US20180080149A1 - Antimicrobial fibers - Google Patents
Antimicrobial fibers Download PDFInfo
- Publication number
- US20180080149A1 US20180080149A1 US15/554,309 US201615554309A US2018080149A1 US 20180080149 A1 US20180080149 A1 US 20180080149A1 US 201615554309 A US201615554309 A US 201615554309A US 2018080149 A1 US2018080149 A1 US 2018080149A1
- Authority
- US
- United States
- Prior art keywords
- fiber
- antimicrobial
- polyacetal copolymer
- polyacetal
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 0 *C(*)(C)OC Chemical compound *C(*)(C)OC 0.000 description 3
Classifications
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/08—Filter cloth, i.e. woven, knitted or interlaced material
- B01D39/083—Filter cloth, i.e. woven, knitted or interlaced material of organic material
-
- A—HUMAN NECESSITIES
- A41—WEARING APPAREL
- A41D—OUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
- A41D31/00—Materials specially adapted for outerwear
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/14—Other self-supporting filtering material ; Other filtering material
- B01D39/16—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
- B01D39/1607—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
- B01D39/1615—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of natural origin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/14—Other self-supporting filtering material ; Other filtering material
- B01D39/16—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
- B01D39/1607—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
- B01D39/1623—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/14—Other self-supporting filtering material ; Other filtering material
- B01D39/16—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
- B01D39/1607—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
- B01D39/1623—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
- B01D39/163—Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin sintered or bonded
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/14—Other self-supporting filtering material ; Other filtering material
- B01D39/20—Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
- B01D39/2003—Glass or glassy material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/14—Other self-supporting filtering material ; Other filtering material
- B01D39/20—Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
- B01D39/2003—Glass or glassy material
- B01D39/2017—Glass or glassy material the material being filamentary or fibrous
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D39/00—Filtering material for liquid or gaseous fluids
- B01D39/14—Other self-supporting filtering material ; Other filtering material
- B01D39/20—Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
- B01D39/2055—Carbonaceous material
- B01D39/2065—Carbonaceous material the material being fibrous
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2/00—Addition polymers of aldehydes or cyclic oligomers thereof or of ketones; Addition copolymers thereof with less than 50 molar percent of other substances
- C08G2/18—Copolymerisation of aldehydes or ketones
- C08G2/22—Copolymerisation of aldehydes or ketones with epoxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2/00—Addition polymers of aldehydes or cyclic oligomers thereof or of ketones; Addition copolymers thereof with less than 50 molar percent of other substances
- C08G2/18—Copolymerisation of aldehydes or ketones
- C08G2/24—Copolymerisation of aldehydes or ketones with acetals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L59/00—Compositions of polyacetals; Compositions of derivatives of polyacetals
- C08L59/04—Copolyoxymethylenes
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/08—Melt spinning methods
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/08—Melt spinning methods
- D01D5/098—Melt spinning methods with simultaneous stretching
- D01D5/0985—Melt spinning methods with simultaneous stretching by means of a flowing gas (e.g. melt-blowing)
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/02—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D01F6/14—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated alcohols, e.g. polyvinyl alcohol, or of their acetals or ketals
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/58—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
- D01F6/66—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyethers
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/78—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F8/00—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
- D01F8/04—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
- D01F8/16—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one other macromolecular compound obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds as constituent
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/20—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
- D03D15/283—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/50—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04B—KNITTING
- D04B1/00—Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
- D04B1/14—Other fabrics or articles characterised primarily by the use of particular thread materials
- D04B1/16—Other fabrics or articles characterised primarily by the use of particular thread materials synthetic threads
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04B—KNITTING
- D04B21/00—Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
-
- A—HUMAN NECESSITIES
- A41—WEARING APPAREL
- A41B—SHIRTS; UNDERWEAR; BABY LINEN; HANDKERCHIEFS
- A41B1/00—Shirts
- A41B1/08—Details
-
- A—HUMAN NECESSITIES
- A41—WEARING APPAREL
- A41B—SHIRTS; UNDERWEAR; BABY LINEN; HANDKERCHIEFS
- A41B11/00—Hosiery; Panti-hose
-
- A—HUMAN NECESSITIES
- A41—WEARING APPAREL
- A41B—SHIRTS; UNDERWEAR; BABY LINEN; HANDKERCHIEFS
- A41B11/00—Hosiery; Panti-hose
- A41B11/14—Panti-hose; Body-stockings
-
- A—HUMAN NECESSITIES
- A41—WEARING APPAREL
- A41B—SHIRTS; UNDERWEAR; BABY LINEN; HANDKERCHIEFS
- A41B15/00—Handkerchiefs
-
- A—HUMAN NECESSITIES
- A41—WEARING APPAREL
- A41B—SHIRTS; UNDERWEAR; BABY LINEN; HANDKERCHIEFS
- A41B17/00—Selection of special materials for underwear
-
- A—HUMAN NECESSITIES
- A41—WEARING APPAREL
- A41B—SHIRTS; UNDERWEAR; BABY LINEN; HANDKERCHIEFS
- A41B2400/00—Functions or special features of shirts, underwear, baby linen or handkerchiefs not provided for in other groups of this subclass
- A41B2400/34—Functions or special features of shirts, underwear, baby linen or handkerchiefs not provided for in other groups of this subclass antimicrobial or antibacterial
-
- A—HUMAN NECESSITIES
- A41—WEARING APPAREL
- A41B—SHIRTS; UNDERWEAR; BABY LINEN; HANDKERCHIEFS
- A41B2500/00—Materials for shirts, underwear, baby linen or handkerchiefs not provided for in other groups of this subclass
- A41B2500/10—Knitted
-
- A—HUMAN NECESSITIES
- A41—WEARING APPAREL
- A41B—SHIRTS; UNDERWEAR; BABY LINEN; HANDKERCHIEFS
- A41B2500/00—Materials for shirts, underwear, baby linen or handkerchiefs not provided for in other groups of this subclass
- A41B2500/20—Woven
-
- A—HUMAN NECESSITIES
- A41—WEARING APPAREL
- A41B—SHIRTS; UNDERWEAR; BABY LINEN; HANDKERCHIEFS
- A41B2500/00—Materials for shirts, underwear, baby linen or handkerchiefs not provided for in other groups of this subclass
- A41B2500/30—Non-woven
-
- A—HUMAN NECESSITIES
- A41—WEARING APPAREL
- A41D—OUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
- A41D13/00—Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
- A41D13/04—Aprons; Fastening devices for aprons
-
- A—HUMAN NECESSITIES
- A41—WEARING APPAREL
- A41D—OUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
- A41D19/00—Gloves
-
- A—HUMAN NECESSITIES
- A41—WEARING APPAREL
- A41D—OUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
- A41D23/00—Scarves; Head-scarves; Neckerchiefs
-
- A—HUMAN NECESSITIES
- A41—WEARING APPAREL
- A41D—OUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
- A41D25/00—Neckties
-
- A—HUMAN NECESSITIES
- A41—WEARING APPAREL
- A41D—OUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
- A41D2600/00—Uses of garments specially adapted for specific purposes
- A41D2600/10—Uses of garments specially adapted for specific purposes for sport activities
-
- A—HUMAN NECESSITIES
- A41—WEARING APPAREL
- A41D—OUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
- A41D31/00—Materials specially adapted for outerwear
- A41D31/04—Materials specially adapted for outerwear characterised by special function or use
- A41D31/30—Antimicrobial, e.g. antibacterial
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47G—HOUSEHOLD OR TABLE EQUIPMENT
- A47G9/00—Bed-covers; Counterpanes; Travelling rugs; Sleeping rugs; Sleeping bags; Pillows
- A47G9/02—Bed linen; Blankets; Counterpanes
- A47G9/0238—Bed linen
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63H—TOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
- A63H3/00—Dolls
- A63H3/02—Dolls made of fabrics or stuffed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/02—Types of fibres, filaments or particles, self-supporting or supported materials
- B01D2239/0216—Bicomponent or multicomponent fibres
- B01D2239/0233—Island-in-sea
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/04—Additives and treatments of the filtering material
- B01D2239/0407—Additives and treatments of the filtering material comprising particulate additives, e.g. adsorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/04—Additives and treatments of the filtering material
- B01D2239/0442—Antimicrobial, antibacterial, antifungal additives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/04—Additives and treatments of the filtering material
- B01D2239/0457—Specific fire retardant or heat resistant properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/04—Additives and treatments of the filtering material
- B01D2239/0471—Surface coating material
- B01D2239/0492—Surface coating material on fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/06—Filter cloth, e.g. knitted, woven non-woven; self-supported material
- B01D2239/0604—Arrangement of the fibres in the filtering material
- B01D2239/0622—Melt-blown
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2239/00—Aspects relating to filtering material for liquid or gaseous fluids
- B01D2239/06—Filter cloth, e.g. knitted, woven non-woven; self-supported material
- B01D2239/0604—Arrangement of the fibres in the filtering material
- B01D2239/0627—Spun-bonded
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4326—Condensation or reaction polymers
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2321/00—Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D10B2321/06—Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of unsaturated alcohols, e.g. polyvinyl alcohol, or of their acetals or ketals
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2331/00—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
- D10B2331/06—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyethers
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2401/00—Physical properties
- D10B2401/13—Physical properties anti-allergenic or anti-bacterial
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2501/00—Wearing apparel
- D10B2501/02—Underwear
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2501/00—Wearing apparel
- D10B2501/02—Underwear
- D10B2501/021—Hosiery; Panti-hose
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2501/00—Wearing apparel
- D10B2501/04—Outerwear; Protective garments
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2501/00—Wearing apparel
- D10B2501/04—Outerwear; Protective garments
- D10B2501/041—Gloves
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2501/00—Wearing apparel
- D10B2501/04—Outerwear; Protective garments
- D10B2501/042—Headwear
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2501/00—Wearing apparel
- D10B2501/04—Outerwear; Protective garments
- D10B2501/045—Neckties
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2503/00—Domestic or personal
- D10B2503/02—Curtains
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2503/00—Domestic or personal
- D10B2503/04—Floor or wall coverings; Carpets
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2503/00—Domestic or personal
- D10B2503/06—Bed linen
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2505/00—Industrial
- D10B2505/04—Filters
Definitions
- the present invention relates to an antimicrobial fiber having a polyacetal copolymer on its surface.
- the invention also relates to a nonwoven fabric, a knitted fabric, a woven fabric, a felt and a web which each include the antimicrobial fiber.
- the invention relates to a filter including the nonwoven fabric, and to a clothing article, a bedding article or an interior article including any one or more selected from the group consisting of the knitted fabrics, the woven fabrics, the felts and the webs.
- Polyacetal is an engineering plastic with excellent mechanical properties, heat resistance, chemical resistance and electrical characteristics, and is widely used in fields such as electric appliances, automobiles, machinery and building materials. Further, polyacetal is easy to fabricate into articles and is used as fibers, nonwoven fabrics and filters (see, for example, Patent Literatures 1 to 3).
- plastics have been increasingly required to be resistant to microbes (to have antimicrobial properties) in addition to having the properties described above. Because of their nature as dielectric materials or electrically insulating materials, however, plastics are prone to attract airborne dusts and microbes and tend to allow microbes to grow on their surfaces if the temperature and humidity conditions are appropriate. The growth of microbes deteriorates the appearance and causes a bad odor, and microbes contaminate objects that have touched them. For example, Moraxella osloensis is known to be the cause of 4-methyl-3-hexenoic acid which is responsible for the rag-like smell of washed clothes.
- a known approach to improving the antimicrobial properties of plastics is to knead into the plastics an organic antimicrobial agent such as 2-(4-thiazolyl)-benzimidazole (thiabendazole) or an inorganic antimicrobial agent such as a substance containing metal ions, for example, silver, copper or zinc ions, or to coat the surface of plastic articles with such an organic antimicrobial agent or inorganic antimicrobial agent (see, for example, Patent Literatures 4 and 5).
- an organic antimicrobial agent such as 2-(4-thiazolyl)-benzimidazole (thiabendazole)
- an inorganic antimicrobial agent such as a substance containing metal ions, for example, silver, copper or zinc ions
- Patent Literature 4 discloses a resin composition in which a metal ion-containing substance such as zinc benzoate, zinc sulfate or zinc oxide is melt-kneaded into polyacetal.
- Patent Literature 5 discloses a resin composition in which a poly- ⁇ -alanine polymer and an inorganic antimicrobial zeolite are melt-kneaded into polyacetal.
- Patent Literature 6 discloses a resin composition in which a specific hindered amine substance such as dimethyl succinate-1-(2-hydroxyethyl)-4-hydroxy-2,2,6,6-tetramethylpiperidine polycondensate is melt-kneaded into polyacetal.
- Patent Literature 1 Japanese Patent Laid-Open No. 2008-163505
- Patent Literature 2 Japanese Patent Laid-Open No. 2004-360146
- Patent Literature 3 Japanese Patent Laid-Open No. 2005-13829
- Patent Literature 4 Japanese Patent Laid-Open No. H5-230325
- Patent Literature 5 Japanese Patent Laid-Open No. H9-291193
- Patent Literature 6 Japanese Patent Laid-Open No. H10-265585
- Organic antimicrobial agents frequently have problems in terms of aspects such as appearance, heat resistance, safety (for example, carcinogenicity and atopicity) and resin affinity.
- the aforementioned thiabendazole when mixed with plastics, shows a very high tendency to bleed out and thus cannot be expected to provide persistent antimicrobial effects (antimicrobial properties).
- bleeding causes problems such as the surface of articles being white bloomy or the surface of articles being sticky.
- the compound is carcinogenic.
- organic antimicrobial agents have another problem in that they are easily decomposed by heat when being melt-kneaded with plastic materials (see, for example, Patent Literature 4).
