US20150375207A1 - Method and catalyst for the simultaneous removal of carbon monoxide and nitrogen oxides from flue or exhaust gas - Google Patents

Method and catalyst for the simultaneous removal of carbon monoxide and nitrogen oxides from flue or exhaust gas Download PDF

Info

Publication number
US20150375207A1
US20150375207A1 US14/767,003 US201414767003A US2015375207A1 US 20150375207 A1 US20150375207 A1 US 20150375207A1 US 201414767003 A US201414767003 A US 201414767003A US 2015375207 A1 US2015375207 A1 US 2015375207A1
Authority
US
United States
Prior art keywords
catalyst
layer
oxidation
scr
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/767,003
Other languages
English (en)
Inventor
Francesco Castellino
Viggo Lucassen Hansen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topsoe AS
Original Assignee
Haldor Topsoe AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haldor Topsoe AS filed Critical Haldor Topsoe AS
Assigned to HALDOR TOPSOE A/S reassignment HALDOR TOPSOE A/S ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Castellino, Francesco, LUCASSEN HANSEN, VIGGO
Publication of US20150375207A1 publication Critical patent/US20150375207A1/en
Priority to US15/968,889 priority Critical patent/US10493436B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/648Vanadium, niobium or tantalum or polonium
    • B01J23/6482Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9463Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on one brick
    • B01D53/9468Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on one brick in different layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • B01J35/0006
    • B01J35/023
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20723Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/902Multilayered catalyst
    • B01D2255/9022Two layers

Definitions

  • the present invention relates to a method and catalyst for the simultaneous removal of carbon monoxide and nitrogen oxides (NOx) contained in flue or exhaust gas.
  • the invention provides a method, where flue gas or exhaust gas containing harmful carbon monoxide, organic compounds (VOC) and NOx is contacted with a layered catalyst in which a first layer comprises an oxidation catalyst and in an underlying layer a NH3-SCR catalyst for the simultaneous removal of the carbon monoxide and NOx.
  • VOC organic compounds
  • Removal of NOx, VOC and CO from flue or exhaust gas is conventionally exercised by use of two different catalyst compositions, wherein an oxidation catalyst is arranged upstream of an SCR catalyst with injection of a reductant between the catalysts.
  • NOx removal is typically performed by selective catalytic reduction (SCR) with NH3 on vanadium oxide or zeolite-based catalysts in monolithic form. Ammonia is injected upstream the SCR catalyst and reacts with the NOx on the catalyst surface.
  • An optimal temperature window for the vanadium oxide-based catalysts is 200-400° C., while zeolite based catalysts are more active at temperatures >400° C.
  • a flue gas containing both CO, VOCs and NOx is the flue gas from a turbine operating on natural gas.
  • the CO oxidation catalyst often based on Pt, is located upstream the SCR catalyst and the ammonia injection grid (“AIG”). This location has been chosen mainly due to the fact that the oxidation catalyst is very active in the oxidation of NH3 to NOx, which is highly undesired. Having the CO oxidation catalyst located upstream the AIG makes sure that no NH3 is wasted, but all amounts of injected ammonia reach the SCR catalyst limiting the operation costs of the utility.
  • the oxidation catalyst is arranged downstream the SCR catalyst. When positioned this way the oxidation catalyst is operated at lower temperatures than the conventional layout.
  • the problem with this configuration is that if not designed correctly, the oxidation catalyst may oxidize the NH3 slip to NOx, thus reducing the overall NOx removal of the plant.
  • the oxidation catalyst may be designed in a way that NH3 is converted to N2 instead, but such a catalyst is typically more expensive than a conventional oxidation catalyst due to both the kind and quantity of the noble metals used for its production.
  • the resulting reactor consists of two separate catalyst units, i.e. one SCR catalyst unit and one oxidation catalyst unit. More precisely, the total volume of catalyst installed will be determined by the size of the SCR catalyst unit, plus the size of the oxidation catalyst unit.
  • U.S. Pat. No. 7,390,471 discloses an exhaust gas treatment apparatus for reducing the concentration of NO x , HC and CO in an exhaust gas stream.
  • the treatment apparatus includes a multifunction catalytic element having an upstream reducing-only portion and a downstream reducing-plus-oxidizing portion that is located downstream of an ammonia injection apparatus.
  • SCR selective catalytic reduction
  • the selective catalytic reduction (SCR) of NO x is promoted in the upstream portion of the catalytic element by the injection of ammonia in excess of the stoichiometric concentration with the resulting ammonia slip being oxidized in the downstream portion of the catalytic element. Any additional NO x generated by the oxidation of the ammonia is further reduced in the downstream portion before being passed to the atmosphere.
  • the reduction-only catalyst may be vanadium/TiO 2 and the reduction-plus-oxidizing catalyst includes a reduction catalyst having 1.7 wt percent of vanadium/TiO2 impregnated with 2.8 g/ft 3 each of platinum and palladium.
  • the SCR activity of the oxidation catalyst is considerably lower than the SCR activity of an SCR-only catalyst meaning that the total volume of catalyst installed will be equal to the volume of the oxidation catalyst plus the volume of the SCR catalyst needed to compensate for the low SCR activity of the oxidation catalyst.
  • number one priority from a utility point of view is to reduce the total catalyst volume as much as possible.
  • Large volumes in fact mean high pressure drop across the catalyst bed and overall lower efficiency of the HRSG.
  • the pressure drop has a direct impact on the net power achievable from the turbine and an indirect effect on the heat flux, i.e. the calories that can be extracted from the flue gas by the HRSG.
  • the SCR activity of the oxidation catalyst has to be increased to the same high levels of an SCR-only catalyst.
  • One essential condition for obtaining this is the use of an oxidation catalyst very active in the oxidation of CO and VOC, but not reacting with NH3.
  • Another important condition is that the oxidation catalyst must still have the same oxidation activity as an oxidation-only catalyst.
  • the total volume of the resulting catalyst for the combined removal of both CO, VOC and NOx is equal to the volume of the largest catalyst between a dedicated oxidation and a dedicated SCR catalyst, which dependents on the required removal of CO, VOCs and NOx for a particular installation.
  • this invention provides a method for the reduction of amounts of carbon monoxide, volatile organic compounds and nitrogen oxides in flue or exhaust gas, said method comprising the steps of
  • the oxidation catalyst in the first layer consists of palladium, vanadium oxide and titanium oxide.
  • the resulting catalyst consists of a first catalyst layer oxidizing CO and VOC but not ammonia and a second layer of NH3-SCR-only catalyst.
  • both NOx and NH3 will easily access the underlying SCR catalyst and very limited SCR activity will be lost due to the diffusion rate of reagents across the oxidation catalyst layer.
  • the first catalyst layer has a layer thickness of between 10 and 200 micron, preferably of between 10 and 50 micron.
  • the flue or exhaust gas can additionally be treated with a conventional not layered SCR catalyst either up or downstream the layered catalyst.
  • the invention provides additionally a catalyst for simultaneous oxidation of carbon monoxide and volatile organic compounds and selective reduction of nitrogen oxides by reaction with ammonia, the catalyst comprises a first layer of an oxidation catalyst and a second layer of an NH3-SCR catalyst supporting completely the first layer.
  • the oxidation catalyst consists of palladium, oxides of vanadium and oxides of titanium.
  • the preferred oxidation catalyst according to en embodiment of the invention also has some SCR activity due to the presence of both TiO2 and vanadium oxides. Full SCR activity is thus preserved without the need of increasing the addition of ammonia. In this way, the desired removal of both CO and NOx can be accomplished with a significantly reduced catalyst volume.
  • the first catalyst layer has a layer thickness of between 10 and 200 micron, preferably of between 10 and 50 micron.
  • the resulting monolith catalyst When structuring the layered catalyst in monolithic form, the resulting monolith catalyst will have a uniform catalyst composition across the monolith length. CO, VOC and NOx removal proceeds simultaneously along the whole length of the monolith.
  • a V/Ti based commercial SCR catalyst has been coated with a catalyst consisting of 0.45 wt % Pd, 4.5 wt % V2O5 on TiI2.
  • the NOx removal efficiency has been measured and compared to the NOx removal efficiency of the same SCR catalyst not coated with the oxidation catalyst.
  • the results and conditions of the test are shown in Table 1 below:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Crystallography & Structural Chemistry (AREA)
US14/767,003 2013-02-14 2014-02-03 Method and catalyst for the simultaneous removal of carbon monoxide and nitrogen oxides from flue or exhaust gas Abandoned US20150375207A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/968,889 US10493436B2 (en) 2013-02-14 2018-05-02 Method for the simultaneous removal of carbon monoxide and nitrogen oxides from flue or exhaust gas

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DKPA201300091 2013-02-14
DKPA201300091 2013-02-14
PCT/EP2014/052043 WO2014124830A1 (en) 2013-02-14 2014-02-03 Method and catalyst for the simultaneous removal of carbon monoxide and nitrogen oxides from flue or exhaust gas

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/052043 A-371-Of-International WO2014124830A1 (en) 2013-02-14 2014-02-03 Method and catalyst for the simultaneous removal of carbon monoxide and nitrogen oxides from flue or exhaust gas

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/968,889 Division US10493436B2 (en) 2013-02-14 2018-05-02 Method for the simultaneous removal of carbon monoxide and nitrogen oxides from flue or exhaust gas

Publications (1)

Publication Number Publication Date
US20150375207A1 true US20150375207A1 (en) 2015-12-31

Family

ID=50031348

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/767,003 Abandoned US20150375207A1 (en) 2013-02-14 2014-02-03 Method and catalyst for the simultaneous removal of carbon monoxide and nitrogen oxides from flue or exhaust gas
US15/968,889 Active 2034-03-11 US10493436B2 (en) 2013-02-14 2018-05-02 Method for the simultaneous removal of carbon monoxide and nitrogen oxides from flue or exhaust gas

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/968,889 Active 2034-03-11 US10493436B2 (en) 2013-02-14 2018-05-02 Method for the simultaneous removal of carbon monoxide and nitrogen oxides from flue or exhaust gas

Country Status (11)

Country Link
US (2) US20150375207A1 (zh)
EP (1) EP2956232B1 (zh)
JP (1) JP6215361B2 (zh)
KR (1) KR102186734B1 (zh)
CN (1) CN104936679B (zh)
BR (1) BR112015019557B1 (zh)
CA (1) CA2899149C (zh)
CL (1) CL2015002212A1 (zh)
RU (1) RU2657082C2 (zh)
WO (1) WO2014124830A1 (zh)
ZA (1) ZA201505399B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK201600583A1 (en) * 2016-10-03 2018-04-23 Haldor Topsoe As Monolithic honeycomb oxidation catalyst and method of preparation thereof
US10857504B2 (en) * 2017-03-31 2020-12-08 Toyota Motor Engineering & Manufacturing North America, Inc. Two-stage catalyst for removal of NOx from exhaust gas stream
WO2021058484A1 (en) 2019-09-27 2021-04-01 Johnson Matthey Catalysts (Germany) Gmbh MULTI-FUNCTION CATALYST ARTICLE FOR TREATING BOTH CO AND NOx IN STATIONARY EMISSION SOURCE EXHAUST GAS
WO2021063939A1 (en) 2019-09-30 2021-04-08 Basf Corporation A multifunctional catalyst for hydrocarbon oxidation and selective catalytic reduction of nox
CN113856693A (zh) * 2021-09-29 2021-12-31 北京工业大学 一种用于催化氧化CO的MoSnCo催化剂及其制备方法
CN114828986A (zh) * 2019-12-11 2022-07-29 优美科股份公司及两合公司 用于在高NO2与NOx比率下进行高效SCR的系统和方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016150465A1 (en) * 2015-03-20 2016-09-29 Haldor Topsøe A/S Catalyzed ceramic candle filter and method for cleaning of off- or exhaust gases
KR102479638B1 (ko) * 2015-03-20 2022-12-21 토프쉐 에이/에스 촉매화된 세라믹 캔들 필터 및 공정 오프가스 또는 배기가스의 정화 방법
ES2730524T3 (es) * 2015-07-09 2019-11-11 Umicore Ag & Co Kg Sistema para la eliminación del material particulado y los compuestos nocivos del gas de escape procedente del motor
US10835854B2 (en) 2016-10-07 2020-11-17 Haldor Topsoe A/S Process for low temperature gas cleaning with ozone and a catalytic bag filter for use in the process
BR112019022419B1 (pt) * 2017-04-26 2024-01-16 Haldor Topsøe A/S Método e sistema para a remoção de matéria particulada e compostos nocivos dos gases de combustão
EP3533511A1 (en) * 2018-02-28 2019-09-04 Xpuris GmbH An exhaust gas treatment method and system arranged for treating exhaust gases collected from at least one foundry process
CN108993544B (zh) * 2018-08-03 2020-12-25 生态环境部华南环境科学研究所 一种去除低温高硫尾气中NOx和VOCs的催化剂及其制备和应用
EP3730210A1 (en) * 2019-04-26 2020-10-28 Umicore Ag & Co. Kg Catalyst ceramic candle filter for combined particulate removal and the selective catalytic reduction (scr) of nitrogen-oxides
KR102155628B1 (ko) * 2019-05-14 2020-09-14 이덕기 반도체 제조공정의 질소산화물 및 입자성 물질 제거장치
CN111482071B (zh) * 2020-04-14 2022-09-27 中钢集团天澄环保科技股份有限公司 一种烧结烟气多污染物协同净化及余热利用系统及工艺
WO2021250161A1 (en) 2020-06-11 2021-12-16 Haldor Topsøe A/S Catalytic oxidation of carbon black exhaust gas
KR102457079B1 (ko) * 2020-11-30 2022-10-21 한국에너지기술연구원 복합유해물질 동시 제거 시스템
KR102527339B1 (ko) 2021-01-06 2023-04-28 울산과학기술원 일산화탄소 탈수소효소 및 포름산 탈수소효소를 이용한 개미산의 제조 방법
KR20220117529A (ko) 2021-02-17 2022-08-24 주식회사 엔바이온 질소화합물이 함유된 휘발성유기화합물 폐가스 처리 장치
CN113713608A (zh) * 2021-08-26 2021-11-30 复旦大学 一种用于CO和NOx同时去除的催化剂联用方法
US11635010B1 (en) 2021-10-05 2023-04-25 Umicore Ag & Co. Kg Combustion turbine and heat recovery system combination with SCR reactor assembly, and methods of assembling and using the same
WO2024052387A1 (en) 2022-09-06 2024-03-14 Umicore Ag & Co. Kg Catalytic system and method for the removal of hcn from off-gases of a fluid cracking unit using same, and fcc unit assembly including the catalytic system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100290965A1 (en) * 2009-05-15 2010-11-18 Fmc Corporation COMBUSTION FLUE GAS NOx TREATMENT
US20130065754A1 (en) * 2010-03-24 2013-03-14 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification catalyst

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3436567B2 (ja) * 1993-06-23 2003-08-11 バブコック日立株式会社 排ガス浄化触媒およびその製造方法
JP3793283B2 (ja) * 1996-06-20 2006-07-05 バブコック日立株式会社 排ガス浄化用触媒およびそれを用いた排ガス浄化装置
US7390471B2 (en) 2005-11-17 2008-06-24 Siemens Power Generation, Inc. Apparatus and method for catalytic treatment of exhaust gases
JP4523911B2 (ja) * 2005-12-14 2010-08-11 本田技研工業株式会社 排ガス浄化装置
EP1961933B1 (de) * 2007-02-23 2010-04-14 Umicore AG & Co. KG Katalytisch aktiviertes Dieselpartikelfilter mit Ammoniak-Sperrwirkung
DE102008008785A1 (de) * 2008-02-12 2009-08-13 Man Nutzfahrzeuge Aktiengesellschaft Vorrichtung zur Verminderung von Dibenzo-Dioxin-, Dibenzo-Furan- und Partikel-Emissionen
EP2112341B1 (en) * 2008-04-22 2018-07-11 Umicore AG & Co. KG Method for purification of an exhaust gas from a diesel engine
US20100101221A1 (en) 2008-10-28 2010-04-29 Caterpillar Inc. CATALYSTS, SYSTEMS, AND METHODS FOR REDUCING NOx IN AN EXHAUST GAS
DE102008055890A1 (de) * 2008-11-05 2010-05-12 Süd-Chemie AG Partikelminderung mit kombiniertem SCR- und NH3-Schlupf-Katalysator
US20100251700A1 (en) * 2009-04-02 2010-10-07 Basf Catalysts Llc HC-SCR System for Lean Burn Engines
US9662611B2 (en) * 2009-04-03 2017-05-30 Basf Corporation Emissions treatment system with ammonia-generating and SCR catalysts
WO2012002052A1 (ja) * 2010-06-30 2012-01-05 エヌ・イー ケムキャット株式会社 選択還元型触媒を用いた排気ガス浄化装置及び排気ガス浄化方法
FR2964413B1 (fr) * 2010-09-02 2016-07-01 Peugeot Citroen Automobiles Sa Filtre a particules a trois revetements catalytiques
US9346018B2 (en) * 2010-11-02 2016-05-24 Haldor Topsoe A/S Method for the preparation of a catalysed particulate filter and catalysed particulate filter
JP2012130853A (ja) * 2010-12-21 2012-07-12 Mitsubishi Heavy Ind Ltd バグフィルタ及び排ガス処理装置
JP2012237282A (ja) * 2011-05-13 2012-12-06 Toyota Industries Corp 触媒装置
EP2718010A1 (en) * 2011-06-05 2014-04-16 Johnson Matthey Public Limited Company Platinum group metal (pgm) catalyst for treating exhaust gas
WO2016150465A1 (en) * 2015-03-20 2016-09-29 Haldor Topsøe A/S Catalyzed ceramic candle filter and method for cleaning of off- or exhaust gases

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100290965A1 (en) * 2009-05-15 2010-11-18 Fmc Corporation COMBUSTION FLUE GAS NOx TREATMENT
US20130065754A1 (en) * 2010-03-24 2013-03-14 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification catalyst

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Garcia et al., "Total oxidation of volatile organic compounds by vanadium promoted palladium-titania catalysts: Comparison of aromatic and polyaromatic compounds", Applied Catalysis B: Environmental 62 (2006) 66-76. *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK201600583A1 (en) * 2016-10-03 2018-04-23 Haldor Topsoe As Monolithic honeycomb oxidation catalyst and method of preparation thereof
US10857504B2 (en) * 2017-03-31 2020-12-08 Toyota Motor Engineering & Manufacturing North America, Inc. Two-stage catalyst for removal of NOx from exhaust gas stream
WO2021058484A1 (en) 2019-09-27 2021-04-01 Johnson Matthey Catalysts (Germany) Gmbh MULTI-FUNCTION CATALYST ARTICLE FOR TREATING BOTH CO AND NOx IN STATIONARY EMISSION SOURCE EXHAUST GAS
US11819828B2 (en) 2019-09-27 2023-11-21 Johnson Matthey Public Limited Company Multi-function catalyst article for treating both CO and NOx in stationary emission source exhaust gas
WO2021063939A1 (en) 2019-09-30 2021-04-08 Basf Corporation A multifunctional catalyst for hydrocarbon oxidation and selective catalytic reduction of nox
CN114828986A (zh) * 2019-12-11 2022-07-29 优美科股份公司及两合公司 用于在高NO2与NOx比率下进行高效SCR的系统和方法
CN113856693A (zh) * 2021-09-29 2021-12-31 北京工业大学 一种用于催化氧化CO的MoSnCo催化剂及其制备方法

Also Published As

Publication number Publication date
KR20150116865A (ko) 2015-10-16
RU2657082C2 (ru) 2018-06-08
US10493436B2 (en) 2019-12-03
BR112015019557A2 (pt) 2017-07-18
EP2956232A1 (en) 2015-12-23
ZA201505399B (en) 2017-11-29
CA2899149A1 (en) 2014-08-21
BR112015019557B1 (pt) 2021-06-29
RU2015138782A (ru) 2017-03-20
US20180250661A1 (en) 2018-09-06
CL2015002212A1 (es) 2016-01-29
WO2014124830A1 (en) 2014-08-21
CN104936679B (zh) 2017-08-18
CN104936679A (zh) 2015-09-23
JP6215361B2 (ja) 2017-10-18
KR102186734B1 (ko) 2020-12-07
JP2016509956A (ja) 2016-04-04
CA2899149C (en) 2020-03-24
EP2956232B1 (en) 2017-04-05

Similar Documents

Publication Publication Date Title
US10493436B2 (en) Method for the simultaneous removal of carbon monoxide and nitrogen oxides from flue or exhaust gas
US7390471B2 (en) Apparatus and method for catalytic treatment of exhaust gases
US20080233039A1 (en) Catalysts For Co Oxidation,Voc Combustion And Nox Reduction And Methods Of Making And Using The Same
US9463418B2 (en) Method for the selective oxidation of carbon monoxide and volatile organic compounds in off-gas further comprising sulphur dioxide
EP2814595B1 (en) Selective catalytic reduction system and process for control of nox emissions in a sulfur-containing gas stream
KR20090027618A (ko) 디젤 엔진의 배기 가스로부터의 질소-함유 오염물을 감소시키기 위한 촉매
US20210101111A1 (en) Process for the removal of sulphur oxides and nitrogen oxides contained in off-gas from an industrial plant
CA3080668A1 (en) A process for the removal of dinitrogen oxide in process off-gas
CA2711090A1 (en) Reactor and process for the decomposition of nitrogen oxides in gases
KR101755468B1 (ko) 선택적 환원촉매가 코팅된 디젤매연필터 및 이를 포함하는 배기가스 후처리 시스템
US20180193797A1 (en) Three way catalyst having an nh3-scr activity, an ammonia oxidation activity and an adsorption capacity for volatile vanadium and tungsten compounds
JP2018529039A (ja) エンジン排気ガスからの粒状物質および有害化合物の除去のためのシステム
US11378278B2 (en) System and process for efficient SCR at high NO2 to NOx ratios
JPH04118028A (ja) 排ガス浄化装置
JP5285459B2 (ja) 排ガス浄化用触媒および排ガス浄化方法
JP2014155888A (ja) 内燃機関の排ガス浄化装置、排ガス浄化方法及び排ガス浄化触媒
JPH09150039A (ja) 排ガス浄化装置と方法
JP6325042B2 (ja) 熱機関の排ガス浄化装置
CA3166499A1 (en) A process for the removal of nox and dinitrogen oxide in process off-gas
JP6699113B2 (ja) 内燃機関の排ガス浄化システム及び排ガス浄化触媒
Jantsch et al. Method for the decomposition of N2O in the Ostwald process

Legal Events

Date Code Title Description
AS Assignment

Owner name: HALDOR TOPSOE A/S, DENMARK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CASTELLINO, FRANCESCO;LUCASSEN HANSEN, VIGGO;REEL/FRAME:036295/0309

Effective date: 20150720

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION