JP2006074848A - Non-contact power transmission system - Google Patents

Non-contact power transmission system Download PDF

Info

Publication number
JP2006074848A
JP2006074848A JP2004251768A JP2004251768A JP2006074848A JP 2006074848 A JP2006074848 A JP 2006074848A JP 2004251768 A JP2004251768 A JP 2004251768A JP 2004251768 A JP2004251768 A JP 2004251768A JP 2006074848 A JP2006074848 A JP 2006074848A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
secondary
primary
side
current
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004251768A
Other languages
Japanese (ja)
Inventor
Hidekazu Hirase
Yukinaga Yamauchi
幸長 山内
英和 平瀬
Original Assignee
Hokushin Denki Kk
北伸電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To conduct the efficient stabilization control of a secondary output voltage and a current in a noncontact power transmission system. <P>SOLUTION: This non-contact power transmissions system can perform secondary stabilization control at high efficiency, in a small size, and at low cost, by transmitting a signal related to a secondary voltage and a current to a primary unit using a noncontact electromagnetic coupling coil, receiving a signal transmitted from the secondary side, and varying the drive frequency of a primary inverter. This reduces ineffective power consumption on the primary side by providing it with a means which controls the secondary output voltage and the current by shifting the drive frequency to a higher side at a light load or no-load and reducing the current of the primary coil of a coupling transformer thereby controlling the stabilization of the secondary output voltage and the current. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は非接触電力伝送装置において2次側における電圧および電流を1次側にフィードバックし、2次側出力電圧、電流を安定化制御する非接触電力伝送装置に関する。 The present invention feeds back the voltage and current at the secondary side to the primary side in the contactless power transmission apparatus, the secondary side output voltage to a non-contact power transmission apparatus for controlling stabilize the current.

非接触電力伝送装置において、2次側の安定化を計る場合、2次側に独立した安定化回路を設ける方法がある。 The non-contact power transmission device, if the stabilization of the secondary side, there is a method of providing an independent stabilizing circuit on the secondary side. (例えば、特許文献1、2,3参照。)。 (E.g., see Patent Documents 1, 2 and 3.).
特許公開2002−354711号 公報 Patent Publication No. 2002-354711 特許公開2004−120915号 公報 Patent Publication No. 2004-120915 特許出願2002−252511号 公報 Patent Application 2002-252511 Patent Publication

2つ目の方法として、2次側共振回路の共振用コンデンサ−の値を変える事により、共振周波数を変えて、2次側で受電出来る電力を可変する方法を用い安定化する方法がある。 A second way, the resonant capacitor on the secondary side resonant circuit - by changing the value of, by changing the resonant frequency, there is a method of stabilizing with a method of varying the power receiving can power on the secondary side. (例えば、特許文献4参照。)。 (E.g., see Patent Document 4.).
特許公開2004−72832号 公報 Patent Publication No. 2004-72832

従来方式の課題として以下のものがあげられる。 The following as problems the conventional method and the like. すなわち2次側に独立した安定化回路を設ける方法は2次側の安定化回路の損失が有り、全体の効率を下げてしまう。 That method of providing an independent stabilizing circuit on the secondary side there is a loss of the stabilizing circuit of the secondary side, thereby lowering the overall efficiency.
2次側が軽負荷の場合においても、結合トランスの1次側コイルの電流は少なくならず1次側コイルの消費電力が低減しない。 In case the secondary side of the light load also the power consumption of the primary side coil not current coupling transformer primary coil is small is not reduced.

2次側の共振回路の共振周波数を変える方法は、2次側が軽負荷の場合においても、結合トランスの1次コイルの電流は小さくならず1次側コイルの消費電力が低減しない。 Method of changing the resonant frequency of the resonant circuit on the secondary side, when the secondary side of the light load also the power consumption of the primary coil must not current coupling transformer primary coil small not reduced.

以上に述べた従来の非接触電力伝送装置における2次側出力電圧、電流を安定化制御する方法では、全体の効率が悪い。 Secondary output voltage in the conventional non-contact power transmission apparatus described above, in the method of controlling regulate the current, poor overall efficiency. また2次側負荷が軽負荷の場合における消費電力を低減出来ない。 The secondary-side load can not reduce the power consumption in the case of a light load.

本発明は非接触電力伝送装置における2次側出力電圧、電流の安定化制御を高効率で実現することを目的とするものである。 The present invention aims to achieve secondary side output voltage in the non-contact power transmission apparatus, the stabilization control of the current at high efficiency.

上記目的を達成するため、本発明の非接触電力伝送装置は、2次側における電圧および電流に関する信号を1次側ユニットへ非接触の電磁結合コイルを用いて1次側に送信し、1次側ユニットでは2次側から送られてきた信号を受信して、1次側ユニットのインバータの駆動周波数を可変し2次側の出力電圧及び電流を安定化制御する手段を設けたものである。 To achieve the above object, the non-contact power transmission apparatus of the present invention, transmitted to the primary side by using the electromagnetic coupling coil of the non-contact signal with respect to the voltage and current at the secondary side to the primary unit, the primary the side unit receives the signal sent from the secondary side, in which the output voltage and current of the inverter driving frequency of the primary-side unit variable to the secondary side is provided with means for stabilization control.

本発明の非接触電力伝送装置によれば、非接触で2次側の電圧電流情報を1次側に伝送しインバータの駆動周波数を変え出力電圧、電流を制御出来るため、閉磁路コアを用いたスイッチング電源と同じ安定化電源を実現出来る事にある。 According to the contactless power transmission apparatus of the present invention, the output voltage changes the driving frequency of the transmit voltage-current information on the secondary side to the primary side in a non-contact inverter, because it can control the current, with a closed magnetic path core there can be realized the same stabilized power supply and switching power supply.
このため2次側ユニットに独立した安定化のためのチョッパ回路やシリーズレギュレータが不要であり、2次側の安定化回路の為の損失が無いので、高効率の非接触電力伝送装置が実現出来る。 Therefore chopper circuit and a series regulator for independent stabilized secondary unit is not required, since the loss for stabilizing circuit on the secondary side is not a non-contact power transmission apparatus of a high efficiency can be realized . 2次側ユニットに独立した安定化回路が不要なのでこの回路の実装面積も不要となり小型化が可能に成りコストも低減する。 Since separate stabilizing circuit on the secondary side unit is not required to reduce the cost become possible footprint downsize becomes unnecessary for the circuits.

2次側負荷が軽負荷もしくは無負荷時において、インバータの駆動周波数を上げる制御を行う事により、駆動される結合トランスの1次側直列共振回路の共振周波数から離調するため1次側コイルの高周波電流も減る事になり、2次側負荷が軽負荷もしくは無負荷時において交流電源の消費電力を低減できる効果がある。 During the secondary load is a light load or no load, by performing a control for increasing the driving frequency of the inverter, the resonant frequency of the primary side series resonant circuit of the driven coupling transformer primary coil for detuning also becomes possible to reduce the high-frequency current, the secondary load has the effect of reducing the power consumption of the AC power supply at the time of light load or no load.

図1は非接触電源装置に応用した回路図である。 Figure 1 is a circuit diagram of an application to a non-contact power supply.
以下本発明の実施の形態を図1から図6に基づいて説明する。 Preferred embodiments of the present invention will be described with reference to FIGS. 1-6.

図1において1次側ユニットのインバータは1次側整流回路の直流出力を電源とする。 Inverter primary unit 1 is powered by a direct current output of the primary side rectifying circuit. 前記インバータはハーフブリッジ接続され発振周波数可変2相発振器により駆動される。 The inverter is driven by a half-bridge-connected variable oscillation frequency two-phase oscillator. 結合トランスの1次側コアに巻き線を巻き回し、1次側コイルを作る。 Winding a winding coupled transformer primary core, making the primary coil. この1次側コイルをL1とする。 The primary coil and L1. L1と直列に共振コンデンサC1を接続する。 Connecting a resonance capacitor C1 to L1 in series.
一方、2次側ユニットでは、2次側コアに巻き線を巻き回し、2次側コイルを得る。 On the other hand, in the secondary unit, winding a winding on the secondary side core, obtaining a secondary coil. この2次側コイルをL2とする。 The secondary coil and L2. 前記L2を用いてL1の磁力線から高周波電力を取り出す。 Taking out the high frequency power from the magnetic field lines of L1 using the L2. L2にC2を直列に接続して2次側直列共振回路を得る。 L2 is connected to C2 in series to obtain a secondary side series resonant circuit. C2の後のブリッジ整流回路とC6から構成する2次側整流回路により整流した後、負荷に電力を供給する。 After rectified by secondary rectifier circuit constituting a bridge rectifier circuit and C6 after C2, and supplies power to the load.

図1のインバータは電界効果トランジスタQ1のドレインDを1次側整流回路のVCC側に接続し、Q1のソースSとQ2のドレインDを直列に接続し、Q2のソースSを1次側整流回路のGND側に接続する。 Inverter 1 is connected to the drain D of the field effect transistor Q1 to the VCC side of the primary side rectifying circuit, and connecting the drain D of the source S and Q2 of Q1 in series, a primary-side rectifying circuit source S of Q2 to connect to the GND side.
Q1のソースSとQ2のドレインDの接続点に、1次側直列共振回路のC1側を接続する。 To the connection point of the drain D of the source S and Q2 of Q1, connects the C1 side of the primary side series resonant circuit. L1側をQ2のソースに接続する。 The L1 side is connected to the source of Q2.
Q1のドレインDとソースSに並列にC3を、Q2のドレインDとソースSに並列にC4を接続する。 The Q1 C3 in parallel to the drain D and the source S of, connecting the C4 in parallel to the drain D and the source S of Q2.
D1、D2は電界効果トランジスタで有るQ1、Q2のボディダイオードである。 D1, D2 is a body diode of the certain Q1, Q2 in the field effect transistor.

図1の発振周波数可変2相発振器は、Q1の G−S 間 及び Q2の G−S 間にデットタイムを設けて交互に電圧駆動する発振周波数可変の発振器で有る。 Oscillation frequency variable two-phase oscillator of FIG. 1, there at an oscillation frequency variable oscillator for voltage driven alternately provided dead time between G-S of G-S and between Q2 of Q1.

図5のタイミングチャートにおいてQ1の G−S 間を駆動する電圧をQ1 VGS と表し、Q2の G−S 間を駆動する電圧をQ2 VGS と表して有る。 Represents the voltage for driving the inter-Q1 of G-S in the timing chart of FIG. 5 and Q1 VGS, there a voltage for driving the inter-Q2 of G-S represents the Q2 VGS.
同様に図5のタイミングチャートにおいてQ1 VGSとQ2 VGS 間のデットタイムをDtと表して有る。 Similarly there the dead time between Q1 VGS and Q2 VGS represents the Dt in the timing chart of FIG.

図4−Aは結合トランスの1次側直列共振回路の共振周波数と2次側直列共振回路の共振周波数対2次側負荷出力電圧の関係をグラフで表したもので有る。 Figure 4-A is the one showing the relationship of resonant frequency versus secondary load output voltage of the resonant frequency and the secondary side series resonance circuit of the primary side series resonant circuit of the coupling transformer graphically.
縦軸は2次側負荷出力電圧を示し、横軸はインバータの駆動周波数を示す。 The vertical axis represents the secondary load output voltage and the horizontal axis represents the driving frequency of the inverter.
1次側直列共振回路の共振周波数をfpに設定し、2次側直列直列共振回路の共振周波数をfsに設定して有る。 The resonant frequency of the primary side series resonance circuit is set to fp, there resonance frequency of the secondary side series series resonance circuit is set to fs.
fp < fs の関係に設定する。 To set the relationship of fp <fs.
駆動周波数の使用範囲は図4−Aの fsからf1までとする。 Use range of the drive frequency and to f1 from fs of FIG. 4-A.

図4−Bは駆動周波数対、1次側直列共振回路の共振周波数特性と2次側直列共振回路の共振周波数特性を合成した2次側整流電圧のカーブで有る。 Figure 4-B is the driving frequency pairs is a curve of the resonant frequency characteristics and synthesized secondary rectified voltage resonant frequency characteristic of the secondary side series resonance circuit of the primary side series resonant circuit.

図4−Bのグラフにおいて、fsの点を使用範囲の最大出力電圧の点なるよう1次、2次の共振回路の共振周波数を設定しインバータの最低駆動周波数をfsに設定する。 In the graph of FIG. 4-B, it sets the primary so that the point of maximum output voltage range of use points fs, set the resonant frequency of the secondary resonant circuit the minimum driving frequency of the inverter to fs.
AC入力電圧の変動や負荷の変動に応じて駆動周波数の変化範囲をf0からf1の範囲に設定する。 The range of variation of the drive frequency in accordance with variations in the change and the load of the AC input voltage is set to a range from f0 of f1.
負荷に最大出力電圧を供給できる駆動周波数はfsの点になる。 Driving frequency that can supply a maximum output voltage to the load is a point fs.
定格負荷時は周波数をf0に設定し、AC入力電圧が低下した場合や、負荷が重たくなった場合など、周波数fsに設定する。 Rated load sets the frequency f0, and when the AC input voltage drops, such as when the load is heavy, is set to a frequency fs. AC入力電圧が高くなった場合や軽負荷時は、周波数をf1設定する。 Or when a light load when the AC input voltage is increased, the f1 set the frequency.
fp、fs、f0、f1 の各周波数の1例を下記に示す。 fp, an example of the frequency fs, f0, f1 shown below.
fp ≒60KHz、 fs ≒74KHz 、f0 ≒77KHz、f1 ≒100KHz fp ≒ 60KHz, fs ≒ 74KHz, f0 ≒ 77KHz, f1 ≒ 100KHz

図4−Bのグラフからは、インバータの駆動周波数を変化させることで出力電圧を可変出来ることが判る。 From the graph of FIG. 4-B, it can be seen that can vary the output voltage by changing the driving frequency of the inverter. 2次側出力電圧が設定より下回った場合その情報を、信号制御用送信コイルを用いて非接触で1次側ユニットに送り、1次側ユニットのインバータの駆動周波数を下げる方向でフィードバック制御を行う。 The information if the secondary output voltage drops below set, sent to a non-contact primary unit using a transmission coil signal control performs feedback control in a direction to lower the inverter driving frequency of the primary unit . また、軽負荷時等において、出力電圧が設定より上回った場合は、その情報を、制御用送信コイルを用いて非接触で1次側ユニットに送り、1次側ユニットのインバータの駆動周波数を上げる方向でフィードバック制御を行う。 Further, in a light load or the like, when the output voltage exceeds than the set, the information, non-contact with the feed to the primary unit using a control transmission coil, increase the inverter driving frequency of the primary unit It performs feedback control in the direction.

図1において2次側整流回路の出力電圧を誤差増幅器に接続し、この電圧と基準電圧を比較する。 The output voltage of the secondary side rectifier circuit connected to the error amplifier in FIG. 1, compares this voltage with a reference voltage.
誤差増幅器の出力を変調器に接続し変調器の出力を制御用発振回路に接続する。 Connect the output of the error amplifier to the modulator to connect the output of the modulator to control the oscillation circuit.
制御用発振器はL4とC7の並列共振周波数で自励発振を行う。 Control oscillator performs self-oscillation in the parallel resonant frequency of the L4 and C7.

図1においてL3とC8の並列共振回路を検波回路に接続し、検波回路の出力を復調器に接続する。 A parallel resonant circuit of L3 and C8 connected to the detection circuit in FIG. 1, it connects the output of the detection circuit to the demodulator.
復調回路の出力を発振周波数可変2相発振器に接続する。 It connects the output of the demodulation circuit in the oscillation frequency variable two-phase oscillator.

図3は誤差増幅器、変調器、制御用発振器、復調器、発振周波数可変2相発振器の具体例で有る。 Figure 3 is an error amplifier, a modulator, controlled oscillator, a demodulator, are illustrative examples of the oscillation frequency variable two-phase oscillator.
出力電圧をR201とR202で分割しU202のオペアンプのインバータ端子(−端子)に接続する。 Inverter terminal of the operational amplifier of dividing the output voltage by R201 and R202 U202 - connected to the (terminal).
U202のオペアンプのノンインバータ端子(+端子)には基準電圧を印可しておく。 Keep applying a reference voltage to U202 of operational amplifier non-inverter terminal (+ terminal).
U202の出力を、U201のコンパレータのインバータ端子(−端子)に接続する。 The output of U202, the inverter terminal of the comparator U201 - connected to the (terminal).
三角波発振器の出力をU201のノンインバータ端子(+端子)に接続する。 It connects the output of the triangular wave oscillator to U201 of non-inverter terminal (+ terminal).
三角波発振器の発信周波数を10KHz程度で有る。 The oscillation frequency of the triangular wave oscillator is about 10KHz.
制御用発振器はL4,C7の並列共振回路を用いたLC発振器で有り、8MHz程度の発振周波数である。 Control oscillator is an LC oscillator using a parallel resonant circuit L4, C7, an oscillation frequency of about 8 MHz. L4は制御用送信コイルである。 L4 is a control transmission coil.
U201の出力を制御用発振器に接続し、制御用発振器の発振を断続させる。 The output of U201 is connected to the control oscillator, it is intermittently oscillation control oscillator.

一方1次側ユニットにおいて、L3はL4と電磁結合された制御用受信コイルで有る。 On the other hand the primary unit, L3 is the L4 and electromagnetically coupled controlling receiver coil. L3,C8の並列共振回路は制御用発振器の発振周波数に同調させる値とする。 L3, the parallel resonance circuit C8 is a value to tune the oscillation frequency of the control oscillator.
L3,C8の並列共振回路をD3、C9で構成された検波回路に接続する。 L3, a parallel resonance circuit C8 is connected to the detection circuit constituted by D3, C9.
検波回路の出力をU101のコンパレータのノンインバータ端子(+端子)に接続する。 Connecting the output of the detection circuit to the non-inverter terminal (+ terminal) of the comparator U101. U101のコンパレータのインバータ端子(−端子)には、+12VをR103とR104で分割した電圧を印可する。 U101 comparator inverter Terminal - in (terminal), applies a voltage obtained by dividing the + 12V at R103 and R104.
検波回路の出力をR103とR104で分割した電圧と比較しU101の出力とする。 Compared to divided voltage output of the detection circuit in R103 and R104 to the output of U101. U101の出力をNPNトランジスタQ103のベースへ抵抗を介して接続する。 The output of U101 is connected via a base to a resistance of the NPN transistor Q103.
Q103のコレクタをPNPトランジスタQ102のベースへ抵抗を介して接続する。 The collector of Q103 is connected through the base to the resistance of the PNP transistor Q102. Q102のエミッタを+12V電源に接続する。 Q102 of the emitter is connected to the + 12V power supply.
Q102のエミッタにD101,L101,C102から構成するパルス幅−電圧変換回路に接続する。 D101 to the emitter of Q102, L101, pulse width consist C102 - connected to the voltage conversion circuit.
パルス幅−電圧変換回路の出力をNPNトランジスタQ101のベースへ抵抗を介して接続する。 Pulse Width - connects the output of the voltage conversion circuit through the base to the resistance of the NPN transistor Q101.
Q101のエミッタにR102を接続し回路のGNDに接続する。 The emitter of Q101 connect the R102 connected to the GND of the circuit.
2相発振回路はC101とR101のCR発振器を構成して有る。 2-phase oscillator there constitute a CR oscillator C101 and R101.
Q101のコレクタをR101に接続する。 The collector of Q101 is connected to the R101. R101はR101とQ101のコレクタ−エミッタを通して並列接続されている。 They are connected in parallel through the emitter - R101 collector of R101 and Q101.
2相発振回路の出力はA相とB相の2出力を持ち、それぞれ逆相で出力される。 The output of the two-phase oscillator circuit has two outputs of the A-phase and B-phase are outputted in reverse phase, respectively.
2相発振回路の出力をデットタイム生成回路に接続し、A相とB相間に僅かなデッドタイムを設ける。 The output of the two-phase oscillator is connected to the dead time generation circuit, it provided a slight dead time between the A-phase and B-phase.
デットタイム生成回路の出力をハーフブリッジドライバーに接続する。 To connect the output of the dead time generation circuit in the half-bridge driver.
ハーフブリッジドライバーに接続されているD101とC102はハイサイドスイッチのQ1の駆動電源を作る目的でブーストアップ回路を構成してある。 D101 connected to the half bridge driver and C102 are have configured boosted circuit for the purpose of making the driving power of the high-side switch Q1.
ハーフブリッジドライバーの出力はQ1のゲート、ソース間とQ2のゲート、ソース間に接続する。 The output of the half-bridge driver Q1 gate, the source and Q2 gate, connected between the source.
Q1とQ2のゲートソース間電圧波形は図5のQ1VGSとQ2VGSになる。 The gate-source voltage waveform of Q1 and Q2 will Q1VGS and Q2VGS in FIG.

図2にU字型コアを用いた結合トランスの一例をしめす。 It shows an example of a coupling transformer using a U-shaped core in FIG.
1次側ユニットに設けたU字型コアの胴部に1次巻き線 L1を巻き回する。 It is wound a primary winding L1 to the body of the U-shaped core provided on the primary unit.
2次側ユニットに設けたU字型コアの胴部に2次巻き線 L2を巻き回する。 It is wound the secondary winding L2 in the body of the U-shaped core provided on the secondary side unit.
結合トランスの1次2次間は、1次側ユニットの樹脂製外郭と2次側ユニットの樹脂製外郭で隔てられている。 Coupling transformer primary secondary inter are separated by a plastic outer shell of the resin shell and the secondary side unit on the primary side unit.
結合トランスの1次側U字型コアの脚部の先端と2次側U字型コアの脚部の先端とは、数mmの間隔を隔てて対向している。 The tip of the leg portion of the tip and the secondary U-shaped core the legs of the coupling transformer primary U-shaped core, are opposed at a distance of a few mm.
1次側U字コアの両脚の中央と1次側ユニットの樹脂製外郭の内側の境界面にL3を配置し、2次側U字コアの両脚の中央と2次側ユニットの樹脂製外郭の内側の境界面にL4を配置する。 The L3 centrally located and the inner boundary surface of the resin shell of the primary unit of legs of the primary U-shaped cores, the legs of the secondary U-shaped core center and a resin shell of the secondary unit inside the boundary surface to place L4.
L3、L4は空芯コイルを用いる。 L3, L4 uses an air core coil.

フィードバック制御の説明を図3、図4、図6を用いて説明する。 Figure 3 a description of the feedback control, FIG. 4, will be described with reference to FIG.
1次側ユニットから2次側ユニットへ非接触で電力を伝送している状態において2次側ユニットの出力電圧が設定値より高い場合、(図6の左側部分)オペアンプU202のインバータ端子(―端子)の電圧である、R201とR202で出力電圧を分割した電圧とノンインバータ端子(+端子)に接続してある基準電圧の比較でインバータ端子(―端子)の方が高いため、U202の出力電圧は低い方へ変化する。 When the output voltage of the secondary-side unit in a state where the transmit power in a non-contact from the primary unit to the secondary side unit is higher than the set value, (left part of FIG. 6) inverter terminal of the operational amplifier U202 (- terminal a voltage), R201 and voltage obtained by dividing the output voltage with R202 and the reference voltage comparison by the inverter terminal of which is connected to the non-inverter terminal (+ terminal) (- for better terminal) is high, U202 output voltage changes towards the low.
U202の出力電圧はコンパレータのU201のインバータ端子(―端子)に接続してあり、U201のノンインバータ端子(+端子)には三角波を印加してある為、三角波の振幅が、U201のインバータ端子より高い期間、Hiレベル出力電圧になる。 U202 output voltage inverter terminal of the U201 of the comparator - Yes connected to (terminal), since the non-inverter terminal of U201 (+ terminal) that is applied a triangular wave, the amplitude of the triangular wave is from the inverter terminal of U201 high period, the Hi-level output voltage. 三角波は固定周波数で有るためその周期も固定である。 Triangular wave the cycle because there at a fixed frequency is also fixed. 一定周期の期間においてU201の出力がU201のインバータ端子の電圧に応じてU201のパルス幅が変化する為、パルス幅変調の動作といえる。 Since the output of U201 has a pulse width of U201 is changed according to the voltage of the inverter terminal of U201 in the period of a constant period, it can be said that the operation of the pulse width modulation.
2次側ユニットの出力電圧が設定値より高い場合、U201のON幅が広がる結果になる。 When the output voltage of the secondary side unit is higher than the set value, resulting in ON width of U201 is expanded.

U201の出力で制御用発振器の発振を断続する制御を行う。 Performing intermittent control the oscillation of the control oscillator by the output of U201.
U201の出力がHiレベルの状態で制御用発振器が発振し、U201の出力がLowレベルの状態で制御用発振器の発振が停止する。 The output of U201 has oscillation control oscillator in the state of Hi level, the output of U201 oscillation of the control oscillator in a state of Low level to stop.
U201の出力がONの期間制御用発振器が発振し、出力がOFFの期間制御用発振器が発振を停止する。 The output of U201 has oscillation period control oscillator ON, the output period control oscillator OFF to stop the oscillation.
2次側ユニットの出力電圧が設定値より高い場合、制御用発振器が発振している期間が長くなる。 When the output voltage of the secondary side unit is higher than the set value, a longer period of controlled oscillator is oscillating.

1次側ユニットに設けられたL3は2次側ユニットのL4と電磁結合しているためL3、C8の並列共振回路の高周波誘導電圧は、制御用発振器の発振の断続に応じて断続する。 High-frequency induction voltage of the parallel resonant circuit of L3, C8 since the L3 provided on the primary side unit are electromagnetically coupled and L4 of the secondary side unit is disengaged according to the intermittent oscillation of the control oscillator.

L3、C8に接続された検波回路の出力はU201の出力がONの時ON、U201の出力がOFFの時、OFFとなり、検波回路のON幅は、U201の出力のON幅に同期する。 L3, when the output of the connected detector circuit to C8 output of U201 is output when ON, U201 of ON is OFF, OFF next, ON width of the detection circuit is synchronized with the ON width of the output of U201.

復調器のU101は検波回路電圧を増幅する目的のコンパレータで有る。 U101 demodulator is the purpose of the comparator for amplifying the detection circuit voltage.
検波回路の出力電圧をU101のノンインバータ端子(+端子)に接続して有るためR103とR104で生成した基準電圧よりU101のインバータ端子(―端子)の電圧が高いと、U101の出力はON、NPNタイプのQ103がON、PNPタイプのQ102がONとなる。 Detection circuit of the output voltage U101 of the non-inverter terminal (+ terminal) to connect to certain order generated reference voltage from U101 inverter terminals R103 and R104 - the voltage of the (terminal) is high, the output of U101 is ON, NPN type of Q103 is ON, Q102 of the PNP type is turned ON.
Q102のON幅はU201のON幅と同じになる。 ON width of the Q102 is the same as the ON width of the U201.

L201、D101、C102を用いたパルス幅―電圧変換回路はフィードフォワードタイプのスイッチング電源回路の2次側整流回路に用いられるものと同じ構成である。 L201, D101, pulse width using the C102 - voltage converting circuit has the same configuration as that used for the secondary side rectifier circuit of the switching power supply circuit of the feedforward type.
従ってQ102のON幅に比例した出力電圧が得られる。 Therefore, the output voltage proportional to the ON width of Q102 is obtained.
結果U201のON幅に比例した出力電圧が得られる。 The resulting output voltage proportional to the ON width of U201 is obtained.
以上から2次側ユニットの出力電圧が設定値より高い場合、パルス幅―電圧変換回路の出力電圧も高くなる。 If the output voltage of the secondary side unit from above higher than the set value, the pulse width - also increases the output voltage of the voltage conversion circuit.

パルス幅―電圧変換回路の出力を、抵抗を介してNPNのQ101のベースに接続して有るため、パルス幅―電圧変換回路の出力電圧が高くなるとQ101のコレクタ電流が増える。 Pulse Width - the output of the voltage converter circuit, since there connected to the base of the NPN of Q101 through a resistor, a pulse width - the output voltage of the voltage converter circuit comprising the collector current of Q101 is increased higher.
Q101のコレクタ電流が増える事は、等価的にR101の抵抗値が減る事になる。 That the collector current of Q101 increases equivalently become that reduces the resistance value of R101.

2相発振器はCR発振器で構成されているため、R101の抵抗値が減ると2相発振器の発振周波数は高くなる。 For 2-phase oscillator that is configured by a CR oscillator, the oscillation frequency of the two-phase oscillator the resistance of R101 decreases increases. 2相発振器の発振周波数が高くなるとインバータの駆動周波数が高くなる。 When the oscillation frequency of the two-phase oscillator is higher driving frequency of the inverter is increased. 図4−Bから駆動周波数が高くなると2次側ユニットの出力電圧が低くなる事が判る。 Figure 4-B from the driving frequency is increased when the output voltage of the secondary side unit is known be lowered.

2次側ユニットの出力電圧が設定値より低くい場合は図6の右側に示すとおりU201のコンパレータのON幅が狭まり、制御用発振器の発振幅が狭まりL4の高周波電流の発振幅が狭まる。 When the output voltage of the secondary side units have lower than the set value narrows the ON width of U201 comparator as shown on the right side of FIG. 6, the oscillation width of the high frequency current oscillation width narrowing L4 of the control oscillator is narrowed.

制御用発振器の発振幅が狭まりL4の高周波電流の発振幅が狭まると、検波回路の出力のON幅が狭まり、パルス幅―電圧変換回路の出力電圧が低くなり、Q101のコレクタ電流が減る。 When the oscillation width of the high frequency current oscillation width narrowing L4 of the control oscillator is narrowed, narrowed ON width of the output of the detection circuit, the pulse width - the output voltage of the voltage converter circuit as decreasing the collector current of Q101. Q101のコレクタ電流が減ると等価的にR101の抵抗値に近づく事になる。 When the collector current of Q101 is reduced equivalently it will be closer to the resistance value of R101.

2相発振器はCR発振器で構成されているため、2相発振器の発振周波数は低くなる。 For 2-phase oscillator that is configured by a CR oscillator, the oscillation frequency of the two-phase oscillator is low. 2相発振器の発振周波数が低くなるとインバータの駆動周波数が低くなる。 When the oscillation frequency of the two-phase oscillator is lower driving frequency of the inverter is lowered.
図4−Bから駆動周波数が低くなると2次側ユニットの出力電圧が高くなる事が判る。 Figure 4-B from the driving frequency becomes the seen that the output voltage of the secondary side unit is higher low.

以上の様に2次側電圧情報が1次側にフィードバックされ、インバータの駆動周波数を変え、2次側の出力電圧を安定化する。 Or secondary voltage information as the is fed back to the primary side, changing the driving frequency of the inverter to regulate the output voltage of the secondary side.

同様な手法を用いて2次側の電流情報を1次側にフィードバックされ、インバータの駆動周波数を変え、2次側の出力電流を安定化することが出来る。 Is fed back to the current information of the secondary side to the primary side by using the same technique, changing the driving frequency of the inverter, the output current of the secondary side can be stabilized.

本発明の実施形態を示す、概略回路図である。 It shows an embodiment of the present invention, is a schematic circuit diagram. 結合トランスの構造図。 Construction of the coupling transformer. フィードバック制御の為の詳細回路図。 Detailed circuit diagram for the feedback control. 駆動周波数対、1次側直列共振回路の共振周波数特性と2次側直列共振回路の共振周波数特性と2次側整流電圧の関係を表した説明図。 Drive frequency versus an explanatory diagram showing a relationship between the resonance frequency characteristic and the secondary side rectified voltage of the resonance frequency characteristic and the secondary side series resonance circuit of the primary side series resonant circuit. インバータ回路と結合トランスの動作を説明するタイムチャート。 Time chart for explaining the operation of the inverter circuit and the coupling transformer. フィードバック制御の動作を説明するタイムチャート。 Time chart for explaining the operation of the feedback control.

符号の説明 DESCRIPTION OF SYMBOLS

L1:結合トランスの1次側巻き線インダクタンス。 L1: coupling transformer primary winding inductance.
L2:結合トランスの2次側巻き線インダクタンス。 L2: coupling transformer secondary winding inductance.
C1:1次側直列共振用コンデンサ。 C1: 1 primary side series resonance capacitor.
C2:2次側直列共振用コンデンサ。 C2: 2 primary side series resonance capacitor.
L3:制御用受信コイル。 L3: controlling receiver coil.
L4:制御用送信コイル。 L4: control transmission coil.
C7:L4の並列共振用コンデンサ−。 C7: L4 parallel resonant capacitor -.
C8:L3の並列共振用コンデンサ−。 C8: L3 parallel resonant capacitor -.
fp:1次側直列共振回路の共振周波数。 fp: 1 resonance frequency of the primary side series resonant circuit.
fs :2次側共振回路の共振周波数。 fs: 2 primary side resonance frequency of the resonant circuit.
f1 :定格負荷時のインバータ駆動周波数。 f1: inverter drive frequency at the rated load.
f0:重負荷時のインバータ駆動周波数。 f0: inverter drive frequency of the heavy load.
f2:軽負荷時のインバータ駆動周波数。 f2: inverter drive frequency at light load.

Claims (2)

  1. 結合トランスの1次側と2次側を個別に収容して、相互に分離可能に構成してなる1次側ユニットと2次側ユニットを具備し、前記1次側ユニットから2次側ユニットへ電磁誘導作用を利用して非接触で電力を供給する非接触電力伝送装置において、前記2次側ユニットは、前記結合トランスの2次側における電圧および電流に関する信号を前記2次側ユニットから前記1次側ユニットへ制御用送信コイルを用いて送信する送信手段を備え、前記1次側ユニットは、前記制御用送信コイルと電磁結合された制御用受信コイルをもちいて2次側における電圧および電流に関する信号を受信して、結合トランスの1次側コイルの高周波電流を可変し2次側の出力電圧及び電流を安定化制御する手段を具備して構成したことを特徴とする非接触電力 Coupling transformer and individually housed primary and secondary, primary unit formed by separably configured to interact with include a secondary unit, the secondary unit from said primary unit wherein the non-contact power transmission apparatus for supplying electric power in a non-contact manner using electromagnetic induction, the secondary unit is a signal related to the voltage and current at the secondary side of the coupling transformer from the secondary side unit 1 a transmitting means for transmitting by using a control transmission coil to the next side unit, the primary unit is related voltage and current at the secondary side by using the control transmission coil electromagnetically coupled controlling receiver coil receiving the signal, the non-contact power, characterized by being configured to include a means for controlling stabilizing the output voltage and current of the high frequency current coupled transformer primary coil variable and the secondary side 送装置。 Feeding apparatus.
  2. 結合トランスの1次側と2次側を個別に収容して、相互に分離可能に構成してなる1次側ユニットと2次側ユニットを具備した非接触電力伝送装置であって1次側直列共振回路の共振周波数と駆動周波数を離調させて設定し、前記1次側直列共振回路の共振周波数と駆動周波数の離調の程度により1次側直列共振回路の電流を制限すること及び2次側直列共振回路の共振周波数を1次側駆動周波数にほぼ等しくする様に1次と2次の直列共振回路の共振周波数を設定した状態において、1次側の駆動周波数を可変することにより2次側出力電圧又は電流を可変する事を特徴とする非接触電力伝送装置。 The primary side and the secondary side of the coupling transformer housed individually, primary unit formed by separably configured to interact with the primary side series a non-contact power transmission apparatus provided with the secondary unit set by detuning the resonant frequency and the driving frequency of the resonant circuit, the primary side series resonant circuit and that the secondary limits the current in the primary side series resonant circuit by the degree of detuning of the resonance frequency and the driving frequency of the in a state of setting the resonance frequency of the primary and secondary of the series resonant circuit so as to substantially equal the resonant frequency on the primary side driving frequency of side series resonance circuit, secondary by varying the driving frequency of the primary side non-contact power transmission apparatus, characterized in that for varying the side output voltage or current.
JP2004251768A 2004-08-31 2004-08-31 Non-contact power transmission system Pending JP2006074848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004251768A JP2006074848A (en) 2004-08-31 2004-08-31 Non-contact power transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004251768A JP2006074848A (en) 2004-08-31 2004-08-31 Non-contact power transmission system

Publications (1)

Publication Number Publication Date
JP2006074848A true true JP2006074848A (en) 2006-03-16

Family

ID=36154852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004251768A Pending JP2006074848A (en) 2004-08-31 2004-08-31 Non-contact power transmission system

Country Status (1)

Country Link
JP (1) JP2006074848A (en)

Cited By (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008104295A (en) * 2006-10-19 2008-05-01 Voltex:Kk Non-contact power supply unit
JP2010505379A (en) * 2006-09-29 2010-02-18 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー System and method for inductive charging of battery
JP2011120450A (en) * 2009-10-30 2011-06-16 Tdk Corp Wireless power feeder, wireless power transmission system, and table and table lamp using the same
JP2011177015A (en) * 2007-07-13 2011-09-08 Hanrim Postech Co Ltd Battery pack for non-contact charging, and method of controlling the same
JP2011182012A (en) * 2010-02-26 2011-09-15 Mitsubishi Electric Corp Non-contact setting device and program
EP2367263A2 (en) 2010-03-19 2011-09-21 TDK Corporation Wireless power feeder, wireless power receiver, and wireless power transmission system
EP2375531A2 (en) 2010-04-05 2011-10-12 TDK Corporation Wireless power receiver and wireless power transmission system
US8258652B2 (en) 2008-12-02 2012-09-04 Casio Computer Co., Ltd Power transmission device
JP2012522482A (en) * 2009-03-25 2012-09-20 クアルコム,インコーポレイテッド Optimization of the wireless power device for charging the battery
JP2013504298A (en) * 2009-09-02 2013-02-04 クアルコム,インコーポレイテッド Detuning in the wireless power receiver
KR101278399B1 (en) * 2009-03-17 2013-06-24 후지쯔 가부시끼가이샤 Wireless power supply system
KR101288433B1 (en) * 2007-03-27 2013-07-26 메사추세츠 인스티튜트 오브 테크놀로지 Wireless energy transfer
WO2013111917A1 (en) * 2012-01-25 2013-08-01 엘지전자 주식회사 Method and apparatus for setting frequency of wireless power transmission
US8729735B2 (en) 2009-11-30 2014-05-20 Tdk Corporation Wireless power feeder, wireless power receiver, and wireless power transmission system
US8742627B2 (en) 2011-03-01 2014-06-03 Tdk Corporation Wireless power feeder
WO2014129178A1 (en) * 2013-02-20 2014-08-28 パナソニック株式会社 Non-contact charging device and non-contact charging method
US8829727B2 (en) 2009-10-30 2014-09-09 Tdk Corporation Wireless power feeder, wireless power transmission system, and table and table lamp using the same
US8829729B2 (en) 2010-08-18 2014-09-09 Tdk Corporation Wireless power feeder, wireless power receiver, and wireless power transmission system
US8836172B2 (en) 2008-10-01 2014-09-16 Massachusetts Institute Of Technology Efficient near-field wireless energy transfer using adiabatic system variations
CN104052163A (en) * 2013-03-13 2014-09-17 株式会社东芝 Wireless power supply system, power transmission controlling apparatus and power reception controlling apparatus
US8847548B2 (en) 2008-09-27 2014-09-30 Witricity Corporation Wireless energy transfer for implantable devices
JP2014187784A (en) * 2013-03-22 2014-10-02 Toshiba Corp Wireless power-feeding system, power-receiving control device, and power-transmitting control device
US8875086B2 (en) 2011-11-04 2014-10-28 Witricity Corporation Wireless energy transfer modeling tool
US8901779B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with resonator arrays for medical applications
US8901778B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with variable size resonators for implanted medical devices
JP2014224674A (en) * 2009-09-10 2014-12-04 クアルコム,インコーポレイテッド Wireless power for heating or cooling
US8907531B2 (en) 2008-09-27 2014-12-09 Witricity Corporation Wireless energy transfer with variable size resonators for medical applications
WO2014196239A1 (en) * 2013-06-04 2014-12-11 株式会社Ihi Power supply device, and non-contact power supply system
US8912687B2 (en) 2008-09-27 2014-12-16 Witricity Corporation Secure wireless energy transfer for vehicle applications
WO2014203442A1 (en) * 2013-06-18 2014-12-24 パナソニックIpマネジメント株式会社 Wireless power transmission system
US8922066B2 (en) 2008-09-27 2014-12-30 Witricity Corporation Wireless energy transfer with multi resonator arrays for vehicle applications
US8928276B2 (en) 2008-09-27 2015-01-06 Witricity Corporation Integrated repeaters for cell phone applications
US8933594B2 (en) 2008-09-27 2015-01-13 Witricity Corporation Wireless energy transfer for vehicles
US8937408B2 (en) 2008-09-27 2015-01-20 Witricity Corporation Wireless energy transfer for medical applications
US8946938B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Safety systems for wireless energy transfer in vehicle applications
US8947186B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Wireless energy transfer resonator thermal management
US8957549B2 (en) 2008-09-27 2015-02-17 Witricity Corporation Tunable wireless energy transfer for in-vehicle applications
US8963488B2 (en) 2008-09-27 2015-02-24 Witricity Corporation Position insensitive wireless charging
JP2015084642A (en) * 2010-05-19 2015-04-30 クアルコム,インコーポレイテッド Apparatus and method for wireless power transfer, and apparatus for wirelessly receiving power in electric vehicle
US9035499B2 (en) 2008-09-27 2015-05-19 Witricity Corporation Wireless energy transfer for photovoltaic panels
US9065286B2 (en) 2005-07-12 2015-06-23 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US9065423B2 (en) 2008-09-27 2015-06-23 Witricity Corporation Wireless energy distribution system
US9093853B2 (en) 2008-09-27 2015-07-28 Witricity Corporation Flexible resonator attachment
US9095729B2 (en) 2007-06-01 2015-08-04 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9106203B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Secure wireless energy transfer in medical applications
US9105959B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Resonator enclosure
US9160203B2 (en) 2008-09-27 2015-10-13 Witricity Corporation Wireless powered television
US9184595B2 (en) 2008-09-27 2015-11-10 Witricity Corporation Wireless energy transfer in lossy environments
US9246336B2 (en) 2008-09-27 2016-01-26 Witricity Corporation Resonator optimizations for wireless energy transfer
US9287607B2 (en) 2012-07-31 2016-03-15 Witricity Corporation Resonator fine tuning
US9306635B2 (en) 2012-01-26 2016-04-05 Witricity Corporation Wireless energy transfer with reduced fields
US9318922B2 (en) 2008-09-27 2016-04-19 Witricity Corporation Mechanically removable wireless power vehicle seat assembly
US9318257B2 (en) 2011-10-18 2016-04-19 Witricity Corporation Wireless energy transfer for packaging
US9343922B2 (en) 2012-06-27 2016-05-17 Witricity Corporation Wireless energy transfer for rechargeable batteries
US9369182B2 (en) 2008-09-27 2016-06-14 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US9384885B2 (en) 2011-08-04 2016-07-05 Witricity Corporation Tunable wireless power architectures
US9396867B2 (en) 2008-09-27 2016-07-19 Witricity Corporation Integrated resonator-shield structures
US9404954B2 (en) 2012-10-19 2016-08-02 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9421388B2 (en) 2007-06-01 2016-08-23 Witricity Corporation Power generation for implantable devices
US9444520B2 (en) 2008-09-27 2016-09-13 Witricity Corporation Wireless energy transfer converters
US9444265B2 (en) 2005-07-12 2016-09-13 Massachusetts Institute Of Technology Wireless energy transfer
US9442172B2 (en) 2011-09-09 2016-09-13 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9449757B2 (en) 2012-11-16 2016-09-20 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US9515494B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless power system including impedance matching network
US9544683B2 (en) 2008-09-27 2017-01-10 Witricity Corporation Wirelessly powered audio devices
US9595378B2 (en) 2012-09-19 2017-03-14 Witricity Corporation Resonator enclosure
US9601270B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Low AC resistance conductor designs
US9601266B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Multiple connected resonators with a single electronic circuit
US9602168B2 (en) 2010-08-31 2017-03-21 Witricity Corporation Communication in wireless energy transfer systems
US9601261B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Wireless energy transfer using repeater resonators
US9744858B2 (en) 2008-09-27 2017-08-29 Witricity Corporation System for wireless energy distribution in a vehicle
US9754718B2 (en) 2008-09-27 2017-09-05 Witricity Corporation Resonator arrays for wireless energy transfer
US9780573B2 (en) 2014-02-03 2017-10-03 Witricity Corporation Wirelessly charged battery system
US9837860B2 (en) 2014-05-05 2017-12-05 Witricity Corporation Wireless power transmission systems for elevators
US9842688B2 (en) 2014-07-08 2017-12-12 Witricity Corporation Resonator balancing in wireless power transfer systems
US9843217B2 (en) 2015-01-05 2017-12-12 Witricity Corporation Wireless energy transfer for wearables
US9842687B2 (en) 2014-04-17 2017-12-12 Witricity Corporation Wireless power transfer systems with shaped magnetic components
US9857821B2 (en) 2013-08-14 2018-01-02 Witricity Corporation Wireless power transfer frequency adjustment
US9892849B2 (en) 2014-04-17 2018-02-13 Witricity Corporation Wireless power transfer systems with shield openings
US9904306B2 (en) 2013-11-13 2018-02-27 Samsung Electronics Co., Ltd. Voltage converter, wireless power reception device and wireless power transmission system including the same
US9929721B2 (en) 2015-10-14 2018-03-27 Witricity Corporation Phase and amplitude detection in wireless energy transfer systems
KR101842611B1 (en) 2007-01-02 2018-03-29 필립스 아이피 벤쳐스 비.브이. Inductive power supply with device identification
US9948145B2 (en) 2011-07-08 2018-04-17 Witricity Corporation Wireless power transfer for a seat-vest-helmet system
US9952266B2 (en) 2014-02-14 2018-04-24 Witricity Corporation Object detection for wireless energy transfer systems
US9954375B2 (en) 2014-06-20 2018-04-24 Witricity Corporation Wireless power transfer systems for surfaces
US10018744B2 (en) 2014-05-07 2018-07-10 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10063104B2 (en) 2016-02-08 2018-08-28 Witricity Corporation PWM capacitor control
US10063110B2 (en) 2015-10-19 2018-08-28 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10075019B2 (en) 2016-11-21 2018-09-11 Witricity Corporation Voltage source isolation in wireless power transfer systems

Cited By (138)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9450421B2 (en) 2005-07-12 2016-09-20 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US9065286B2 (en) 2005-07-12 2015-06-23 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US9509147B2 (en) 2005-07-12 2016-11-29 Massachusetts Institute Of Technology Wireless energy transfer
US9444265B2 (en) 2005-07-12 2016-09-13 Massachusetts Institute Of Technology Wireless energy transfer
US9450422B2 (en) 2005-07-12 2016-09-20 Massachusetts Institute Of Technology Wireless energy transfer
US9831722B2 (en) 2005-07-12 2017-11-28 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
KR101581103B1 (en) * 2006-09-29 2015-12-30 액세스 비지니스 그룹 인터내셔날 엘엘씨 System and method for inductively charging a battery
KR101399688B1 (en) * 2006-09-29 2014-05-27 액세스 비지니스 그룹 인터내셔날 엘엘씨 System and method for inductively charging a battery
KR20140012189A (en) * 2006-09-29 2014-01-29 액세스 비지니스 그룹 인터내셔날 엘엘씨 System and method for inductively charging a battery
JP2014135890A (en) * 2006-09-29 2014-07-24 Access Business Group International Llc System and method for inductively charging battery
JP2010505379A (en) * 2006-09-29 2010-02-18 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー System and method for inductive charging of battery
US8593105B2 (en) 2006-09-29 2013-11-26 Access Business Group International Llc System and method for inductively charging a battery
JP2013179829A (en) * 2006-09-29 2013-09-09 Access Business Group Internatl Llc System and method for inductively charging battery
US8872472B2 (en) 2006-09-29 2014-10-28 Access Business Group International Llc System and method for inductively charging a battery
JP2008104295A (en) * 2006-10-19 2008-05-01 Voltex:Kk Non-contact power supply unit
KR101842611B1 (en) 2007-01-02 2018-03-29 필립스 아이피 벤쳐스 비.브이. Inductive power supply with device identification
KR101288433B1 (en) * 2007-03-27 2013-07-26 메사추세츠 인스티튜트 오브 테크놀로지 Wireless energy transfer
US9318898B2 (en) 2007-06-01 2016-04-19 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9101777B2 (en) 2007-06-01 2015-08-11 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9421388B2 (en) 2007-06-01 2016-08-23 Witricity Corporation Power generation for implantable devices
US9843230B2 (en) 2007-06-01 2017-12-12 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
US9943697B2 (en) 2007-06-01 2018-04-17 Witricity Corporation Power generation for implantable devices
US9095729B2 (en) 2007-06-01 2015-08-04 Witricity Corporation Wireless power harvesting and transmission with heterogeneous signals
JP2011177015A (en) * 2007-07-13 2011-09-08 Hanrim Postech Co Ltd Battery pack for non-contact charging, and method of controlling the same
US9806541B2 (en) 2008-09-27 2017-10-31 Witricity Corporation Flexible resonator attachment
US9601266B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Multiple connected resonators with a single electronic circuit
US9596005B2 (en) 2008-09-27 2017-03-14 Witricity Corporation Wireless energy transfer using variable size resonators and systems monitoring
US9584189B2 (en) 2008-09-27 2017-02-28 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US9577436B2 (en) 2008-09-27 2017-02-21 Witricity Corporation Wireless energy transfer for implantable devices
US8847548B2 (en) 2008-09-27 2014-09-30 Witricity Corporation Wireless energy transfer for implantable devices
US9544683B2 (en) 2008-09-27 2017-01-10 Witricity Corporation Wirelessly powered audio devices
US9601261B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Wireless energy transfer using repeater resonators
US9515495B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless energy transfer in lossy environments
US9601270B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Low AC resistance conductor designs
US9515494B2 (en) 2008-09-27 2016-12-06 Witricity Corporation Wireless power system including impedance matching network
US9662161B2 (en) 2008-09-27 2017-05-30 Witricity Corporation Wireless energy transfer for medical applications
US8907531B2 (en) 2008-09-27 2014-12-09 Witricity Corporation Wireless energy transfer with variable size resonators for medical applications
US9496719B2 (en) 2008-09-27 2016-11-15 Witricity Corporation Wireless energy transfer for implantable devices
US8912687B2 (en) 2008-09-27 2014-12-16 Witricity Corporation Secure wireless energy transfer for vehicle applications
US9698607B2 (en) 2008-09-27 2017-07-04 Witricity Corporation Secure wireless energy transfer
US8922066B2 (en) 2008-09-27 2014-12-30 Witricity Corporation Wireless energy transfer with multi resonator arrays for vehicle applications
US8901779B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with resonator arrays for medical applications
US8928276B2 (en) 2008-09-27 2015-01-06 Witricity Corporation Integrated repeaters for cell phone applications
US8933594B2 (en) 2008-09-27 2015-01-13 Witricity Corporation Wireless energy transfer for vehicles
US8937408B2 (en) 2008-09-27 2015-01-20 Witricity Corporation Wireless energy transfer for medical applications
US8946938B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Safety systems for wireless energy transfer in vehicle applications
US8947186B2 (en) 2008-09-27 2015-02-03 Witricity Corporation Wireless energy transfer resonator thermal management
US8957549B2 (en) 2008-09-27 2015-02-17 Witricity Corporation Tunable wireless energy transfer for in-vehicle applications
US8963488B2 (en) 2008-09-27 2015-02-24 Witricity Corporation Position insensitive wireless charging
US9742204B2 (en) 2008-09-27 2017-08-22 Witricity Corporation Wireless energy transfer in lossy environments
US9035499B2 (en) 2008-09-27 2015-05-19 Witricity Corporation Wireless energy transfer for photovoltaic panels
US9318922B2 (en) 2008-09-27 2016-04-19 Witricity Corporation Mechanically removable wireless power vehicle seat assembly
US9744858B2 (en) 2008-09-27 2017-08-29 Witricity Corporation System for wireless energy distribution in a vehicle
US9093853B2 (en) 2008-09-27 2015-07-28 Witricity Corporation Flexible resonator attachment
US9748039B2 (en) 2008-09-27 2017-08-29 Witricity Corporation Wireless energy transfer resonator thermal management
US9106203B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Secure wireless energy transfer in medical applications
US9105959B2 (en) 2008-09-27 2015-08-11 Witricity Corporation Resonator enclosure
US9754718B2 (en) 2008-09-27 2017-09-05 Witricity Corporation Resonator arrays for wireless energy transfer
US9160203B2 (en) 2008-09-27 2015-10-13 Witricity Corporation Wireless powered television
US9444520B2 (en) 2008-09-27 2016-09-13 Witricity Corporation Wireless energy transfer converters
US9184595B2 (en) 2008-09-27 2015-11-10 Witricity Corporation Wireless energy transfer in lossy environments
US9780605B2 (en) 2008-09-27 2017-10-03 Witricity Corporation Wireless power system with associated impedance matching network
US9843228B2 (en) 2008-09-27 2017-12-12 Witricity Corporation Impedance matching in wireless power systems
US9246336B2 (en) 2008-09-27 2016-01-26 Witricity Corporation Resonator optimizations for wireless energy transfer
US9396867B2 (en) 2008-09-27 2016-07-19 Witricity Corporation Integrated resonator-shield structures
US9369182B2 (en) 2008-09-27 2016-06-14 Witricity Corporation Wireless energy transfer using variable size resonators and system monitoring
US9065423B2 (en) 2008-09-27 2015-06-23 Witricity Corporation Wireless energy distribution system
US8901778B2 (en) 2008-09-27 2014-12-02 Witricity Corporation Wireless energy transfer with variable size resonators for implanted medical devices
US9831682B2 (en) 2008-10-01 2017-11-28 Massachusetts Institute Of Technology Efficient near-field wireless energy transfer using adiabatic system variations
US8836172B2 (en) 2008-10-01 2014-09-16 Massachusetts Institute Of Technology Efficient near-field wireless energy transfer using adiabatic system variations
US8258652B2 (en) 2008-12-02 2012-09-04 Casio Computer Co., Ltd Power transmission device
KR101341258B1 (en) * 2009-03-17 2013-12-13 후지쯔 가부시끼가이샤 Wireless power supply system
US9283894B2 (en) 2009-03-17 2016-03-15 Fujitsu Limited Wireless power supply system
KR101278399B1 (en) * 2009-03-17 2013-06-24 후지쯔 가부시끼가이샤 Wireless power supply system
US9685825B2 (en) 2009-03-17 2017-06-20 Fujitsu Limited Wireless power supply system
JP2012522482A (en) * 2009-03-25 2012-09-20 クアルコム,インコーポレイテッド Optimization of the wireless power device for charging the battery
JP2013504298A (en) * 2009-09-02 2013-02-04 クアルコム,インコーポレイテッド Detuning in the wireless power receiver
JP2014224674A (en) * 2009-09-10 2014-12-04 クアルコム,インコーポレイテッド Wireless power for heating or cooling
JP2011120450A (en) * 2009-10-30 2011-06-16 Tdk Corp Wireless power feeder, wireless power transmission system, and table and table lamp using the same
US8829727B2 (en) 2009-10-30 2014-09-09 Tdk Corporation Wireless power feeder, wireless power transmission system, and table and table lamp using the same
US8729735B2 (en) 2009-11-30 2014-05-20 Tdk Corporation Wireless power feeder, wireless power receiver, and wireless power transmission system
JP2011182012A (en) * 2010-02-26 2011-09-15 Mitsubishi Electric Corp Non-contact setting device and program
US8829725B2 (en) 2010-03-19 2014-09-09 Tdk Corporation Wireless power feeder, wireless power receiver, and wireless power transmission system
EP2367263A3 (en) * 2010-03-19 2014-03-26 TDK Corporation Wireless power feeder, wireless power receiver, and wireless power transmission system
EP2367263A2 (en) 2010-03-19 2011-09-21 TDK Corporation Wireless power feeder, wireless power receiver, and wireless power transmission system
EP2375531A2 (en) 2010-04-05 2011-10-12 TDK Corporation Wireless power receiver and wireless power transmission system
KR101760632B1 (en) * 2010-05-19 2017-07-21 퀄컴 인코포레이티드 Adaptive wireless energy transfer system
JP2015084642A (en) * 2010-05-19 2015-04-30 クアルコム,インコーポレイテッド Apparatus and method for wireless power transfer, and apparatus for wirelessly receiving power in electric vehicle
US9656564B2 (en) 2010-05-19 2017-05-23 Qualcomm Incorporated Adaptive wireless energy transfer system
US8829729B2 (en) 2010-08-18 2014-09-09 Tdk Corporation Wireless power feeder, wireless power receiver, and wireless power transmission system
US9602168B2 (en) 2010-08-31 2017-03-21 Witricity Corporation Communication in wireless energy transfer systems
US8742627B2 (en) 2011-03-01 2014-06-03 Tdk Corporation Wireless power feeder
US9948145B2 (en) 2011-07-08 2018-04-17 Witricity Corporation Wireless power transfer for a seat-vest-helmet system
US9384885B2 (en) 2011-08-04 2016-07-05 Witricity Corporation Tunable wireless power architectures
US9787141B2 (en) 2011-08-04 2017-10-10 Witricity Corporation Tunable wireless power architectures
US10027184B2 (en) 2011-09-09 2018-07-17 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9442172B2 (en) 2011-09-09 2016-09-13 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9318257B2 (en) 2011-10-18 2016-04-19 Witricity Corporation Wireless energy transfer for packaging
US8875086B2 (en) 2011-11-04 2014-10-28 Witricity Corporation Wireless energy transfer modeling tool
WO2013111917A1 (en) * 2012-01-25 2013-08-01 엘지전자 주식회사 Method and apparatus for setting frequency of wireless power transmission
US9722540B2 (en) 2012-01-25 2017-08-01 Lg Electronics Inc. Method and apparatus for setting frequency of wireless power transmission
US9306635B2 (en) 2012-01-26 2016-04-05 Witricity Corporation Wireless energy transfer with reduced fields
US9343922B2 (en) 2012-06-27 2016-05-17 Witricity Corporation Wireless energy transfer for rechargeable batteries
US9287607B2 (en) 2012-07-31 2016-03-15 Witricity Corporation Resonator fine tuning
US9595378B2 (en) 2012-09-19 2017-03-14 Witricity Corporation Resonator enclosure
US9404954B2 (en) 2012-10-19 2016-08-02 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9465064B2 (en) 2012-10-19 2016-10-11 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9842684B2 (en) 2012-11-16 2017-12-12 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
US9449757B2 (en) 2012-11-16 2016-09-20 Witricity Corporation Systems and methods for wireless power system with improved performance and/or ease of use
WO2014129178A1 (en) * 2013-02-20 2014-08-28 パナソニック株式会社 Non-contact charging device and non-contact charging method
EP2961024A4 (en) * 2013-02-20 2016-01-27 Panasonic Ip Man Co Ltd Non-contact charging device and non-contact charging method
EP2961024A1 (en) * 2013-02-20 2015-12-30 Panasonic Intellectual Property Management Co., Ltd. Non-contact charging device and non-contact charging method
US9831712B2 (en) 2013-02-20 2017-11-28 Panasonic Intellectual Property Management Co., Ltd. Non-contact charging device and non-contact charging method
CN104981961A (en) * 2013-02-20 2015-10-14 松下知识产权经营株式会社 Non-contact charging device and a non-contact charging method
JPWO2014129178A1 (en) * 2013-02-20 2017-02-02 パナソニックIpマネジメント株式会社 Non-contact charging device and the non-contact charging method
CN104052163A (en) * 2013-03-13 2014-09-17 株式会社东芝 Wireless power supply system, power transmission controlling apparatus and power reception controlling apparatus
JP2014180078A (en) * 2013-03-13 2014-09-25 Toshiba Corp Radio power feeding system, power transmission unit, power receiving unit, power transmission control apparatus, and power receiving control apparatus
JP2014187784A (en) * 2013-03-22 2014-10-02 Toshiba Corp Wireless power-feeding system, power-receiving control device, and power-transmitting control device
WO2014196239A1 (en) * 2013-06-04 2014-12-11 株式会社Ihi Power supply device, and non-contact power supply system
JPWO2014196239A1 (en) * 2013-06-04 2017-02-23 株式会社Ihi Power supply device, and the non-contact power supply system
JP2015002643A (en) * 2013-06-18 2015-01-05 パナソニックIpマネジメント株式会社 Non-contact power transmission system
WO2014203442A1 (en) * 2013-06-18 2014-12-24 パナソニックIpマネジメント株式会社 Wireless power transmission system
US9711991B2 (en) 2013-07-19 2017-07-18 Witricity Corporation Wireless energy transfer converters
US9857821B2 (en) 2013-08-14 2018-01-02 Witricity Corporation Wireless power transfer frequency adjustment
US9904306B2 (en) 2013-11-13 2018-02-27 Samsung Electronics Co., Ltd. Voltage converter, wireless power reception device and wireless power transmission system including the same
US9780573B2 (en) 2014-02-03 2017-10-03 Witricity Corporation Wirelessly charged battery system
US9952266B2 (en) 2014-02-14 2018-04-24 Witricity Corporation Object detection for wireless energy transfer systems
US9892849B2 (en) 2014-04-17 2018-02-13 Witricity Corporation Wireless power transfer systems with shield openings
US9842687B2 (en) 2014-04-17 2017-12-12 Witricity Corporation Wireless power transfer systems with shaped magnetic components
US9837860B2 (en) 2014-05-05 2017-12-05 Witricity Corporation Wireless power transmission systems for elevators
US10018744B2 (en) 2014-05-07 2018-07-10 Witricity Corporation Foreign object detection in wireless energy transfer systems
US9954375B2 (en) 2014-06-20 2018-04-24 Witricity Corporation Wireless power transfer systems for surfaces
US9842688B2 (en) 2014-07-08 2017-12-12 Witricity Corporation Resonator balancing in wireless power transfer systems
US9843217B2 (en) 2015-01-05 2017-12-12 Witricity Corporation Wireless energy transfer for wearables
US9929721B2 (en) 2015-10-14 2018-03-27 Witricity Corporation Phase and amplitude detection in wireless energy transfer systems
US10063110B2 (en) 2015-10-19 2018-08-28 Witricity Corporation Foreign object detection in wireless energy transfer systems
US10063104B2 (en) 2016-02-08 2018-08-28 Witricity Corporation PWM capacitor control
US10075019B2 (en) 2016-11-21 2018-09-11 Witricity Corporation Voltage source isolation in wireless power transfer systems

Similar Documents

Publication Publication Date Title
US6483721B2 (en) Resonant power converter
US5619402A (en) Higher-efficiency cold-cathode fluorescent lamp power supply
US5430632A (en) Self-oscillating DC to DC converter
US7313004B1 (en) Switching controller for resonant power converter
US4642745A (en) Power circuit with high input power factor and a regulated output
US4677534A (en) Stabilizing power source apparatus
US20060158136A1 (en) Method and apparatus for DC to AC power conversion for driving discharge lamps
US6396716B1 (en) Apparatus for improving stability and dynamic response of half-bridge converter
US6320765B2 (en) Switching power circuit
US7019988B2 (en) Switching-type power converter
US6654259B2 (en) Resonance type switching power supply unit
US20020186026A1 (en) Control device for a resonant converter
US6320763B2 (en) Switching power supply unit
US20070081364A1 (en) Highly efficient isolated AC/DC power conversion technique
US20100219696A1 (en) Noncontact Electric Power Transmission System
US6747883B2 (en) Switching power supply circuit
US5923542A (en) Method and apparatus for driving piezoelectric transformer
US5995381A (en) Pulse width modulation controlled switching regulator
US5396410A (en) Zero current switching resonant converter
US6366480B2 (en) Switching power supply apparatus
CN101834473A (en) Resonant tracking non-contact power supply device and power supply method
JP2003284264A (en) Contactless power feeding system
US20120025720A1 (en) Power supply apparatus and method for a backlight system
US20080291702A1 (en) Switching power supply apparatus
US4791542A (en) Ferroresonant power supply and method