- inorganic antimicrobial agents need to be added in large amounts (for example, 1 to 2 wt %) to plastics in order to provide antimicrobial effects, that the antimicrobial agents are detached from plastics due to friction or the like to fail to provide persistent effects, and that the antimicrobial agents are dissolved by contact with water and solvents.
- An object of the present invention is to provide an antimicrobial fiber which has excellent antimicrobial properties and can remain antimicrobial even after repeated washing. Another object is to provide a nonwoven fabric, a knitted fabric, a woven fabric, a felt and a web which each include the antimicrobial fiber described above and exhibit excellent antimicrobial properties. A further object of the invention is to provide a filter including the nonwoven fabric, and a clothing article, a bedding article or an interior article which includes any one or more selected from the group consisting of the knitted fabrics, the woven fabrics, the felts and the webs.
- the present invention pertains to the following.
- An antimicrobial fiber including a fiber having a polyacetal copolymer (X) on a surface thereof, the polyacetal copolymer (X) having oxymethylene groups and oxyalkylene groups of the following general formula (1), the molar amount of the oxyalkylene groups in the polyacetal copolymer (X) being 0.2 to 5 mol % relative to the total of the molar amount of the oxymethylene groups and the molar amount of the oxyalkylene groups,
- R 0 and R 0 ′ which may be the same as or different from each other, are each selected from a hydrogen atom, a C 1-8 alkyl group, an organic group having a C 1-8 alkyl group, a phenyl group and an organic group having a phenyl group, and m is an integer of 2 to 6.
- thermoplastic resin is one or more selected from polyacetal homopolymers, polyacetal copolymers other than the polyacetal copolymer (X), polyolefin resins, polylactic acid resins, nylon resins, polyester resins, polyvinyl resins and elastomers of these resins.
- a filter including the nonwoven fabric described in (7) A filter including the nonwoven fabric described in (7).
- a clothing article including one or more selected from the group consisting of the knitted fabrics, the woven fabrics, the felts and the webs described in (9) to (12).
- a bedding article including one or more selected from the group consisting of the knitted fabrics, the woven fabrics, the felts and the webs described in (9) to (12).
- An interior article including one or more selected from the group consisting of the knitted fabrics, the woven fabrics, the felts and the webs described in (9) to (12).
- an antimicrobial fiber can be provided which has excellent antimicrobial properties and can remain antimicrobial even after repeated washing.
- the antimicrobial fiber of the invention can be fabricated into a nonwoven fabric, a knitted fabric, a woven fabric, a felt and a web which exhibit excellent antimicrobial properties.
- the invention can provide a filter, a clothing article, a bedding article and an interior article which each include any of the above fabricated products and have excellent antimicrobial properties.
- an aspect of the invention resides in an antimicrobial fiber which comprises a fiber having a polyacetal copolymer (X) on a surface thereof.
- the polyacetal copolymer (X) has oxymethylene groups and oxyalkylene groups of the general formula (1) described later.
- the molar amount of the oxyalkylene groups in the polyacetal copolymer (X) is 0.2 to 5 mol % relative to the total of the molar amount of the oxymethylene groups and the molar amount of the oxyalkylene groups.
- the antimicrobial fiber of the invention is characterized in that the fiber has on a surface thereof a polyacetal copolymer (X) which contains 0.2 to 5 mol % of oxyalkylene groups of the general formula (1) described later relative to the total of the molar amount of oxymethylene groups and the molar amount of oxyalkylene groups.
- X polyacetal copolymer
- the antimicrobial fiber of the invention is a fiber having the polyacetal copolymer (X) on a surface thereof.
- the fiber may have the polyacetal copolymer (X) on a surface thereof in any configuration without limitation.
- the fiber is [A] a monolayer fiber of the polyacetal copolymer (X), [B] a multilayer fiber having a coating of the polyacetal copolymer (X) on a fiber comprising a thermoplastic resin, or [C] a conjugate fiber having the polyacetal copolymer (X) on a surface of a fiber comprising a thermoplastic resin.
- the monolayer fiber [A] of the polyacetal copolymer (X) is a fiber comprising the polyacetal copolymer (X).
- the monolayer fiber may be obtained by melt-spinning the polyacetal copolymer (X) and optionally drawing the fiber as required.
- the core may be a fiber comprising a thermoplastic resin.
- the type of the thermoplastic resin is not particularly limited.
- the thermoplastic resin include polyacetal homopolymers, polyacetal copolymers other than the polyacetal copolymer (X) (for example, polyacetal copolymers containing more than 5 mol % of oxyalkylene groups of the general formula (1) relative to the total of the molar amount of oxymethylene groups and the molar amount of oxyalkylene groups), polyolefin resins, polylactic acid resins, nylon resins, polyester resins, polyvinyl resins and elastomers of these resins.
- thermoplastic resins may be used singly, or two or more may be used as a stack or a compatibilized resin.
- coating used in the present invention means that the entirety or a portion of the surface of the core fiber parallel to the fiber direction is covered.
- the proportion of the coating on the surface is not particularly limited, but a higher proportion is more preferable because excellent antimicrobial properties are attained.
- the multilayer fiber may be obtained by melt-spinning the polyacetal copolymer (X) and the aforementioned thermoplastic resin and optionally drawing the fiber as required.
- the resultant multilayer fiber has a sheath-core structure in which the polyacetal copolymer (X) covers the entirety or a portion of the periphery of a fiber comprising the thermoplastic resin as the core fiber.
- the type of the thermoplastic resin is not particularly limited and may be similar to the thermoplastic resin in the multilayer fiber configuration described above.
- the thermoplastic resins may be used singly, or two or more may be used as a stack or a compatibilized resin.
- the conjugate fiber having the polyacetal copolymer (X) on a surface of a fiber comprising a thermoplastic resin may be obtained by melt-spinning a mixture of the polyacetal copolymer (X) and the aforementioned thermoplastic resin, and optionally drawing the fiber as required.
- the resultant conjugate fiber may be such that the polyacetal copolymer (X) is exposed on the fiber surface on the polymer molecular level by being compatibilized with the thermoplastic resin, or such that the polyacetal copolymer (X) is exposed on the fiber surface while forming an islands-sea structure or other dispersed phases derived from such a structure, or such that the polyacetal copolymer (X) and the thermoplastic resin are exposed on the surface side by side.
- the proportion in which the polyacetal copolymer (X) is exposed on the surface of the conjugate fiber is not particularly limited, but a higher proportion is more preferable because excellent antimicrobial properties are attained.
- the orientation factor of the polyacetal copolymer (X) is not particularly limited, but is preferably not less than 60%, more preferably not less than 70%, and particularly preferably not less than 80%.
- the reason for this preference is that the antimicrobial properties are enhanced with increasing orientation factor of the polyacetal copolymer (X).
- the antimicrobial properties of the polyacetal copolymer (X) are correlated with the amount of oxyalkylene groups contained in the copolymer, and the polyacetal copolymer (X) tends to decrease its antimicrobial properties as the content of oxyalkylene groups is increased.
- the orientation factor comes to have a greater impact on the antimicrobial properties as the content of oxyalkylene groups in the polyacetal copolymer (X) is higher. Because of this characteristic, a higher orientation factor provides higher antimicrobial properties when the polyacetal copolymer (X) has a high content of oxyalkylene groups.
- the orientation factor of the polyacetal copolymer (X) may be efficiently increased by drawing the fiber that has been melt-spun.
- the orientation factor of the antimicrobial fiber may be determined using a wide angle X-ray diffractometer as will be described in Examples in the present specification.
- the acceptable monofilament fineness of the antimicrobial fiber of the invention is variable depending on the purpose of use, and thus the monofilament fineness is not particularly limited.
- the fineness is preferably not more than 10 dtex (unit: decitex) because of the need of increasing the filtration accuracy while reducing the pressure loss of the fluid.
- the bacteriostatic activity of the antimicrobial fiber of the invention is usually not less than 2.2, preferably not less than 2.4, and particularly preferably not less than 2.7. This activity value qualifies for the certification as being antimicrobial and deodorant finished that is established by Japan Textile Evaluation Technology Council.
- the antimicrobial fiber of the invention is also characterized by its high bactericidal activity on Staphylococcus aureus . Another outstanding characteristic is that such antimicrobial properties persist even after repeated washing as compared to antimicrobial fibers obtained by kneading antimicrobial substances into polyacetal fibers.
- the antimicrobial fiber of the invention exhibits high bacteriostatic activity also on Moraxella osloensis which causes a bad smell.
- the bacteriostatic activity on Moraxella osloensis is usually not less than 1.8, preferably not less than 2.0, and particularly preferably not less than 2.2.
- the antimicrobial fiber of the invention is also characterized by its high bactericidal activity on Moraxella osloensis . Another outstanding characteristic is that such antimicrobial properties persist even after repeated washing as compared to antimicrobial fibers obtained by kneading antimicrobial substances into polyacetal fibers.
- the antimicrobial fiber of the invention may be produced by a known fiber production method.
- the fiber may be produced by melt-spinning, for example, pellets of the polyacetal copolymer (X).
- X polyacetal copolymer
- the drawing may be performed by a known method under known conditions.
- the draw ratio is preferably 3 times or more from the point of view of orientation factor.
- the upper limit of the draw ratio is not limited from the point of view of orientation factor, but is 15 times to ensure stability during production (to prevent filament breakage) and to prevent excessive fibril formation.
- the apparatuses for melt-spinning and drawing may be conventional apparatuses.
- the polyacetal copolymer (X) present on a surface of the antimicrobial fiber of the invention has, in the molecule, oxymethylene groups (—CH 2 —O—) and oxyalkylene groups having a structure of the following general formula (1):
- R 0 and R 0 ′ which may be the same as or different from each other, are each selected from a hydrogen atom, a C 1-8 alkyl group, an organic group having a C 1-8 alkyl group, a phenyl group and an organic group having a phenyl group.
- the letter m is an integer of 2 to 6.
- R 0 and R 0 ′ may be the same as or different from each other and are each selected from a hydrogen atom, a C 1-4 alkyl group, a C 1-4 alkoxy group, a phenyl group and a benzyl group, and m is an integer of 2 to 4. More preferably, R 0 and R 0 ′ are each selected from a hydrogen atom and a C 1-4 alkyl group, and m is 2.
- Examples of the C 1-8 alkyl groups include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, pentyl group, hexyl group and cyclohexyl group.
- Examples of the organic groups having a C 1-8 alkyl group include methoxy group, ethoxy group, propoxy group, isopropoxy group and butoxy group.
- Examples of the organic groups having a phenyl group include benzyl group and phenethyl group.
- Preferred oxyalkylene groups are oxyethylene groups, oxypropylene groups and oxybutylene groups. Oxyethylene groups are particularly preferable.
- a single kind, or two or more kinds of the oxyalkylene groups may be present in the polyacetal copolymer (X). That is, the polyacetal copolymer (X) of the invention may be a binary copolymer or a multicomponent copolymer.
- the polyacetal copolymer (X) of the invention may be a polyacetal copolymer which further has a block structure other than the oxymethylene groups and the oxyalkylene groups, or may be a polyacetal copolymer which further has a branch structure in the molecule.
- polyacetal copolymers examples include a polyacetal copolymer which is obtained using as a chain transfer agent a thermoplastic resin or an oligomer that has an active hydrogen-containing functional group such as a hydroxyl group at a molecular end or within the molecule and which has the structure of the chain transfer agent introduced at a molecular end; and a polyacetal copolymer which is obtained by polymerization reaction in the presence of a compound that contains, in the main chain, a copolymerizable cyclic formal moiety such as polyvinyl formal.
- the polyacetal copolymer (X) of the invention may be one produced using a termonomer such as an epoxy compound, for example, glycidyl ether, or allyl ether, or the polyacetal copolymer may have a structure derived from such a compound.
- a termonomer such as an epoxy compound, for example, glycidyl ether, or allyl ether
- the range of the content of oxyalkylene groups (the molar amount of oxyalkylene groups) in general polyacetal copolymers is as wide as from 0.01 to 20 mol % relative to the total of the molar amount of oxymethylene groups and the molar amount of oxyalkylene groups.
- the content of oxyalkylene groups (the molar amount of oxyalkylene groups) in the inventive polyacetal copolymer (X) is usually 0.2 to 5 mol % relative to the total of the molar amount of oxymethylene groups and the molar amount of oxyalkylene groups, and is preferably 0.2 to 3.0 mol %, more preferably 0.2 to 2.0 mol %, and particularly preferably 0.2 to 1.0 mol %.
- the copolymer attains excellent antimicrobial properties and exhibits high bacteriostatic activity which shows antimicrobial properties, and is resistant to a decrease in bacteriostatic activity even when subjected to repeated washing.
- the content of oxyalkylene groups is not less than 0.2 mol % and not more than 3.0 mol %, the copolymer attains higher antimicrobial properties and exhibits higher bacteriostatic activity which shows antimicrobial properties, and is more resistant to a decrease in bacteriostatic activity even when subjected to repeated washing.
- the polyacetal copolymer (X) of the invention that is used may be a single such copolymer or may be a combination of two or more polyacetal copolymers having different kinds of oxyalkylene groups or a combination of two or more polyacetal copolymers having different contents of oxyalkylene groups.
- these polyacetal copolymers may be in the compatibilized state, may form an islands-sea structure or other dispersed phases derived from such a structure, or may have a side-by-side configuration or the like.
- the polyacetal copolymer (X) of the invention preferably has an MVR (melt volume rate) in accordance with ISO 1133 of not more than 100 cm 3 /10 min. While a higher MVR value is more suited for the production of fine fibers by melt-spinning, 100 cm 3 /10 mm or less melt volume rate ensures that the obtainable fiber attains excellent mechanical properties (in particular, toughness).
- MVR melt volume rate
- the polyacetal copolymer (X) of the invention may be produced by any method that is known and conventional.
- a polyacetal resin having oxymethylene groups and C 2-4 oxyalkylene groups as structural units may be produced by copolymerizing a cyclic acetal formed by oxymethylene groups such as formaldehyde trimer (trioxane) or tetramer (tetraoxane), with a cyclic acetal containing a C 2-4 oxyalkylene group such as ethylene oxide, 1,3-dioxolane, 1,3,6-trioxocane or 1,3-dioxepane.
- the polyacetal copolymer (X) of the invention is preferably a copolymer of a cyclic acetal such as trioxane or tetraoxane, and ethylene oxide or 1,3-dioxolane, and is particularly preferably a copolymer of trioxane and 1,3-dioxolane.
- the polyacetal copolymer (X) of the invention may be obtained by bulk polymerization of a cyclic acetal formed by oxymethylene groups with a cyclic acetal comonomer containing a C 2-4 oxyalkylene group in the presence of a polymerization catalyst.
- a reaction terminator may be used as required to deactivate the polymerization catalyst and the growing ends of the polymer.
- a molecular weight modifier may be used as required to control the molecular weight of the polyacetal copolymer.
- the types and amounts of the polymerization catalyst, the reaction terminator and the molecular weight modifier which may be used in the production of the polyacetal copolymer (X) of the invention are not particularly limited as long as the advantageous effects of the invention are not impaired. Any known polymerization catalysts, reaction terminators and molecular weight modifiers may be used appropriately.
- the polymerization catalysts are not particularly limited. Examples thereof include Lewis acids such as boron trifluoride, tin tetrachloride, titanium tetrachloride, phosphorus pentachloride, phosphorus pentafluoride, arsenic pentafluoride and antimony pentafluoride, and complex compounds or salt compounds of these Lewis acids. Examples further include protonic acids such as trifluoromethanesulfonic acid and perchloric acid; protonic acid esters such as esters of perchloric acid with lower aliphatic alcohols; and protonic acid anhydrides such as mixed anhydrides of perchloric acid with lower aliphatic carboxylic acids.
- Lewis acids such as boron trifluoride, tin tetrachloride, titanium tetrachloride, phosphorus pentachloride, phosphorus pentafluoride, arsenic pentafluoride and antimony pentafluoride, and complex compounds or salt
- Examples further include triethyloxonium hexafluorophosphate, triphenylmethyl hexafluoroarsenate, acetyl hexafluoroborate, heteropoly acids or acidic salts thereof, isopoly acids or acidic salts thereof, and perfluoroalkylsulfonic acids or acidic salts thereof.
- compounds containing boron trifluoride are preferable, and coordination complexes thereof with ethers, specifically, boron trifluoride diethyl etherate and boron trifluoride dibutyl etherate are particularly preferable.
- the amount of the polymerization catalyst is not particularly limited, but is usually in the range of 1.0 ⁇ 10 ⁇ 8 to 2.0 ⁇ 10 ⁇ 3 mol per 1 mol of all the monomers including trioxane and comonomer(s), and is preferably 5.0 ⁇ 10 ⁇ 8 to 8.0 ⁇ 10 ⁇ 4 mol, and particularly preferably 5.0 ⁇ 10 ⁇ 8 to 1.0 ⁇ 10 ⁇ 4 mol.
- the reaction terminator is not particularly limited. Examples thereof include trivalent organic phosphorus compounds, amine compounds, and hydroxides of alkali metals or alkaline earth metals. These reaction terminators may be used singly, or two or more may be used in combination. In particular, trivalent organic phosphorus compounds, tertiary amines and hindered amines are preferable.
- the amount of the reaction terminator is not particularly limited as long as the amount is sufficient to deactivate the polymerization catalyst.
- the molar ratio thereof to the polymerization catalyst is usually in the range of 1.0 ⁇ 10 ⁇ 1 to 1.0 ⁇ 10 1 .
- the molecular weight modifier is not particularly limited. Examples thereof include methylal, methoxymethylal, dimethoxymethylal, trimethoxymethylal and oxymethylene di-n-butyl ether. In particular, methylal is preferable.
- the amount of the molecular weight modifier is determined appropriately in accordance with the target molecular weight. The amount is usually controlled in the range of 0 to 0.1 mass % relative to all the monomers.
- hindered phenol compounds hindered amine compounds, amino-substituted triazine compounds, phosphorus stabilizers, and metal-containing compounds represented by the group consisting of hydroxides, fatty acid salts, inorganic acid salts or alkoxides of alkali metals and alkaline earth metals, may be added to the polyacetal copolymer (X) of the invention while still achieving the original objects.
- hindered amine compounds hindered amine compounds, amino-substituted triazine compounds, phosphorus stabilizers, and metal-containing compounds represented by the group consisting of hydroxides, fatty acid salts, inorganic acid salts or alkoxides of alkali metals and alkaline earth metals” described above are sometimes written as “optional components” hereinbelow. Such optional components may be conventional.
- additives such as stabilizers, nucleating agents, release agents, fillers, pigments, dyes, lubricants, plasticizers, antistatic agents, oil agents, sizing agents, UV absorbers, flame retardants, flame retardant aids, antifungal agents and antiviral agents, as well as other resins, elastomers or the like may be added as required appropriately to the polyacetal copolymer (X) of the invention while still achieving the original objects.
- the “various additives such as stabilizers, nucleating agents, release agents, fillers, pigments, dyes, lubricants, plasticizers, antistatic agents, oil agents, sizing agents, UV absorbers, flame retardants, flame retardant aids, antifungal agents and antiviral agents, as well as other resins, elastomers or the like” are sometimes written as “additional components” hereinbelow.
- fillers examples include mineral fillers and glass fibers such as glass fibers, glass flakes, glass beads, wollastonite, mica, talc, boron nitride, calcium carbonate, kaolin, silicon dioxide, clay, asbestos, silica, diatomaceous earth, graphite and molybdenum disulfide, inorganic fibers such as middle fibers, potassium titanate fibers and boron fibers, organic fibers represented by carbon fibers and aramid fibers, potassium titanate whisker, carbon black, and pigments.
- glass fibers such as glass fibers, glass flakes, glass beads, wollastonite, mica, talc, boron nitride, calcium carbonate, kaolin, silicon dioxide, clay, asbestos, silica, diatomaceous earth, graphite and molybdenum disulfide
- inorganic fibers such as middle fibers, potassium titanate fibers and boron fibers
- organic fibers represented by carbon fibers and aramid fibers potassium titan
- the above-mentioned optional components and additional components may be added to the polyacetal copolymer (X) by any methods without limitation.
- the polyacetal copolymer (X), and the optional components and/or the additional components which are added as required may be mixed and kneaded together in any order.
- the mixing and kneading conditions such as temperature and pressure may be selected appropriately from those conditions adopted in the production of conventional polyacetal copolymers.
- the kneading may take place at or above the melting point of the polyacetal copolymer, and is preferably carried out at not less than 180° C. and not more than 260° C.
- the apparatus for the production of the polyacetal copolymer is not particularly limited and may be a mixer, a kneader or the like conventionally used for the production of this type of polyacetal copolymers.
- the above-mentioned optional components and additional components may be separately mixed with, caused to penetrate, adsorbed to or attached to the fiber containing the polyacetal copolymer (X).
- the antimicrobial fiber of the invention can be fabricated into a nonwoven fabric, a woven fabric, a knitted fabric, a felt, a web or the like in accordance with the use application.
- a filter comprising such a nonwoven fabric is particularly suited.
- Such a nonwoven fabric, woven fabric, knitted fabric, felt and web have the same level of antimicrobial properties as the antimicrobial fiber of the invention, and have outstanding characteristic that antimicrobial properties persist even after repeated washing.
- the inventive fibers do not suffer problems during fabrication in terms of heat resistance or discoloration and have excellent safety as compared to conventional antimicrobial fibers containing organic antimicrobial agents or inorganic antimicrobial agents, thus finding a wide range of suitable applications.
- the nonwoven fabrics of the present invention may be suitably used as filters.
- a filter has the same level of antimicrobial properties as the antimicrobial fiber of the invention, and has outstanding characteristic that antimicrobial properties persist even after repeated washing.
- the woven fabrics, the knitted fabrics, the felts and the webs of the present invention may be suitably used in applications including clothing articles such as underwear, shirts, sportswear, aprons, socks, stockings, tights, pantyhose, Japanese tabi socks, Japanese dress goods, neckties, handkerchiefs, scarves, headgears, gloves, masks and diapers, bedding articles such as pillow covers, blankets, sheets and futon or bed batting, interior articles such as curtains, carpets, mats, rugs, wall hangings, wall upholsteries, tablecloths and moquette, and miscellaneous goods such as towels, kitchen towels, scrub brushes, mops and batting in stuffed toys.
- These clothing articles, bedding articles, interior articles and miscellaneous goods also have the same level of anti
- the antimicrobial fibers of the invention may be fabricated into products such as nonwoven fabrics, woven fabrics, knitted fabrics, felts and webs
- the antimicrobial fibers of the invention may be conjugated with synthetic fibers such as nylons, polyesters and polyurethanes, natural fibers such as cotton and silk, carbon fibers, glass fibers or the like so as to form twisted yarns, covered yarns or braids which are then fabricated into products such as nonwoven fabrics, woven fabrics, knitted fabrics, felts and webs.
- inventive fibers may be mixed or mix-spun with synthetic fibers such as nylons, polyesters and polyurethanes, natural fibers such as cotton and silk, carbon fibers or glass fibers and may be fabricated into products such as nonwoven fabrics, woven fabrics, knitted fabrics, felts and webs.
- synthetic fibers such as nylons, polyesters and polyurethanes, natural fibers such as cotton and silk
- carbon fibers or glass fibers may be fabricated into products such as nonwoven fabrics, woven fabrics, knitted fabrics, felts and webs.
- inventive antimicrobial fibers or products such as woven fabrics or knitted fabrics fabricated in accordance with use applications may be further subjected to dyeing and various finish treatments (such as crease resistant treatment, antifouling, flame retarding, mothproofing, mildew proofing, deodorization, hygroscopic treatment, waterproofing, lustering and anti-pilling) to impart functions other than antimicrobial properties.
- the antimicrobial nonwoven fabric of the invention may be produced by any method without limitation.
- a known method such as a dry process, a wet process, a spunbonding process or a meltblowing process may be used.
- the fibers be sufficiently bonded or entangled together to prevent detachment of the fibers.
- thermal bonding can achieve sufficient bonding and is thus preferable.
- the polyacetal copolymer (X) may be used also in a frame member that supports the above nonwoven fabric filter. In this manner, the product attains excellent antimicrobial properties and recycling properties.
- the polyacetal copolymers used in Examples and Comparative Examples are described below.
- the content of oxyethylene groups (the molar amount of oxyethylene groups) in the polyacetal copolymer (X) is a value relative to the total of the molar amount of oxymethylene groups and the molar amount of oxyethylene groups.
- POM-1 polyacetal copolymer having a content of oxyethylene groups of 0.4 mol % and an MVR of 8
- POM-2 polyacetal copolymer having a content of oxyethylene groups of 1.6 mol % and an MVR of 8
- POM-3 polyacetal copolymer having a content of oxyethylene groups of 3.0 mol % and an MVR of 8
- POM-4 polyacetal copolymer having a content of oxyethylene groups of 4.7 mol % and an MVR of 8 POM-5: polyacetal copolymer having a content of oxyethylene groups of 5.7 mol % and an MVR of 8
- PLA polylactic acid resin
- TERRAMAC registered trademark
- PET polyethylene terephthalate resin
- multifilaments having a monofilament fineness of 2 decitex were used as such.
- the MVR (cm 3 /10 min) of the polyacetal copolymers was measured in accordance with ISO 1133.
- the polyacetal copolymers used in Examples and Comparative Examples were each dissolved into hexafluoroisopropanol (d2) to give NMR measurement samples.
- the measurement samples were analyzed to record NMR spectra, from which the contents of oxyethylene groups in the polyacetal copolymers were measured.
- the fiber fineness [dtex (decitex)] the fiber diameter of a monofilament was measured using an optical microscope, and the fineness was calculated assuming that the density was 1.40 g/cm 3 . The average of fifty fibers was obtained as the fiber fineness.
- the measurement was performed with a wide angle X-ray diffractometer (DP-D1 manufactured by Shimadzu Corporation), using CuK ⁇ (a Ni filter was used) as the radiation source (output 45 KV, 40 mA).
- the temperature of a cylinder and a nozzle portion was increased to 200° C.
- a molten resin was ejected through a nozzle having 48 holes 0.6 mm in diameter, at a rate of 1.2 kg/h.
- the rate of ejection from the nozzle was 0.6 kg/h for each of the resin for the core and the resin for the sheath.
- the as-ejected fibers were continuously collected at a constant take-off speed of 100 m/min, and the as-ejected fibers were subsequently guided to a thermal drawing step in which the fibers were drawn at a roll temperature of 120 to 140° C. A fiber sample was thus fabricated.
- the drawn fibers obtained above were crimped and were cut to a length of 51 mm.
- the fibers were then formed into a web with a carding machine (manufactured by Kyowa Kizai Seisakusho) and were entangled with a needle punching machine (manufactured by Daiwa Kikou) into a needle punched nonwoven fabric.
- the antimicrobial properties were evaluated by a quantitative test (a bacterial liquid absorption method).
- the bacteria were cultured at 37 ⁇ 2° C. for 18 ⁇ 1 hours. The bacteria were then washed out from the samples by the addition of 20 ml of physiological saline containing 0.2% nonionic surfactant.
- the bacterial count in the spent washing liquid was measured by a pour plate culture method (a colony method), and the bacteriostatic activity was calculated using the equation (2) below.
- 2.2 or higher bacteriostatic activity on Staphylococcus aureus corresponds to the SEK mark (blue: antimicrobial and deodorant finished) certified by Japan Textile Evaluation Technology Council.
- the bactericidal activity was calculated using the equation (3) below. The larger the value of bactericidal activity, the more excellent the antimicrobial properties. More than 0 activity means that bacteria are reduced in number between before and after the antimicrobial test.
- Bacteriostatic activity ⁇ log(viable bacterial count after culture in standard cotton cloth) ⁇ log(viable bacterial count immediately after inoculation on standard cotton cloth) ⁇ log(viable bacterial count after culture in measurement sample) ⁇ log(viable bacterial count immediately after inoculation on measurement sample) ⁇ Equation (2)
- Bactericidal activity log(viable bacterial count immediately after inoculation on standard cotton cloth) ⁇ log(viable bacterial count after culture in measurement sample) Equation (3)
- the retentions of bacteriostatic activity and bactericidal activity after 10 times of washing were determined in the following manner.
- the washing method was in conformity with JIS L 0217, No. 103, and the detergent was JAFET standard detergent.
- the samples were subjected to the above antimicrobial testing, and the retention [unit: %] of bacteriostatic activity after 10 times of washing was calculated using the equation (4) below. Further, the retention [unit: %] of bactericidal activity after 10 times of washing was calculated using the equation (5) below. In each case, the closer the value to 100%, the higher the antimicrobial properties.
- the bacteriostatic activity, the bactericidal activity, and the retentions of bacteriostatic activity and bactericidal activity after 10 times of washing were measured on Staphylococcus aureus and Moraxella osloensis.
- Table 1 shows Examples of monolayer fibers of a polyacetal copolymer having an oxyethylene content in the prescribed range, multilayer fibers of polyacetal copolymers having an oxyethylene content in the prescribed range, and multilayer fibers of PLA and a polyacetal copolymer having an oxyethylene content in the prescribed range, and Comparative Examples of polyester fibers and monolayer fibers of a polyacetal copolymer having an oxyethylene content exceeding the prescribed range.
- the table describes the oxyethylene content in the polyacetal copolymer, the monofilament fineness, the orientation factor, the viable bacterial count (unit: colonies) after culture in the aforementioned antimicrobial test, the increase ratio before and after the antimicrobial test, the bacteriostatic activity, the retention of bacteriostatic activity after 10 times of washing, the bactericidal activity, and the retention of bactericidal activity after 10 times of washing obtained in each of Examples and Comparative Examples.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mechanical Engineering (AREA)
- Artificial Filaments (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Knitting Of Fabric (AREA)
- Multicomponent Fibers (AREA)
- Nonwoven Fabrics (AREA)
- Woven Fabrics (AREA)
- Filtering Materials (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015054267 | 2015-03-18 | ||
JP2015-054267 | 2015-03-18 | ||
PCT/JP2016/057513 WO2016147998A1 (ja) | 2015-03-18 | 2016-03-10 | 抗菌用繊維 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/057513 A-371-Of-International WO2016147998A1 (ja) | 2015-03-18 | 2016-03-10 | 抗菌用繊維 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/567,779 Continuation US11767423B2 (en) | 2015-03-18 | 2019-09-11 | Antimicrobial fibers |
Publications (1)
Publication Number | Publication Date |
---|---|
US20180080149A1 true US20180080149A1 (en) | 2018-03-22 |
Family
ID=56918820
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/554,309 Abandoned US20180080149A1 (en) | 2015-03-18 | 2016-03-10 | Antimicrobial fibers |
US16/567,779 Active 2039-01-24 US11767423B2 (en) | 2015-03-18 | 2019-09-11 | Antimicrobial fibers |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/567,779 Active 2039-01-24 US11767423B2 (en) | 2015-03-18 | 2019-09-11 | Antimicrobial fibers |
Country Status (7)
Country | Link |
---|---|
US (2) | US20180080149A1 (ko) |
EP (1) | EP3272917B1 (ko) |
JP (1) | JP6787309B2 (ko) |
KR (1) | KR102551954B1 (ko) |
CN (1) | CN107407010B (ko) |
TW (1) | TWI704259B (ko) |
WO (1) | WO2016147998A1 (ko) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180064582A1 (en) * | 2015-03-20 | 2018-03-08 | Ruggiero DEFENTE | Differentiated lymph drainage garment |
US20180266018A1 (en) * | 2015-09-18 | 2018-09-20 | Mitsubishi Gas Chemical Company, Inc. | Fiber for contact cold sensation and fibrous product using the same |
US11441242B2 (en) | 2017-07-14 | 2022-09-13 | Mitsubishi Gas Chemical Company, Inc. | Method for manufacturing polyacetal fiber |
US11634558B2 (en) | 2017-12-28 | 2023-04-25 | Mitsubishi Gas Chemical Company, Inc. | Optical resin material for chromatic aberration correction |
CN117166113A (zh) * | 2023-09-06 | 2023-12-05 | 深圳市棉花谈服饰有限公司 | 一种抗菌亲肤面料 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10828587B2 (en) | 2015-04-17 | 2020-11-10 | Hollingsworth & Vose Company | Stable filter media including nanofibers |
US10538863B2 (en) | 2015-09-18 | 2020-01-21 | Mitsubishi Gas Chemical Company, Inc. | Cloth having excellent contact cold sensation and colorfastness |
US11452959B2 (en) | 2018-11-30 | 2022-09-27 | Hollingsworth & Vose Company | Filter media having a fine pore size distribution |
JP7229800B2 (ja) * | 2019-02-07 | 2023-02-28 | 旭化成株式会社 | ポリアセタール樹脂組成物 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08144128A (ja) * | 1994-11-15 | 1996-06-04 | Kanebo Ltd | 複合繊維および不織布および編織物 |
JP2005013829A (ja) * | 2003-06-25 | 2005-01-20 | Polyplastics Co | ポリオキシメチレン樹脂製フィルター |
US20070089276A1 (en) * | 2005-09-15 | 2007-04-26 | Fiber Innovation Technology, Inc. | Multicomponent fiber comprising a phase change material |
US20110171868A1 (en) * | 2008-05-29 | 2011-07-14 | Akira Okamura | Multilayer composite fiber |
US20110253366A1 (en) * | 2008-12-23 | 2011-10-20 | Berrigan Michael R | Curable fiber |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05230325A (ja) | 1992-02-24 | 1993-09-07 | Polyplastics Co | 防菌、防カビ性ポリアセタール樹脂組成物 |
JPH09291193A (ja) | 1996-04-24 | 1997-11-11 | Asahi Chem Ind Co Ltd | 抗菌性ポリアセタール樹脂組成物 |
JPH10265585A (ja) | 1997-03-26 | 1998-10-06 | Polyplastics Co | 抗菌性ポリアセタール樹脂成形物 |
JP3542940B2 (ja) * | 2001-04-27 | 2004-07-14 | 日華化学株式会社 | 殺菌消毒剤、抗菌性薬剤及び抗菌性材料 |
JP4907023B2 (ja) * | 2001-09-18 | 2012-03-28 | ポリプラスチックス株式会社 | ポリオキシメチレン繊維の製造方法 |
JP4260392B2 (ja) * | 2001-12-14 | 2009-04-30 | ポリプラスチックス株式会社 | ポリオキシメチレン樹脂製フラットヤーン、その製造方法及び用途 |
JP2003268627A (ja) * | 2002-03-07 | 2003-09-25 | Toray Ind Inc | ポリアセタール系繊維 |
JP2004360146A (ja) * | 2003-06-09 | 2004-12-24 | Polyplastics Co | ポリオキシメチレン樹脂製不織布及びその製造方法 |
JP4468086B2 (ja) * | 2004-06-28 | 2010-05-26 | ポリプラスチックス株式会社 | ポリオキシメチレン樹脂製複合繊維 |
JP2006328322A (ja) * | 2005-05-30 | 2006-12-07 | Sekisui Chem Co Ltd | カラムスペーサ用硬化性樹脂組成物、カラムスペーサ及び液晶表示素子 |
JP5116984B2 (ja) * | 2006-04-06 | 2013-01-09 | ポリプラスチックス株式会社 | 不織布及びその製造方法 |
JP4912768B2 (ja) * | 2006-06-29 | 2012-04-11 | ポリプラスチックス株式会社 | ポリオキシメチレン樹脂繊維の製造方法 |
JP4907307B2 (ja) * | 2006-11-17 | 2012-03-28 | ポリプラスチックス株式会社 | ポリオキシメチレン繊維製縫糸の製造方法 |
JP5261924B2 (ja) * | 2006-12-04 | 2013-08-14 | 三菱瓦斯化学株式会社 | オキシメチレン共重合体多層繊維 |
JP5261933B2 (ja) | 2006-12-27 | 2013-08-14 | 三菱瓦斯化学株式会社 | オキシメチレン複合繊維 |
WO2009011346A1 (ja) * | 2007-07-19 | 2009-01-22 | Daiwabo Co., Ltd. | 熱接着性複合繊維およびその製造方法、ならびに繊維集合物 |
FR2991330B1 (fr) * | 2012-06-04 | 2015-04-03 | Arkema France | Materiau composite a tres faible taux de nanocharges carbonees, son procede de preparation et ses utilisations |
-
2016
- 2016-03-10 TW TW105107410A patent/TWI704259B/zh active
- 2016-03-10 KR KR1020177026778A patent/KR102551954B1/ko active IP Right Grant
- 2016-03-10 CN CN201680016458.3A patent/CN107407010B/zh active Active
- 2016-03-10 JP JP2017506489A patent/JP6787309B2/ja active Active
- 2016-03-10 WO PCT/JP2016/057513 patent/WO2016147998A1/ja active Application Filing
- 2016-03-10 US US15/554,309 patent/US20180080149A1/en not_active Abandoned
- 2016-03-10 EP EP16764828.6A patent/EP3272917B1/en active Active
-
2019
- 2019-09-11 US US16/567,779 patent/US11767423B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08144128A (ja) * | 1994-11-15 | 1996-06-04 | Kanebo Ltd | 複合繊維および不織布および編織物 |
JP2005013829A (ja) * | 2003-06-25 | 2005-01-20 | Polyplastics Co | ポリオキシメチレン樹脂製フィルター |
US20070089276A1 (en) * | 2005-09-15 | 2007-04-26 | Fiber Innovation Technology, Inc. | Multicomponent fiber comprising a phase change material |
US20110171868A1 (en) * | 2008-05-29 | 2011-07-14 | Akira Okamura | Multilayer composite fiber |
US20110253366A1 (en) * | 2008-12-23 | 2011-10-20 | Berrigan Michael R | Curable fiber |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180064582A1 (en) * | 2015-03-20 | 2018-03-08 | Ruggiero DEFENTE | Differentiated lymph drainage garment |
US20180266018A1 (en) * | 2015-09-18 | 2018-09-20 | Mitsubishi Gas Chemical Company, Inc. | Fiber for contact cold sensation and fibrous product using the same |
US11441242B2 (en) | 2017-07-14 | 2022-09-13 | Mitsubishi Gas Chemical Company, Inc. | Method for manufacturing polyacetal fiber |
US11634558B2 (en) | 2017-12-28 | 2023-04-25 | Mitsubishi Gas Chemical Company, Inc. | Optical resin material for chromatic aberration correction |
CN117166113A (zh) * | 2023-09-06 | 2023-12-05 | 深圳市棉花谈服饰有限公司 | 一种抗菌亲肤面料 |
Also Published As
Publication number | Publication date |
---|---|
KR20170129156A (ko) | 2017-11-24 |
EP3272917A4 (en) | 2018-10-24 |
TWI704259B (zh) | 2020-09-11 |
EP3272917B1 (en) | 2024-10-02 |
JPWO2016147998A1 (ja) | 2017-12-28 |
CN107407010A (zh) | 2017-11-28 |
US11767423B2 (en) | 2023-09-26 |
CN107407010B (zh) | 2020-10-20 |
KR102551954B1 (ko) | 2023-07-05 |
EP3272917A1 (en) | 2018-01-24 |
TW201638412A (zh) | 2016-11-01 |
US20200002853A1 (en) | 2020-01-02 |
WO2016147998A1 (ja) | 2016-09-22 |
JP6787309B2 (ja) | 2020-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11767423B2 (en) | Antimicrobial fibers | |
KR102566516B1 (ko) | 생분해성 텍스타일, 마스터배치, 및 생분해성 섬유를 제조하는 방법 | |
CN107385541A (zh) | Phbv材料作为新型天然抗菌剂在纺织品制备中的应用 | |
CN107385539A (zh) | Pha作为新型天然抗菌材料在纺织品制备中的应用 | |
US10538863B2 (en) | Cloth having excellent contact cold sensation and colorfastness | |
JP6806067B2 (ja) | 接触冷感用繊維及びそれを用いた繊維製品 | |
WO2005100475A1 (en) | Polymer compositions with antimicrobial properties | |
CN107385628A (zh) | Phb材料作为新型天然抗菌剂在纺织品制备中的应用 | |
JP2009507109A (ja) | 改良された水分管理特性を有するポリエステルおよびポリアミド糸の製造用組成物 | |
US20070112110A1 (en) | Composition for producing polyester and polyamide yarns with improved moisture management properties | |
KR970009657B1 (ko) | 항균성 및 소취성이 우수한 폴리프로필렌 부직포의 제조방법 | |
KR970011932B1 (ko) | 항균성 및 제전성이 우수한 폴리프로필렌 부직포의 제조방법 | |
JP2022178824A (ja) | 抗菌性織物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MITSUBISHI GAS CHEMICAL COMPANY, INC., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ITO, AKIRA;REEL/FRAME:043438/0105 Effective date: 20170818 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |