US20180371593A1 - Steel - Google Patents
Steel Download PDFInfo
- Publication number
- US20180371593A1 US20180371593A1 US16/062,247 US201616062247A US2018371593A1 US 20180371593 A1 US20180371593 A1 US 20180371593A1 US 201616062247 A US201616062247 A US 201616062247A US 2018371593 A1 US2018371593 A1 US 2018371593A1
- Authority
- US
- United States
- Prior art keywords
- steel
- content
- fracture
- ferrite
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
Definitions
- the present invention relates to steel and particularly to a forging steel free of quenching and tempering for hot forging having excellent fracture splitability.
- Automotive engine parts and suspension parts are formed by hot forging and then subjected to a heat treatment such as quenching or tempering (hereinafter, parts on which a heat treatment is carried out will be referred to as quenching and tempering component) or skip a heat treatment (hereinafter, parts on which a heat treatment is not carried out will be referred to as non quenching and tempering component), thereby ensuring mechanical properties necessary for parts on which a heat treatment is carried out.
- a heat treatment such as quenching or tempering
- skip a heat treatment hereinafter, parts on which a heat treatment is not carried out will be referred to as non quenching and tempering component
- a connecting rod (hereinafter, referred to as a connecting rod). These parts are parts that transmit power when the reciprocal motion of a piston in an engine is converted to a rotary motion by a crankshaft.
- the connecting rod fastens an eccentric portion that is referred to as a pin portion of the crankshaft by pinching the eccentric portion with the cap portion and the rod portion of the connecting rod and transmits power through a mechanism of the rotary sliding of the pin portion and the fastening portion of the connecting rod.
- fracture split connecting rods have been widely used.
- a fracture split connecting rod is a connecting rod for which a method in which steel is formed to a shape in which the cap portion and the rod portion are integrated together by means of hot forging or the like, then, a notch is made in a portion corresponding to the boundary between the cap portion and the rod portion, and this portion is fractured and splitted is used.
- this method since fractured and splitted fracture surfaces are fitted to each other in the mating surfaces of the cap portion and the rod portion, machining of the mating surfaces is not required, and thus it is possible to skip processing for positioning as necessary. Therefore, it is possible to significantly reduce processing steps of components, and the economic efficiency at the time of manufacturing components significantly improves.
- the fracture form of fractured surfaces is brittle, the deformation amount in the vicinity of fracture surfaces caused by fracturing and splitting is small, and the chipping generation amount during fracturing and splitting is small, that is, the fracture splitability is favorable.
- C70S6 In Europe and the United States of America, as steel for fracture split connecting rods, C70S6 according to DIN standards is distributed. This is forging high carbon steel free of quenching and tempering including 0.7 mass % of C and is provided with a metallographic structure made of a pearlite structure having low ductility and low toughness in order to suppress dimensional changes during fracturing and splitting. C70S6 allows only a small plastic deformation amount in the vicinity of fractured surfaces during fracturing and thus has excellent fracture splitability.
- Patent Document 1 and Patent Document 2 disclose a technique for improving the fracture splitability of the steel by adding a large amount of an embrittlement element such as Si or P to steel and degrading the ductility and toughness of the steel.
- Patent Document 3 and Patent Document 4 disclose a technique for improving the fracture splitability of steel by degrading the ductility and toughness of ferrite using the precipitation strengthening of second phase particles.
- Patent Documents 5 to 7 disclose a technique for improving the fracture splitability of steel by controlling the form of a Mn sulfide.
- Patent Document 8 discloses a technique for improving the fracture splitability of steel by cooling the steel to ⁇ 60° C. or lower and fracturing and splitting the steel.
- Patent Document 1 Patent Document 2, and Patent Document 6, in order to increase the strength of steel, the addition of a large amount of C is required. In a case where steel having the above properties is fractured and splitted, the chipping generation amount on the fractured surfaces increases, and thus the fracture splitability is unsatisfactory. However, in Patent Document 1, Patent Document 2, and Patent Document 6, there are no studies regarding means for suppressing the chipping generation amount.
- Patent Document 3 in order to degrade the ductility of steel, it is necessary to limit the Mn content to less than a predetermined value.
- Mn is an effective element to form unevenness on fractured surfaces generated by fracturing and splitting and enhance the fittability of the fractured surfaces.
- the steel disclosed in Patent Document 3 is fractured and splitted, a sufficient number of sufficiently large unevenness are not formed on the fractured surfaces, and thus the fracture splitability is unsatisfactory.
- Patent Document 3 there is no study regarding the fittability of fractured surfaces.
- Patent Document 5 Patent Document 7
- the containing V and/or Ti is required in order to enhance the fracture splitability by embrittling ferrite in steel.
- the present inventors found that, in a case where V or Ti is added to steel to an extent that ferrite is embrittled, segregation of these elements is occurred, and chipping is generated in regions having a high concentration of V or Ti.
- Patent Document 5, and Patent Document 7 is fractured and splitted, it is not possible to suppress the chipping generation amount, and thus the fracture splitability is unsatisfactory.
- Patent Document 4, Patent Document 5, and Patent Document 7 there are no studies regarding the segregation of ferrite embrittlement elements such as V and Ti.
- Patent Document 1 Japanese Patent No. 3637375
- Patent Document 2 Japanese Patent No. 3756307
- Patent Document 3 Japanese Patent No. 3355132
- Patent Document 4 Japanese Patent No. 3988661
- Patent Document 5 Japanese Patent No. 4314851
- Patent Document 6 Japanese Patent No. 3671688
- Patent Document 7 Japanese Patent No. 4268194
- Patent Document 8 Japanese Unexamined Patent Application, First Publication No. 2004-183094
- the fracture splitability is evaluated by, for example, the deformation amount on fractured surfaces, the ratio of brittle fracture surfaces to fractured surfaces, the sizes and number of unevenness on fractured surfaces, the chipping generation amount on fractured surfaces, and the like.
- the suppression of the deformation amount and the improvement in the ratio of brittle fracture surfaces are achieved by degrading the toughness of steel. For example, in steel having a low Charpy impact value which is an index of toughness, it is common that the suppression of the deformation amount and the improvement in the ratio of brittle fracture surfaces are achieved.
- the suppression of the deformation amount and the improvement in the ratio of brittle fracture surfaces have been achieved by adding V, Ti, and the like to steel and causing precipitation strengthening in ferrite, thereby degrading the toughness of steel.
- V is an element that is easily segregated.
- embrittlement excessively occurs in the segregation portions of these elements (portions in which the concentration of these elements is higher than those of peripheral portions), and chipping is generated during fracturing and splitting. Therefore, the chipping generation amount during fracturing and splitting is increased, and the fracture splitability is impaired. Therefore, it is necessary to ensure the fracture splitability without using elements that increase the chipping generation amount such as V.
- the present invention has been made in consideration of the above circumstances, and an object of the present invention is to provide forging steel free of quenching and tempering for hot forging being excellent in terms of the fracture splitability and the yield ratio. Specifically, the object is to provide steel which is capable of achieving both the degradation in the toughness and the suppression of the chipping generation amount, furthermore, excellent in terms of the yield ratio.
- the present inventors carried out intensive studies regarding a method for realizing forging steel free of quenching and tempering for hot forging having excellent fracture splitability and consequently obtained the following knowledge (a) and (b).
- the gist of the invention is as described below.
- a steel according to one aspect of the present invention contains, in unit mass %, C: 0.10% to 0.25%, Si: 0.60% to 1.20%, Mn: 0.60% to 1.00%, P: 0.040% to 0.060%, S: 0.060% to 0.100%, Cr: 0.05% to 0.20%, Bi: 0.0001% to 0.0050%, N: 0.0020% to 0.0150%, V: 0% to 0.010%, Al: 0% to 0.0050%, Ti: 0% to 0.020%, Ca: 0% to 0.0050%, Zr: 0% to 0.0050%, Mg: 0% to 0.0050%; and a remainder including Fe and impurities.
- the steel according to (1) may further contain, in unit mass %, one or more of Ca: 0.0005% to 0.0050%, Zr: 0.0005% to 0.0050%, and Mg: 0.0005% to 0.0050%.
- the steel according to (1) or (2) may further contain, in unit mass %, N: 0.0020% to 0.0090%.
- the steel according to any one of (1) to (3) may further contain, in unit mass %, Al: 0% to 0.0008%.
- the steel according to any one of (1) to (4) may further contain, in unit mass %, V: 0% to 0.004%.
- the present invention it is possible to provide a forging steel free of quenching and tempering for hot forging in which both the degradation in the toughness and the suppression of the chipping generation amount are achieved and the fracture splitability and the yield ratio are excellent.
- FIG. 1 is an exploded perspective view showing a connecting rod which is an application example of steel according to one aspect of the present invention.
- the unit “%” for the amounts of alloying elements in the steel means “mass %”.
- C has an effect for ensuring the tensile strength of steel.
- the lower limit of the C content is set to 0.10%.
- the upper limit of the C content is set to 0.25%.
- the lower limit of the C content may be set to 0.12%, 0.15%, or 0.19%.
- the upper limit of the C content may be set to 0.23%, 0.22%, or 0.21%.
- the fracture splitability of the steel is improved.
- the lower limit of the Si content is set to 0.60%.
- the upper limit of the Si content is set to 1.20%.
- the lower limit of the Si content may be set to 0.70%, 0.75%, or 0.80%.
- the upper limit of the Si content may be set to 1.00%, 0.90%, or 0.85%.
- Mn strengthens ferrite through solid solution strengthening and degrades the ductility and toughness of the steel, the fracture splitability of the steel is improved.
- the Mn sulfide has an effect for preventing a position displacement at the time of fitting the fractured surfaces by increasing unevenness on fractured surfaces.
- Mn is contained in the steel excessively, ferrite becomes too hard so that the frequency of chipping generation on fractured surfaces is increased.
- the range of the Mn content is 0.60% to 1.00%.
- the lower limit of the Mn content may be set to 0.70%, 0.80%, or 0.82%.
- the upper limit of the Mn content may be set to 0.90%, 0.87%, or 0.85%.
- P degrades the ductility and toughness of ferrite and pearlite, and the steel is embrittled.
- P is considered as an impurity element which is not preferable to be contained.
- steel which becomes a material for parts, manufactured by manufacturing method not including fracturing and splitting, in order to prevent the parts embrittlement, it is common that the P content is set to approximately 0.020% or less.
- P has an effect for improving the fracture splitability and is thus advantageous. Therefore, in the steel according to the present embodiment, it is necessary that the P content is set to 0.040% or more that is significantly more than the range of P whose amount is usually included in the steel as an impurity.
- the range of the P content is 0.040% to 0.060%.
- the lower limit of the P content may be set to 0.042%, 0.045%, or 0.048%.
- the upper limit of the P content may be set to 0.058%, 0.055%, or 0.050%.
- S bonds to Mn and thus forms a Mn sulfide.
- S since a crack is propagated along the stretched Mn sulfide in the rolling direction, S has an effect for preventing a position displacement at the time of fitting the fractured surfaces by increasing unevenness on fractured surfaces.
- the lower limit of the S content is set to 0.060%.
- S when S is contained in the steel excessively, the plastic deformation amount in the vicinity of fractured surfaces during fracturing and splitting is increased, and there is a case where the fracture splitability is degraded.
- the range of the S content is set to 0.060% to 0.100%.
- the lower limit of the S content may be set to 0.070%, 0.075%, or 0.080%.
- the upper limit of the S content may be set to 0.090%, 0.088%, or 0.085%.
- the range of the Cr content is 0.05% to 0.20%.
- the lower limit of the Cr content may be set to 0.07%, 0.09%, or 0.10%.
- the upper limit of the Cr content may be set to 0.17%, 0.16%, or 0.15%.
- Bi is an important element in the steel according to the present embodiment.
- the steel contains a small amount of Bi
- a solid solution of Bi embrittles ferrite and the ductility and toughness of the steel is degraded, the fracture splitability of the steel is improved.
- the ferrite embrittlement effect of Bi develops at an extremely small amount of Bi.
- the Bi content is set to 0.0001% or more.
- the small amount of Bi improves the fracture splitability of steel has not yet been reported.
- no increase in the chipping generation amount has been confirmed. Although the reason therefore is not clear, since the Bi content is extremely small, it is assumed that the influence of Bi segregation is small enough to be negligible.
- the Bi content is set to 0.0001% to 0.0050%.
- the lower limit of the Bi content may be set to 0.0025%, 0.0028%, or 0.0030%.
- the upper limit of the Bi content may be set to 0.0045%, 0.0042%, or 0.0040%.
- N When V or Ti is contained in the steel, N forms a nitride or a carbonitride thereof, and the rest of N is present in the steel with a state of a solid solution. Since a solid solution of N (that is, N with a state of a solid solution in the steel) embrittles ferrite and the ductility and toughness of the steel is degraded, the fracture splitability of the steel is improved.
- the lower limit of the N content is set to 0.0020%.
- the upper limit of the N content is set to 0.0150%.
- the lower limit of the N content may be set to 0.0050%, 0.0070%, or 0.0080%.
- the upper limit of the N content may be set to 0.0100%, 0.0095%, or 0.0090%.
- V 0% to 0.010%
- V forms a carbide or a carbonitride and causes precipitation strengthening in ferrite
- V has an effect for decreasing the deformation amount during fracturing and splitting by degrading the ductility and toughness of ferrite. Therefore, according to the related art, there is a case where V is added to steel requiring favorable fracture splitability.
- the V content is set to approximately 0.10% or more. In a case where approximately 0.10% or more of V is contained in the steel, since the segregation of V is caused, the ductility and toughness of ferrite is excessively degraded in regions having a high concentration of V. Therefore, the chipping generation is likely to occur at the time of fracturing and splitting the steel. That is, although V can decrease the deformation amount during fracturing and splitting, V increases the chipping amount during fracturing and splitting.
- the steel according to the present embodiment contains the above small amount of Bi and thus does not require V in order to improve the fracture splitability. Therefore, the lower limit of the V content is 0%.
- V is preferably not contained in the steel.
- the upper limit of the V content may be set to 0.007%, 0.005%, 0.004%, or 0.002%.
- V 0.010% or less of V is considered as an impurity having no substantial influence on the properties of the steel.
- 0.010% or less of V is regarded that the V content is 0%, there is a case where V is not disclosed.
- the lower limit of the Al content is 0%.
- 0.0050% or more of Al forms an Al oxide in the steel, and there is a case where this Al oxide impairs the machinability of the steel.
- the upper limit of the Al content in the steel according to the present embodiment is set to 0.0050%.
- the upper limit of the Al content may be set to 0.0040%, 0.0010%, or 0.0008%.
- 0.0050% or less of Al is considered as an impurity having no substantial influence on the properties of the steel. Therefore, in Mill test reports, since 0.0050% or less of Al is regarded that the Al content is 0%, there is a case where Al is not disclosed.
- Ti forms a nitride and causes precipitation strengthening in ferrite
- Ti has an effect for decreasing the deformation amount during fracturing and splitting by degrading the ductility and toughness of ferrite.
- the steel according to the present embodiment contains the above small amount of Bi and thus does not require Ti in order to improve the fracture splitability. Therefore, the lower limit of the Ti content is 0%.
- Ti is preferably not contained in the steel. However, in a case where the steel according to the present embodiment is manufactured using scraps as a material, there is a concern that Ti may be incorporated. In this case, 0.020% or less of Ti is allowed since the above amount of Ti does not increase the chipping generation amount.
- the upper limit of the Ti content may be set to 0.010%, 0.005%, or 0.002%. When scraps are not used as a material of the steel, the Ti content which is incorporated into the steel as an impurity is generally 0.020% or less.
- 0.020% or less of Ti is considered as an impurity having no substantial influence on the properties of the steel.
- 0.020% or less of Ti is regarded that the Ti content is 0%, there is a case where Ti is not disclosed.
- the steel according to the present embodiment can exhibit the effects without containing Ca, Zr, and Mg, the lower limits of the Ca content, the Zr content and the Mg content is 0% respectively.
- all of Ca, Zr, and Mg form an oxide, serve as the crystallization nucleus of MnS, and have an effect for uniformly and finely dispersing MnS.
- fracturing and splitting a steel product made of the steel according to the present embodiment since a crack is propagated along the stretched MnS in the rolling direction, as the Mn sulfide becomes larger, and unevenness on fractured surfaces becomes larger. On the other hand, the ductility and the toughness become higher, and the fracture splitability become poor.
- the steel according to the present embodiment may contain one or more elements selected from the group consisting of 0.0005% or more of Ca, 0.0005% or more of Zr, and 0.0005% or more of Mg.
- the upper limit of each of the Ca content, the Zr content, and the Mg content is set to 0.0050%.
- the remainder of the chemical compositions of the steel according to the present embodiment includes iron and impurities.
- the impurities refer to elements which are incorporated due to raw materials such as minerals or scraps or a variety of causes in manufacturing steps during industrially manufacturing steel, and are allowed as long as the elements do not adversely affect the steel according to the present embodiment.
- the metallographic structure of the steel according to the present embodiment is a so-called ferrite/pearlite structure which is substantially consisting of ferrite and pearlite and, in some cases, slightly includes an inclusion or the like. This structure can be obtained by controlling the chemical compositions of the steel to the above ranges. Therefore, although it is not necessary to clearly limit the metallographic structure of the steel according to the present embodiment, for example, the metallographic structure of the steel according to the present embodiment may be specified as a metallographic structure including ferrite and pearlite of 99 area % or more in total.
- ferrite is embrittled by adding V, so that the fracture splitability is improved.
- ferrite is embrittled through an effect that a small amount of Bi is added without adding V, so that the fracture splitability is improved.
- the application of the above steel according to the present embodiment is not particularly limited.
- the steel according to the present embodiment has favorable fracture splitability, it is preferably used as a material for mechanical parts (fracture split parts) obtained by a manufacturing method including a step of fracturing and splitting, and particularly preferably used as a material for connecting rods in automotive engines.
- a fracture split connecting rod 1 as a steel product made of the forging steels free of quenching and tempering of the present embodiment, new processing of abutting surfaces or positioning pins are not required, and it is possible to significantly simplify manufacturing steps.
- FIG. 1 is an exploded perspective view showing an example of a fracture split connecting rod made of the steel according to the present invention.
- the fracture split connecting rod 1 illustrated in FIG. 1 is configured with a rod-attached semi-circular arc shaped upper side halved body 2 and a semi-circular arc shaped lower side halved body 3 which are separated up and down.
- screw holes 5 On both end sides of a semi-circular arc portion 2 A of the upper side halved body 2 , screw holes 5 having a thread groove for the fixation to the lower side halved body 3 are formed respectively, and, on both end sides of a semi-circular arc portion 3 A of the lower side halved body 3 , insertion holes 6 for the fixation to the upper side halved body 2 are formed respectively.
- the semi-circular arc portion 2 A of the upper side halved body 2 and the semi-circular arc portion 3 A of the lower side halved body 3 are brought together, bonding bolts 7 are inserted into the insertion holes 6 and the screw holes 5 on both end sides of the upper side halved body and the lower side halved body, and the bonding bolts, the insertion holes, and the thread holds are screwed together, thereby configuring a circular big end portion 8 .
- a circular small end portion 9 is formed on the top end side of a rod portion 2 B of the upper side halved body 2 .
- the fracture split connecting rod 1 having the structure illustrated in FIG. 1 is combined into an internal combustion engine such as an automotive engine in order to convert the reciprocal motion of a piston in the internal combustion engine to a rotary motion, the small end portion 9 is connected to the piston not illustrated, and the big end portion 8 is connected to a connecting rod journal (not illustrated) of the internal combustion engine.
- the semi-circular arc portion 2 A of the upper side halved body 2 and the semi-circular arc portion 3 A of the lower side halved body 3 in the fracture split connecting rod 1 are formed by embrittling and fracturing a portion which is originally one circular parts.
- a notch is provided in a portion of a hot-forged product, and the hot-forged product is fractured and split in a brittle manner from the notch as a starting point, thereby forming an abutting surface 2 a of the semi-circular arc portion 2 A of the upper side halved body 2 and an abutting surface 3 a of the semi-circular arc portion 3 A of the lower side halved body 3 .
- These abutting surfaces 2 a and 3 a are formed by fracturing and splitting the steel according to the present embodiment having favorable fracture splitability, and thus abutting with a favorable positioning accuracy becomes possible.
- Ingot steel melted by converter having a chemical composition shown in Table 1 below was manufactured by continuously casting and was subjected to soaking and a blooming step as necessary, thereby producing a 162 mm ⁇ 162 mm rolled material. Next, the rolled material was hot rolled, thereby forming a steel bar shape having a diameter of 45 mm.
- Underlined values in Table 1 are values outside the scope of the present invention.
- the symbol “-” in Table 1 indicates that the element indicated by the symbol was not added in the manufacturing stage and the amount of the element was equal to or less than a level at which the element is generally considered as an impurity.
- V content, the Al content and Ti content in Examples 1 to 23 and Comparative Examples a to h were small amounts in which the elements are considered as impurities in the technical field to which the present invention belongs according to the technical common sense, detailed measurements were performed in order to confirm the action effect of the present invention, and the values are shown in Table 1.
- a test piece corresponding to a forged connecting rod was produced by hot forging the steel bar.
- the steel bar having a diameter of 45 mm was heated to 1,150° C. to 1,280° C., was forged perpendicularly to the longitudinal direction of the steel bar to a thickness of 20 mm, and was cooled to room temperature by air blast cooling using an air blasting cooler.
- a JIS No. 4 test piece and a Charpy impact test piece were processed from the cooled forged material.
- a 45-degree V notch having a depth of 2 mm, a tip curvature of 0.25 mm was processed in the Charpy impact test piece.
- the fracture splitability is considered to be favorable in a case where the fracture form on fractured surface is brittle, the deformation amount in the vicinity of fracture surfaces caused by fracturing and splitting is small, and the chipping generation amount during fracturing and splitting is small.
- steel having a low Charpy impact value it is common that the suppression of the deformation amount and the improvement in the ratio of brittle fractured surfaces are achieved. Therefore, as an index for evaluating the fracture form on fractured surfaces and the deformation amount in the vicinity of fracture surfaces, the present inventors used the Charpy impact value.
- a Charpy impact test was repeatedly carried out on the Charpy impact test piece five times at room temperature on the basis of JIS Z 2242, and the average value of the five obtained values was considered as the Charpy impact value of the test piece.
- Steel having a Charpy impact value of 9 J/cm 2 or less was determined as steel in which the suppression of the deformation amount and the improvement in the ratio of brittle fracture surfaces were achieved.
- a test piece for evaluating the fracture splitability which was a 80 mm ⁇ 80 mm and had a thickness of 18 mm, had a hole having a diameter of 50 mm in the central portion, and had 45-degree V notches having a depth of 1 mm and a tip curvature of 0.5 mm at two locations which lied at ⁇ 90 degrees with respect to the longitudinal direction of the steel bar which was the material before forging was produced. Furthermore, a through hole having a diameter of 8 mm was formed as a bolt hole in the test piece for evaluating the fracture splitability so that the central line of the through hole was located at a place 8 mm apart from a side surface on the notch-processed side.
- This test piece for evaluating the fracture splitability was fractured using a fracture split property evaluation tester.
- the tester for fracture split property evaluation was configured with sectional dies and a weight-drop tester.
- the sectional dies had a shape in which a column having a diameter of 46.5 mm formed on a rectangular steel material was divided into two pieces along the central line, one piece was fixed, and the other piece was movable on a rail.
- a wedge hole was processed on the mating surfaces of the two semi-circular columns.
- the hole having a diameter of 50 mm in the test piece was fitted into the column having a diameter of 46.5 mm of the sectional dies, and a wedge was put into the wedge hole and installed over a falling weight.
- the falling weight had a mass of 200 kg and was configured to drop along a guide.
- the periphery of the test piece was fixed so as to press the sectional dies so as to prevent the test piece from flying away from the sectional dies during fracturing.
- the test piece was fractured at a weight dropping height of 100 mm.
- An operation in which the fractured surfaces obtained from the above test were abutted together, the fractured steel was fastened with a bolt at a torque of 20 N ⁇ m, and then the fractured surfaces were separated from each other by loosening the bolt was repeated 10 times.
- the total weight of fragments dropped by the above operation was defined as the chipping generation amount of the steel. Steel having a chipping generation amount of less than 1.00 mg was determined that the chipping generation amount was suppressed.
- a tensile test was carried out on the JIS No. 4 tensile test piece according to JIS Z 2241 at normal temperature and a rate of 20 mm/min. Steel having a yield ratio of 0.75 or more was determined as a specimen having a favorable yield ratio.
- Table 2 shows the test results.
- the chemical compositions of the steel were in the specified range of the present invention, and thus it was possible to set the Charpy impact value to 9 J/cm 2 or less, and furthermore, the chipping generation amount was also suppressed. That is, Steel Nos. 1 to 23 had favorable fracture splitability. Furthermore, Steel Nos. 1 to 23 had a high yield ratio and were thus available as a material for mechanical parts requiring a high buckling strength.
- Comparative Example e the Cr content was high, and, in addition to a ferrite/pearlite structure, a bainite structure was generated in a portion, and thus the Charpy impact value was high, and furthermore, the yield ratio was impaired.
- Comparative Example g the steel contained Bi, and thus the ferrite embrittlement effect was obtained, and the Charpy impact value was low. However, the Bi content was high, and thus the yield strength and the yield ratio were low.
- the steel according to the present invention can achieves both the degradation in the toughness and the suppression of the chipping generation amount, furthermore, has an excellent yield ratio. Therefore, when being used as forging steel free of quenching and tempering for hot forging which is a material for mechanical parts that are obtained using a manufacturing method including a fracturing and splitting step, the steel according to the present invention can be used to manufacture mechanical parts having a high buckling strength and is capable of significantly improving the economic efficiency at the time of manufacturing parts.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-253563 | 2015-12-25 | ||
JP2015253563 | 2015-12-25 | ||
PCT/JP2016/088123 WO2017110883A1 (ja) | 2015-12-25 | 2016-12-21 | 鋼 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20180371593A1 true US20180371593A1 (en) | 2018-12-27 |
Family
ID=59089451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/062,247 Abandoned US20180371593A1 (en) | 2015-12-25 | 2016-12-21 | Steel |
Country Status (6)
Country | Link |
---|---|
US (1) | US20180371593A1 (ko) |
EP (1) | EP3395975A4 (ko) |
JP (1) | JP6620822B2 (ko) |
KR (1) | KR102101233B1 (ko) |
CN (1) | CN108474068A (ko) |
WO (1) | WO2017110883A1 (ko) |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS637375A (ja) | 1986-06-27 | 1988-01-13 | Canon Inc | マイクロ波プラズマcvd法による機能性堆積膜の形成法及び装置 |
JPH1129842A (ja) * | 1997-07-15 | 1999-02-02 | Sumitomo Metal Ind Ltd | フェライト・パーライト型非調質鋼 |
JP3756307B2 (ja) | 1998-01-21 | 2006-03-15 | Jfe条鋼株式会社 | 高強度低延性の非調質鋼部品の製造方法 |
JP3355132B2 (ja) | 1998-05-01 | 2002-12-09 | 新日本製鐵株式会社 | 破断分離性と耐久強さに優れた機械構造用鋼 |
JP2000008141A (ja) | 1998-06-23 | 2000-01-11 | Sumitomo Metal Ind Ltd | 非調質軟窒化鋼鍛造部品およびその製造方法 |
JP3671688B2 (ja) | 1998-08-28 | 2005-07-13 | 株式会社神戸製鋼所 | 破断分断性に優れた破断分割型コンロッド用熱間鍛造用非調質鋼 |
JP4556334B2 (ja) | 2001-02-01 | 2010-10-06 | 大同特殊鋼株式会社 | 軟窒化用非調質鋼熱間鍛造部品 |
JP4346404B2 (ja) * | 2002-11-20 | 2009-10-21 | 本田技研工業株式会社 | 低温での破断分離用非調質鋼及びこの非調質鋼からなる勘合部材 |
JP4314851B2 (ja) | 2003-03-14 | 2009-08-19 | 大同特殊鋼株式会社 | 破断分離に適した高強度非調質鋼 |
JP3988661B2 (ja) | 2003-03-18 | 2007-10-10 | 住友金属工業株式会社 | 非調質鋼 |
JP2004307930A (ja) * | 2003-04-07 | 2004-11-04 | Daido Steel Co Ltd | コンロッド用の熱間鍛造用非調質鋼 |
JP4268194B2 (ja) | 2006-03-15 | 2009-05-27 | 株式会社神戸製鋼所 | 破断分離性に優れた破断分離型コネクティングロッド用圧延材、破断分離性に優れた破断分離型コネクティングロッド用熱間鍛造部品、及び破断分離型コネクティングロッド |
US20090047169A1 (en) * | 2006-03-15 | 2009-02-19 | Kab. Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Rolled material for fracture split connecting rod excelling in fracture splittability, hot forged part for fracture split connecting rod excelling in fracture splittability, and fracture split connecting rod |
JP5092578B2 (ja) * | 2007-06-26 | 2012-12-05 | 住友金属工業株式会社 | 低炭素硫黄快削鋼 |
JP2009221590A (ja) * | 2008-03-19 | 2009-10-01 | Honda Motor Co Ltd | 破断分離型コンロッド及びそれに用いる非調質鋼 |
BRPI1012814B1 (pt) * | 2009-05-22 | 2019-02-19 | Nippon Steel & Sumitomo Metal Corporation | Método para usinar aço para uso em estruturas de máquinas |
JP5413350B2 (ja) * | 2010-10-06 | 2014-02-12 | 新日鐵住金株式会社 | 熱間鍛造用圧延鋼材およびその製造方法 |
JP2015001018A (ja) * | 2013-06-17 | 2015-01-05 | 大同特殊鋼株式会社 | 機械部品用鋼及び非調質鋼機械部品 |
-
2016
- 2016-12-21 WO PCT/JP2016/088123 patent/WO2017110883A1/ja unknown
- 2016-12-21 KR KR1020187018228A patent/KR102101233B1/ko active IP Right Grant
- 2016-12-21 CN CN201680075087.6A patent/CN108474068A/zh active Pending
- 2016-12-21 JP JP2017558195A patent/JP6620822B2/ja active Active
- 2016-12-21 US US16/062,247 patent/US20180371593A1/en not_active Abandoned
- 2016-12-21 EP EP16878770.3A patent/EP3395975A4/en not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
EP3395975A4 (en) | 2019-06-12 |
WO2017110883A1 (ja) | 2017-06-29 |
CN108474068A (zh) | 2018-08-31 |
JP6620822B2 (ja) | 2019-12-18 |
EP3395975A1 (en) | 2018-10-31 |
JPWO2017110883A1 (ja) | 2018-10-11 |
KR20180087371A (ko) | 2018-08-01 |
KR102101233B1 (ko) | 2020-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10036086B2 (en) | Non-heat treated steel | |
TWI591187B (zh) | High-carbon cold-rolled steel sheet and its manufacturing method | |
JP5340290B2 (ja) | 高強度破断分割用非調質鋼および破断分割用鋼部品 | |
EP1897961A1 (en) | Hot-forged products excellent in fatigue strength, process for production thereof, and machine structural parts | |
US6602358B1 (en) | Outer race for constant velocity joint, having improved anti-flaking properties and shaft strength, and process for producing the same | |
EP2357262A1 (en) | Crankshaft and production method therefor | |
US20180305798A1 (en) | Steel component | |
JP2009013439A (ja) | 高靭性高速度工具鋼 | |
KR101330756B1 (ko) | 피삭성이 우수한 저비중 단조용 강 | |
CN113348256A (zh) | 冷加工用机械结构用钢及其制造方法 | |
US6383311B1 (en) | High strength drive shaft and process for producing the same | |
KR101998496B1 (ko) | 열간 압연 강재 및 강 부품 | |
US10266908B2 (en) | Rolled steel bar for machine structural use and method of producing the same | |
JPH11199924A (ja) | 高強度低延性の非調質鋼部品の製造方法 | |
JP5432590B2 (ja) | 破断分割性に優れた熱間鍛造部品とその製造方法、および自動車用内燃機関部品 | |
US20180371593A1 (en) | Steel | |
JP2015134945A (ja) | 浸炭用鋼 | |
JP2007277654A (ja) | 冷間鍛造部品、それを得るための製造方法および鋼材 | |
JP2017179475A (ja) | 破断分離型コネクティングロッド用成型部品、及びコネクティングロッド、並びに該コネクティングロッドの製造方法 | |
JP2018035409A (ja) | 高強度熱間鍛造非調質鋼部品 | |
JP5737152B2 (ja) | 熱間鍛造用圧延棒鋼 | |
JP2002348637A (ja) | 高強度ねじ用鋼、高強度ねじおよび高強度ねじの製造方法 | |
US10260123B2 (en) | Rolled steel bar for machine structural use and method of producing the same | |
EP2977482B1 (en) | Forged part, method for producing the same and connecting rod | |
JP6662247B2 (ja) | 破断分離性に優れた熱間鍛造用非調質鋼 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NIPPON STEEL & SUMITOMO METAL CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TERAMOTO, SHINYA;SHIGA, AKIRA;REEL/FRAME:046087/0801 Effective date: 20180529 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
AS | Assignment |
Owner name: NIPPON STEEL CORPORATION, JAPAN Free format text: CHANGE OF NAME;ASSIGNOR:NIPPON STEEL & SUMITOMO METAL CORPORATION;REEL/FRAME:049257/0828 Effective date: 20190401 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |