JP2008104295A - Non-contact power supply unit - Google Patents

Non-contact power supply unit Download PDF

Info

Publication number
JP2008104295A
JP2008104295A JP2006284949A JP2006284949A JP2008104295A JP 2008104295 A JP2008104295 A JP 2008104295A JP 2006284949 A JP2006284949 A JP 2006284949A JP 2006284949 A JP2006284949 A JP 2006284949A JP 2008104295 A JP2008104295 A JP 2008104295A
Authority
JP
Japan
Prior art keywords
circuit
transformer
power
power transmission
power receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006284949A
Other languages
Japanese (ja)
Inventor
Kazuhiko Okuaki
和彦 奥秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VOLTEX KK
Vortex Co Ltd Japan
Original Assignee
VOLTEX KK
Vortex Co Ltd Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VOLTEX KK, Vortex Co Ltd Japan filed Critical VOLTEX KK
Priority to JP2006284949A priority Critical patent/JP2008104295A/en
Publication of JP2008104295A publication Critical patent/JP2008104295A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-contact power supply unit that can obtain a stable DC output of high electric power which is of low noise and highly-efficient and that can reduce the cost and size of an entire system by miniaturizing a transformer with the reduction of the number of circuit elements and the use of high frequency. <P>SOLUTION: A power transmission side circuit is made up of a half-bridge switching circuit 2, a series resonance capacitor C2, and a power-transmission transformer T1. The capacitor C2 performs current resonance between the transformer T1 and inductances L1, L2. A receiving side circuit is structured with a receiving transformer T2 and a voltage-doubler rectifier circuit 3. A capacitor C3 works for rectification and the current resonance. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、医療機器などの産業用装置,測定装置,家電,パーソナル携帯装置などに電力を非接触で供給する電源装置、さらに詳しくいえば、電動歯ブラシの充電電源用などに好適に用いることができる非接触電源装置に関する。   INDUSTRIAL APPLICABILITY The present invention is preferably used for a power supply device that supplies power to an industrial device such as a medical device, a measurement device, a household appliance, a personal portable device, etc., more specifically, a charging power source for an electric toothbrush. It is related with the non-contact power supply device which can be performed.

非接触タイプの電力を供給する電源装置は非接触という特徴を活用して種々の装置に用いられてきた。
特定の軌道上を動く移動体に対し常に電力を供給する移動体電源回路(特許文献1)や過酷な環境に対し防水などを施すことが必要な通信機器などの電源装置として非接触給電装置(特許文献2)はその特徴を利用したものである。
Power supply devices that supply non-contact type power have been used in various devices utilizing the non-contact feature.
Non-contact power feeding device (power source device for a mobile power source circuit (Patent Document 1) that always supplies power to a mobile body moving on a specific orbit, or a communication device that needs to be waterproofed in a harsh environment) Patent document 2) utilizes the feature.

しかしながら、特許文献1は受電部の位置に係わらず、移動体側に必要な電圧を出力できるとともに各受電部を流れる電流の定常的なアンバランスを防止する回路構成であるが、ノイズを抑制して高い効率で直流出力を得る点については言及していない。
また特許文献2は回路構成が簡単で高効率な高周波電力を取り出す回路であるが、AC100Vの入力に対し高周波出力を得るものであり、直流入力の電圧値を変換して高効率の直流出力を得るものではない。
特開2002−58179 特開平7−337035
However, Patent Document 1 is a circuit configuration that can output a necessary voltage to the moving body side and prevents a steady imbalance of current flowing through each power receiving unit regardless of the position of the power receiving unit. No mention is made of obtaining DC output with high efficiency.
Patent Document 2 is a circuit that takes out a high-efficiency high-frequency power with a simple circuit configuration, and obtains a high-frequency output with respect to an AC 100 V input, and converts a DC input voltage value to obtain a high-efficiency DC output. Not what you get.
JP 2002-58179 A JP 7-337035 A

非接触電源装置についてはノイズを抑え、高効率で負荷変動に対し安定した高出力のDC出力を得ることが要請されている。また、従来の非接触電源装置に比較し回路素子数などを少なくして回路の簡易化を図り上記要請に応えながら小型化を可能にすることにより、小型の装置に対する電源装置としても対処できることも重要である。
しかしながら、従来の非接触電源装置は非接触給電時、送受電トランスのギャップにより送受電トランスのリーケージインダクタンスが非常に大きく送受電トランス部のインピーダンスが高周波において高いため、電力伝送が制限され大きな電力伝送ができなかった。また、大きな電力伝送を行うには送受電トランスの大型化が避けられず、加えてリーケージインダクタンスの影響により高周波化による小型化ができなかった。さらに送受電トランスのリーケージインダクタンスの影響により出力電圧変動が非常に大きい。
With respect to the non-contact power supply device, it is required to suppress noise and obtain a high-output DC output that is highly efficient and stable with respect to load fluctuations. In addition, by reducing the number of circuit elements, etc., compared to conventional non-contact power supply devices, simplifying the circuit and enabling downsizing while meeting the above requirements, it can also be handled as a power supply device for small devices. is important.
However, the conventional non-contact power supply device has a very large leakage inductance due to the gap of the power transmission / reception transformer at the time of non-contact power feeding. I could not. In addition, in order to perform large power transmission, it is inevitable to increase the size of the power transmission / reception transformer, and in addition, due to the influence of leakage inductance, it is impossible to reduce the size by increasing the frequency. Furthermore, the output voltage fluctuation is very large due to the influence of the leakage inductance of the power transmission / reception transformer.

本発明は、上記要請に応えるもので、その目的は低ノイズで、かつ高効率で安定した大電力の直流出力を得ることができるとともに回路素子数の低減化および高周波化によるトランスの小型化を図ることにより装置全体の低価格化,小型化を実現することができる非接触電源装置を提供することにある。   The present invention responds to the above-mentioned demands, and its purpose is to obtain a low-noise, high-efficiency and stable high-power DC output, and to reduce the number of circuit elements and reduce the size of the transformer by increasing the frequency. Accordingly, it is an object of the present invention to provide a non-contact power supply device that can realize a reduction in cost and size of the entire device.

前記目的を達成するために本発明の請求項1は直列接続された2個1組または直列接続された2個2組のスイッチング素子のゲートに対し、ドライブ回路により交互にパルス信号を入力することにより直流入力をスイッチングするハーフブリッジ形またはフルブリッジ形スイッチング回路および該ハーフブリッジ形または該フルブリッジ形スイッチング回路の出力に接続された送電用トランスとからなる送電側回路と、前記送電用トランスに対し電磁結合する受電用トランスおよび該受電用トランスに接続され、受電用トランス出力を倍電圧で整流し出力する倍電圧整流回路とからなる受電側回路とから構成されたことを特徴とする。
本発明の請求項2は請求項1記載の発明において前記ハーフブリッジ形または前記フルブリッジ形スイッチング回路と前記送電用トランスの間にコンデンサを挿入し、コンデンサの容量を調整することにより送電側回路を電流共振させることを特徴とする。
本発明の請求項3は、中間端子を有する送電用トランスおよび該送電用トランスの両端にそれぞれ出力端が接続され、他端側がアース接続された2つのスイッチング素子を有し、該2つのスイッチング素子のゲートに対し、ドライブ回路により交互にパルス信号を入力することにより直流入力をスイッチングするプッシュプル形スイッチング回路からなる送電側回路と、前記送電用トランスに対し電磁結合する受電用トランスおよび該受電用トランスに接続され、受電用トランス出力を倍電圧で整流し出力する倍電圧整流回路とからなる受電側回路とから構成されたことを特徴とする。
本発明の請求項4は、請求項1,2または3記載の発明において前記ドライブ回路から前記2個のスイッチング素子のゲートにそれぞれ入力される信号は、デューティ比が25%以上50%未満であって、各信号間にデッドタイムを有することを特徴とする。
本発明の請求項5は、請求項1,2,3または4記載の発明において前記倍電圧整流回路の前段のコンデンサに整流機能を有するとともに受電側回路を電流共振させるように調整したことを特徴とする。
In order to achieve the above object, claim 1 of the present invention is that pulse signals are alternately input by a drive circuit to the gates of two pairs of switching elements connected in series or two sets of two connected in series. A power transmission side circuit comprising a half-bridge type or full-bridge type switching circuit for switching a DC input by the power supply and a power transmission transformer connected to the output of the half-bridge type or full-bridge type switching circuit; It is characterized by comprising a power receiving transformer that is electromagnetically coupled, and a power receiving side circuit that is connected to the power receiving transformer and that rectifies and outputs the output of the power receiving transformer with a double voltage.
According to a second aspect of the present invention, in the first aspect of the present invention, a power transmission side circuit is configured by inserting a capacitor between the half bridge type or full bridge type switching circuit and the power transmission transformer, and adjusting a capacitance of the capacitor. It is characterized by current resonance.
According to a third aspect of the present invention, there is provided a power transmission transformer having an intermediate terminal, and two switching elements each having an output terminal connected to both ends of the power transmission transformer and having the other end connected to the ground, and the two switching elements A power transmission side circuit composed of a push-pull type switching circuit that switches a DC input by alternately inputting a pulse signal by a drive circuit to a gate of the power supply, a power receiving transformer that is electromagnetically coupled to the power transmission transformer, and the power receiving power The power receiving side circuit includes a voltage doubler rectifier circuit connected to a transformer and configured to rectify and output a power receiving transformer output with a voltage doubler.
According to a fourth aspect of the present invention, in the invention according to the first, second, or third aspect, a signal input from the drive circuit to the gates of the two switching elements has a duty ratio of 25% or more and less than 50%. Thus, each signal has a dead time.
According to a fifth aspect of the present invention, in the first, second, third, or fourth aspect of the invention, the capacitor in the previous stage of the voltage doubler rectifier circuit has a rectifying function and is adjusted so that the power receiving side circuit is in current resonance. And

請求項1,4および5によれば、低ノイズで効率が良く、小型化を実現できる大電力直流出力を得ることができる。請求項2によれば、さらなる受電側に大電力を供給することができる。
請求項3,4および5によれば、送電側回路のドライブ回路のハイサイド回路が不要で、スイッチング素子のドライブがグランド基準の簡易な構成となるため、請求項1に対し低価格化を実現しつつ低ノイズ,高効率,小型化を実現できる大電力直流出力を得ることができる。勿論、請求項1〜5は負荷変動に対し安定した出力を得ることができる。
According to the first, fourth, and fifth aspects, it is possible to obtain a high-power DC output that is low in noise, efficient, and can be downsized. According to claim 2, high power can be supplied to the further power receiving side.
According to the third, fourth and fifth aspects, the high-side circuit of the drive circuit of the power transmission side circuit is unnecessary, and the drive of the switching element has a simple configuration based on the ground. However, it is possible to obtain a high-power DC output that can realize low noise, high efficiency, and downsizing. Of course, claims 1 to 5 can obtain a stable output against load fluctuations.

以下、図面を参照して本発明の実施の形態を詳しく説明する。
図1は、本発明による非接触電源装置の第1の実施の形態を示す回路図、図4は図1の各回路部の電圧・電流のタイミングチャートである。
送電側回路はDC入力端を有するハーフブリッジ形スイッチング回路2,リーケージインダクタンスL1および相互インダクタンスL2を有する送電用トランスT1並びに直列共振用コンデンサC2より構成されている。
ハーフブリッジ形スイッチング回路2はDC入力VC1に混入される高周波成分をバイパスさせるコンデンサC1の端子間に2つのMOSFETのスイッチング素子Q1およびQ2が直列接続され、MOSFETQ1とQ2のゲートにはスイッチング制御回路1が接続されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a circuit diagram showing a first embodiment of a non-contact power supply device according to the present invention, and FIG. 4 is a voltage / current timing chart of each circuit section of FIG.
The power transmission side circuit includes a half bridge type switching circuit having a DC input terminal 2, a power transmission transformer T1 having a leakage inductance L1 and a mutual inductance L2, and a series resonance capacitor C2.
In the half-bridge type switching circuit 2, switching elements Q1 and Q2 of two MOSFETs are connected in series between terminals of a capacitor C1 that bypasses a high-frequency component mixed in the DC input VC1, and the switching control circuit 1 is connected to the gates of the MOSFETs Q1 and Q2. Is connected.

MOSFETQ1のソースとMOSFETQ2のドレーンの接続点に直列共振用コンデンサC2の一端が接続され、その他端が送電用トランスT1の一端に接続されている。送電用トランスT1の他端側はアースレベルであり、MOSFETQ2のソースに接続されている。直列共振用コンデンサC2は電流共振する容量値のコンデンサが選択される。
スイッチング制御回路1は、ブートストラップ回路を利用したハイサイド駆動回路およびローサイド駆動回路により構成され、図4のVgQ1およびVgQ2に示すような制御パルスを出力する。
One end of the series resonance capacitor C2 is connected to a connection point between the source of the MOSFET Q1 and the drain of the MOSFET Q2, and the other end is connected to one end of the power transmission transformer T1. The other end of the power transmission transformer T1 is at the ground level and is connected to the source of the MOSFET Q2. A capacitor having a capacitance value that causes current resonance is selected as the series resonance capacitor C2.
The switching control circuit 1 includes a high side drive circuit and a low side drive circuit using a bootstrap circuit, and outputs control pulses as indicated by VgQ1 and VgQ2 in FIG.

制御パルスVgQ1は1周期Tに対し前半の周期(1/2)Tに発生し、25%以上〜50%未満のデューティ比のパルスである。制御パルスVgQ2は後半の周期(1/2)Tに発生し、25%以上〜50%未満のデューティ比のパルスである。制御パルスVgQ1およびVgQ2の間には相互に時系列的に重ならないようにデッドタイムtdが作られMOSFETQ1およびMOSFETQ2を制御する。
このようにデューティ比25%以上〜50%未満で固定でMOSFETを制御することによりトランスの励磁電流が連続し正負対称波形となることによりMOSFETのオン時は、電流がマイナス状態となっているためゼロ電流,ゼロ電圧スイッチングとなる。MOSFETのオフ時は、MOSFETの寄生容量によりゼロ電圧スイッチングとなり、スイッチング損失が極めて少なく高効率化,低ノイズ化,小型化(高周波化)が実現できる(後述のプッシュプル,フルブリッジ形も同様)。MOSFETQ1およびMOSFETQ2のスイッチングは、例えば100KHzでオンオフする。
The control pulse VgQ1 is a pulse having a duty ratio of 25% or more and less than 50%, which occurs in the first half period (1/2) T with respect to one period T. The control pulse VgQ2 is a pulse having a duty ratio of 25% or more and less than 50%, which occurs in the latter half period (1/2) T. A dead time td is created between the control pulses VgQ1 and VgQ2 so as not to overlap each other in time series, and the MOSFETs Q1 and Q2 are controlled.
In this way, by controlling the MOSFET with a fixed duty ratio of 25% to less than 50%, the exciting current of the transformer becomes continuous and has a positive / negative symmetrical waveform, so that the current is in a negative state when the MOSFET is on. Zero current and zero voltage switching. When the MOSFET is off, zero voltage switching occurs due to the parasitic capacitance of the MOSFET, and switching loss is extremely low, and high efficiency, low noise, and miniaturization (high frequency) can be realized (the same applies to the push-pull and full bridge types described later). . Switching of the MOSFET Q1 and the MOSFET Q2 is turned on and off at, for example, 100 KHz.

このとき、MOSFETQ1とMOSFETQ2の接続点には図4のVdQ2の波形が現れ、MOSFETQ1およびMOSFETQ2に流れる電流は、IdQ1およびIdQ2の波形となる。
コンデンサC2は送電用トランスT1のリーケージインダクタンスL1およびトランスT1,T2の相互インダクタンスL2の間で電流共振し、送電用トランスT1には図4に示す高周波電圧VT1が出力される。
受電用トランスT2は送電用トランスT1とは非接触であり、電磁波によって結合されている。受電用トランスT2に発生した高周波電圧VT2は倍電圧整流回路3に印加され、コンデンサC3によって受電側回路は電流共振し、コンデンサC3にはIC3に示す共振電流が流れる。コンデンサC3に印加された電圧は倍電圧整流用ダイオードCR1,CR2および倍電圧整流用コンデンサC4で倍電圧に整流されて出力される。コンデンサC3は倍電圧整流回路3の整流機能とともに上述したように受電用トランスT2のリーケージインダクタンスL3との間で電流共振する。電流共振させることにより、負荷変動に対し安定した直流出力VC4を得ることができる。さらにスイッチング周波数をフィードバック制御により可変することで、さらなる電圧変動の少ない直流出力を得ることができる。スイッチング周波数を変えることによりリーケージインダクタンスのインピーダンスを可変することができるからである。
また、送電側回路はハーフブリッジ回路構成であるため、送電トランスの巻線を1巻線にでき、トランスの小型化を図ることができる(後述のフルブリッジ形も同じである)。
At this time, the waveform of VdQ2 in FIG. 4 appears at the connection point between MOSFETQ1 and MOSFETQ2, and the current flowing through MOSFETQ1 and MOSFETQ2 becomes the waveform of IdQ1 and IdQ2.
The capacitor C2 resonates between the leakage inductance L1 of the power transmission transformer T1 and the mutual inductance L2 of the transformers T1 and T2, and the high frequency voltage VT1 shown in FIG. 4 is output to the power transmission transformer T1.
The power receiving transformer T2 is not in contact with the power transmitting transformer T1, and is coupled by electromagnetic waves. The high-frequency voltage VT2 generated in the power receiving transformer T2 is applied to the voltage doubler rectifier circuit 3. The power receiving side circuit resonates with the capacitor C3, and the resonance current shown in the IC 3 flows through the capacitor C3. The voltage applied to the capacitor C3 is rectified to a voltage doubler by the voltage doubler rectifier diodes CR1 and CR2 and the voltage doubler rectifier capacitor C4 and output. The capacitor C3 resonates with the leakage inductance L3 of the power receiving transformer T2 as described above together with the rectifying function of the voltage doubler rectifier circuit 3. By making the current resonate, it is possible to obtain a DC output VC4 that is stable against load fluctuations. Furthermore, by changing the switching frequency by feedback control, a DC output with less voltage fluctuation can be obtained. This is because the impedance of the leakage inductance can be varied by changing the switching frequency.
Further, since the power transmission side circuit has a half-bridge circuit configuration, the winding of the power transmission transformer can be made one winding, and the transformer can be miniaturized (the same is true for the full bridge type described later).

具体値として送電側回路に例えばDC40Vを印加すると、送電用トランスT1には略120Vの高周波電流が発生し、電磁波結合によって受電用トランスT2には略40Vの高周波電圧が発生し、倍電圧整流回路によって出力には80VのDC出力を得ることができる。
この実施の形態は大きい電力を出力でき、低いノイズと高効率の電源装置を得ることができる。
When, for example, DC 40 V is applied to the power transmission side circuit as a specific value, a high frequency current of about 120 V is generated in the power transmission transformer T1, and a high frequency voltage of about 40 V is generated in the power receiving transformer T2 due to electromagnetic wave coupling. As a result, 80V DC output can be obtained.
This embodiment can output a large amount of power, and a low noise and high efficiency power supply device can be obtained.

図2は、本発明による非接触電源装置の第2の実施の形態を示す回路図、図5は図2の各回路部の電圧・電流のタイミングチャートである。
この実施の形態は送電側回路にプッシュプル形スイッチング回路5を用いたもので、受電側回路は第1の実施の形態と同じである。送電側回路のスイッチング制御回路4はハーフブリッジ形スイッチング回路に用いたスイッチング制御回路1より簡略化できるという特徴を有する。MOSFETQ1およびMOSFETQ2をグランド基準でオンオフ制御するため複雑な回路にする必要がないからである。
FIG. 2 is a circuit diagram showing a second embodiment of the non-contact power supply device according to the present invention, and FIG. 5 is a voltage / current timing chart of each circuit unit in FIG.
In this embodiment, a push-pull type switching circuit 5 is used for a power transmission side circuit, and a power reception side circuit is the same as that of the first embodiment. The switching control circuit 4 of the power transmission side circuit has a feature that it can be simplified more than the switching control circuit 1 used in the half-bridge type switching circuit. This is because the MOSFET Q1 and the MOSFET Q2 are on / off controlled on the basis of the ground, so that it is not necessary to use a complicated circuit.

送電側回路のプッシュプル形スイッチング回路5はDC入力端子間に高周波成分をバイパスさせるバイパス用コンデンサC1が接続され、バイパス用コンデンサC1の一端は送電用トランスT1の中間タップに接続されている。送電用トランスT1の一端は、MOSFETQ1のドレーンに、他端はMOSFETQ2のドレーンにそれぞれ接続されている。送電用トランスT1の中間タップに対しリーケージインダクタンスL1を有し、中間タップとMOSFETQ1およびMOSFETQ2のドレーンの間に相互インダクタンスL2を有する。ハーフブリッジ形スイッチング回路とは異なり、送電側回路では電流共振はさせていない。
MOSFETQ1およびMOSFETQ2のソース側はバイパス用コンデンサC1の他端に接続されている。MOSFETQ1およびMOSFETQ2に制御パルスを供給するスイッチング制御回路4は図5に示すような制御パルスVgQ1およびVgQ2を出力する。
In the push-pull type switching circuit 5 of the power transmission side circuit, a bypass capacitor C1 for bypassing a high frequency component is connected between DC input terminals, and one end of the bypass capacitor C1 is connected to an intermediate tap of the power transmission transformer T1. One end of the power transmission transformer T1 is connected to the drain of the MOSFET Q1, and the other end is connected to the drain of the MOSFET Q2. A leakage inductance L1 is provided for the intermediate tap of the power transmission transformer T1, and a mutual inductance L2 is provided between the intermediate tap and the drains of the MOSFET Q1 and the MOSFET Q2. Unlike the half-bridge type switching circuit, the power transmission side circuit does not cause current resonance.
The source sides of MOSFETQ1 and MOSFETQ2 are connected to the other end of bypass capacitor C1. The switching control circuit 4 for supplying control pulses to the MOSFETQ1 and MOSFETQ2 outputs control pulses VgQ1 and VgQ2 as shown in FIG.

制御パルスVgQ1およびVgQ2は第1の実施の形態と同様であり、制御パルスVgQ1は1周期Tに対し前半の周期(1/2)Tに発生し、25%以上〜50%未満のデューティ比のパルスである。制御パルスVgQ2は後半の周期(1/2)Tに発生し、25%以上〜50%未満のデューティ比のパルスであり、制御パルスVgQ1およびVgQ2が相互に時系列的に重ならないようにデッドタイムtdが作られMOSFETQ1およびMOSFETQ2を制御する。MOSFETのオン時はゼロ電流,ゼロ電圧スイッチング,MOSFETのオフ時は、ゼロ電圧スイッチングとなり、スイッチング損失が極めて少なく高効率化,低ノイズ化,小型化(高周波化)が実現できる。図5で示す制御パルスVgQ1およびVgQ2の波形より下段に記載した各波形は基本的には図4の波形図と同じであるのでその特性の説明は省略する。   The control pulses VgQ1 and VgQ2 are the same as in the first embodiment, and the control pulse VgQ1 is generated in the first half period (1/2) T with respect to one period T and has a duty ratio of 25% or more to less than 50%. It is a pulse. The control pulse VgQ2 is a pulse having a duty ratio of 25% to less than 50%, which occurs in the latter half period (1/2) T, and the dead time so that the control pulses VgQ1 and VgQ2 do not overlap with each other in time series. td is created to control MOSFETQ1 and MOSFETQ2. When the MOSFET is on, zero current and zero voltage switching are performed, and when the MOSFET is off, zero voltage switching is performed, so that switching loss is extremely small, and high efficiency, low noise, and miniaturization (high frequency) can be realized. Since the waveforms shown in the lower part of the waveforms of the control pulses VgQ1 and VgQ2 shown in FIG. 5 are basically the same as the waveform diagram of FIG. 4, description of their characteristics is omitted.

第2の実施の形態も、第1の実施の形態とほぼ同様に低ノイズ,高効率で負荷変動に影響を受けることが少ないDC出力を得るが、送電側回路をプッシュプル形構成にすることにより送電用トランスの巻数は2巻線となり電流共振もできないため大電力には不向きである。しかしながら、MOSFETのドライブがグランド基準でできるためドライブが簡素化(ハイサイド駆動以外のスイッチング制御回路を用いることができる)でき、小電力,低コストの非接触給電に有利である。
また、受電用トランスの巻線を1巻線にでき、トランスの小型化に寄与する。
The second embodiment also obtains a DC output that is low noise, highly efficient, and less affected by load fluctuations, but has a push-pull configuration on the power transmission side circuit, as in the first embodiment. Therefore, since the number of turns of the power transmission transformer is two and current resonance is not possible, it is not suitable for high power. However, since the MOSFET can be driven based on the ground, the drive can be simplified (a switching control circuit other than the high-side drive can be used), which is advantageous for low-power and low-cost non-contact power feeding.
Moreover, the winding of the power receiving transformer can be made one winding, which contributes to the miniaturization of the transformer.

図3は、本発明による非接触電源装置の第3の実施の形態を示す回路図、図6は図3の各回路部の電圧・電流のタイミングチャートである。
この実施の形態は送電側回路のスイッチング回路にフルブリッジ形を用いたもので、他の構成は図1の電源装置と同じである。フルブリッジ形スイッチング回路8を用いることによりハーフブリッジ形より高いパワーを出力させることができる。ハーフブリッジに対しMOSFETの耐圧が半分で良いとオン抵抗の低いFETを使用できるからである。
フルブリッジ形スイッチング回路8はDC入力VC1に重畳される高周波成分をバイパスさせるコンデンサC1の間に、2つのMOSFETのスイッチング素子Q1およびQ2の直列回路と2つのMOSFETのスイッチング素子Q3およびQ4の直列回路が接続され、MOSFETQ1,Q2,Q3およびQ4のゲートにスイッチング制御回路7が接続されている。
FIG. 3 is a circuit diagram showing a third embodiment of the non-contact power supply device according to the present invention, and FIG. 6 is a voltage / current timing chart of each circuit section of FIG.
In this embodiment, a full bridge type is used for the switching circuit of the power transmission side circuit, and the other configuration is the same as that of the power supply device of FIG. By using the full bridge type switching circuit 8, it is possible to output higher power than the half bridge type. This is because an FET having a low on-resistance can be used if the withstand voltage of the MOSFET is only half that of the half bridge.
The full bridge type switching circuit 8 includes a series circuit of two MOSFET switching elements Q1 and Q2 and a series circuit of two MOSFET switching elements Q3 and Q4 between a capacitor C1 that bypasses a high frequency component superimposed on the DC input VC1. Is connected, and the switching control circuit 7 is connected to the gates of the MOSFETs Q1, Q2, Q3 and Q4.

MOSFETQ1のソースとMOSFETQ2のドレーンの接続点に直列共振用コンデンサC2の一端が接続され、その他端が送電用トランスT1の一端に接続されている。一方、MOSFETQ3のソースとMOSFETQ4のドレーンの接続点に送電用トランスT1の他端が接続されている。直列共振用コンデンサC2は電流共振する容量値が選択される。
スイッチング制御回路7はMOSFETQ1とQ4のゲートおよびMOSFETQ2とQ3のゲートにはそれぞれ同じ制御パルスを入力する。以下の下段に示す電圧・電流の波形図は図4と同じである。
第3の実施の形態も図1と同様に低ノイズ,高効率で負荷変動に影響の受けない大電力DC出力を得ることができる。
One end of the series resonance capacitor C2 is connected to a connection point between the source of the MOSFET Q1 and the drain of the MOSFET Q2, and the other end is connected to one end of the power transmission transformer T1. On the other hand, the other end of the power transmission transformer T1 is connected to a connection point between the source of the MOSFET Q3 and the drain of the MOSFET Q4. A capacitance value that causes current resonance is selected as the series resonance capacitor C2.
The switching control circuit 7 inputs the same control pulse to the gates of the MOSFETs Q1 and Q4 and the gates of the MOSFETs Q2 and Q3. The waveform diagram of the voltage / current shown in the lower stage below is the same as FIG.
Similarly to FIG. 1, the third embodiment can obtain a high power DC output with low noise, high efficiency, and unaffected by load fluctuations.

送電側回路にハーフブリッジ形,フルブリッジ形を用いた場合、電流共振用コンデンサを付加し電流共振させることにより、送電用および受電トランスのリーケージインダクタンスの影響が相殺され、低インピーダンスとなるため受電側に大電力を供給できる。
また、受電側回路の倍電圧整流回路の初段のコンデンサを電流共振用に流用し倍電圧整流回路も電流共振させることによりさらなる大電力化が可能となる。
When a half-bridge type or full-bridge type is used for the power transmission side circuit, the effect of leakage inductance of the power transmission and receiving transformers is offset by adding a current resonance capacitor to cause current resonance. High power can be supplied.
Further, by using the first stage capacitor of the voltage doubler rectifier circuit of the power receiving side circuit for current resonance and causing the voltage doubler rectifier circuit to also current resonate, it is possible to further increase the power.

ハーフブリッジ形,プッシュプル形およびフルブリッジ形について受電側は同じ回路構成であり、送電側回路に対応した受電側回路の回路構成により以下のような特性・利点を有する。
受電側回路を倍電圧整流回路で構成しているため整流ダイオードの耐圧は出力電圧と略同等になり、低耐圧のダイオードを使用でき高効率化できる。また、倍電圧整流回路の初段のコンデンサを電流共振用に流用できるため低コストにできる。さらに倍電圧整流回路の初段のコンデンサを電流共振用に流用し電流共振させるため送電用および受電用トランスのリーケージインダクタンスの影響が相殺され、低インピーダンスとなるため受電側に大電力を供給できる。
また、送電側回路がハーフブリッジ形,プッシュプル形,フルブリッジ形で受電側回路の倍電圧整流回路のみを電流共振させた場合、フィードバック制御なしでも出力電圧変動が少なく、無負荷時の電圧上昇も少ないため低コスト化が可能である
The power receiving side has the same circuit configuration for the half bridge type, push-pull type, and full bridge type, and has the following characteristics and advantages depending on the circuit configuration of the power receiving side circuit corresponding to the power transmission side circuit.
Since the power receiving side circuit is composed of a voltage doubler rectifier circuit, the withstand voltage of the rectifier diode is substantially the same as the output voltage, and a low withstand voltage diode can be used to increase efficiency. In addition, since the first stage capacitor of the voltage doubler rectifier circuit can be used for current resonance, the cost can be reduced. Furthermore, since the first stage capacitor of the voltage doubler rectifier circuit is used for current resonance to cause current resonance, the influence of the leakage inductance of the power transmission and power receiving transformers is offset, and the impedance is low, so that large power can be supplied to the power receiving side.
Also, when the power transmission side circuit is half-bridge type, push-pull type, full-bridge type and only the voltage doubler rectifier circuit of the power receiving side circuit is current-resonated, the output voltage fluctuation is small even without feedback control, and the voltage rises at no load Can reduce costs.

上記実施の形態で用いる高周波数は100KHz程度であるが、コアレスタイプで1MHz,2MHzで電磁結合して給電することも可能である。また、電力値として例えば10W〜200W電源装置を実現できる。送電用トランスと受電用トランスの電磁結合のための距離は、例えば、送電側回路筐体の送電用トランスに対し、受電用トランスが例えば2.5mmで向き合うように受電側回路筐体を設置することととなる。   The high frequency used in the above embodiment is about 100 KHz. However, the coreless type can be fed with electromagnetic coupling at 1 MHz and 2 MHz. In addition, for example, a power value of 10 W to 200 W can be realized. The distance for electromagnetic coupling between the power transmission transformer and the power reception transformer is set, for example, such that the power reception transformer faces the power transmission transformer of the power transmission side circuit casing at, for example, 2.5 mm. It will be.

給電対象となる装置に接触することなく電磁波で給電を行うもので、産業用装置,測定装置,家電などにDC出力を供給する電源装置である。   This is a power supply device that supplies power with electromagnetic waves without contacting a device to be supplied with power, and supplies a DC output to industrial devices, measuring devices, home appliances, and the like.

本発明による非接触電源装置の第1の実施の形態を示す回路図である。1 is a circuit diagram showing a first embodiment of a non-contact power supply device according to the present invention. 本発明による非接触電源装置の第2の実施の形態を示す回路図である。It is a circuit diagram which shows 2nd Embodiment of the non-contact power supply device by this invention. 本発明による非接触電源装置の第3の実施の形態を示す回路図である。It is a circuit diagram which shows 3rd Embodiment of the non-contact power supply device by this invention. 図1の入出力の関係を説明するためのタイミングチャートである。2 is a timing chart for explaining the input / output relationship of FIG. 1. 図2の入出力の関係を説明するためのタイミングチャートである。3 is a timing chart for explaining the input / output relationship of FIG. 2. 図3の入出力の関係を説明するためのタイミングチャートである。It is a timing chart for demonstrating the relationship of the input / output of FIG.

符号の説明Explanation of symbols

1,4,7 スイッチング制御回路
2 プッシュプル形スイッチング回路
3,6,9 倍電圧整流回路
5 ハーフブリッジ形スイッチング回路
8 フルブリッジ形スイッチング回路
C1 バイパス用コンデンサ
C2 直列共振用コンデンサ
C3 倍電圧整流及び直列共振用コンデンサ
C4 倍電圧整流用コンデンサ
CR1,CR2 倍電圧整流用ダイオード
T1 送電用トランス
T2 受電用トランス
L1 トランスT1のリーケージインダクタンス
L2 トランスT1,T2の相互インダクタンス
L3 トランスT2のリーケージインダクスンス
Q1,Q2 MOSFET(スイッチング素子)
1,4,7 switching control circuit
2 Push-pull type switching circuit 3, 6, 9 Voltage doubler rectifier circuit 5 Half bridge type switching circuit 8 Full bridge type switching circuit C1 Bypass capacitor C2 Series resonance capacitor C3 Voltage doubler rectification and series resonance capacitor C4 Voltage doubler rectification Capacitor CR1, CR2 Voltage doubler rectifier diode T1 Power transformer T2 Power transformer L1 Leakage inductance of transformer T1 L2 Mutual inductance of transformers T1, T2 L3 Leakage inductance of transformer T2 Q1, Q2 MOSFET (switching element)

Claims (5)

直列接続された2個1組または直列接続された2個2組のスイッチング素子のゲートに対し、ドライブ回路により交互にパルス信号を入力することにより直流入力をスイッチングするハーフブリッジ形またはフルブリッジ形スイッチング回路および該ハーフブリッジ形または該フルブリッジ形スイッチング回路の出力に接続された送電用トランスとからなる送電側回路と、
前記送電用トランスに対し電磁結合する受電用トランスおよび該受電用トランスに接続され、受電用トランス出力を倍電圧で整流し出力する倍電圧整流回路とからなる受電側回路とから構成されたことを特徴とする非接触電源装置。
Half bridge type or full bridge type switching that switches DC input by inputting pulse signals alternately to the gates of two or one set of switching elements connected in series or two sets of switching elements connected in series A power transmission side circuit comprising a circuit and a power transmission transformer connected to an output of the half bridge type or full bridge type switching circuit;
A power receiving transformer that is electromagnetically coupled to the power transmitting transformer, and a power receiving side circuit that is connected to the power receiving transformer and rectifies the output of the power receiving transformer with a double voltage and outputs the double voltage rectifier circuit. A non-contact power supply device.
前記ハーフブリッジ形または前記フルブリッジ形スイッチング回路と前記送電用トランスの間にコンデンサを挿入し、コンデンサの容量を調整することにより送電側回路を電流共振させることを特徴とする請求項1記載の非接触電源装置。   The non-transmission circuit according to claim 1, wherein a capacitor is inserted between the half-bridge type or full-bridge type switching circuit and the power transmission transformer, and the power transmission side circuit is made to resonate by adjusting a capacitance of the capacitor. Contact power supply. 中間端子を有する送電用トランスおよび該送電用トランスの両端にそれぞれ出力端が接続され、他端側がアース接続された2つのスイッチング素子を有し、該2つのスイッチング素子のゲートに対し、ドライブ回路により交互にパルス信号を入力することにより直流入力をスイッチングするプッシュプル形スイッチング回路からなる送電側回路と、
前記送電用トランスに対し電磁結合する受電用トランスおよび該受電用トランスに接続され、受電用トランス出力を倍電圧で整流し出力する倍電圧整流回路とからなる受電側回路とから構成されたことを特徴とする非接触電源装置。
A power transmission transformer having an intermediate terminal and two switching elements whose output ends are connected to both ends of the power transmission transformer and whose other ends are connected to the ground, and the gates of the two switching elements are driven by a drive circuit A power transmission side circuit composed of a push-pull type switching circuit that switches a DC input by alternately inputting pulse signals;
A power receiving transformer that is electromagnetically coupled to the power transmitting transformer, and a power receiving side circuit that is connected to the power receiving transformer and rectifies the output of the power receiving transformer with a double voltage and outputs the double voltage rectifier circuit. A non-contact power supply device.
前記ドライブ回路から前記2個のスイッチング素子のゲートにそれぞれ入力される信号は、デューティ比が25%以上50%未満であって、各信号間にデッドタイムを有することを特徴とする請求項1,2または3記載の非接触電源装置。   2. The signal input to the gates of the two switching elements from the drive circuit, respectively, has a duty ratio of 25% or more and less than 50%, and has a dead time between the signals. The contactless power supply device according to 2 or 3. 前記倍電圧整流回路の前段のコンデンサに整流機能を有するとともに受電側回路を電流共振させるように調整したことを特徴とする請求項1,2,3または4記載の非接触電源装置。   5. The non-contact power supply device according to claim 1, wherein the capacitor in the previous stage of the voltage doubler rectifier circuit is adjusted so as to have a rectification function and cause the power receiving side circuit to resonate in current.
JP2006284949A 2006-10-19 2006-10-19 Non-contact power supply unit Pending JP2008104295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006284949A JP2008104295A (en) 2006-10-19 2006-10-19 Non-contact power supply unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006284949A JP2008104295A (en) 2006-10-19 2006-10-19 Non-contact power supply unit

Publications (1)

Publication Number Publication Date
JP2008104295A true JP2008104295A (en) 2008-05-01

Family

ID=39438187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006284949A Pending JP2008104295A (en) 2006-10-19 2006-10-19 Non-contact power supply unit

Country Status (1)

Country Link
JP (1) JP2008104295A (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010142036A (en) * 2008-12-12 2010-06-24 Toko Inc Non-contact power transmission circuit
JP2010213414A (en) * 2009-03-09 2010-09-24 Seiko Epson Corp Power transmission control device, power transmission device, power receiving control device, power receiving device, electronic apparatus, and non-contact power transmission system
JP2011045151A (en) * 2009-07-24 2011-03-03 Tdk Corp Wireless feeder system and wireless power transmission system
CN102027683A (en) * 2008-05-13 2011-04-20 高通股份有限公司 Method and apparatus with negative resistance in wireless power transfers
JP2011130569A (en) * 2009-12-17 2011-06-30 Toko Inc Noncontact power transfer device
JP2011139618A (en) * 2010-01-04 2011-07-14 Origin Electric Co Ltd Device for generating dc high voltage
KR101131586B1 (en) 2010-07-13 2012-03-30 한국과학기술원 Resonator for magnetic resonance power transmission device using current source input
CN102484903A (en) * 2009-09-10 2012-05-30 高通股份有限公司 Wireless Power For Heating Or Cooling
WO2012099169A1 (en) * 2011-01-19 2012-07-26 株式会社 テクノバ Contactless power transfer system
JP2012152041A (en) * 2011-01-19 2012-08-09 Saitama Univ Contactless power supply system
JP2012518979A (en) * 2009-02-20 2012-08-16 ヌメキシア ソシエテ アノニム Systems and facilities for transmitting electrical energy in a contactless manner
WO2012164845A1 (en) * 2011-06-02 2012-12-06 株式会社アドバンテスト Wireless power-receiving device, wireless power-supply device and wireless power-supply system, and automatic-tuning auxiliary circuit
WO2013058174A1 (en) * 2011-10-21 2013-04-25 株式会社村田製作所 Switching power-supply device
WO2013058175A1 (en) * 2011-10-21 2013-04-25 株式会社村田製作所 Switching power-supply device
JP2013239590A (en) * 2012-05-15 2013-11-28 Sumida Corporation Noncontact power feeding system and power transmitting coil for noncontact power feeding system
US8854224B2 (en) 2009-02-10 2014-10-07 Qualcomm Incorporated Conveying device information relating to wireless charging
JP2014527793A (en) * 2011-08-04 2014-10-16 ワイトリシティ コーポレーションWitricity Corporation Tunable wireless power architecture
US8878393B2 (en) 2008-05-13 2014-11-04 Qualcomm Incorporated Wireless power transfer for vehicles
KR20150097465A (en) * 2012-10-29 2015-08-26 파워바이프록시 리미티드 A receiver for an inductive power transfer system and a method for controlling the receiver
WO2015156628A1 (en) * 2014-04-11 2015-10-15 엘지전자(주) Wireless power transmitter and wireless power transmitting method
US9252604B2 (en) 2010-09-15 2016-02-02 Samsung Electronics Co., Ltd. Apparatus for wireless power transmission and reception
JP2016039663A (en) * 2014-08-06 2016-03-22 富士電機株式会社 Power conversion device
US9312924B2 (en) 2009-02-10 2016-04-12 Qualcomm Incorporated Systems and methods relating to multi-dimensional wireless charging
US9378888B2 (en) 2011-01-26 2016-06-28 Murata Manufacturing Co., Ltd. Power transfer system
CN106374633A (en) * 2016-09-12 2017-02-01 中南大学 Voltage doubling circuit-based wireless power transmission system
JP2017028998A (en) * 2012-10-11 2017-02-02 株式会社村田製作所 Wireless power supply device
US9583953B2 (en) 2009-02-10 2017-02-28 Qualcomm Incorporated Wireless power transfer for portable enclosures
JP2017514436A (en) * 2014-04-17 2017-06-01 リニアー テクノロジー コーポレイションLinear Technology Corporation Voltage regulation in resonant wireless power receivers
JP2018164391A (en) * 2017-03-24 2018-10-18 株式会社デンソー Resonance inverter
JP2019075985A (en) * 2010-03-10 2019-05-16 ウィトリシティ コーポレーション Radio energy transfer conversion device
CN111316534A (en) * 2018-12-27 2020-06-19 深圳市大疆创新科技有限公司 Wireless power supply circuit, camera, wireless power supply method and readable storage medium
US10958106B2 (en) 2018-10-18 2021-03-23 Seiko Epson Corporation Control device, power transmitting device, contactless power transmission system, power receiving device, and electronic apparatus
DE102010022122B4 (en) 2010-05-20 2021-08-05 Sew-Eurodrive Gmbh & Co Kg Arrangement and method for operating an arrangement for inductive energy transmission to an electrical consumer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0962816A (en) * 1994-10-06 1997-03-07 Mitsubishi Electric Corp Non-contact ic card and non-contact ic card system including the same
JPH1023677A (en) * 1996-07-03 1998-01-23 Uniden Corp Non-contact charging device, charger, cordless device and non-contact charger
JPH11196542A (en) * 1997-12-26 1999-07-21 Techno Collage:Kk Non-contact power transmission device
JP2006074848A (en) * 2004-08-31 2006-03-16 Hokushin Denki Kk Non-contact power transmission system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0962816A (en) * 1994-10-06 1997-03-07 Mitsubishi Electric Corp Non-contact ic card and non-contact ic card system including the same
JPH1023677A (en) * 1996-07-03 1998-01-23 Uniden Corp Non-contact charging device, charger, cordless device and non-contact charger
JPH11196542A (en) * 1997-12-26 1999-07-21 Techno Collage:Kk Non-contact power transmission device
JP2006074848A (en) * 2004-08-31 2006-03-16 Hokushin Denki Kk Non-contact power transmission system

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9130407B2 (en) 2008-05-13 2015-09-08 Qualcomm Incorporated Signaling charging in wireless power environment
US9954399B2 (en) 2008-05-13 2018-04-24 Qualcomm Incorporated Reverse link signaling via receive antenna impedance modulation
US8611815B2 (en) 2008-05-13 2013-12-17 Qualcomm Incorporated Repeaters for enhancement of wireless power transfer
US8965461B2 (en) 2008-05-13 2015-02-24 Qualcomm Incorporated Reverse link signaling via receive antenna impedance modulation
CN102027683A (en) * 2008-05-13 2011-04-20 高通股份有限公司 Method and apparatus with negative resistance in wireless power transfers
US9184632B2 (en) 2008-05-13 2015-11-10 Qualcomm Incorporated Wireless power transfer for furnishings and building elements
US9178387B2 (en) 2008-05-13 2015-11-03 Qualcomm Incorporated Receive antenna for wireless power transfer
JP2011524156A (en) * 2008-05-13 2011-08-25 クゥアルコム・インコーポレイテッド Method and apparatus using negative resistance in wireless power transfer
US8629650B2 (en) 2008-05-13 2014-01-14 Qualcomm Incorporated Wireless power transfer using multiple transmit antennas
US8487478B2 (en) 2008-05-13 2013-07-16 Qualcomm Incorporated Wireless power transfer for appliances and equipments
US9190875B2 (en) 2008-05-13 2015-11-17 Qualcomm Incorporated Method and apparatus with negative resistance in wireless power transfers
US8892035B2 (en) 2008-05-13 2014-11-18 Qualcomm Incorporated Repeaters for enhancement of wireless power transfer
US8878393B2 (en) 2008-05-13 2014-11-04 Qualcomm Incorporated Wireless power transfer for vehicles
US9236771B2 (en) 2008-05-13 2016-01-12 Qualcomm Incorporated Method and apparatus for adaptive tuning of wireless power transfer
US9991747B2 (en) 2008-05-13 2018-06-05 Qualcomm Incorporated Signaling charging in wireless power environment
JP2014090429A (en) * 2008-05-13 2014-05-15 Qualcomm Incorporated Method and apparatus with negative resistance in wireless power transfers
JP4620151B2 (en) * 2008-12-12 2011-01-26 東光株式会社 Non-contact power transmission circuit
JP2010142036A (en) * 2008-12-12 2010-06-24 Toko Inc Non-contact power transmission circuit
US9583953B2 (en) 2009-02-10 2017-02-28 Qualcomm Incorporated Wireless power transfer for portable enclosures
US8854224B2 (en) 2009-02-10 2014-10-07 Qualcomm Incorporated Conveying device information relating to wireless charging
US9312924B2 (en) 2009-02-10 2016-04-12 Qualcomm Incorporated Systems and methods relating to multi-dimensional wireless charging
JP2012518979A (en) * 2009-02-20 2012-08-16 ヌメキシア ソシエテ アノニム Systems and facilities for transmitting electrical energy in a contactless manner
JP2010213414A (en) * 2009-03-09 2010-09-24 Seiko Epson Corp Power transmission control device, power transmission device, power receiving control device, power receiving device, electronic apparatus, and non-contact power transmission system
JP2011045151A (en) * 2009-07-24 2011-03-03 Tdk Corp Wireless feeder system and wireless power transmission system
CN102484903A (en) * 2009-09-10 2012-05-30 高通股份有限公司 Wireless Power For Heating Or Cooling
JP2011130569A (en) * 2009-12-17 2011-06-30 Toko Inc Noncontact power transfer device
JP2011139618A (en) * 2010-01-04 2011-07-14 Origin Electric Co Ltd Device for generating dc high voltage
JP2019075985A (en) * 2010-03-10 2019-05-16 ウィトリシティ コーポレーション Radio energy transfer conversion device
DE102010022122B4 (en) 2010-05-20 2021-08-05 Sew-Eurodrive Gmbh & Co Kg Arrangement and method for operating an arrangement for inductive energy transmission to an electrical consumer
KR101131586B1 (en) 2010-07-13 2012-03-30 한국과학기술원 Resonator for magnetic resonance power transmission device using current source input
US9252604B2 (en) 2010-09-15 2016-02-02 Samsung Electronics Co., Ltd. Apparatus for wireless power transmission and reception
JP2012152041A (en) * 2011-01-19 2012-08-09 Saitama Univ Contactless power supply system
WO2012099169A1 (en) * 2011-01-19 2012-07-26 株式会社 テクノバ Contactless power transfer system
US20130293192A1 (en) * 2011-01-19 2013-11-07 National University Corporation Saitama University Contactless power transfer system
EP2667481A4 (en) * 2011-01-19 2015-12-02 Technova Inc Contactless power transfer system
US9266441B2 (en) 2011-01-19 2016-02-23 Technova Inc. Contactless power transfer system
CN103339822A (en) * 2011-01-19 2013-10-02 株式会社泰库诺瓦 Contactless power transfer system
US9378888B2 (en) 2011-01-26 2016-06-28 Murata Manufacturing Co., Ltd. Power transfer system
US10243408B2 (en) 2011-06-02 2019-03-26 Advantest Corporation Wireless power receiver
WO2012164845A1 (en) * 2011-06-02 2012-12-06 株式会社アドバンテスト Wireless power-receiving device, wireless power-supply device and wireless power-supply system, and automatic-tuning auxiliary circuit
JPWO2012164846A1 (en) * 2011-06-02 2015-02-23 株式会社アドバンテスト Wireless power receiving device, wireless power feeding device and wireless power feeding system, automatic tuning assist circuit
US9552921B2 (en) 2011-06-02 2017-01-24 Adventest Corporation Wireless power transmitter and wireless power receiver
JPWO2012164845A1 (en) * 2011-06-02 2015-02-23 株式会社アドバンテスト Wireless power receiving device, wireless power feeding device and wireless power feeding system, automatic tuning assist circuit
US9633782B2 (en) 2011-06-02 2017-04-25 Advantest Corporation Wireless power transmitter
JP2014527793A (en) * 2011-08-04 2014-10-16 ワイトリシティ コーポレーションWitricity Corporation Tunable wireless power architecture
US9048741B2 (en) 2011-10-21 2015-06-02 Murata Manufacturing Co., Ltd. Switching power supply device
WO2013058175A1 (en) * 2011-10-21 2013-04-25 株式会社村田製作所 Switching power-supply device
WO2013058174A1 (en) * 2011-10-21 2013-04-25 株式会社村田製作所 Switching power-supply device
GB2508775B (en) * 2011-10-21 2018-09-19 Murata Manufacturing Co Switching power supply device
US9130467B2 (en) 2011-10-21 2015-09-08 Murata Manufacturing Co., Ltd. Switching power supply device
GB2508774B (en) * 2011-10-21 2018-09-19 Murata Manufacturing Co Switching power supply device
GB2508775A (en) * 2011-10-21 2014-06-11 Murata Manufacturing Co Switching power-supply device
GB2508774A (en) * 2011-10-21 2014-06-11 Murata Manufacturing Co Switching power-supply device
JPWO2013058175A1 (en) * 2011-10-21 2015-04-02 株式会社村田製作所 Switching power supply
JPWO2013058174A1 (en) * 2011-10-21 2015-04-02 株式会社村田製作所 Switching power supply
JP2013239590A (en) * 2012-05-15 2013-11-28 Sumida Corporation Noncontact power feeding system and power transmitting coil for noncontact power feeding system
US9948141B2 (en) 2012-10-11 2018-04-17 Murata Manufacturing Co., Ltd. Wireless power transfer apparatus
JP2017028998A (en) * 2012-10-11 2017-02-02 株式会社村田製作所 Wireless power supply device
KR20150097465A (en) * 2012-10-29 2015-08-26 파워바이프록시 리미티드 A receiver for an inductive power transfer system and a method for controlling the receiver
JP2015534448A (en) * 2012-10-29 2015-11-26 パワーバイプロキシ リミテッド Inductive power transfer system receiver and method for controlling the receiver
US10608470B2 (en) 2012-10-29 2020-03-31 Apple Inc. Receiver for an inductive power transfer system and a method for controlling the receiver
KR102139841B1 (en) 2012-10-29 2020-07-31 애플 인크. A receiver for an inductive power transfer system and a method for controlling the receiver
WO2015156628A1 (en) * 2014-04-11 2015-10-15 엘지전자(주) Wireless power transmitter and wireless power transmitting method
US10177592B2 (en) 2014-04-11 2019-01-08 Lg Electronics Inc. Wireless power transmitter and wireless power transmission method
US10804729B2 (en) 2014-04-11 2020-10-13 Lg Electronics Inc. Wireless power transmitter and wireless power transmission method
JP2017514436A (en) * 2014-04-17 2017-06-01 リニアー テクノロジー コーポレイションLinear Technology Corporation Voltage regulation in resonant wireless power receivers
JP2016039663A (en) * 2014-08-06 2016-03-22 富士電機株式会社 Power conversion device
CN106374633A (en) * 2016-09-12 2017-02-01 中南大学 Voltage doubling circuit-based wireless power transmission system
JP2018164391A (en) * 2017-03-24 2018-10-18 株式会社デンソー Resonance inverter
US10958106B2 (en) 2018-10-18 2021-03-23 Seiko Epson Corporation Control device, power transmitting device, contactless power transmission system, power receiving device, and electronic apparatus
CN111316534A (en) * 2018-12-27 2020-06-19 深圳市大疆创新科技有限公司 Wireless power supply circuit, camera, wireless power supply method and readable storage medium

Similar Documents

Publication Publication Date Title
JP2008104295A (en) Non-contact power supply unit
US9853460B2 (en) Power conversion circuit, power transmission system, and power conversion system
EP2211451B1 (en) Insulated switching power supply device
JP6103061B2 (en) Power feeding device and non-contact power feeding system
JP4620151B2 (en) Non-contact power transmission circuit
US8619438B2 (en) Resonant converter
JP5832317B2 (en) Contactless power supply circuit
US7948775B2 (en) Duty-cycle-controlled half-bridge resonant converter
JP2005151796A (en) Switching power supply circuit
KR20130114694A (en) Power transmission system
KR102008810B1 (en) Wireless power transmitting apparatus and method
KR20060086269A (en) Switching power supply circuit
JPWO2009025157A1 (en) Switching power supply
KR20160058794A (en) High efficiency voltage mode class d topology
CN107636933B (en) Wireless power supply system
KR102019064B1 (en) Wireless power transmitting apparatus and method
CN100474753C (en) Power supply circuit and electronic device
US20110298296A1 (en) Rectifier circuit of wireless power transmission system
JP2005073335A (en) Switching power supply circuit
JPWO2015063919A1 (en) Resonance type high frequency power supply device and switching circuit for resonance type high frequency power supply device
KR101394018B1 (en) Power supplying apparatus and wireless power transmitting apparatus
Cetin High efficiency design considerations for the self-driven synchronous rectified phase-shifted full-bridge converters of server power systems
JP3357233B2 (en) Non-contact power transmission device
JP2005094980A (en) Switching power supply circuit
CN100388602C (en) DC-DC power convertor with low output ripple and low stresses of parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110726