US20180244648A1 - Inhibitors of (alpha-v)(beta-6) integrin - Google Patents

Inhibitors of (alpha-v)(beta-6) integrin Download PDF

Info

Publication number
US20180244648A1
US20180244648A1 US15/906,745 US201815906745A US2018244648A1 US 20180244648 A1 US20180244648 A1 US 20180244648A1 US 201815906745 A US201815906745 A US 201815906745A US 2018244648 A1 US2018244648 A1 US 2018244648A1
Authority
US
United States
Prior art keywords
compound
mmol
naphthyridin
tetrahydro
alkylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/906,745
Other languages
English (en)
Inventor
Bryce A. Harrison
Matthew G. Bursavich
Mark Brewer
Aleksey I. Gerasyuto
Kristopher N. Hahn
Kyle D. Konze
Fu-Yang Lin
Blaise S. Lippa
Alexey A. Lugovskoy
Bruce N. Rogers
Mats A. SVENSSON
Dawn M. Troast
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schroedinger LLC
Morphic Therapeutic Inc
Original Assignee
Lazuli Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lazuli Inc filed Critical Lazuli Inc
Priority to US15/906,745 priority Critical patent/US20180244648A1/en
Assigned to MORPHIC THERAPEUTIC, INC. reassignment MORPHIC THERAPEUTIC, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BURSAVICH, MATTHEW G., HAHN, KRISTOPHER N., HARRISON, BRYCE A., LIN, FU-YANG, LIPPA, Blaise S., ROGERS, BRUCE N., TROAST, DAWN M., LUGOVSKOY, ALEXEY A.
Assigned to SCHRÖDINGER, INC. reassignment SCHRÖDINGER, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BREWER, MARK, GERASYUTO, ALEKSEY I., KONZE, KYLE D., SVENSSON, MATS A.
Assigned to SCHRÖDINGER, LLC reassignment SCHRÖDINGER, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SCHRÖDINGER, INC.
Assigned to MORPHIC THERAPEUTIC, INC. reassignment MORPHIC THERAPEUTIC, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SCHRÖDINGER, LLC
Assigned to Lazuli, Inc. reassignment Lazuli, Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MORPHIC THERAPEUTIC, INC.
Publication of US20180244648A1 publication Critical patent/US20180244648A1/en
Assigned to MORPHIC THERAPEUTIC, INC. reassignment MORPHIC THERAPEUTIC, INC. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: Lazuli, Inc.
Priority to US16/453,418 priority patent/US11046669B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4375Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a six-membered ring having nitrogen as a ring heteroatom, e.g. quinolizines, naphthyridines, berberine, vincamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • A61K31/4545Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring hetero atom, e.g. pipamperone, anabasine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene or sparfloxacin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/08Bridged systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/10Spiro-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/08Bridged systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00

Definitions

  • the heterodimeric integrin family of receptors modulate cellular shape and cell adhesion to the extracellular matrix in response to extrinsic and intrinsic cues.
  • Integrin signaling controls cell survival, cell cycle progression, cell differentiation, and cell migration.
  • the integrin receptor exclusively can signal a cell bi-directionally, both “inside-out” and “outside-in.” Thus, they mediate cell migration by transmitting forces from the extracellular matrix to the cytoskeleton and regulate cytoskeletal organization to achieve shape changes needed during cell migration.
  • RGD-binding integrins can bind to and activate TGF- ⁇ , and have recently been implicated in fibrotic disease.
  • Integrins are expressed on the surface of most of human cells. Their pathology contributes to a diverse set of human diseases, including platelet disorders, atherosclerosis, cancer, osteoporosis, fibrosis, diabetic neuropathy of the kidney, macular degeneration and various autoimmune and chronic inflammation diseases.
  • the invention relates to a compound of Formula I:
  • B is alkylene, -alkylene-(O); -alkylene-N(R)C(O)—, -alkylene-(heterocyclyl)-C(O)—, -alkylene-C(O)N(R)—, -alkylene-C(O)—, -alkylene-N(R)—, -alkylene-N(R)C(O)N(R)—, -alkylene-N(R)SO 2 —, -alkylene-(aryl)-, -alkylene-(heterocyclyl)-, alkylene-(heterocyclyl)-alkylene-, -aryl-alkylene-N(R)C(O)—; -aryl-C(O)N(R)—, -aryl-N(R)C(O)—, -(heterocyclyl)-alkylene-, -heterocyclyl-alkylene-N(R
  • R is H, alkyl, or aryl
  • R 1 is independently H, alkyl, halide, alkoxy, CF 3 , OH, alkylene-OH, NO 2 , —N(H)R, or NH 2 ;
  • R 2 is H, alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, cycloalkyl, -, alkylene-aryl, or heterocycloalkyl;
  • R 1 is a 3-12 membered heterocycloalkylene unsubstituted or substituted by one or more instance of R 1 ;
  • X is C(R c ), or N;
  • both instances of R a are H, or taken together form a bond, or a (C 1 -C 4 )alkylene bridge;
  • R b is H, or (C 1 -C 6 )alkyl
  • R c is H, alkyl, aryl, OH, or halide
  • the invention relates to a compound selected from the group consisting of:
  • the invention relates to a compound selected from the group consisting of:
  • the invention relates to a method of treating a disease or a condition selected from the group consisting of idiopathic pulmonary fibrosis, diabetic nephropathy, focal segmental glomerulosclerosis, chronic kidney disease, nonalcoholic steatohepatitis, primary biliary cholangitis, primary sclerosing cholangitis, solid tumors, hematological tumors, organ transplant, Alport syndrome, interstitial lung disease radiation-induced fibrosis, bleomycin-induced fibrosis, asbestos-induced fibrosis, flu-induced fibrosis, coagulation-induced fibrosis, vascular injury-induced fibrosis, aortic stenosis, and cardiac fibrosis comprising the step of: administering to a subject in need thereof a therapeutically effective amount of any one of the compounds described herein.
  • FIG. 1 depicts a table summarizing inhibition of ⁇ v ⁇ 6 integrin by example compounds in fluorescence polarization assay.
  • the invention relates to compounds that inhibit ⁇ v ⁇ 6 integrin.
  • the compounds are selective for ⁇ v ⁇ 6 integrin.
  • the compounds will be useful for the treatment of idiopathic pulmonary fibrosis, diabetic nephropathy, focal segmental glomerulosclerosis, chronic kidney disease, nonalcoholic steatohepatitis, primary biliary cholangitis, primary sclerosing cholangitis, solid tumors, hematological tumors, organ transplant, Alport syndrome, interstitial lung disease, radiation-induced fibrosis, bleomycin-induced fibrosis, asbestos-induced fibrosis, flu-induced fibrosis, coagulation-induced fibrosis, vascular injury-induced fibrosis, aortic stenosis, or cardiac fibrosis.
  • an element means one element or more than one element.
  • a reference to “A and/or B”, when used in conjunction with open-ended language such as “comprising” can refer, in one embodiment, to A only (optionally including elements other than B); in another embodiment, to B only (optionally including elements other than A); in yet another embodiment, to both A and B (optionally including other elements); etc.
  • the phrase “at least one,” in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements.
  • This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase “at least one” refers, whether related or unrelated to those elements specifically identified.
  • “at least one of A and B” can refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including elements other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including elements other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other elements); etc.
  • compositions of the present invention may exist in particular geometric or stereoisomeric forms.
  • polymers of the present invention may also be optically active.
  • the present invention contemplates all such compounds, including cis- and trans-isomers, R- and S-enantiomers, diastereomers, ( D )-isomers, ( L )-isomers, the racemic mixtures thereof, and other mixtures thereof, as falling within the scope of the invention.
  • Additional asymmetric carbon atoms may be present in a substituent such as an alkyl group. All such isomers, as well as mixtures thereof, are intended to be included in this invention.
  • a particular enantiomer of compound of the present invention may be prepared by asymmetric synthesis, or by derivation with a chiral auxiliary, where the resulting diastereomeric mixture is separated and the auxiliary group cleaved to provide the pure desired enantiomers.
  • the molecule contains a basic functional group, such as amino, or an acidic functional group, such as carboxyl, diastereomeric salts are formed with an appropriate optically-active acid or base, followed by resolution of the diastereomers thus formed by fractional crystallization or chromatographic means well known in the art, and subsequent recovery of the pure enantiomers.
  • Structures depicted herein are also meant to include compounds that differ only in the presence of one or more isotopically enriched atoms.
  • compounds produced by the replacement of a hydrogen with deuterium or tritium, or of a carbon with a 13 C- or 14 C-enriched carbon are within the scope of this invention.
  • prodrug encompasses compounds that, under physiological conditions, are converted into therapeutically active agents.
  • a common method for making a prodrug is to include selected moieties that are hydrolyzed under physiological conditions to reveal the desired molecule.
  • the prodrug is converted by an enzymatic activity of the host animal.
  • phrases “pharmaceutically acceptable excipient” or “pharmaceutically acceptable carrier” as used herein means a pharmaceutically acceptable material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, solvent or encapsulating material, involved in carrying or transporting the subject chemical from one organ or portion of the body, to another organ or portion of the body.
  • Each carrier must be “acceptable” in the sense of being compatible with the other ingredients of the formulation, not injurious to the patient, and substantially non-pyrogenic.
  • materials which can serve as pharmaceutically acceptable carriers include: (1) sugars, such as lactose, glucose, and sucrose; (2) starches, such as corn starch and potato starch; (3) cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose, and cellulose acetate; (4) powdered tragacanth; (5) malt; (6) gelatin; (7) talc; (8) excipients, such as cocoa butter and suppository waxes; (9) oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil, and soybean oil; (10) glycols, such as propylene glycol; (11) polyols, such as glycerin, sorbitol, mannitol, and polyethylene glycol; (12) esters, such as ethyl oleate and ethyl laurate; (13) agar; (14) buffering agents, such as magnesium hydroxide and aluminum
  • salts refers to the relatively non-toxic, inorganic and organic acid addition salts of the compound(s). These salts can be prepared in situ during the final isolation and purification of the compound(s), or by separately reacting a purified compound(s) in its free base form with a suitable organic or inorganic acid, and isolating the salt thus formed.
  • Representative salts include the hydrobromide, hydrochloride, sulfate, bisulfate, phosphate, nitrate, acetate, valerate, oleate, palmitate, stearate, laurate, benzoate, lactate, phosphate, tosylate, citrate, maleate, fumarate, succinate, tartrate, naphthylate, mesylate, glucoheptonate, lactobionate, and laurylsulphonate salts, and the like.
  • lactate lactate
  • phosphate tosylate
  • citrate maleate, fumarate, succinate, tartrate, naphthylate, mesylate, glucoheptonate, lactobionate, and laurylsulphonate salts, and the like.
  • the compounds useful in the methods of the present invention may contain one or more acidic functional groups and, thus, are capable of forming pharmaceutically acceptable salts with pharmaceutically acceptable bases.
  • pharmaceutically acceptable salts refers to the relatively non-toxic inorganic and organic base addition salts of a compound(s). These salts can likewise be prepared in situ during the final isolation and purification of the compound(s), or by separately reacting the purified compound(s) in its free acid form with a suitable base, such as the hydroxide, carbonate, or bicarbonate of a pharmaceutically acceptable metal cation, with ammonia, or with a pharmaceutically acceptable organic primary, secondary, or tertiary amine.
  • Representative alkali or alkaline earth salts include the lithium, sodium, potassium, calcium, magnesium, and aluminum salts, and the like.
  • Representative organic amines useful for the formation of base addition salts include ethylamine, diethylamine, ethylenediamine, ethanolamine, diethanolamine, piperazine, and the like (see, for example, Berge et al., supra).
  • a “therapeutically effective amount” (or “effective amount”) of a compound with respect to use in treatment refers to an amount of the compound in a preparation which, when administered as part of a desired dosage regimen (to a mammal, preferably a human) alleviates a symptom, ameliorates a condition, or slows the onset of disease conditions according to clinically acceptable standards for the disorder or condition to be treated or the cosmetic purpose, e.g., at a reasonable benefit/risk ratio applicable to any medical treatment.
  • prophylactic or therapeutic treatment is art-recognized and includes administration to the host of one or more of the subject compositions. If it is administered prior to clinical manifestation of the unwanted condition (e.g., disease or other unwanted state of the host animal) then the treatment is prophylactic, (i.e., it protects the host against developing the unwanted condition), whereas if it is administered after manifestation of the unwanted condition, the treatment is therapeutic, (i.e., it is intended to diminish, ameliorate, or stabilize the existing unwanted condition or side effects thereof).
  • the unwanted condition e.g., disease or other unwanted state of the host animal
  • a patient refers to a mammal in need of a particular treatment.
  • a patient is a primate, canine, feline, or equine.
  • a patient is a human.
  • An aliphatic chain comprises the classes of alkyl, alkenyl and alkynyl defined below.
  • a straight aliphatic chain is limited to unbranched carbon chain moieties.
  • the term “aliphatic group” refers to a straight chain, branched-chain, or cyclic aliphatic hydrocarbon group and includes saturated and unsaturated aliphatic groups, such as an alkyl group, an alkenyl group, or an alkynyl group.
  • Alkyl refers to a fully saturated cyclic or acyclic, branched or unbranched carbon chain moiety having the number of carbon atoms specified, or up to 30 carbon atoms if no specification is made.
  • alkyl of 1 to 8 carbon atoms refers to moieties such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, and octyl, and those moieties which are positional isomers of these moieties.
  • Alkyl of 10 to 30 carbon atoms includes decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, eicosyl, heneicosyl, docosyl, tricosyl and tetracosyl.
  • a straight chain or branched chain alkyl has 30 or fewer carbon atoms in its backbone (e.g., C 1 -C 30 for straight chains, C 3 -C 30 for branched chains), and more preferably 20 or fewer.
  • Alkyl groups may be substituted or unsubstituted.
  • alkylene refers to an alkyl group having the specified number of carbons, for example from 2 to 12 carbon atoms, that contains two points of attachment to the rest of the compound on its longest carbon chain.
  • alkylene groups include methylene —(CH 2 )—, ethylene —(CH 2 CH 2 )—, n-propylene —(CH 2 CH 2 CH 2 )—, isopropylene —(CH 2 CH(CH 3 ))—, and the like.
  • Alkylene groups can be cyclic or acyclic, branched or unbranched carbon chain moiety, and may be optionally substituted with one or more substituents.
  • Cycloalkyl means mono- or bicyclic or bridged or spirocyclic, or polycyclic saturated carbocyclic rings, each having from 3 to 12 carbon atoms. Likewise, preferred cycloalkyls have from 3-10 carbon atoms in their ring structure, and more preferably have 3-6 carbons in the ring structure. Cycloalkyl groups may be substituted or unsubstituted.
  • lower alkyl means an alkyl group, as defined above, but having from one to ten carbons, more preferably from one to six carbon atoms in its backbone structure such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, and tert-butyl.
  • lower alkenyl and “lower alkynyl” have similar chain lengths.
  • preferred alkyl groups are lower alkyls.
  • a substituent designated herein as alkyl is a lower alkyl.
  • Alkenyl refers to any cyclic or acyclic, branched or unbranched unsaturated carbon chain moiety having the number of carbon atoms specified, or up to 26 carbon atoms if no limitation on the number of carbon atoms is specified; and having one or more double bonds in the moiety.
  • Alkenyl of 6 to 26 carbon atoms is exemplified by hexenyl, heptenyl, octenyl, nonenyl, decenyl, undecenyl, dodenyl, tridecenyl, tetradecenyl, pentadecenyl, hexadecenyl, heptadecenyl, octadecenyl, nonadecenyl, eicosenyl, heneicosoenyl, docosenyl, tricosenyl, and tetracosenyl, in their various isomeric forms, where the unsaturated bond(s) can be located anywhere in the moiety and can have either the (Z) or the (E) configuration about the double bond(s).
  • Alkynyl refers to hydrocarbyl moieties of the scope of alkenyl, but having one or more triple bonds in the moiety.
  • alkylthio refers to an alkyl group, as defined above, having a sulfur moiety attached thereto.
  • the “alkylthio” moiety is represented by one of —(S)-alkyl, —(S)-alkenyl, —(S)-alkynyl, and —(S)—(CH 2 ) m —R 1 , wherein m and R 1 are defined below.
  • Representative alkylthio groups include methylthio, ethylthio, and the like.
  • alkoxyl or alkoxy refers to an alkyl group, as defined below, having an oxygen moiety attached thereto.
  • alkoxyl groups include methoxy, ethoxy, propoxy, tert-butoxy, and the like.
  • An “ether” is two hydrocarbons covalently linked by an oxygen. Accordingly, the substituent of an alkyl that renders that alkyl an ether is or resembles an alkoxyl, such as can be represented by one of —O-alkyl, —O-alkenyl, —O-alkynyl, —O—(CH 2 ) m —R 10 , where m and R 10 are described below.
  • amine and “amino” are art-recognized and refer to both unsubstituted and substituted amines, e.g., a moiety that can be represented by the formulae:
  • R 11 , R 12 and R 13 each independently represent a hydrogen, an alkyl, an alkenyl, —(CH 2 ) m —R 10 , or R 11 and R 12 taken together with the N atom to which they are attached complete a heterocycle having from 4 to 8 atoms in the ring structure;
  • R 10 represents an alkenyl, aryl, cycloalkyl, a cycloalkenyl, a heterocyclyl, or a polycyclyl; and m is zero or an integer in the range of 1 to 8.
  • only one of R 11 or R 12 can be a carbonyl, e.g., R 11 , R 12 , and the nitrogen together do not form an imide.
  • R 11 and R 12 each independently represent a hydrogen, an alkyl, an alkenyl, or —(CH 2 ) m —R 10 .
  • alkylamine as used herein means an amine group, as defined above, having a substituted or unsubstituted alkyl attached thereto, i.e., at least one of R 11 and R 12 is an alkyl group.
  • an amino group or an alkylamine is basic, meaning it has a conjugate acid with a pK a >7.00, i.e., the protonated forms of these functional groups have pK a s relative to water above about 7.00.
  • amide refers to a group
  • each R 14 independently represent a hydrogen or hydrocarbyl group, or two R 14 are taken together with the N atom to which they are attached complete a heterocycle having from 4 to 8 atoms in the ring structure.
  • aryl as used herein includes 3- to 12-membered substituted or unsubstituted single-ring aromatic groups in which each atom of the ring is carbon (i.e., carbocyclic aryl) or where one or more atoms are heteroatoms (i.e., heteroaryl).
  • aryl groups include 5- to 12-membered rings, more preferably 6- to 10-membered rings
  • aryl also includes polycyclic ring systems having two or more cyclic rings in which two or more carbons are common to two adjoining rings wherein at least one of the rings is aromatic, e.g., the other cyclic rings can be cycloalkyls, cycloalkenyls, cycloalkynyls, aryls, heteroaryls, and/or heterocyclyls.
  • Carboycyclic aryl groups include benzene, naphthalene, phenanthrene, phenol, aniline, and the like.
  • Heteroaryl groups include substituted or unsubstituted aromatic 3- to 12-membered ring structures, more preferably 5- to 12-membered rings, more preferably 5- to 10-membered rings, whose ring structures include one to four heteroatoms.
  • Heteroaryl groups include, for example, pyrrole, furan, thiophene, imidazole, oxazole, thiazole, triazole, pyrazole, pyridine, pyrazine, pyridazine and pyrimidine, and the like.
  • Aryl and heteroaryl can be monocyclic, bicyclic, or polycyclic.
  • halo means halogen and includes, for example, and without being limited thereto, fluoro, chloro, bromo, iodo and the like, in both radioactive and non-radioactive forms.
  • halo is selected from the group consisting of fluoro, chloro and bromo.
  • heterocyclyl or “heterocyclic group” refer to 3- to 12-membered ring structures, more preferably 5- to 12-membered rings, more preferably 5- to 10-membered rings, whose ring structures include one to four heteroatoms.
  • Heterocycles can be monocyclic, bicyclic, spirocyclic, or polycyclic.
  • Heterocyclyl groups include, for example, thiophene, thianthrene, furan, pyran, isobenzofuran, chromene, xanthene, phenoxathiin, pyrrole, imidazole, pyrazole, isothiazole, isoxazole, pyridine, pyrazine, pyrimidine, pyridazine, indolizine, isoindole, indole, indazole, purine, quinolizine, isoquinoline, quinoline, phthalazine, naphthyridine, quinoxaline, quinazoline, cinnoline, pteridine, carbazole, carboline, phenanthridine, acridine, pyrimidine, phenanthroline, phenazine, phenarsazine, phenothiazine, furazan, phenoxazine, pyrrolidine, o
  • the heterocyclic ring can be substituted at one or more positions with such substituents as described above, as for example, halogen, alkyl, aralkyl, alkenyl, alkynyl, cycloalkyl, hydroxyl, amino, nitro, sulfhydryl, imino, amido, phosphate, phosphonate, phosphinate, carbonyl, carboxyl, silyl, sulfamoyl, sulfinyl, ether, alkylthio, sulfonyl, ketone, aldehyde, ester, a heterocyclyl, an aromatic or heteroaromatic moiety, —CF 3 , —CN, and the like.
  • substituents as described above, as for example, halogen, alkyl, aralkyl, alkenyl, alkynyl, cycloalkyl, hydroxyl, amino, nitro, sulfhydryl, imino
  • carbonyl is art-recognized and includes such moieties as can be represented by the formula:
  • X′ is a bond or represents an oxygen or a sulfur
  • R 15 represents a hydrogen, an alkyl, an alkenyl, —(CH 2 ) m —R 10 or a pharmaceutically acceptable salt
  • R 16 represents a hydrogen, an alkyl, an alkenyl or —(CH 2 ) m —R 10 , where m and R 10 are as defined above.
  • X′ is an oxygen and R 15 or R 16 is not hydrogen
  • the formula represents an “ester.”
  • X′ is an oxygen
  • R 15 is as defined above, the moiety is referred to herein as a carboxyl group, and particularly when R 15 is a hydrogen, the formula represents a “carboxylic acid”.
  • X′ is an oxygen, and R 16 is a hydrogen
  • the formula represents a “formate.”
  • the formula represents a “thiocarbonyl” group.
  • X′ is a sulfur and R 15 or R 16 is not hydrogen
  • the formula represents a “thioester” group.
  • X′ is a sulfur and R 15 is a hydrogen
  • the formula represents a “thiocarboxylic acid” group.
  • X′ is a sulfur and R 16 is a hydrogen
  • the formula represents a “thioformate” group.
  • X′ is a bond, and R 15 is not hydrogen
  • the above formula represents a “ketone” group.
  • X′ is a bond, and R 15 is a hydrogen
  • the above formula represents an “aldehyde” group.
  • the term “substituted” is contemplated to include all permissible substituents of organic compounds.
  • the permissible substituents include acyclic and cyclic, branched and unbranched, carbocyclic and heterocyclic, aromatic and nonaromatic substituents of organic compounds.
  • Illustrative substituents include, for example, those described herein above.
  • the permissible substituents can be one or more and the same or different for appropriate organic compounds.
  • the heteroatoms such as nitrogen may have hydrogen substituents and/or any permissible substituents of organic compounds described herein which satisfy the valences of the heteroatoms.
  • substitution or “substituted with” includes the implicit proviso that such substitution is in accordance with permitted valence of the substituted atom and the substituent, and that the substitution results in a stable compound, e.g., which does not spontaneously undergo transformation such as by rearrangement, cyclization, elimination, etc.
  • nitro means —NO 2 ;
  • halogen designates —F, —Cl, —Br, or —I;
  • sulfhydryl means —SH;
  • hydroxyl means —OH;
  • sulfonyl means —SO 2 —;
  • azido means —N 3 ;
  • cyano means —CN;
  • isocyanato means —NCO;
  • thiocyanato means —SCN;
  • isothiocyanato means —NCS; and the term “cyanato” means —OCN.
  • R 15 is as defined above.
  • sulfonamide is art recognized and includes a moiety that can be represented by the formula:
  • R 54 is an electron pair, hydrogen, alkyl, cycloalkyl, or aryl.
  • sulfoxido or “sulfinyl”, as used herein, refers to a moiety that can be represented by the formula:
  • R 17 is selected from the group consisting of the group consisting of hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, aralkyl, or aryl.
  • urea is art-recognized and may be represented by the general formula
  • each R 18 independently represents hydrogen or a hydrocarbyl, such as alkyl, or any occurrence of R 18 taken together with another and the intervening atom(s) complete a heterocycle having from 4 to 8 atoms in the ring structure.
  • each expression e.g., alkyl, m, n, etc., when it occurs more than once in any structure, is intended to be independent of its definition elsewhere in the same structure.
  • the invention relates to a compound of Formula I:
  • B is alkylene, -alkylene-(O); -alkylene-N(R)C(O)—, -alkylene-(heterocyclyl)-C(O)—, -alkylene-C(O)N(R)—, -alkylene-C(O)—, -alkylene-N(R)—, -alkylene-N(R)C(O)N(R)—, -alkylene-N(R)SO 2 —, -alkylene-(aryl)-, -alkylene-(heterocyclyl)-, -alkylene-(heterocyclyl)-alkylene-, -aryl-alkylene-N(R)C(O)—; -aryl-C(O)N(R)—, -aryl-N(R)C(O)—, -(heterocyclyl)-alkylene-, -heterocyclyl-alkylene-,
  • R is H, alkyl, or aryl
  • R 1 is independently H, alkyl, halide, alkoxy, CF 3 , OH, NO 2 , —N(H)R, or NH 2 ;
  • R 2 is H, alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, cycloalkyl, -alkylene-alkoxy, alkylene-aryl, or heterocycloalkyl;
  • R 1 is a 3-12 membered heterocycloalkylene unsubstituted or substituted by one or more instance of R 1 ;
  • X is C(R c ) or N
  • both instances of R a are H, or taken together form a bond, or a (C 1 -C 4 )alkylene bridge;
  • R c is H, alkyl, aryl, OH, or halide
  • the invention relates to any one of the aforementioned compounds, wherein A is
  • the invention relates to any one of the aforementioned compounds, wherein A is
  • the invention relates to any one of the aforementioned compounds, wherein A is
  • the invention relates to any one of the aforementioned compounds, wherein
  • the invention relates to any one of the aforementioned compounds, wherein R 1 is independently H, alkyl, halide, alkoxy, CF 3 , OH, alkylene-OH, NO 2 , —N(H)R, or NH 2 . In certain embodiments, the invention relates to any one of the aforementioned compounds, wherein R 1 is independently alkyl, halide, alkoxy, CF 3 , OH, alkylene-OH, NO 2 , or NH 2 . In certain embodiments, the invention relates to any one of the aforementioned compounds, wherein R 1 is alkyl, halide, OMe, OH, alkylene-OH, or NH 2 .
  • the invention relates to any one of the aforementioned compounds, wherein at least one instance of R 1 is alkyl. In certain embodiments, the invention relates to any one of the aforementioned compounds, wherein at least one instance of R 1 is methyl. certain embodiments, the invention relates to any one of the aforementioned compounds, wherein at least one instance of R 1 is alkylene-OH. In certain embodiments, the invention relates to any one of the aforementioned compounds, wherein at least one instance of R 1 is CH 2 OH. In certain embodiments, the invention relates to any one of the aforementioned compounds, wherein at least one instance of R 1 is H.
  • the invention relates to any one of the aforementioned compounds, wherein at least one instance R 1 is halide. In certain embodiments, the invention relates to any one of the aforementioned compounds, wherein at least one instance R 1 is iodo, bromo, chloro, or fluoro. In certain embodiments, the invention relates to any one of the aforementioned compounds, wherein at least one instance of R 1 is iodo, bromo, chloro, or fluoro, and the other instances of R 1 are hydrogen. In certain embodiments, the invention relates to any one of the aforementioned compounds, wherein all instances of R 1 are H.
  • the invention relates to any one of the aforementioned compounds, wherein R is H, alkyl, or aryl. In certain embodiments, the invention relates to any one of the aforementioned compounds, wherein R is H. In certain embodiments, the invention relates to any one of the aforementioned compounds, wherein R is methyl. In certain embodiments, the invention relates to any one of the aforementioned compounds, wherein R is phenyl.
  • the invention relates to any one of the aforementioned compounds, wherein B is alkylene, -alkylene-(O); -alkylene-N(R)C(O)—, -alkylene-(heterocyclyl)-C(O)—, -alkylene-C(O)N(R)—, -alkylene-C(O)—, -alkylene-N(R)—, -alkylene-N(R)C(O)N(R)—, -alkylene-N(R)SO 2 —, -alkylene-(aryl)-, -alkylene-(heterocyclyl)-, -alkylene-(heterocyclyl)-alkylene, -aryl-alkylene-N(R)C(O)—; -aryl-C(O)N(R)—, -aryl-N(R)C(O)—, -(heterocyclyl)-(O)—
  • the invention relates to any one of the aforementioned compounds, wherein B is selected from the group consisting of:
  • n 0, or 1
  • p 0, 1, or 2.
  • the invention relates to any one of the aforementioned compounds, wherein
  • R 1 is a 3-12 membered heterocycloalkylene substituted with one or more instances of R 1 .
  • the invention relates to any one of the aforementioned compounds, wherein
  • the invention relates to any one of the aforementioned compounds, wherein
  • R 1 is a 3-12 membered heterocycloalkylene substituted with one or more instances of R 1 , wherein R 1 is.
  • the invention relates to any one of the aforementioned compounds, wherein X is N.
  • the invention relates to any one of the aforementioned compounds, wherein both instances of R a are H.
  • the invention relates to any on of the aforementioned compounds, wherein R b is H. In certain embodiments, the invention relates to any on of the aforementioned compounds, wherein R b is (C 1 -C 6 )alkyl. In certain embodiments, the invention relates to any on of the aforementioned compounds, wherein R b is methyl. In certain embodiments, the invention relates to any on of the aforementioned compounds, wherein R b is ethyl.
  • the invention relates to any one of the aforementioned compounds, wherein C is selected from the group consisting of:
  • the invention relates to any one of the aforementioned compounds, wherein X is C(R c ).
  • the invention relates to any one of the aforementioned compounds, wherein R c is H, alkyl, aryl, OH, or halide. In certain embodiments, the invention relates to any one of the aforementioned compounds, wherein R c is H.
  • the invention relates to any one of the aforementioned compounds, wherein both instances of R a are taken together form a bond, or a (C 1 -C 4 )-alkylene bridge.
  • the invention relates to any one of the aforementioned compounds, wherein C is
  • the invention relates to any one of the aforementioned compounds, wherein C represents
  • the invention relates to any one of the aforementioned compounds, wherein C represents
  • the invention relates to any one of the aforementioned compounds, wherein R 2 is H, alkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, cycloalkyl, -alkylene-alkoxy, alkylene-aryl, or heterocycloalkyl.
  • the invention relates to any one of the aforementioned compounds, wherein R 2 is H, (C 1 -C 4 )alkyl, cyclopropyl, CH 2 OMe, phenyl, —CH 2 Ph, pyridinyl, or indolyl.
  • the invention relates to any one of the aforementioned compounds, wherein R 2 is H. In certain embodiments, the invention relates to any one of the aforementioned compounds, wherein R 2 is Me. In certain embodiments, the invention relates to any one of the aforementioned compounds, wherein R 2 is unsubstituted phenyl. In certain embodiments, the invention relates to any one of the aforementioned compounds, wherein R 2 is substituted phenyl. In certain embodiments, the invention relates to any one of the aforementioned compounds, wherein the substituted phenyl is substituted with one or more independent instances of alkoxy, halide, —C(O)NH 2 , or —C(O)alkyl.
  • the invention relates to any one of the aforementioned compounds, wherein the substituted phenyl is substituted with at least one halide. In certain embodiments, the invention relates to any one of the aforementioned compounds, wherein the halide is C 1 . In certain embodiments, the invention relates to any one of the aforementioned compounds, wherein R 2 is unsubstituted pyridinyl. In certain embodiments, the invention relates to any one of the aforementioned compounds, wherein R 2 is substituted pyridinyl. In certain embodiments, the invention relates to any one of the aforementioned compounds, wherein the substituted pyridinyl is substituted with NH 2 , or OH. In certain embodiments, the invention relates to any one of the aforementioned compounds, wherein R 2 is
  • the invention relates to any one of the aforementioned compounds, wherein R 3 is H, halide, CF 3 , alkyl, alkylene-alkoxy, aryl, hydroxyl, or alkoxy.
  • the invention relates to any one of the aforementioned compounds, wherein R 3 is H, halide, Me, OMe, or Ph. In certain embodiments, the invention relates to any one of the aforementioned compounds, wherein R 3 is iodo, bromo, chloro, or fluoro. In certain embodiments, the invention relates to any one of the aforementioned compounds, wherein R 3 is H.
  • the invention relates to any one of the aforementioned compounds, wherein R 6 is H, halide, CF 3 , alkyl, alkylene-alkoxy, aryl, hydroxyl, or alkoxy. In certain embodiments, the invention relates to any one of the aforementioned compounds, wherein R 6 is H. In certain embodiments, the invention relates to any one of the aforementioned compounds, wherein R 6 is OMe. In certain embodiments, the invention relates to any one of the aforementioned compounds, wherein R 6 is Me.
  • the invention relates to any one of the aforementioned compounds, wherein R 7 is H, halide, CF 3 , alkyl, alkylene-alkoxy, aryl, hydroxyl, or alkoxy.
  • the invention relates to any one of the aforementioned compounds, wherein R 7 is H. In certain embodiments, the invention relates to any one of the aforementioned compounds, wherein R 7 is OMe. In certain embodiments, the invention relates to any one of the aforementioned compounds, wherein R 7 is Me. In certain embodiments, the invention relates to any one of the aforementioned compounds, wherein R 7 is CH 2 OH.
  • the invention relates to any one of the aforementioned compounds, wherein R 3 is H or F, R 6 is H, and R 7 is H or CH 2 OH.
  • the invention relates to any one of the aforementioned compounds, wherein only one instance of n′ is 0. In certain embodiments, the invention relates to any one of the aforementioned compounds, wherein at least one instance of n′ is 0.
  • the invention relates to any one of the aforementioned compounds, wherein both instances of n′ is 0. In certain embodiments, the invention relates to any one of the aforementioned compounds, wherein only one instance of n′ is 1. In certain embodiments, the invention relates to any one of the aforementioned compounds, wherein at least one instance of n′ is 1. In certain embodiments, the invention relates to any one of the aforementioned compounds, wherein both instances of n′ is 1. In certain embodiments, the invention relates to any one of the aforementioned compounds, wherein only one instance of n′ is 2. In certain embodiments, the invention relates to any one of the aforementioned compounds, wherein at least one instance of n′ is 2.
  • the invention relates to any one of the aforementioned compounds, wherein both instances of n′ is 2. In certain embodiments, the invention relates to any one of the aforementioned compounds, wherein one instance of n′ is 0, and one instance of n′ is 1.
  • the invention relates to any one of the aforementioned compounds, wherein C is selected from the group consisting of:
  • the invention relates to any one of the aforementioned compounds, wherein the optional substituent, when present, is selected from the group consisting of alkoxy, alkyl ester, alkylcarbonyl, hydroxyalkyl, cyano, halo, amino, amido, cycloalkyl, aryl, haloalkyl, nitro, hydroxy, alkoxy, aryloxy, alkyl, alkylthio, and cyanoalkyl.
  • the optional substituent when present, is selected from the group consisting of alkoxy, alkyl ester, alkylcarbonyl, hydroxyalkyl, cyano, halo, amino, amido, cycloalkyl, aryl, haloalkyl, nitro, hydroxy, alkoxy, aryloxy, alkyl, alkylthio, and cyanoalkyl.
  • the invention relates to any one of the aforementioned compounds, wherein the compound is a pharmaceutically acceptable salt.
  • the invention relates to a compound selected from the group consisting of:
  • the invention relates to a compound selected from the group consisting of:
  • the invention relates to a compound selected from the group consisting of:
  • the invention relates to a compound selected from the group consisting of:
  • the invention relates to a compound selected from the group consisting of:
  • the invention relates to a compound selected from the group consisting of:
  • the invention relates to a compound selected from the group consisting of:
  • the invention relates to a compound selected from the group consisting of:
  • the invention relates to a compound selected from the group consisting of:
  • the invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising any one of the aforementioned compounds and a pharmaceutically acceptable carrier.
  • Patients including but not limited to humans, can be treated by administering to the patient an effective amount of the active compound or a pharmaceutically acceptable prodrug or salt thereof in the presence of a pharmaceutically acceptable carrier or diluent.
  • the active materials can be administered by any appropriate route, for example, orally, parenterally, intravenously, intradermally, subcutaneously, or topically, in liquid or solid form.
  • the concentration of active compound in the drug composition will depend on absorption, inactivation and excretion rates of the drug as well as other factors known to those of skill in the art. It is to be noted that dosage values will also vary with the severity of the condition to be alleviated. It is to be further understood that for any particular subject, specific dosage regimens should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the compositions, and that the concentration ranges set forth herein are exemplary only and are not intended to limit the scope or practice of the claimed composition.
  • the active ingredient can be administered at once, or can be divided into a number of smaller doses to be administered at varying intervals of time.
  • the mode of administration of the active compound is oral.
  • Oral compositions will generally include an inert diluent or an edible carrier. They can be enclosed in gelatin capsules or compressed into tablets.
  • the active compound can be incorporated with excipients and used in the form of tablets, troches or capsules. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition.
  • the tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.
  • a binder such as microcrystalline cellulose, gum tragacanth or gelatin
  • an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel or corn starch
  • a lubricant such as magnesium stearate or Sterotes
  • a glidant such as colloidal silicon dioxide
  • a sweetening agent such
  • the compound can be administered as a component of an elixir, suspension, syrup, wafer, chewing gum or the like.
  • a syrup can contain, in addition to the active compound(s), sucrose or sweetener as a sweetening agent and certain preservatives, dyes and colorings and flavors.
  • the compound or a pharmaceutically acceptable prodrug or salts thereof can also be mixed with other active materials that do not impair the desired action, or with materials that supplement the desired action, such as antibiotics, antifungals, anti-inflammatories or other antivirals, including but not limited to nucleoside compounds.
  • Solutions or suspensions used for parenteral, intradermal, subcutaneous, or topical application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents, such as ethylenediaminetetraacetic acid; buffers, such as acetates, citrates or phosphates, and agents for the adjustment of tonicity, such as sodium chloride or dextrose.
  • the parental preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.
  • carriers include physiological saline and phosphate buffered saline (PBS).
  • PBS phosphate buffered saline
  • the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including but not limited to implants and microencapsulated delivery systems.
  • a controlled release formulation including but not limited to implants and microencapsulated delivery systems.
  • Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters and polylactic acid.
  • enterically coated compounds can be used to protect cleavage by stomach acid. Methods for preparation of such formulations will be apparent to those skilled in the art. Suitable materials can also be obtained commercially.
  • Liposomal suspensions are also preferred as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Pat. No. 4,522,811 (incorporated by reference).
  • liposome formulations can be prepared by dissolving appropriate lipid(s) (such as stearoyl phosphatidyl ethanolamine, stearoyl phosphatidyl choline, arachadoyl phosphatidyl choline, and cholesterol) in an inorganic solvent that is then evaporated, leaving behind a thin film of dried lipid on the surface of the container. An aqueous solution of the active compound is then introduced into the container. The container is then swirled by hand to free lipid material from the sides of the container and to disperse lipid aggregates, thereby forming the liposomal suspension.
  • appropriate lipid(s) such as stearoyl phosphatidyl ethanolamine, stearoyl phosphatidyl choline
  • the invention relates to a method of treating a disease or a condition selected from the group consisting of idiopathic pulmonary fibrosis, diabetic nephropathy, focal segmental glomerulosclerosis, chronic kidney disease, nonalcoholic steatohepatitis, primary biliary cholangitis, primary sclerosing cholangitis, solid tumors, hematological tumors, organ transplant, Alport syndrome, interstitial lung disease, radiation-induced fibrosis, bleomycin-induced fibrosis, asbestos-induced fibrosis, flu-induced fibrosis, coagulation-induced fibrosis, vascular injury-induced fibrosis, aortic stenosis, and cardiac fibrosis comprising the step of: administering to a subject in need thereof a therapeutically effective amount of any one of the aforementioned compounds.
  • the compound administered is selected from the group consisting of:
  • the invention relates to any one of the aforementioned methods, wherein the disease or condition is a solid tumor (sarcomas, carcinomas, and lymphomas).
  • solid tumors sarcomas, carcinomas, and lymphomas.
  • Exemplary tumors that may be treated in accordance with the invention include e.g., Ewing's sarcoma, rhabdomyosarcoma, osteosarcoma, myelosarcoma, chondrosarcoma, liposarcoma, leiomyosarcoma, soft tissue sarcoma, non-small cell lung cancer, small cell lung cancer, bronchus cancer, prostate cancer, breast cancer, pancreatic cancer, gastrointestinal cancer, colon cancer, rectum cancer, colon carcinoma, colorectal adenoma, thyroid cancer, liver cancer, intrahepatic bile duct cancer, hepatocellular cancer, adrenal gland cancer, stomach cancer, gastric cancer, glioma (e.g., adult, childhood brain stem
  • the invention relates to any one of the aforementioned methods, wherein the disease is disease or condition is a hematological tumor.
  • exemplary homatological tumors that may be treated in accordance with the invention include e.g., acute lymphocytic leukemia, acute myelogenous leukemia, chronic lymphocytic leukemia, chronic myelogenous leukemia, Hodgkin lymphoma, non-Hodgkin lymphoma, and multiple myeloma.
  • the invention relates to any one of the aforementioned methods, wherein the disease or condition is selected from the group consisting of idiopathic pulmonary fibrosis, systemic sclerosis associated interstitial lung disease, myositis associated interstitial lung disease, systemic lupus erythematosus associated interstitial lung disease, rheumatoid arthritis, and associated interstitial lung disease.
  • the disease or condition is selected from the group consisting of idiopathic pulmonary fibrosis, systemic sclerosis associated interstitial lung disease, myositis associated interstitial lung disease, systemic lupus erythematosus associated interstitial lung disease, rheumatoid arthritis, and associated interstitial lung disease.
  • the invention relates to any one of the aforementioned methods, wherein the disease or condition is selected from the group consisting of diabetic nephropathy, focal segmental glomerulosclerosis, and chronic kidney disease.
  • the invention relates to any one of the aforementioned methods, wherein the disease or condition is selected from the group consisting of nonalcoholic steatohepatitis, primary biliary cholangitis, and primary sclerosing cholangitis.
  • the invention relates to any one of the aforementioned methods, wherein the subject is a mammal. In certain embodiments, the invention relates to any one of the aforementioned methods, wherein the subject is human.
  • R and R 1 are appropriate ester protecting groups
  • R 2 , R 3 , R 4 , R 5 and R 6 are H or an appropriate substituent
  • L is an appropriate linker
  • Boc-protected amine (1 equiv.) was treated with HCl (5-20 equiv.) in dioxane (5-20 mL/mmol amine) at room temperature for 1-4 hours.
  • the reaction was concentrated in vacuo, and the amine product was used crude or after purification by silica gel column.
  • the ester (1 equiv.) was treated with LiOH—H 2 O (3-5 equiv.) in MeOH (3-10 mL/mmol ester) and water (3-10 mL/mmol ester) at room temperature for 1-16 hours.
  • the reaction was concentrated in vacuo, and the residue was purified by prep HPLC to give the desired carboxylic acid product.
  • a Petasis reaction can be used to prepare certain aryl analogs: A mixture of amine (1 eq.) aryl boronic acid or aryl boronate ester (1-1.5 eq.) and 2-oxoacetic acid (1.5-2 equiv.) in MeCN or DMF (2-10 mL/mmole amine) was stirred at 50-80° C. for 2-16 hours. The reaction was concentrated in vacuo, and the residue was purified by prep HPLC to give the desired amino acetic acid.
  • LC/MS B column: SunFire C18, 4.6 ⁇ 50 mm, 3.5 m; mobile phase: A water (0.01% TFA), B CH 3 CN; gradient: 5%-95% B in 1.5 min, then 1.5 min hold; flow rate: 2.0 mL/min; oven temperature 50° C.
  • LC/MS C column: XBridge C18, 4.6 ⁇ 50 mm, 3.5 m; mobile phase: A water (10 mM ammonium hydrogen carbonate), B CH 3 CN; gradient: 5%-95% B in 1.5 min, then 1.5 min hold; flow rate: 1.8 mL/min; oven temperature 50° C.
  • LC/MS D column: Poroshell 120 EC-C138, 4.6 ⁇ 30 mm, 2.7 m; mobile phase: A water (0.01% TFA), B CH 3 CN (0.01% TFA); gradient: 5%-95% B in 1.2 min, then 1.8 min hold; flow rate: 2.2 mL/min; oven temperature 50° C.
  • LC/MS E column: XBridge C18, 3.0 ⁇ 30 mm, 2.5 ⁇ m; mobile phase: A water (10 mM ammonium hydrogen carbonate), B CH 3 CN; gradient: 5%-95% B in 1.5 min, then 0.6 min hold; flow rate: 1.5 mL/min; oven temperature 50° C.
  • LC/MS F column: Agilent poroshell 120 EC-C18, 4.6 ⁇ 50 mm, 2.7 m: A water (0.1% formic acid), B CH 3 CN (0.1% formic acid); gradient 5%-95% B in 4.0 min, then 6.0 min hold; flow rate 0.95 mL/min; oven temp 50° C.
  • Prep HPLC A column: XBridge C18, 21.2*250 mm, 10 ⁇ m; mobile phase: A water (10 mM ammonium hydrogen carbonate), B CH 3 CN; gradient elution as in text; flow rate: 20 mL/min.
  • Prep HPLC B column: XBridge C18, 21.2*250 mm, 10 ⁇ m; mobile phase: A water (10 mM formic acid), B CH 3 CN; gradient elution as in text; flow rate: 20 mL/min.
  • Prep HPLC C column: XBridge OBD C18, 19*100 mm, 5 m; mobile phase: A water, B CH 3 CN; gradient elution as in text; flow rate: 20 mL/min.
  • Racemic products were separated to individual enantiomers by chiral Prep SFC using an SFC-80 (Thar, Waters) instrument, detection wavelength 214 nm:
  • Chiral SFC B column: AD 4.6*100 mm, 5 m (Daicel), column temperature: 40° C., mobile phase: CO 2 /methanol (0.2% methanol ammonia), isocratic elution as in text, flow rate: 4 g/min, back pressure: 120 bar.
  • Chiral SFC C column: AS 4.6*100 mm, 5 m (Daicel), column temperature: 40° C., mobile phase: CO 2 /methanol (0.2% methanol ammonia), isocratic elution as in text, flow rate: 4 g/min, back pressure: 120 bar.
  • Chiral SFC D column: OD 4.6*100 mm, 5 m (Daicel), column temperature: 40° C., mobile phase: CO 2 /methanol (0.2% methanol ammonia), isocratic elution as in text, flow rate: 4 g/min, back pressure: 120 bar.
  • Chiral SFC E column: Cellulose-SC 4.6*100 mm, 5 m (Daicel), column temperature: 40° C., mobile phase: CO 2 /methanol (0.2% methanol ammonia), isocratic elution as in text, flow rate: 4 g/min, back pressure: 120 bar.
  • Chiral SFC F column: OZ 4.6*100 mm, 5 m (Daicel), column temperature: 40° C., mobile phase: CO2/methanol (0.2% methanol ammonia), isocratic elution as in text, flow rate: 4 g/min, back pressure: 120 bar.
  • Chiral SFC G column: IC 4.6*100 mm, 5 m (Daicel), column temperature: 40° C., mobile phase: CO2/methanol (0.2% methanol ammonia), isocratic elution as in text, flow rate: 4 g/min, back pressure: 120 bar.
  • Chiral SFC H column: AD 4.6*250 mm, 5 m (SHIMADZU), column temperature: 40° C., mobile phase: n-Hexane (0.1% DEA):EtOH (0.1% DEA), isocratic elution as in text, flow rate: 1 mL/min.
  • Chiral SFC K column: OZ—H 4.6*250 mm, 5 m (SHIMADZU), column temperature: 40° C., mobile phase: n-Hexane (0.1% DEA):EtOH (0.1% DEA), isocratic elution as in text, flow rate: 1 mL/min.
  • Chiral SFC L column: chiral PAK IG 4.6*250 mm, 5 m (SHIMADZU), column temperature: 35° C., mobile phase: n-Hexane (0.1% DEA):EtOH (0.1% DEA), isocratic elution as in text, flow rate: 1 mL/min.
  • Step 1 tert-butyl 4-(1,8-naphthyridin-2-yl)piperidine-1-carboxylate
  • Step 2 tert-butyl 4-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)piperidine-1-carboxylate
  • Step 4 tert-butyl 4-((4-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)piperidin-1-yl)methyl)piperidine-1-carboxylate
  • Step 5 7-(1-(piperidin-4-ylmethyl)piperidin-4-yl)-1,2,3,4-tetrahydro-1,8-naphthyridine dihydrochloride
  • Step 6 methyl 2-(4-((4-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)piperidin-1-yl)methyl)piperidin-1-yl)acetate
  • Step 7 2-(4-((4-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)piperidin-1-yl)methyl)piperidin-1-yl)acetic acid (compound 1)
  • Step 1 tert-butyl 4-(2-methoxy-2-oxoethyl)-3-oxopiperazine-1-carboxylate
  • Step 3 methyl 2-(2-oxo-4-(4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)piperidine-1-carbonyl)piperazin-1-yl)acetate
  • Step 4 2-(2-oxo-4-(4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)piperidine-1-carbonyl)piperazin-1-yl)acetic acid (compound 2)
  • Step 1 methyl 1-(2-tert-butoxy-2-oxoethyl)-2-oxopiperidine-4-carboxylate
  • Step 2 1-(2-tert-butoxy-2-oxoethyl)-2-oxopiperidine-4-carboxylic acid
  • Methyl 1-(2-tert-butoxy-2-oxoethyl)-2-oxopiperidine-4-carboxylate (1.00 g, 3.68 mmol) was treated with LiOH—H 2 O (201 mg, 4.79 mmol) in THF/MeOH/water (20 mL/20 mL/20 mL) at room temperature for 16 hours. The mixture was adjusted to pH-5 with aqueous HCl (3.0 M, 10 mL) and extracted with EtOAc (50 mL ⁇ 3).
  • Step 3 tert-butyl 2-(2-oxo-4-(4-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)piperidine-1-carbonyl)piperidin-1-yl)acetate
  • Step 4 2-(2-oxo-4-(4-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)piperidine-1-carbonyl)piperidin-1-yl)acetic acid (compound 3)
  • Step 1 methyl 1-(2-tert-butoxy-2-oxoethyl)piperidine-4-carboxylate
  • Step 3 butyl 2-(4-(3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propylcarbamoyl) piperidin-1-yl)acetate
  • Step 4 2-(4-(3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propylcarbamoyl) piperidin-1-yl)acetic acid (compound 4)
  • Step 1 ethyl 2-(4-(3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propylcarbamoyl) piperazin-1-yl)acetate
  • Step 2 2-(4-(3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propylcarbamoyl) piperazin-1-yl)acetic acid (compound 5)
  • Step 1 ethyl 2-(2,2-dimethoxyethylamino)acetate
  • Step 2 (S)-ethyl 2-(3-(benzyloxy)-2-(tert-butoxycarbonylamino)-N-(2,2-dimethoxyethyl)propanamido)acetate
  • Step 3 (S)-tert-butyl-2-(benzyloxymethyl)-4-(2-ethoxy-2-oxoethyl)-3-oxo-3,4-dihydropyrazine-1(2H)-carboxylate
  • Step 4 (S)-tert-butyl 4-(2-ethoxy-2-oxoethyl)-2-(hydroxymethyl)-3-oxopiperazine-1-carboxylate
  • Step 5 (S)-ethyl-2-(3-(hydroxymethyl)-2-oxo-4-(3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propylcarbamoyl)piperazin-1-yl)acetate
  • Step 6 (S)-2-(3-(hydroxymethyl)-2-oxo-4-(3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propylcarbamoyl)piperazin-1-yl)acetic acid (compound 6)
  • Example 7 Preparation of 2-(3-(1-methyl-3-(4-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)butyl)ureido)-2-oxopyrrolidin-1-yl)acetic acid (compounds 7-E1 and 7-E2)
  • Step 4 ethyl 2-(3-(tert-butoxycarbonyl(methyl)amino)-2-oxopyrrolidin-1-yl)acetate
  • Step 5 ethyl 2-(3-(methylamino)-2-oxopyrrolidin-1-yl)acetate
  • Step 6 ethyl 2-(3-(1-methyl-3-(4-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)butyl)ureido)-2-oxopyrrolidin-1-yl)acetate
  • Step 7 2-(3-(1-methyl-3-(4-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)butyl)ureido)-2-oxopyrrolidin-1-yl)acetic acid (compounds 7-E1 and 7-E2)
  • Example 8 Preparation of 2-phenyl-2-(4-(4-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)butanamido)piperidin-1-yl)acetic acid (compounds 8-E1 and 8-E2)
  • Step 1 tert-butyl 4-(4-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)butanamido)piperidine-1-carboxylate
  • Step 2 N-(piperidin-4-yl)-4-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)butanamide
  • Step 3 ethyl 2-phenyl-2-(4-(4-(5,6,7,8-tetrahydro-1,8-naphthyridin-yl)butanamido)piperidin-1-yl)acetate
  • Step 4 2-phenyl-2-(4-(4-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)butanamido)piperidin-1-yl)acetic acid (compounds 8-E1 and 8-E2)
  • Step 2 methyl 2-(4-(4-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)butylamino)piperidin-1-yl)propanoate
  • Step 3 2-(4-(4-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)butylamino)piperidin-1-yl)propanoic acid (compound 9)
  • Methyl 2-(4-(4-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)butylamino)piperidin-1-yl)propanoate (100 mg, 0.27 mmol) was treated with LiOH—H 2 O (42 mg, 1.0 mmol) in MeOH (4 mL) and H 2 O (1 mL) for 2 hours at room temperature. Solvent was removed in vacuo, and the residue was purified by Prep-HPLC A (30-65% MeCN) to give compound 9 (as a white solid (35 mg, yield 36%).
  • Step 1 tert-butyl 4-(2-methoxy-2-oxo-1-phenylethyl)piperazine-1-carboxylate
  • Step 3 methyl 2-phenyl-2-(4-(5-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)pentyl)piperazin-1-yl)acetate
  • Step 4 2-phenyl-2-(4-(5-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)pentyl)piperazin-1-yl)acetic acid (compounds 10-E1 and 10-E2)
  • Methyl 2-phenyl-2-(4-(5-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)pentyl)piperazin-1-yl)acetate (130 mg, 0.30 mmol) was treated with LiOH—H 2 O (63 mg, 1.50 mmol) in MeOH (5.0 mL) and H 2 O (1.0 mL) at room temperature for 2 hours. Solvent was removed in vacuo, and the residue was purified by Prep-HPLC A (30-65% MeCN) to give racemic compound 10 as a white solid (70 mg, 55% yield). The racemic product was separated by prep chiral SFC A to give enantiomeric products compound 10-E1 (21 mg) and compound 10-E2 (18 mg) as white solids.
  • Example 11 Preparation of 2-phenyl-2-(4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)-1,4′-bipiperidin-1′-yl)acetic acid (compounds 11-E1 and 11-E2)
  • Step 1 methyl 2-(4-oxopiperidin-1-yl)-2-phenylacetate
  • Step 2 methyl 2-phenyl-2-(4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)-1,4′-bipiperidin-1′-yl)acetate
  • Step 3 2-phenyl-2-(4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)-1,4′-bipiperidin-1′-yl)acetic acid (compounds 11-E1 and 11-E2)
  • Example 12 Preparation of 2-phenyl-2-(4-(4-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)butoxy)piperidin-1-yl)acetic acid (compounds 12-E1 and 12-E2)
  • Step 3 tert-butyl 4-(4-(2-methyl-1,3-dioxolan-2-yl)butoxy)piperidine-1-carboxylate
  • Step 5 methyl 2-(4-(5-oxohexyloxy)piperidin-1-yl)-2-phenylacetate
  • Step 6 methyl 2-(4-(4-(1,8-naphthyridin-2-yl)butoxy)piperidin-1-yl)-2-phenylacetate
  • Step 7 methyl 2-phenyl-2-(4-(4-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)butoxy)piperidin-1-yl)acetate
  • Step 8 2-phenyl-2-(4-(4-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)butoxy)piperidin-1-yl)acetic acid (compounds 12-E1 and 12-E2) (MRT-B0103)
  • Example 13 Preparation of 2-phenyl-2-((R)-3-(3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propylcarbamoyl)pyrrolidin-1-yl)acetic acid (compounds 13-E1 and 13-E2)
  • Step 1 (R)-tert-butyl 3-(3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propylcarbamoyl)pyrrolidine-1-carboxylate
  • Step 2 (R)—N-(3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl)pyrrolidine-3-carboxamide
  • Step 3 ethyl 2-phenyl-2-((R)-3-(3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propylcarbamoyl)pyrrolidin-1-yl)acetate
  • Step 4 2-phenyl-2-((R)-3-(3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propylcarbamoyl)pyrrolidin-1-yl)acetic acid (compounds 13-E1 and 13-E2)
  • Step 1 ethyl 2-((R)-3-(tert-butoxycarbonylamino)pyrrolidin-1-yl)-2-phenylacetate
  • Step 2 ethyl 2-((R)-3-aminopyrrolidin-1-yl)-2-phenylacetate
  • Step 3 ethyl 2-phenyl-2-((R)-3-(4-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)butylamino)pyrrolidin-1-yl)acetate
  • Step 4 2-phenyl-2-((R)-3-(4-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)butylamino)pyrrolidin-1-yl)acetic acid (compound 14)
  • Step 1 tert-butyl 3-(4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)piperidine-1-carbonyl)azetidine-1-carboxylate
  • Step 2 azetidin-3-yl(4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)piperidin-1-yl)methanone
  • Step 3 ethyl 2-(3-(4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)piperidine-1-carbonyl)azetidin-1-yl)acetate
  • Step 4 2-(3-(4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)piperidine-1-carbonyl)azetidin-1-yl)acetic acid (compound 15)
  • Step 3 methyl 5-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)pentanoate
  • Step 4 tert-butyl 7-(5-methoxy-5-oxopentyl)-3,4-dihydro-1,8-naphthyridine-1(2H)-carboxylate
  • Step 5 tert-butyl 7-(5-hydroxypentyl)-3,4-dihydro-1,8-naphthyridine-1(2H)-carboxylate
  • Step 6 tert-butyl 7-(5-oxopentyl)-3,4-dihydro-1,8-naphthyridine-1(2H)-carboxylate
  • Step 7 tert-butyl 7-(5-(4-(2-ethoxy-2-oxoethyl)piperazin-1-yl)pentyl)-3,4-dihydro-1,8-naphthyridine-1 (2H)-carboxylate
  • Step 8 ethyl 2-(4-(5-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)pentyl)piperazin-1-yl)acetate
  • Step 9 2-(4-(5-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)pentyl)piperazin-1-yl)acetic acid (compound 16)
  • Step 1 tert-butyl 7-(5-(4-(2-ethoxy-2-oxoethyl)-3-oxopiperazin-1-yl)pentyl)-3,4-dihydro-1,8-naphthyridine-1(2H)-carboxylate
  • Step 2 methyl 2-(2-oxo-4-(5-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)pentyl) piperazin-1-yl)acetate
  • Step 3 2-(2-oxo-4-(5-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)pentyl)piperazin-1-yl)acetic acid (compound 17)
  • Step 1 ethyl 2-(4-oxopiperidin-1-yl)acetate
  • Step 2 ethyl 2-(4-(4-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)butylamino)piperidin-1-yl)acetate
  • Step 3 2-(4-(4-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)butylamino)piperidin-1-yl)acetic acid (compound 18)
  • Step 1 tert-butyl 4-(4-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)butanamido) piperidine-1-carboxylate
  • Step 2 N-(piperidin-4-yl)-4-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)butanamide
  • Step 3 ethyl 2-(4-(4-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)butanamido)piperidin-1-yl)acetate
  • Step 4 2-(4-(4-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)butanamido)piperidin-1-yl)acetic acid (compound 19)
  • Step 2 1-tert-butyl 4-ethyl 4-(2-oxoethyl)piperidine-1,4-dicarboxylate
  • Step 3 tert-butyl 1-oxo-2-(3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl)-2,8-diazaspiro[4.5]decane-8-carboxylate
  • Step 4 2-(3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl)-2,8-diazaspiro[4.5]decan-1-one dihydrochloride
  • Step 5 ethyl 2-(1-oxo-2-(3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl)-2,8-diazaspiro[4.5]decan-8-yl)acetate
  • Step 6 2-(1-oxo-2-(3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl)-2,8-diazaspiro[4.5]decan-8-yl)acetic acid (compound 20)
  • Step 1 tert-butyl 3-(4-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)butanamido)azetidine-1-carboxylate
  • Step 2 N-(azetidin-3-yl)-4-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)butanamide
  • Step 3 ethyl 2-(3-(4-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)butanamido) azetidin-1-yl)acetate
  • Step 4 2-(3-(4-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)butanamido)azetidin-1-yl)acetic acid (compound 21)
  • Step 1 tert-butyl 7-(5-(1-(2-ethoxy-2-oxoethyl)azetidin-3-ylamino)pentyl)-3,4-dihydro-1,8-naphthyridine-1(2H)-carboxylate
  • Step 2 ethyl 2-(3-(5-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)pentylamino)azetidin-1-yl)acetate
  • Step 3 2-(3-(5-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)pentylamino)azetidin-1-yl)acetic acid (compound 22)
  • Example 23 2-phenyl-2-(4-(3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propylcarbamoyl)piperidin-1-yl)acetic acid (compounds 23-E1 and 23-E2)
  • Step 1 tert-butyl 4-(3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propylcarbamoyl) piperidine-1-carboxylate
  • Step 3 ethyl 2-phenyl-2-(4-(3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl) propylcarbamoyl) piperidin-1-yl)acetate
  • Step 4 2-phenyl-2-(4-(3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propylcarbamoyl)piperidin-1-yl)acetic acid (compounds 23-E1 and 23-E2) (MRT-C0123)
  • Step 1 ethyl 2-(4-oxopiperidin-1-yl)-2-phenylacetate
  • Step 2 ethyl 2-phenyl-2-(4-(4-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)butylamino)piperidin-1-yl)acetate
  • Step 3 2-phenyl-2-(4-(4-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)butylamino)piperidin-1-yl)acetic acid (compounds 24-E1 and 24-E2)
  • Step 1 tert-butyl 3-(4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)piperidine-1-carbonyl)azetidine-1-carboxylate
  • Step 2 azetidin-3-yl(4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)piperidin-1-yl)methanone
  • Step 3 ethyl 2-phenyl-2-(3-(4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)piperidine-1-carbonyl)azetidin-1-yl)acetate
  • Step 4 2-phenyl-2-(3-(4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl) piperidine-1-carbonyl)azetidin-1-yl)acetic acid (compound 25)
  • Step 2 benzyl 1-(2-tert-butoxy-2-oxoethyl)piperidine-4-carboxylate
  • Step 4 tert-butyl 3-(6-(methylamino)pyridin-2-yl)prop-2-ynylcarbamate
  • Step 5 tert-butyl 3-(6-(methylamino)pyridin-2-yl)propylcarbamate
  • Step 7 tert-butyl 2-(4-(3-(6-(methylamino)pyridin-2-yl)propylcarbamoyl)piperidin-1-yl)acetate
  • Step 8 2-(4-(3-(6-(methylamino)pyridin-2-yl)propylcarbamoyl)piperidin-1-yl)acetic acid (compound 26)
  • Step 1 tert-butyl 3-(1,8-naphthyridin-2-yl)propyl(methyl)carbamate
  • Step 3 tert-butyl 2-(4-((3-(1,8-naphthyridin-2-yl)propyl)(methyl)carbamoyl)piperidin-1-yl)acetate
  • Step 4 tert-butyl 2-(4-(methyl(3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl)carbamoyl)piperidin-1-yl)acetate
  • Step 5 2-(4-(methyl(3-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)propyl)carbamoyl)piperidin-1-yl)acetic acid (compound 27)
  • Step 1 tert-butyl 3-(4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)piperidine-1-carbonyl)azetidine-1-carboxylate
  • Step 2 azetidin-3-yl(4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)piperidin-1-yl)methanone
  • Step 3 methyl 2-(3-(4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)piperidine-1-carbonyl)azetidin-1-yl)propanoate
  • Step 4 2-(3-(4-((5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)methyl)piperidine-1-carbonyl)azetidin-1-yl)propanoic acid (compound 28)
  • Step 1 tert-butyl (R)-3-(4-(2-methyl-1,3-dioxolan-2-yl)butoxy)pyrrolidine-1-carboxylate
  • Step 3 (R)-tert-butyl 3-(4-(1,8-naphthyridin-2-yl)butoxy)pyrrolidine-1-carboxylate
  • Step 4 (R)-7-(4-(pyrrolidin-3-yloxy)butyl)-1,2,3,4-tetrahydro-1,8-naphthyridine
  • Step 5 methyl 2-phenyl-2-((R)-3-(4-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)butoxy)pyrrolidin-1-yl)acetate
  • Step 6 2-phenyl-2-((R)-3-(4-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)butoxy)pyrrolidin-1-yl)acetic acid (compounds 129-E1 and 129-E2)
  • Step 2 (R)-tert-butyl 3-(4-(3-oxobut-1-enyl)-1H-pyrazol-1-yl)pyrrolidine-1-carboxylate
  • Step 3 (R)-tert-butyl 3-(4-(3-oxobutyl)-1H-pyrazol-1-yl)pyrrolidine-1-carboxylate
  • Step 4 (R)-tert-butyl 3-(4-(3-oxobutyl)-1H-pyrazol-1-yl)pyrrolidine-1-carboxylate
  • Step 5 (R)-tert-butyl 3-(4-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)-1H-pyrazol-1-yl)pyrrolidine-1-carboxylate
  • Step 6 (R)-7-(2-(1-(pyrrolidin-3-yl)-1H-pyrazol-4-yl)ethyl)-1,2,3,4-tetrahydro-1,8-naphthyridine
  • Step 7 methyl 2-phenyl-2-((R)-3-(4-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)-1H-pyrazol-1-yl)pyrrolidin-1-yl)acetate
  • Step 8 2-phenyl-2-((R)-3-(4-(2-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)ethyl)-1H-pyrazol-1-yl)pyrrolidin-1-yl)acetic acid (compounds 130-E1 and 130-E2)
  • Step 3 ethyl 4-(2-methyl-1,3-dioxolan-2-yl)butanoate
  • Step 5 (S)-tert-butyl 3-(5-(2-methyl-1,3-dioxolan-2-yl)pent-1-enyl)pyrrolidine-1-carboxylate
  • Step 7 methyl 2-((R)-3-(6-oxoheptyl)pyrrolidin-1-yl)-2-phenylacetate
  • Step 8 methyl 2-((R)-3-(5-(1,8-naphthyridin-2-yl)pentyl)pyrrolidin-1-yl)-2-phenylacetate
  • Step 9 methyl 2-phenyl-2-((R)-3-(5-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)pentyl)pyrrolidin-1-yl)acetate
  • Step 10 2-phenyl-2-((R)-3-(5-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)pentyl)pyrrolidin-1-yl)acetic acid (compounds 131-E1 and 131-E2)
  • Methyl 2-phenyl-2-((R)-3-(5-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)pentyl)pyrrolidin-1-yl)acetate (200 mg, 0.49 mmol) was treated with LiOH—H 2 O (83 mg, 1.97 mmol) in MeOH (10 mL) and H 2 O (2 mL) at room temperature for 2 hours. Solvent was removed in vacuo, and the residue was purified by Prep-HPLC to give compound 131 as a white solid (120 mg, 62% yield). The racemic product was separated by Prep chiral SFC A to give enantiomeric products compound 131-E1 (35 mg) and compound 131-E2 (39 mg) as white solids.
  • Example 32 Preparation of 2-(3-fluoro-3-(5-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)pentyl)pyrrolidin-1-yl)-2-phenylacetic acid (compounds 132-E1 and 132-E2)
  • Step 1 tert-butyl 3-(4-(benzyloxy)butyl)-3-hydroxypyrrolidine-1-carboxylate
  • Step 2 tert-butyl 3-(4-(benzyloxy)butyl)-3-fluoropyrrolidine-1-carboxylate
  • Step 4 tert-butyl 3-fluoro-3-(4-iodobutyl)pyrrolidine-1-carboxylate
  • Step 5 tert-butyl 3-(5-(1,8-naphthyridin-2-yl)pentyl)-3-fluoropyrrolidine-1-carboxylate
  • Step 6 7-(5-(3-fluoropyrrolidin-3-yl)pentyl)-1,2,3,4-tetrahydro-1,8-naphthyridine
  • Step 7 2-(3-fluoro-3-(5-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)pentyl)pyrrolidin-1-yl)-2-phenylacetic acid (compounds 132-E1 and 132-E2)
  • Step 3 2-(4-isopropoxypyridin-3-yl)-2-((R)-3-(4-(5,6,7,8-tetrahydro-1,8-naphthyridin-2-yl)butoxy)pyrrolidin-1-yl)acetic acid (compound 133)

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Pulmonology (AREA)
  • Epidemiology (AREA)
  • Hematology (AREA)
  • Oncology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Urology & Nephrology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rheumatology (AREA)
  • Virology (AREA)
  • Diabetes (AREA)
  • Pain & Pain Management (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Emergency Medicine (AREA)
  • Obesity (AREA)
  • Transplantation (AREA)
  • Endocrinology (AREA)
  • Molecular Biology (AREA)
  • Communicable Diseases (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
US15/906,745 2017-02-28 2018-02-27 Inhibitors of (alpha-v)(beta-6) integrin Abandoned US20180244648A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/906,745 US20180244648A1 (en) 2017-02-28 2018-02-27 Inhibitors of (alpha-v)(beta-6) integrin
US16/453,418 US11046669B2 (en) 2017-02-28 2019-06-26 Inhibitors of (α-v)(β-6) integrin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762464693P 2017-02-28 2017-02-28
US15/906,745 US20180244648A1 (en) 2017-02-28 2018-02-27 Inhibitors of (alpha-v)(beta-6) integrin

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/453,418 Continuation US11046669B2 (en) 2017-02-28 2019-06-26 Inhibitors of (α-v)(β-6) integrin

Publications (1)

Publication Number Publication Date
US20180244648A1 true US20180244648A1 (en) 2018-08-30

Family

ID=63245635

Family Applications (5)

Application Number Title Priority Date Filing Date
US16/489,628 Active US11040955B2 (en) 2017-02-28 2018-02-27 Inhibitors of (alpha-v)(beta-6) integrin
US15/906,745 Abandoned US20180244648A1 (en) 2017-02-28 2018-02-27 Inhibitors of (alpha-v)(beta-6) integrin
US16/453,418 Active US11046669B2 (en) 2017-02-28 2019-06-26 Inhibitors of (α-v)(β-6) integrin
US17/314,777 Active 2038-08-08 US11827621B2 (en) 2017-02-28 2021-05-07 Inhibitors of (α-v)(β-6) integrin
US18/386,139 Active US12415796B2 (en) 2017-02-28 2023-11-01 Inhibitors of (αv)(β6) integrin

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/489,628 Active US11040955B2 (en) 2017-02-28 2018-02-27 Inhibitors of (alpha-v)(beta-6) integrin

Family Applications After (3)

Application Number Title Priority Date Filing Date
US16/453,418 Active US11046669B2 (en) 2017-02-28 2019-06-26 Inhibitors of (α-v)(β-6) integrin
US17/314,777 Active 2038-08-08 US11827621B2 (en) 2017-02-28 2021-05-07 Inhibitors of (α-v)(β-6) integrin
US18/386,139 Active US12415796B2 (en) 2017-02-28 2023-11-01 Inhibitors of (αv)(β6) integrin

Country Status (16)

Country Link
US (5) US11040955B2 (enExample)
EP (2) EP3589627A4 (enExample)
JP (2) JP7092784B2 (enExample)
KR (2) KR102891803B1 (enExample)
CN (2) CN110573499B (enExample)
AR (2) AR111009A1 (enExample)
AU (3) AU2018229275B2 (enExample)
BR (1) BR112019017929A2 (enExample)
CA (1) CA3054604A1 (enExample)
IL (3) IL297530B2 (enExample)
MA (1) MA47697A (enExample)
MX (2) MX394210B (enExample)
RU (2) RU2022108080A (enExample)
SG (1) SG11201907820SA (enExample)
TW (2) TW201835078A (enExample)
WO (1) WO2018160521A2 (enExample)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200071322A1 (en) * 2018-08-29 2020-03-05 Morphic Therapeutic, Inc. Inhibiting (alpha-v)(beta-6) integrin
WO2020047207A1 (en) * 2018-08-29 2020-03-05 Morphic Therapeutics, Inc. Inhibitors of (alpha-v)(beta-6) integrin
WO2020047208A1 (en) * 2018-08-29 2020-03-05 Morphic Therapeutic, Inc. Inhibitors of (alpha-v)(beta-6) integrin
US10604520B2 (en) 2016-09-07 2020-03-31 Pliant Therapeutics, Inc. N-acyl amino acid compounds and methods of use
US10696672B2 (en) 2016-12-23 2020-06-30 Pliant Therapeutics, Inc. Amino acid compounds and methods of use
US11040955B2 (en) 2017-02-28 2021-06-22 Morphic Therapeutic, Inc. Inhibitors of (alpha-v)(beta-6) integrin
US11046685B2 (en) 2017-02-28 2021-06-29 Morphic Therapeutic, Inc. Inhibitors of (α-v)(β-6) integrin
US11116760B2 (en) 2018-10-30 2021-09-14 Gilead Sciences, Inc. Quinoline derivatives
US11174256B2 (en) 2018-10-30 2021-11-16 Gilead Sciences, Inc. Imidazopyridine derivatives
US11179383B2 (en) 2018-10-30 2021-11-23 Gilead Sciences, Inc. Compounds for inhibition of α4β7 integrin
US11224600B2 (en) 2018-10-30 2022-01-18 Gilead Sciences, Inc. Compounds for inhibition of alpha 4 beta 7 integrin
CN115087444A (zh) * 2019-10-16 2022-09-20 莫菲克医疗股份有限公司 抑制人整联蛋白α4β7
US11578069B2 (en) 2019-08-14 2023-02-14 Gilead Sciences, Inc. Compounds for inhibition of α4 β7 integrin
US20230242524A1 (en) * 2018-08-29 2023-08-03 Morphic Therapeutic, Inc. Inhibitors of (alpha-v)(beta-6) integrin
WO2024173572A1 (en) * 2023-02-14 2024-08-22 Morphic Therapeutic, Inc. INHIBITING α vβ8 INTEGRIN
WO2024173570A1 (en) * 2023-02-14 2024-08-22 Morphic Therapeutic, Inc. INHIBITING αvβ8 INTEGRIN
WO2025106644A1 (en) * 2023-11-15 2025-05-22 Morphic Therapeutic, Inc. Heterocyclic compounds as inhibitors of alpha-v beta-1 integrin

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT3761980T (pt) 2018-03-07 2024-02-29 Pliant Therapeutics Inc Compostos de aminoácidos e métodos de utilização
TWI841573B (zh) 2018-06-27 2024-05-11 美商普萊恩醫療公司 具有未分支連接子之胺基酸化合物及使用方法
TW202028179A (zh) 2018-10-08 2020-08-01 美商普萊恩醫療公司 胺基酸化合物及使用方法
AU2020273158A1 (en) 2019-04-08 2021-11-11 Pliant Therapeutics, Inc. Dosage forms and regimens for amino acid compounds
CN111718250B (zh) * 2020-06-28 2022-04-22 万华化学集团股份有限公司 一种制备r-香茅醛的方法
US12018025B2 (en) 2020-11-19 2024-06-25 Pliant Therapeutics, Inc. Integrin inhibitor and uses thereof

Family Cites Families (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4522811A (en) 1982-07-08 1985-06-11 Syntex (U.S.A.) Inc. Serial injection of muramyldipeptides and liposomes enhances the anti-infective activity of muramyldipeptides
DE4134467A1 (de) 1991-10-18 1993-04-22 Thomae Gmbh Dr K Heterobiarylderivate, diese verbindungen enthaltende arzneimittel und verfahren zu ihrer herstellung
EP0612313A1 (en) * 1991-11-14 1994-08-31 Glaxo Group Limited Piperidine acetic acid derivatives as inhibitors of fibrinogen-dependent blood platelet aggregation
AU3351293A (en) 1992-01-21 1993-08-03 Glaxo Group Limited Piperidineacetic acid derivatives as inhibitors of fibrinogen-dependent blood platelet aggregation
ATE181735T1 (de) 1993-05-01 1999-07-15 Merck Patent Gmbh Substituierte 1-phenyl-oxazolidin-2-on derivate, deren herstellung und deren verwendung als adhäsionsrezeptor-antagonisten
US6069143A (en) 1994-12-20 2000-05-30 Smithkline Beecham Corporation Fibrinogen receptor antagonists
EP0906103A1 (en) * 1995-12-29 1999-04-07 Smithkline Beecham Corporation Vitronectin receptor antagonists
US20010034445A1 (en) 1995-12-29 2001-10-25 Smithkline Beecham Corporation Vitronectin receptor antagonists
JP2000502708A (ja) * 1995-12-29 2000-03-07 スミスクライン・ビーチャム・コーポレイション ビトロネクチン受容体拮抗物質
EP0880511A4 (en) 1996-01-16 1999-06-16 Merck & Co Inc Integrin receptor antagonists
DK0796855T3 (da) 1996-03-20 2002-05-27 Hoechst Ag Hæmmere af knogleresorption og vitronectin-receptorantagonister
EP0891332B1 (en) * 1996-03-29 2004-03-17 Pfizer Inc. 6-phenylpyridyl-2-amine derivatives
WO1998008840A1 (en) 1996-08-29 1998-03-05 Merck & Co., Inc. Integrin antagonists
US5952341A (en) * 1996-10-30 1999-09-14 Merck & Co., Inc. Integrin antagonists
ES2194223T3 (es) 1996-10-30 2003-11-16 Merck & Co Inc Antagonistas de la integrina.
AU724216B2 (en) 1997-04-07 2000-09-14 Merck & Co., Inc. A method of treating cancer
WO1998046220A1 (en) 1997-04-14 1998-10-22 Merck & Co., Inc. Combination therapy for the prevention and treatment of osteoporosis
JP2001524481A (ja) 1997-11-26 2001-12-04 デュポン ファーマシューティカルズ カンパニー αVβ3アンタゴニストとしての1,3,4−チアジアゾール類および1,3,4−オキサジアゾール類
JP3589633B2 (ja) 1997-12-17 2004-11-17 メルク エンド カムパニー インコーポレーテッド インテグリン受容体拮抗薬
US6048861A (en) 1997-12-17 2000-04-11 Merck & Co., Inc. Integrin receptor antagonists
ATE294163T1 (de) 1997-12-17 2005-05-15 Merck & Co Inc Integrin-rezeptor-antagonisten
DE69830806T2 (de) 1997-12-17 2006-04-27 Merck & Co., Inc. Integrinrezeptor antagonisten
AU736026B2 (en) 1997-12-17 2001-07-26 Merck & Co., Inc. Integrin receptor antagonists
US6017926A (en) 1997-12-17 2000-01-25 Merck & Co., Inc. Integrin receptor antagonists
US6329372B1 (en) 1998-01-27 2001-12-11 Celltech Therapeutics Limited Phenylalanine derivatives
CA2338275A1 (en) 1998-07-29 2000-02-10 Merck & Co., Inc. Integrin receptor antagonists
GB9825652D0 (en) 1998-11-23 1999-01-13 Celltech Therapeutics Ltd Chemical compounds
JP2002533064A (ja) 1998-12-19 2002-10-08 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング インテグリンαvβ6阻害剤
EP1150965A4 (en) * 1999-02-03 2002-05-15 Merck & Co Inc BENZAZEPINE DERIVATIVES AS ALPHA-V INTGRIN RECEPTOR ANTAGONISTS
US6723711B2 (en) 1999-05-07 2004-04-20 Texas Biotechnology Corporation Propanoic acid derivatives that inhibit the binding of integrins to their receptors
US6518283B1 (en) 1999-05-28 2003-02-11 Celltech R&D Limited Squaric acid derivatives
AU749351B2 (en) 1999-06-02 2002-06-27 Merck & Co., Inc. Alpha V integrin receptor antagonists
JP2003502373A (ja) 1999-06-23 2003-01-21 メルク エンド カムパニー インコーポレーテッド インテグリン受容体アンタゴニスト
DE19933173A1 (de) 1999-07-15 2001-01-18 Merck Patent Gmbh Cyclische Peptidderivate als Inhibitoren des Integrins alpha¶v¶beta¶6¶
US6514964B1 (en) 1999-09-27 2003-02-04 Amgen Inc. Fused cycloheptane and fused azacycloheptane compounds and their methods of use
GB9929988D0 (en) 1999-12-17 2000-02-09 Celltech Therapeutics Ltd Chemical compounds
AU780364B2 (en) 2000-01-20 2005-03-17 Merck Sharp & Dohme Corp. Alpha V integrin receptor antagonists
EP1254116A4 (en) 2000-01-24 2003-04-23 Merck & Co Inc ALPHA V INTEGRIN RECEPTOR ANTAGONISTS
AU2001269876A1 (en) 2000-06-15 2001-12-24 Mark Laurence Boys Heteroarylalkanoic acids as integrin receptor antagonists
DE10041423A1 (de) 2000-08-23 2002-03-07 Merck Patent Gmbh Biphenylderivate
JP2004509123A (ja) 2000-09-14 2004-03-25 メルク エンド カムパニー インコーポレーテッド アルファνインテグリン受容体アンタゴニスト
AU2001290772A1 (en) 2000-09-14 2002-03-26 Merck And Co., Inc. Alpha v integrin receptor antagonists
AU2001295038A1 (en) 2000-09-18 2002-03-26 Merck & Co., Inc. Treatment of inflammation with a combination of a cyclooxygenase-2 inhibitor and an integrin alpha-V antagonist
MXPA03006772A (es) 2001-01-29 2004-10-15 Dimensional Pharm Inc Indoles sustituidos y su uso como antogonistas de integrina.
DE10112771A1 (de) 2001-03-16 2002-09-26 Merck Patent Gmbh Inhibitoren des Integrins alpha¶v¶beta¶6¶
EP1387688A2 (en) 2001-05-03 2004-02-11 Merck & Co., Inc. Benzazepinone alpha v integrin receptor antagonists
US20040043988A1 (en) 2001-06-15 2004-03-04 Khanna Ish Kurmar Cycloalkyl alkanoic acids as intergrin receptor antagonists
DE10204789A1 (de) 2002-02-06 2003-08-14 Merck Patent Gmbh Inhibitoren des Integrins alpha¶v¶beta6
PL219749B1 (pl) 2002-08-16 2015-07-31 Janssen Pharmaceutica Nv Pochodna piperydyny i jej zastosowanie oraz kompozycja farmaceutyczna ją zawierająca
FI20041129A0 (fi) 2004-08-30 2004-08-30 Ctt Cancer Targeting Tech Oy Tioksotiatsolidinoniyhdisteitä lääkkeinä käytettäviksi
AR059224A1 (es) 2006-01-31 2008-03-19 Jerini Ag Compuestos para la inhibicion de integrinas y uso de estas
US20080045521A1 (en) 2006-06-09 2008-02-21 Astrazeneca Ab Phenylalanine derivatives
PE20091002A1 (es) 2007-06-13 2009-07-15 Bristol Myers Squibb Co Analogos dipeptidos como inhibidores del factor de coagulacion
JP5359879B2 (ja) * 2007-11-16 2013-12-04 宇部興産株式会社 ベンズアゼピノン化合物
US20120289481A1 (en) 2011-05-13 2012-11-15 O'neil Jennifer Compositions and methods for treating cancer
US8716226B2 (en) 2012-07-18 2014-05-06 Saint Louis University 3,5 phenyl-substituted beta amino acid derivatives as integrin antagonists
IN2015DN00099A (enExample) * 2012-07-18 2015-05-29 Univ Saint Louis
EP2784511A1 (en) 2013-03-27 2014-10-01 Universität Zürich Integrin alpha-v-beta6 for diagnosis/prognosis of colorectal carcinoma
GB201305668D0 (en) * 2013-03-28 2013-05-15 Glaxosmithkline Ip Dev Ltd Avs6 Integrin Antagonists
US10533044B2 (en) 2014-01-06 2020-01-14 The General Hospital Corporation Integrin Antagonists
MA39823A (fr) * 2014-04-03 2018-01-09 Janssen Pharmaceutica Nv Dérivés de pyridine macrocyclique
WO2015179823A2 (en) 2014-05-23 2015-11-26 The California Institute For Biomedical Research Lung localized inhibitors of alpha(v)beta 6
WO2016022851A1 (en) 2014-08-06 2016-02-11 Children's Medical Center Corporation Modified integrin polypeptides, modified integrin polypeptide dimers, and uses thereof
GB201417002D0 (en) 2014-09-26 2014-11-12 Glaxosmithkline Ip Dev Ltd Novel compound
GB201417011D0 (en) 2014-09-26 2014-11-12 Glaxosmithkline Ip Dev Ltd Novel compounds
GB201417018D0 (en) 2014-09-26 2014-11-12 Glaxosmithkline Ip Dev Ltd Novel compounds
GB201417094D0 (en) 2014-09-26 2014-11-12 Glaxosmithkline Ip Dev Ltd Novel compounds
KR102647026B1 (ko) 2015-02-19 2024-03-12 사이플루어 라이프 사이언시즈, 인크 플루오르화 테트라히드로나프티리디닐 노난산 유도체 및 이의 용도
RU2767398C2 (ru) 2015-03-25 2022-03-17 Фуджифилм Корпорэйшн Применение комплекса азотсодержащего соединения с металлом для диагностики или лечения опухолей с экспрессией интегрина
KR20170141757A (ko) 2015-04-30 2017-12-26 사이플루어 라이프 사이언시즈, 인크 테트라하이드로나프티리디닐 프로피온산 유도체 및 이의 용도
CA3008023A1 (en) 2015-12-30 2017-07-06 Saint Louis University Meta-azacyclic amino benzoic acid derivatives as pan integrin antagonists
GB201604589D0 (en) 2016-03-18 2016-05-04 Glaxosmithkline Ip Dev Ltd Chemical compound
GB201604680D0 (en) 2016-03-21 2016-05-04 Glaxosmithkline Ip Dev Ltd Chemical Compounds
GB201604681D0 (en) 2016-03-21 2016-05-04 Glaxosmithkline Ip Dev Ltd Chemical Compounds
AU2017292754B2 (en) 2016-07-05 2021-06-17 Icahn School Of Medicine At Mount Sinai Tetrahydronaphthyridinepentanamide integrin antagonists
CN109996541A (zh) 2016-09-07 2019-07-09 普利安特治疗公司 N-酰基氨基酸化合物及其使用方法
CN109952376B (zh) 2016-11-01 2023-09-05 箭头药业股份有限公司 αvβ6整联蛋白配体及其应用
WO2018085552A1 (en) 2016-11-02 2018-05-11 Saint Louis University Integrin antagonists
WO2018085578A1 (en) 2016-11-02 2018-05-11 Saint Louis University Integrin inhibitors in combination with an agent which interacts with a chemokine receptor
CN110167934B (zh) 2016-11-08 2022-06-10 百时美施贵宝公司 作为αV整联蛋白抑制剂的含有环丁烷和含有氮杂环丁烷的单环和螺环化合物
CA3042707A1 (en) 2016-11-08 2018-05-17 Bristol-Myers Squibb Company 3-substituted propionic acids as .alpha.v integrin inhibitors
JP7128811B2 (ja) 2016-11-08 2022-08-31 ブリストル-マイヤーズ スクイブ カンパニー アルファvインテグリン阻害剤としてのアゾールアミドおよびアミン
KR102506327B1 (ko) 2016-11-08 2023-03-03 브리스톨-마이어스 스큅 컴퍼니 αV 인테그린 길항제로서의 인다졸 유도체
LT3538528T (lt) 2016-11-08 2021-03-10 Bristol-Myers Squibb Company Pirolo amidai, kaip alfa v integrino inhibitoriai
EP3558303A4 (en) 2016-12-23 2020-07-29 Pliant Therapeutics, Inc. AMINO ACID COMPOUNDS AND PROCESSES FOR USE
KR20190100232A (ko) 2016-12-29 2019-08-28 세인트 루이스 유니버시티 인테그린 길항제
MA47697A (fr) 2017-02-28 2020-01-08 Morphic Therapeutic Inc Inhibiteurs de l'(alpha-v)(bêta-6) intégrine
EP3589285A4 (en) 2017-02-28 2020-08-12 Morphic Therapeutic, Inc. INHIBITORS OF INTEGRIN (ALPHA-V) (BETA-6)
PT3761980T (pt) 2018-03-07 2024-02-29 Pliant Therapeutics Inc Compostos de aminoácidos e métodos de utilização
TWI841573B (zh) 2018-06-27 2024-05-11 美商普萊恩醫療公司 具有未分支連接子之胺基酸化合物及使用方法
US20210284638A1 (en) 2018-07-03 2021-09-16 Saint Louis University ALPHAvBETA1 INTEGRIN ANTAGONISTS
WO2020047208A1 (en) 2018-08-29 2020-03-05 Morphic Therapeutic, Inc. Inhibitors of (alpha-v)(beta-6) integrin
EP3617206A1 (en) 2018-08-29 2020-03-04 Morphic Therapeutic, Inc. Integrin inhibitors
TWI857918B (zh) 2018-08-29 2024-10-01 美商莫菲克醫療股份有限公司 αvβ6整合素之抑制劑
EP3843728B1 (en) 2018-08-29 2025-04-30 Morphic Therapeutic, Inc. Inhibitors of (alpha-v)(beta-6) integrin
TW202028179A (zh) 2018-10-08 2020-08-01 美商普萊恩醫療公司 胺基酸化合物及使用方法
AU2020273158A1 (en) 2019-04-08 2021-11-11 Pliant Therapeutics, Inc. Dosage forms and regimens for amino acid compounds

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11673887B2 (en) 2016-09-07 2023-06-13 Pliant Therapeutics, Inc. N-acyl amino acid compounds and methods of use
US10604520B2 (en) 2016-09-07 2020-03-31 Pliant Therapeutics, Inc. N-acyl amino acid compounds and methods of use
USRE50554E1 (en) 2016-12-23 2025-08-26 Pliant Therapeutics, Inc. Amino acid compounds and methods of use
US11634418B2 (en) 2016-12-23 2023-04-25 Pliant Therapeutics, Inc. Amino acid compounds and methods of use
US10696672B2 (en) 2016-12-23 2020-06-30 Pliant Therapeutics, Inc. Amino acid compounds and methods of use
US11046685B2 (en) 2017-02-28 2021-06-29 Morphic Therapeutic, Inc. Inhibitors of (α-v)(β-6) integrin
US12145935B2 (en) 2017-02-28 2024-11-19 Morphic Therapeutic, Inc. Inhibitors of (α-v)(β-6) integrin
US11046669B2 (en) 2017-02-28 2021-06-29 Morphic Therapeutic, Inc. Inhibitors of (α-v)(β-6) integrin
US11795167B2 (en) 2017-02-28 2023-10-24 Morphic Therapeutic, Inc. Inhibitors of (α-v)(β-6) integrin
US11040955B2 (en) 2017-02-28 2021-06-22 Morphic Therapeutic, Inc. Inhibitors of (alpha-v)(beta-6) integrin
US12415796B2 (en) 2017-02-28 2025-09-16 Morphic Therapeutic, Inc. Inhibitors of (αv)(β6) integrin
US11827621B2 (en) 2017-02-28 2023-11-28 Morphic Therapeutic, Inc. Inhibitors of (α-v)(β-6) integrin
US12459942B2 (en) 2018-08-29 2025-11-04 Morphic Therapeutic, Inc. Inhibiting (α-v)(β-6) integrin
US20200071322A1 (en) * 2018-08-29 2020-03-05 Morphic Therapeutic, Inc. Inhibiting (alpha-v)(beta-6) integrin
US11021480B2 (en) * 2018-08-29 2021-06-01 Morphic Therapeutic, Inc. Inhibiting (α-V)(β-6) integrin
WO2020047208A1 (en) * 2018-08-29 2020-03-05 Morphic Therapeutic, Inc. Inhibitors of (alpha-v)(beta-6) integrin
WO2020047207A1 (en) * 2018-08-29 2020-03-05 Morphic Therapeutics, Inc. Inhibitors of (alpha-v)(beta-6) integrin
US20230242524A1 (en) * 2018-08-29 2023-08-03 Morphic Therapeutic, Inc. Inhibitors of (alpha-v)(beta-6) integrin
US11739087B2 (en) 2018-08-29 2023-08-29 Morphic Therapeutic, Inc. Inhibiting (α-v)(β-6) integrin
US12053462B2 (en) 2018-10-30 2024-08-06 Gilead Sciences, Inc. Quinoline derivatives
US11224600B2 (en) 2018-10-30 2022-01-18 Gilead Sciences, Inc. Compounds for inhibition of alpha 4 beta 7 integrin
US11179383B2 (en) 2018-10-30 2021-11-23 Gilead Sciences, Inc. Compounds for inhibition of α4β7 integrin
US11174256B2 (en) 2018-10-30 2021-11-16 Gilead Sciences, Inc. Imidazopyridine derivatives
US11116760B2 (en) 2018-10-30 2021-09-14 Gilead Sciences, Inc. Quinoline derivatives
US11578069B2 (en) 2019-08-14 2023-02-14 Gilead Sciences, Inc. Compounds for inhibition of α4 β7 integrin
CN115087444A (zh) * 2019-10-16 2022-09-20 莫菲克医疗股份有限公司 抑制人整联蛋白α4β7
WO2024173572A1 (en) * 2023-02-14 2024-08-22 Morphic Therapeutic, Inc. INHIBITING α vβ8 INTEGRIN
WO2024173570A1 (en) * 2023-02-14 2024-08-22 Morphic Therapeutic, Inc. INHIBITING αvβ8 INTEGRIN
WO2025106644A1 (en) * 2023-11-15 2025-05-22 Morphic Therapeutic, Inc. Heterocyclic compounds as inhibitors of alpha-v beta-1 integrin

Also Published As

Publication number Publication date
IL297530A (en) 2022-12-01
US20200087299A1 (en) 2020-03-19
TWI834321B (zh) 2024-03-01
RU2769702C2 (ru) 2022-04-05
US11046669B2 (en) 2021-06-29
AU2022201908A1 (en) 2022-04-07
US20240327378A1 (en) 2024-10-03
KR102605460B1 (ko) 2023-11-22
IL316954A (en) 2025-01-01
SG11201907820SA (en) 2019-09-27
CN110573499A (zh) 2019-12-13
TW202325707A (zh) 2023-07-01
US11040955B2 (en) 2021-06-22
MX2019010267A (es) 2020-02-05
TW201835078A (zh) 2018-10-01
CN110573499B (zh) 2023-04-21
RU2019130492A3 (enExample) 2021-04-15
AR125414A2 (es) 2023-07-12
JP2022120159A (ja) 2022-08-17
KR20190133682A (ko) 2019-12-03
BR112019017929A2 (pt) 2020-05-19
WO2018160521A3 (en) 2018-10-11
AU2024201414A1 (en) 2024-03-21
IL297530B2 (en) 2025-04-01
MX394210B (es) 2025-03-04
AU2018229275B2 (en) 2021-12-23
KR102891803B1 (ko) 2025-11-28
IL297530B1 (en) 2024-12-01
CN116283977A (zh) 2023-06-23
AR111009A1 (es) 2019-05-22
KR20230163575A (ko) 2023-11-30
AU2022201908B2 (en) 2024-03-21
RU2022108080A (ru) 2022-04-07
JP7092784B2 (ja) 2022-06-28
WO2018160521A2 (en) 2018-09-07
AU2018229275A1 (en) 2019-09-19
EP3589627A2 (en) 2020-01-08
JP2020510664A (ja) 2020-04-09
JP7443425B2 (ja) 2024-03-05
CA3054604A1 (en) 2018-09-07
IL268947A (en) 2019-10-31
US11827621B2 (en) 2023-11-28
US20210276975A1 (en) 2021-09-09
US12415796B2 (en) 2025-09-16
US20200157075A1 (en) 2020-05-21
MX2022009056A (es) 2022-08-15
EP4159727A1 (en) 2023-04-05
MA47697A (fr) 2020-01-08
EP3589627A4 (en) 2020-08-05
RU2019130492A (ru) 2021-03-30

Similar Documents

Publication Publication Date Title
US12415796B2 (en) Inhibitors of (αv)(β6) integrin
US12145935B2 (en) Inhibitors of (α-v)(β-6) integrin
HK40037289A (en) Inhibitors of (alpha-v)(beta-6) integrin

Legal Events

Date Code Title Description
AS Assignment

Owner name: MORPHIC THERAPEUTIC, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HARRISON, BRYCE A.;BURSAVICH, MATTHEW G.;HAHN, KRISTOPHER N.;AND OTHERS;SIGNING DATES FROM 20180402 TO 20180403;REEL/FRAME:045577/0475

Owner name: SCHROEDINGER, LLC, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SCHROEDINGER, INC.;REEL/FRAME:045577/0544

Effective date: 20180403

Owner name: SCHROEDINGER, INC., NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BREWER, MARK;GERASYUTO, ALEKSEY I.;KONZE, KYLE D.;AND OTHERS;SIGNING DATES FROM 20180329 TO 20180331;REEL/FRAME:045577/0521

Owner name: LAZULI, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MORPHIC THERAPEUTIC, INC.;REEL/FRAME:045577/0561

Effective date: 20180404

Owner name: MORPHIC THERAPEUTIC, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SCHROEDINGER, LLC;REEL/FRAME:045577/0558

Effective date: 20180403

AS Assignment

Owner name: MORPHIC THERAPEUTIC, INC., MASSACHUSETTS

Free format text: MERGER;ASSIGNOR:LAZULI, INC.;REEL/FRAME:047145/0764

Effective date: 20181010

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION