US20180105454A1 - A lithium metasilicate glass ceramic and preparation method thereof - Google Patents
A lithium metasilicate glass ceramic and preparation method thereof Download PDFInfo
- Publication number
- US20180105454A1 US20180105454A1 US15/517,595 US201515517595A US2018105454A1 US 20180105454 A1 US20180105454 A1 US 20180105454A1 US 201515517595 A US201515517595 A US 201515517595A US 2018105454 A1 US2018105454 A1 US 2018105454A1
- Authority
- US
- United States
- Prior art keywords
- glass matrix
- melt
- lithium metasilicate
- preparation
- glass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
- C03C10/0018—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
- C03C10/0027—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents containing SiO2, Al2O3, Li2O as main constituents
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B32/00—Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
- C03B32/02—Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
- C03C10/0054—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing PbO, SnO2, B2O3
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/097—Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
Definitions
- the invention relates to the field of ceramics, in particular to a lithium metasilicate glass ceramic and preparation method thereof.
- Lithium disilicate glass ceramics are widely applied in dental prosthesis field due to good mechanical property and excellent aesthetic effect.
- lithium metasilicate glass ceramic are usually produced from glass matrix, then shaped, and heat-treated to obtain lithium disilicate glass ceramic.
- the strength of lithium metasilicate glass ceramic is lower than that of lithium disilicate glass ceramic, thus, it is relatively easy to conduct the shaping processing of lithium metasilicate glass ceramic.
- Two-step heat treatment process is generally adopted in the prior art to produce lithium metasilicate glass ceramic. Namely, the heat treatment for nucleation of glass matrix is carried out at relatively low temperature first, and then the heat treatment for crystallization is carried out at relatively high temperature, for example at about 650° C., to obtain lithium metasilicate glass ceramic.
- the production process is relatively complicated due to requiring two-step heat treatment. Further, the lithium metasilicate has a narrower temperature range of crystallization, and is sensitive to crystallization temperature, thereby having high requirements for production device.
- the lithium metasilicate obtained by using two-step heat treatment in the prior art after crystallization heat treatment has platy or flaky crystal morphology, as shown in FIG. 1 .
- the lithium metasilicate glass ceramic has high hardness of about 6000 MPa, due to high crystallization degree of the glass ceramics obtained by using two-step heat treatment.
- Such lithium metasilicate glass ceramic compared with lithium disilicate glass ceramic, is easier to be shaped, nevertheless, the wear of the milling bur or grinding tool during the process is severe due to the comparatively higher hardness, and thus the whole processing period is long.
- lithium metasilicate glass ceramic has poor transparency, and the defects existed inside, such as bubbles, subfissure and the like cannot be observed easily, which is not good for the quality test of products.
- the invention provides a preparation method of lithium metasilicate glass ceramic, comprising
- Al 2 O 3 2.0 wt %-5.0 wt %
- the weight percent of each component is based on the total weight of the melt of glass matrix
- the melt of glass matrix can further comprise the components below in addition to the components above:
- the coloring oxides can be selected from at least one of the oxides of iron, titanium, vanadium, manganese, copper, chromium, cobalt, nickel, selenium and rare earth metals.
- the rare earth metals can be selected from at least one of cerium, terbium, erbium, neodymium, praseodymium, samarium, and europium.
- the step (a) of preparing the melt of glass matrix can be achieved by the conventional technical means, and thus is not described in detail herein.
- the method for preparing the melt of glass matrix comprises:
- the glass melt after preparing the melt of glass matrix, can be rapidly poured into the metal mould preheated at 300° C.-450° C. in advance, and a transparent blank of glass matrix can be formed after cooling down along the mould. Usually, it can be cooled to room temperature.
- the melt of glass matrix in order to further homogenize the blank of glass matrix, can be subjected to water quenching by directly pouring into cold water after prepared in step (a) to obtain small pieces of glass matrix. Then, the small pieces of glass matrix can be dried at 100-150° C. for 1-2 hours, melted into melt of glass matrix, poured into a mould, and cooled to obtain the blank of glass matrix.
- the object of the invention can be achieved by utilizing the process parameters for the heat treatment of heating to a temperature of 450-600° C. at a heating rate of 5-20° C./min, and keeping the temperature for 20-150 min.
- the heating rate is preferably 5-15° C./min.
- the time for keeping the temperature is preferably 60-120 min.
- the lithium metasilicate glass ceramic obtained by the preparation method according to the invention can be shaped by hot-press shaping technique with loss-wax, or CAD/CAM (computer aided design/computer aided manufacturing) technique.
- the devices used for realizing the technical solution of the invention such as ball milling machines for grinding raw materials, sintering furnaces for preparing glass melt, and electric resistance furnaces for heat treating are well known in the prior art. Suitable devices can be chose by one skilled in the art in practice, and thus is not described in detail in the invention.
- lithium metasilicate glass ceramic can be simply obtained by heat treating the melt of glass matrix at 450-600° C. in one-step.
- the preparation method of the invention possesses the following advantages.
- the main crystal phase of lithium metasilicate exhibits crystal morphology of sphere which is nano-sized and uniform, as shown in FIG. 2 .
- the lithium metasilicate glass ceramic has low crystallization degree, and thus has reduced hardness. This can reduce the wear of the milling bur or grinding tool during the process, and shorten the whole processing period.
- the resulted lithium metasilicate glass ceramic has high transparency and can be semitransparent or even transparent, such that the defects such as bubbles or impurities existed in the lithium metasilicate glass ceramic can be found easily. This is convenient to the quality test procedures of products.
- microcracks resulted from processing or grinding are easily recovered or sealed due to crystal transforming and growing during the process of secondary crystallization, i.e. the process that the main crystal phase in the ceramic is transformed from spheric lithium metasilicate into lath-shaped lithium disilicate (as shown in FIG. 7 , in which the temperature for heat treatment of glass ceramics is 560° C., and the temperature for secondary crystallization is 850° C.).
- FIG. 1 is the Scanning Electron Microscope image of a commercially available lithium metasilicate glass ceramic prepared by two-step heat treatment process
- FIG. 2 is the Scanning Electron Microscope image of the lithium metasilicate glass ceramic prepared in example 2;
- FIG. 3 is the XRD pattern of the lithium metasilicate glass ceramic prepared in example 2.
- FIG. 4 is the Scanning Electron Microscope image of the lithium metasilicate glass ceramic prepared in example 4.
- FIG. 5 is the XRD pattern of the lithium metasilicate glass ceramic prepared in example 4.
- FIG. 6 is the XRD pattern of the commercially available lithium metasilicate glass ceramic prepared by two-step heat treatment process.
- FIG. 7 is the Scanning Electron Microscope image of the lithium disilicate ceramic obtained by subjecting the lithium silicate metasilicate glass ceramic prepared according to the method of the invention.
- the batch was placed in a corundum crucible, and heated in a sintering furnace to 1500° C. at a heating rate of 13° C./min, kept for 1 hour, degassed, clarified and homogenized to obtain a melt of glass matrix;
- the blank of glass matrix was placed in a electric resistance furnace to carry out heat treatment, the process parameters of which include: heating to a temperature of 480° C. at a heating rate of 5° C./min, and keeping the temperature for 150 min, and cooled along with the furnace to room temperature after the heat treatment, thereby obtaining the lithium metasilicate glass ceramic.
- the lithium metasilicate glass ceramic was prepared in a similar way with example 1 except that
- step (a) after being prepared in step (a), the melt of glass matrix was directly poured into cold water for water quenching, and thus small pieces of glass matrix were obtained, then dried at 150° C. for 2 hours, melted into a melt of glass matrix at 1500° C. after drying; the melt of glass matrix was poured into a metal mould at a temperature of 350° C., and cooled to room temperature to obtain a blank of glass matrix.
- the process parameters of heat treatment included: heating to a temperature of 560° C. at a heating rate of 8° C./min, and keeping the temperature for 120 min.
- the prepared lithium metasilicate glass ceramic was subjected to Scanning Electron Microscope test and XRD (X-ray diffraction) test.
- the Scanning Electron Microscope test was performed by using a field emission scanning electron microscopy of type MIRA3 TESCAN with an acceleration voltage of 10.0 kV.
- the XRD test was performed by using the X-Ray Diffractometer type D/max 2500, Rigaku, with CuKa-radiation, at an external voltage of 40.0 kV, an anode current of 30.0 mA, and a slit of 0.3 mm under a scanning range of 20°-80°.
- the obtained product exhibits uniform sphere in crystal morphology and has a crystal size of 30-60 nm.
- the calculation method for the content of crystal phase is provided blow.
- the content of crystal phase of sample is calculated by X-ray diffraction data.
- the software for calculation is XRD analysis software MDI Jade 6.5.
- the specific steps include:
- the lithium metasilicate glass ceramic was prepared in a similar way with example 2 except that the heat treatment was carried out under the condition of heating to a temperature of 520° C. at a heating rate of 5° C./min, and keeping the temperature for 90 min.
- the lithium metasilicate glass ceramic was prepared in a similar way with example 2 except that the heat treatment was carried out under the condition of heating to a temperature of 580° C. with a heating rate of 5° C./min, and keeping the temperature for 60 min.
- the prepared lithium metasilicate glass ceramic was subjected to Scanning Electron Microscope test and XRD (X-ray diffraction) test.
- the conditions for the Scanning Electron Microscope test and XRD (X-ray diffraction) test were the same as those described in example 2.
- the obtained product exhibits uniform sphere in crystal morphology, and has a crystal size of 30-60 nm.
- the commercially available lithium metasilicate glass ceramic prepared by two-step heat treatment was subjected to Scanning Electron Microscope test and XRD (X-ray diffraction) test.
- the Scanning Electron Microscope test was performed by using a field emission scanning electron microscopy of type MIRA3 TESCAN with an acceleration voltage of 20.0 kV.
- the XRD test was the same as that of example 2.
- the commercially available lithium metasilicate glass ceramic prepared by two-step heat treatment process is platy or flaky in crystal morphology, and has a micron-sized crystal.
- the lithium metasilicate glass ceramic was prepared in a similar way with example 2 except that the heat treatment was carried out under the condition of heating to a temperature of 590° C. at a heating rate of 20° C./min, and keeping the temperature for 25 min.
- the lithium metasilicate glass ceramics prepared in examples 1-5 were processed into regular shape such as cube. The strength, hardness and density of the obtained lithium metasilicate glass ceramics were tested. The cubic glass ceramics was attached to a handle, and then processed into green body of dental prosthesis by CAD/CAM (computer aided design/computer aided manufacturing). The processability of the prepared lithium metasilicate glass ceramics was tested. The results were shown in table 2.
- the hardness of the lithium metasilicate glass ceramic prepared in examples 1-5 is about 5500 MPa, and is significantly decreased comparing with that of the glass ceramics prepared by two-step heat treatment process.
- the wear of the milling bur or grinding tool during the process can be reduced, and the whole processing period also can be shortened.
- the resulted lithium metasilicate glass ceramic has high transparency and can be semitransparent or even transparent, such that the defects such as bubbles or impurities existed in the lithium metasilicate glass ceramic can be found easily. The result of this is convenient to the quality test procedures of products.
- the processibility is somewhat improved, and the problems such as chipping or breaking, etc. can be avoided.
- the transparency of the lithium metasilicate glass ceramic prepared by the method of the invention is higher than that prepared by two-step heat treatment process. This indicates that the lithium metasilicate glass ceramic prepared by the method of the invention has low content of crystal phase, and high content of glass phase, which is also an important factor for reduced hardness.
- the shaped green body of prosthesis does not meet the requirements for dental prosthesis, whether mechanical aspects or aesthetic aspects, and thus a further secondary crystallization treatment is needed.
- the secondary crystallization treatment can be achieved by using related technique recited in prior art, and thus is not described in detail herein.
- the used process can include: placing a shaped green body of prosthesis in a porcelain furnace, and heating to 850° C. at a heating rate of 50° C./min, keeping the temperature for 10 min, and cooling along with the porcelain furnace to obtain the prosthesis of lithium disilicate glass ceramic.
- the lithium metasilicate glass ceramics prepared in examples 1-5 were shaped into green bodies of dental prosthesis by CAD/CAM, and subjected to the secondary crystallization treatment above. The results were shown in table 3.
- the main crystal phase of the glass ceramics is transformed from lithium metasilicate into lithium disilicate after the secondary crystallization treatment.
- the glass ceramic After the main crystal phase being transformed into lithium disilicate, the glass ceramic has strength of higher than 350 MPa, and transparency in different extent, which can meet the strength and aesthetic requirements for a dental prosthesis.
- the hot-press technique with loss-wax can also be used for shaping the lithium metasilicate glass ceramics.
- wax molding can be produced by manual caking, machining or 3 D printing, and then hot-press shaping at 850° C. to 950° C. by the process such as embedding, preheating, and loss wax, etc., thereby obtaining products such as dental prosthesis having main crystal phase of lithium disilicate and the strength of higher than 350 MPa, and possessing the texture and gloss similar with natural tooth.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Glass Compositions (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510304854.3 | 2015-06-04 | ||
CN201510304854.3A CN106277798B (zh) | 2015-06-04 | 2015-06-04 | 一种偏硅酸锂玻璃陶瓷及其制备方法 |
PCT/CN2015/088248 WO2016192216A1 (zh) | 2015-06-04 | 2015-08-27 | 一种偏硅酸锂玻璃陶瓷及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20180105454A1 true US20180105454A1 (en) | 2018-04-19 |
Family
ID=57439948
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/517,595 Abandoned US20180105454A1 (en) | 2015-06-04 | 2015-08-27 | A lithium metasilicate glass ceramic and preparation method thereof |
Country Status (3)
Country | Link |
---|---|
US (1) | US20180105454A1 (zh) |
CN (1) | CN106277798B (zh) |
WO (1) | WO2016192216A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3617163A1 (en) * | 2018-09-03 | 2020-03-04 | Samsung Display Co., Ltd. | Glass substrate and method for manufacturing the same |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110002742B (zh) * | 2018-01-04 | 2020-12-04 | 中国科学院过程工程研究所 | 一种电子设备面板及包含其的电子设备 |
CN108467205A (zh) * | 2018-04-18 | 2018-08-31 | 福州大学 | 一种Ce、V、Er共掺的齿科微晶玻璃及其制备和应用 |
EP3718980B1 (de) * | 2019-04-04 | 2022-08-03 | Ivoclar Vivadent AG | Verfahren zur herstellung von mehrfarbigen glaskeramik-rohlingen |
CN110423008B (zh) * | 2019-08-27 | 2021-11-30 | 江西理工大学 | 一种微晶固态电解质及其制备方法 |
CN110981204B (zh) * | 2019-12-27 | 2022-09-02 | 深圳爱尔创口腔技术有限公司 | 一种荧光硅酸锂玻璃材料及其制备方法与应用 |
CN113716872B (zh) * | 2021-09-08 | 2024-02-02 | 中山大学附属口腔医院 | 一种用于齿科颜色可调的二硅酸锂微晶玻璃及其制备方法 |
CN113831016B (zh) | 2021-10-28 | 2023-03-14 | 爱迪特(秦皇岛)科技股份有限公司 | 一种具有高透明度的荧光玻璃陶瓷及其制备方法 |
CN114835401B (zh) * | 2022-04-11 | 2023-08-22 | 大连工业大学 | 一种二硅酸锂玻璃陶瓷的3d打印制备方法 |
CN115849720A (zh) * | 2022-10-19 | 2023-03-28 | 深圳玉汝成口腔材料有限公司 | 一种玻璃陶瓷材料及其制备方法、义齿 |
CN116354605A (zh) * | 2023-03-01 | 2023-06-30 | 深圳玉汝成口腔材料有限公司 | 牙科玻璃陶瓷及其制备方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2971853A (en) * | 1953-03-05 | 1961-02-14 | Corning Glass Works | Ceramic body and method of making it |
US3161528A (en) * | 1962-10-03 | 1964-12-15 | Corning Glass Works | Semicrystalline ceramic body and method of making it |
US3663193A (en) * | 1969-06-30 | 1972-05-16 | Corning Glass Works | Strengthened photosensitive opal glass |
US3809543A (en) * | 1971-02-19 | 1974-05-07 | Pilkington Brothers Ltd | Method of making glass ceramic materials on molten metal support |
US3816704A (en) * | 1972-03-20 | 1974-06-11 | Gen Electric | Surface heating apparatus |
US3977857A (en) * | 1973-10-29 | 1976-08-31 | Westinghouse Electric Corporation | Metal bonding glass-ceramic compositions having improved hardness |
US4480044A (en) * | 1984-02-01 | 1984-10-30 | Corning Glass Works | High expansion glass-ceramic articles |
US20110009254A1 (en) * | 2003-08-07 | 2011-01-13 | Ivoclar Vivadent Ag | Lithium Silicate Materials |
US20120309607A1 (en) * | 2009-12-23 | 2012-12-06 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Lithium disilicate glass-ceramic, method for production thereof and use thereof |
US20140135202A1 (en) * | 2011-10-14 | 2014-05-15 | Ivoclar Vivadent Ag | Lithium silicate glass ceramic and lithium silicate glass comprising a monovalent metal oxide |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010050275A1 (de) * | 2010-11-02 | 2012-05-03 | Degudent Gmbh | Lithiumsilikat-Gläser oder -Glaskeramiken, Verfahren zu deren Herstellung sowie deren Verwendung |
CA2837973C (en) * | 2011-06-22 | 2020-04-07 | Vita Zahnfabrik H. Rauter Gmbh & Co. Kg | Glass ceramic comprising high proportions of zirconium oxide and method of producing said glass ceramic |
CN104108883B (zh) * | 2014-08-11 | 2019-03-08 | 中国地质大学(北京) | 一种高强度二硅酸锂玻璃陶瓷及其制备方法 |
-
2015
- 2015-06-04 CN CN201510304854.3A patent/CN106277798B/zh active Active
- 2015-08-27 US US15/517,595 patent/US20180105454A1/en not_active Abandoned
- 2015-08-27 WO PCT/CN2015/088248 patent/WO2016192216A1/zh active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2971853A (en) * | 1953-03-05 | 1961-02-14 | Corning Glass Works | Ceramic body and method of making it |
US3161528A (en) * | 1962-10-03 | 1964-12-15 | Corning Glass Works | Semicrystalline ceramic body and method of making it |
US3663193A (en) * | 1969-06-30 | 1972-05-16 | Corning Glass Works | Strengthened photosensitive opal glass |
US3809543A (en) * | 1971-02-19 | 1974-05-07 | Pilkington Brothers Ltd | Method of making glass ceramic materials on molten metal support |
US3816704A (en) * | 1972-03-20 | 1974-06-11 | Gen Electric | Surface heating apparatus |
US3977857A (en) * | 1973-10-29 | 1976-08-31 | Westinghouse Electric Corporation | Metal bonding glass-ceramic compositions having improved hardness |
US4480044A (en) * | 1984-02-01 | 1984-10-30 | Corning Glass Works | High expansion glass-ceramic articles |
US20110009254A1 (en) * | 2003-08-07 | 2011-01-13 | Ivoclar Vivadent Ag | Lithium Silicate Materials |
US20120309607A1 (en) * | 2009-12-23 | 2012-12-06 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Lithium disilicate glass-ceramic, method for production thereof and use thereof |
US20140135202A1 (en) * | 2011-10-14 | 2014-05-15 | Ivoclar Vivadent Ag | Lithium silicate glass ceramic and lithium silicate glass comprising a monovalent metal oxide |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3617163A1 (en) * | 2018-09-03 | 2020-03-04 | Samsung Display Co., Ltd. | Glass substrate and method for manufacturing the same |
US11161777B2 (en) | 2018-09-03 | 2021-11-02 | Samsung Display Co., Ltd. | Glass substrate and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
WO2016192216A1 (zh) | 2016-12-08 |
CN106277798A (zh) | 2017-01-04 |
CN106277798B (zh) | 2019-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20180105454A1 (en) | A lithium metasilicate glass ceramic and preparation method thereof | |
CN113501668B (zh) | 一种高强度和高透性二硅酸锂玻璃陶瓷及其制备方法和应用 | |
EP3225227B1 (en) | Al2o3-free lithium silicate glass composition | |
CN112010562B (zh) | 一种二硅酸锂微晶玻璃及其制备方法 | |
CN110255911B (zh) | 一种有色二硅酸锂微晶玻璃及其制备方法 | |
CN113264684A (zh) | 一种牙科用硅酸锂玻璃陶瓷及其制备方法、硅酸锂玻璃陶瓷修复体 | |
CN102863151A (zh) | 一种高强度耐热玻璃器皿 | |
CN105347685A (zh) | 微晶玻璃及其制备方法 | |
CN107555798B (zh) | 齿科铸造用二硅酸锂微晶玻璃及其制备方法 | |
US11414340B2 (en) | High strength lithium silicate glass ceramic having high shielding property | |
CN108328932A (zh) | 一种Ce、Er、Tb、Y共掺的齿科微晶玻璃及其制备和应用 | |
EP4194415A1 (en) | High-transparency fluorescent glass-ceramic, and preparation method therefor and application thereof | |
CN112552032A (zh) | 一种合成β-锂辉石固溶体、含该合成β-锂辉石固溶体制造的微晶玻璃及其制造方法 | |
CN114524616A (zh) | 具有不同透光度的二硅酸锂玻璃陶瓷坯体及其制备方法 | |
CN105967526A (zh) | 一种微晶玻璃板的配方及制备工艺 | |
KR101621886B1 (ko) | 결정화 글라스-세라믹스 치과 재료의 제조방법 | |
CN113716872B (zh) | 一种用于齿科颜色可调的二硅酸锂微晶玻璃及其制备方法 | |
CN108467205A (zh) | 一种Ce、V、Er共掺的齿科微晶玻璃及其制备和应用 | |
CN107235636B (zh) | 一种玻璃、其制备方法及用途 | |
CN107586041B (zh) | 一种齿科用微晶玻璃及其制备方法 | |
CN106927681B (zh) | 一种锂钠钾共掺的齿科微晶玻璃及其制备和应用 | |
KR20180011898A (ko) | 리튬 디실리케이트를 이용한 치과용 세라믹 잉곳 및 그 제조방법 | |
CN109824351A (zh) | 一种高强度齿科修复用陶瓷复合材料及其制备方法 | |
WO2020202685A1 (ja) | 歯科補綴物用ブロック体 | |
CN113698101A (zh) | 一种颜色渐变的玻璃陶瓷成品、制备方法及其应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SHENZHEN UPCERA DENTAL TECHNOLOGY CO., LTD, CHINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHENG, YANCHUN;SONG, GUOYI;WANG, HONGJUAN;SIGNING DATES FROM 20170307 TO 20170308;REEL/FRAME:041928/0299 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |