance power generator
WO2015063920A1 (en) Resonant high frequency power source device
JP2005318719A (en) Switching power supply
JP2003047179A (en) Contactless electric power transmission device
JP2014233137A (en) Switching power supply device, switching power supply control method, and electronic equipment
JP2011066953A (en) Wireless power supply device and wireless power transmission system
JP2003189508A (en) Non-contact power supply device
JP2004153948A (en) Switching power supplying arrangement
US20210376662A1 (en) Transmitter and receiver circuitry for power converter systems
JP5016075B2 (en) Inverter circuit
CN211266770U (en) Zero-voltage switch&#39;s resonant power supply converting circuit and converter
JP2008079375A (en) Switching power supply circuit
JPH10191583A (en) Non-contact power transfer device