US20150331029A1 - Charge decay measurement systems and methods - Google Patents

Charge decay measurement systems and methods Download PDF

Info

Publication number
US20150331029A1
US20150331029A1 US14/690,256 US201514690256A US2015331029A1 US 20150331029 A1 US20150331029 A1 US 20150331029A1 US 201514690256 A US201514690256 A US 201514690256A US 2015331029 A1 US2015331029 A1 US 2015331029A1
Authority
US
United States
Prior art keywords
sample
optical
decay
charging
curve data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/690,256
Other languages
English (en)
Inventor
Viktor Koldiaev
Marc Kryger
John Changala
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Femtometrics Inc
Original Assignee
Femtometrics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Femtometrics Inc filed Critical Femtometrics Inc
Priority to US14/690,256 priority Critical patent/US20150331029A1/en
Publication of US20150331029A1 publication Critical patent/US20150331029A1/en
Assigned to FEMTOMETRIX, INC. reassignment FEMTOMETRIX, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHANGALA, John, KRYGER, Marc
Assigned to FEMTOMETRIX, INC. reassignment FEMTOMETRIX, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHANGALA, John, KOLDIAEV, VIKTOR, KRYGER, Marc
Assigned to FEMTOMETRIX, INC. reassignment FEMTOMETRIX, INC. CERTIFICATE OF CONVERSION FROM A NON-DELAWARE CORPORATION TO A DELAWARE CORPORATION Assignors: FEMTOMETRIX, INC.
Priority to US15/880,308 priority patent/US20180292441A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/24Arrangements for measuring quantities of charge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/636Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited using an arrangement of pump beam and probe beam; using the measurement of optical non-linear properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2601Apparatus or methods therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/265Contactless testing
    • G01R31/2656Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/282Testing of electronic circuits specially adapted for particular applications not provided for elsewhere
    • G01R31/2831Testing of materials or semi-finished products, e.g. semiconductor wafers or substrates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • G01R31/308Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers

Definitions

  • the subject filing relates to systems for based wafer inspection, semiconductor metrology, materials characterization, surface characterization and/or interface analysis.
  • Second Harmonic Generation is a non-linear effect in which light is emitted from a material at a reflected angle with twice the frequency of an incident source light beam.
  • the process may be considered as the combining of two photons of energy E to produce a single photon of energy 2E (i.e., the production of light of twice the frequency (2 ⁇ ) or half the wavelength) of the incident radiation.
  • the subject systems and methods variously enable capturing the quantitative information for making the determinations required for such activity.
  • a wafer sample with optical electro-magnetic radiation (at a specific site with a pulsed laser or with a flash lamp or other electro-magnetic energy source or light source or other means) a plurality of measurements are made to monitor transient electric field decay associated with heterointerfaces controlling the decay period.
  • decay dependent data is collected and used to provide systems by which charge carrier lifetimes, trap energies and/or trapped charge densities may be determined in order that defects and contaminants can be discerned or parsed from one another, for species differentiation if a contaminant is detected and/or for contaminant quantification if detected
  • Such activity is determined on a site-by-site basis with the selected methodology typically repeated to scan an entire wafer or other material sample or region thereof.
  • the computer processing required to enable such determination it may occur in “real time” (i.e., during the scanning without any substantial delay in outputting results) or via post-processing.
  • control software can run without lag in order to provide the precise system timing to obtain the subject data per methodology as described below.
  • sample material charge-up is monitored in connection with SHG signal production.
  • the information gained via this signal may be employed in material analysis and making determinations.
  • system embodiments may include an ultra-short pulse laser with a fast shutter operating in the range of 10 2 seconds to picosecond (10 ⁇ 12 seconds) range.
  • Such systems may be used to monitor SHG signal generation at a sample site from surface and buried interfaces of thin film materials after the introduction of a plurality of short blocking intervals. These intervals may be timed so as to monitor the field decay of interest.
  • the subject systems may also include an optical line delay.
  • the delay line may be a fiber-based device, especially if coupled with dispersion compensation and polarization control optics.
  • the delay line may be mirror-based and resemble the examples in U.S. Pat. No. 6,147,799 to MacDonald, U.S. Pat. No. 6,356,377 to Bishop, et al. or U.S. Pat. No. 6,751,374 to Wu, et al.
  • the delay is used in the system in order to permit laser interrogation of the material in the picosecond (10 ⁇ 12 second) to femtosecond (10 ⁇ 15 second) and, possibly, attosecond (10 ⁇ 18 second) ranges. Such interrogation may be useful in detecting multiple charge decay-dependent data points along a single decay curve.
  • the subject methods include one that involves measuring an SHG signal for decay data points acquired after successive charge-up events.
  • the conditions for obtaining a SHG signal may be different at each charge-up event. Additionally, the time interval between successive charge-up events may be different.
  • the multiple data points (at least two but typically three or more) can be correlated and expressed as a single composite decay curve.
  • Another method employs minimally disruptive (i.e., the radiation used to produce the SHG signal does not significantly recharge the material) SHG signal interrogation events after a single charging event.
  • Yet another method for determining transient charge decay involves measuring discharge current from the sample material (more accurately, its structures that were charged by optical radiation). The time dependence (kinetics) of this signal may then be treated in the same way as if SHG sensing had been employed. Further, as above, such sensing may be done in the span of one decay interval and/or over a plurality of them following charge to a given level. In any case, electrode-specific hardware for such use is detailed below.
  • charge or charging level this may be taken to a point of apparent saturation when charge dynamics are observed in standard linear time or against a log time scale.
  • the subject methodologies optionally observe, record and analyze charging kinetic as this may yield important information.
  • the system may omit further or subsequent characterization.
  • what may be regarded as “not far” may mean about 1% to about 10% of charge increase versus the initial charge state to be determined by learning when the subject tool is used for a given time of sampling.
  • saturation is a relative term. Using a linear time scale, material will appear saturated very quickly. But if an SHG signal intensity associated with charging is observed in log scale from 10-100 seconds, it can be observed that the later part of saturation occurs with a different time constant and is relatively more gradual or time-consuming. Thus, while examples of the methodology provided herein discuss charging to saturation, the delay and other timing may be regarded as occurring with respect to apparent saturation. Rather than waiting the full amount of time for 100% saturation, as this may be unnecessarily time consuming to reach, instead, the instrument may delay until the time it takes to get to apparent saturation or the time in which can extract important parameters, regardless of how long it takes for full saturation.
  • the subject methods and systems may operate with charge and/or re-charging levels at less than saturation (as discussed above) while still yielding meaningful decay curve information. Without such measurement, however, when approximate saturation is a known parameter (e.g., by experience with the subject tool with a given material) charge to saturation is employed as the target level.
  • various interfacial material properties may also be determined using laser beam blocking or delay as further described in the portion of U.S. Provisional Application No. 61/980,860, filed on Apr. 17, 2014, titled “W AFER M ETROLOGY T ECHNOLOGIES ,” referred to as Section III, titled “T EMPERATURE -C ONTROLLED M ETROLOGY ,” which is incorporated herein by reference in its entirety.
  • Introducing a DC bias across the sample being tested can also assist in analysis of the material.
  • Employing a DC bias actively changes the initial charge distribution at the interfaces before photo-induced voltage has any effect.
  • the sample being tested may be mounted atop a conductive chuck which can be used as a ground for DC biasing across the sample using sample top surface probes.
  • Other means of introducing induced voltage biases are possible as well without the use of surface probes as further described in the portion of U.S. Provisional Application No. 61/980,860, filed on Apr. 17, 2014, titled “W AFER M ETROLOGY T ECHNOLOGIES ,” referred to as Section IV entitled, “F IELD -B IASED SHG M ETROLOGY ,” which is incorporated herein by reference in its entirety. See also co-pending U.S. patent application Ser. No. ______, filed Apr. 17, 2015 titled “F IELD -B IASED S ECOND H ARMONIC G ENERATION M ETROLOGY ”, published as U.S. Publication No. ______, which is incorporated herein by reference in its entirety.
  • the subject systems may use a secondary light source in addition to the primary laser involved in blocking-type analysis for charge decay determination.
  • a secondary light source in addition to the primary laser involved in blocking-type analysis for charge decay determination.
  • Such a set of sources may be employed as a radiation pump/probe combination as further described in the portion of U.S. Provisional Application No. 61/980,860, filed on Apr. 17, 2014, titled “W AFER M ETROLOGY T ECHNOLOGIES ,” referred to as Section I entitled, “P UMP AND P ROBE T YPE SHG M ETROLOGY ,” which is incorporated herein by reference in its entirety. See also co-pending U.S. patent application Ser. No. ______, filed Apr. 17, 2015 titled “PUMP AND PROBE TYPE SECOND HARMONIC GENERATION METROLOGY”, published as U.S. Publication No. ______, which is incorporated herein by reference in its entirety.
  • FIGS. 1A-1C are diagrams of systems embodiments
  • FIG. 2 is a chart of system function
  • FIGS. 3A and 3B are charts representative of the manner of delivering such function
  • FIG. 4 represents system function in a graphical output.
  • FIGS. 5 and 6 plot SHG interrogation-related method embodiments
  • FIGS. 7A-7E plot time dynamics associated with the system in FIG. 1C that may be employed in the methods of FIGS. 5 and 6 .
  • FIG. 8 plots a current-based interrogation method for observing transient electric field decay
  • FIGS. 9A and 9B illustrate hardware configurations that may be employed in the method of FIG. 8 .
  • FIG. 1A is a diagram of a first system 2100 as may employed in connection with the subject methodology.
  • Alternative systems 2100 ′ and 2100 ′′ are shown in FIGS. 1B and 1C .
  • Each system includes a primary laser 2010 for directing a primary beam 2012 of electro-magnetic radiation at a sample wafer 2020 , which sample is held by a vacuum chuck 2030 .
  • the chuck 2030 includes or is set on x- and y-stages and optionally also a rotational stage for positioning a sample site 2022 across the wafer relative to where the laser(s) are aimed.
  • a beam 2014 of reflected radiation directed at a detector 2040 will include an SHG signal.
  • the detector may be any of a photomultiplier tube, a CCD camera, a avalanche detector, a photodiode detector, a streak camera and a silicon detector.
  • the sample site 2022 can include one or more layers.
  • the sample site 2022 can comprise a composite substrate including at least two layers.
  • the sample site 2022 can include an interface between two dissimilar materials (e.g., between two different semiconductor materials, between two differently doped semiconductor materials, between a semiconductor and an oxide, between a semiconductor and a dielectric material, between a semiconductor and a metal, between an oxide and a metal, between a metal and a metal or between a metal and a dielectric).
  • shutter-type devices 2050 are employed as described in connection with the methodology below.
  • the type of shutter hardware used will depend on the timeframe over which the laser radiation is to be blocked, dumped or otherwise directed away from the sample site.
  • An electro-optic blocking device such as a Pockel's Cell or Kerr Cell is used to obtain very short blocking periods (i.e., with switching times on the order of 10 ⁇ 9 to 10 ⁇ 12 seconds).
  • electro-optic blocking device such as a Pockel's Cell or Kerr Cell is used to obtain very short blocking periods (i.e., with switching times on the order of 10 ⁇ 9 to 10 ⁇ 12 seconds).
  • mechanical shutters or flywheel chopper type devices may be employed.
  • a photon counting system 2044 capable of discretely gating very small time intervals, typically, on the order of picoseconds to microseconds can be included to resolve the time-dependent signal counts.
  • the system(s) may include delay line hardware 2060 .
  • Beam splitting and switching (or shuttering on/off) between a plurality of set-time delay lines for a corresponding number of time-delayed interrogation events is possible.
  • a variable delay line may be preferred as offering a single solution for multiple transient charge decay interrogation events on a time frame ranging from immediately (although delay of only 10 ⁇ 12 seconds may be required for many methodologies) to tens of nanoseconds after pump pulse.
  • the desired delay time may even go into the microsecond regime if using a slower, kilohertz repetition laser.
  • such hardware is uniquely suited for carrying out the subject methodology (both of which methodology and such hardware is believed heretofore unknown), it might be put to other uses as well.
  • the beam 2012 from the laser 2010 can be split by a beam splitter 2070 between two optical paths.
  • the beam splitter 2070 can split the beam 2012 unequally between the two optical paths. For example, 70% of the energy of the beam 2012 can be directed along a first optical path (e.g., as beam 2016 ) and 30% of the energy of the beam 12 can be directed along a second optical path (e.g., as beam 2018 ). As another example, 60% of the energy of the beam 2012 can be directed along the first optical path and 40% of the energy of the beam 2012 can be directed along the second optical path. As yet another example, 80% of the energy of the beam 2012 can be directed along the first optical path and 20% of the energy of the beam 2012 can be directed along the second optical path.
  • the beam splitter 2070 can comprise a dielectric mirror, a splitter cube, a metal coated mirror, a pellicle mirror or a waveguide splitter.
  • the beam splitter 2070 can include an optical component having negligible dispersion that splits the beam 2012 between two optical paths such that optical pulses are not broadened.
  • the path of an “interrogation” beam 2016 taken off a beam splitter 2070 from primary beam 2012 can be lengthened or shortened to change its arrival timing relative to a “pump” beam 2018 wherein each of the beams are shown directed or aimed by various mirror elements 2072 .
  • Another approach employs fiber optics in the optical delay component and/or other optical pathways (e.g., as presented in U.S. Pat. No. 6,819,844 incorporated herein by reference in its entirety for such description).
  • the output from the detector 2040 and/or the photon counting system 2044 can be input to an electronic device 2048 (see, e.g., FIGS. 1A and 1B ).
  • the electronic device 2048 can be a computing device, a computer, a tablet, a microcontroller or a FPGA.
  • the electronic device 2048 includes a processor or processing electronics that may be configured to execute one or more software modules.
  • the processor may be configured to execute one or more software applications, including a web browser, a telephone application, an email program, or any other software application.
  • the electronic device 2048 can implement the methods discussed herein by executing instructions included in a machine-readable non-transitory storage medium, such as a RAM, ROM, EEPROM, etc.
  • the electronic device 2048 can include a display device and/or a graphic user interface to interact with a user.
  • the electronic device 2048 can communicate with one or more devices over a network interface.
  • the network interface can include transmitters, receivers and/or transceivers that can communicate over wired or wireless connections.
  • the split may be unequal (e.g., 70-30%, 80-20%, 60-40% or any range therebetween, such as between 60-90% in one path and between 40-10% in another path as well as outside these ranges), sending a majority of the power in the pump beam, and a minority in the probe beam.
  • the split may be 60-70% and 40-30%, for the pump and probe, respectivley, 70-80% versus 30-20% for the pump and probe, respectively, 80-90% versus 20-10%, for the pump and probe respectively, or 90-99.999% versus 10-0.001%, for the pump and probe respectively.
  • the probe beam could be between 0.001% to 49.99% while the pump beam could be between 50.001% and 99.999%, for example.
  • the sum of the two beams may be 100% or approximate thereto.
  • the split may be determined by the particular material system being characterized in some cases. The value (at least in part) of doing so may be to help facilitate methods such as shown in FIGS. 5 and 6 in which the power involved in SHG interrogation subsequent to material charging is desirably reduced or minimized as discussed below.
  • the pump and probe beams are brought in at different angles. Such an approach facilitates measuring pump and probe SHG responses separately. In such cases, two detectors may be advantageously employed with one for each reflected beam path.
  • embodiments 2100 and 2100 ′ are shown including a dichroic reflective or refractive filter 2080 for selectively passing the SHG signal coaxial with reflected radiation directly from the laser 2010 .
  • a prism may be employed to differentiate the weaker SHG signal from the many-orders-of-magnitude-stronger reflected primary beam.
  • a dichroic system as referenced above may be preferred.
  • Other options include the use of diffraction grating or a Pellicle beam splitter.
  • an optical bundle 2082 of focusing and collimating/collimation optics may be provided.
  • a filter wheel 2084 , zoom lens 2086 and/or polarizers 2088 may be employed in the system(s).
  • an angular (or arc-type) rotational adjustment (with corresponding adjustment for the detector 2040 and in-line optical components) as shown in system 2100 ′ may be desirable.
  • An additional radiation source 2090 (be it a laser illustrated emitting a directed beam 2092 or a UV flash lamp emitting a diverging or optically collimated or a focused pulse 2094 ) may also be incorporated in the system(s) to provide such features as referenced above in connection with the portion of U.S. Provisional Application No. 61/980,860, filed on Apr.
  • laser 10 may operate in a wavelength range between about 700 nm to about 2000 nm with a peak power between about 10 kW and 1 GW, but delivering power at an average below about 100 mW. In various embodiments, average powers between 10 mW and 10 W should be sufficient.
  • Additional light source 2090 (be it a another laser or a flash lamp) may operate in a wavelength range between about 80 nm and about 800 nm delivering an average power between about 10 mW and 10 W. Values outside these ranges, however, are possible.
  • an SHG signal is weak compared to the reflected beam that produces it, it may be desirable to improve the signal-to-noise ratio of SHG counts.
  • improvement becomes even more useful.
  • One method of reducing noise that may be employed is to actively cool the detector. The cooling can decreases the number of false-positive photon detections that are generated randomly because of thermal noise. This can be done using cryogenic fluids such as liquid nitrogen or helium or solid state cooling through use of a Peltier device.
  • Others areas of improvement may include use of a Marx Bank Circuit (MBC) as relevant to shutter speed.
  • MBC Marx Bank Circuit
  • FIG. 2 illustrates a process map or decision tree 2200 representing such possibilities.
  • a so-called problem 2210 that is detected can be parsed between a defect 2210 (extended defects such as bond voids or dislocations, Crystal Originated Particle (COP) or the like) and a contaminant 2220 (such as copper inclusion or other metals in point defect or clustered forms).
  • a defect 2210 extended defects such as bond voids or dislocations, Crystal Originated Particle (COP) or the like
  • a contaminant 2220 such as copper inclusion or other metals in point defect or clustered forms.
  • the defect type 2222 and/or a defect quantification 2224 determination e.g., in terms of density or degree
  • the contaminant species or type 2232 and/or a contaminant quantification 2234 determination can be made. Such parsing between defect and contaminant and identification of species may be performed in connection with determining charge carrier lifetimes, trap energies, trap capture cross-section and/or trap densities then comparing these to values in look-up tables or databases. Essentially these tables or databases include listings of properties of the material as characterized by the subject methods, and then matching-up the stated properties with entries in a table or database that correspond to particular defects or contaminants.
  • Trap capture cross-section and trap density may be observed in connection with, optionally, detected charging kinetics.
  • charge carrier lifetimes and trap energies the following equation based on work by I. Lundstrom, provides guidance:
  • is the tunneling time constant for the tunneling mechanism of the trap discharge
  • denotes the trap energy
  • E ON denotes the strength of the electric filed at the interface and the remaining equation variables and context are described at I. Lundstrom, JAP, v. 43, n. 12, p. 5045, 1972 which subject matter is incorporated by reference in its entirety. Further modeling and calculation options may be appreciated in reference to the portion of U.S. Provisional Application No. 61/980,860, filed on Apr. 17, 2014, titled “W AFER M ETROLOGY T ECHNOLOGIES ,” referred to Section III, titled “T EMPERATURE -C ONTROLLED M ETROLOGY ,” which is incorporated herein by reference in its entirety.
  • the decay curve data obtained by the subject sample interrogation can be used to determine the parameters of trap energy and charge carrier lifetime by use of physical models and related mathematics.
  • Representative sets of curves 2300 , 2300 ′ such as those pictured in FIGS. 3A and 3B may be calculated (where FIG. 3B highlights or expands a section of the data from FIG. 3A ) from the equation above.
  • Poisson/Transport solvers can be used to determine trap density in MOS-like structures and more exotic devices using charge carrier lifetimes and known trap energies.
  • the photo-injected current due to femto-second optical pulses induces bursts of charge carriers which reach the dielectric conduction band.
  • the average value of this current can be related to carrier concentration and their lifetimes in the regions.
  • the E-field across the interface is the proxy by which SHG measures these phenomena.
  • the half-life t 1/2 , average lifetime ⁇ , and decay constant ⁇ can be used to characterize the extent of decay for a decay curve (obtained experimentally or by simulation).
  • the parameters A, B, and ⁇ can be obtained from the decay data points that are obtained experimentally as discussed below.
  • An average lifetime ⁇ can then be calculated from the parameters A, B, and ⁇ , using theory of radioactive decay as a way of setting benchmarks for what is qualitatively called partial, or full-decay.
  • can be given by the equation (t 1/2 )/(In(2)).
  • the charge state can be considered to have fully decayed after a time span of three average lifetimes ⁇ , which corresponds to ⁇ 95% decay from full saturation. Partial decay can be expressed in terms of signal after a certain number of average lifetimes ⁇ have elapsed.
  • the systems determine parameters (e.g., carrier lifetimes, trap energies, trapping cross-section, charge carrier density, trap charge density, carrier injection threshold energy, charge carrier lifetime, charge accumulation time, etc.) based at least in part on the subject methodology on a point-by-point basis on a portion (e.g., die size portion) of the wafer or an entire wafer.
  • An entire wafer (depending on the material, surface area, and density of scan desired) can often be scanned in less than about 10 minutes, with these parameters determined for each point scanned.
  • a location of the wafer can be scanned in a time interval between about 100 milliseconds and about 3 seconds. For example, a location of the wafer can be scanned in about 950 milliseconds.
  • a matrix of data containing the spatial distributions of the parameters determined can be plotted as individual color-coded heat maps or contour maps for each parameter, as a means for quantitative inspection, feedback and presentation.
  • FIG. 4 illustrates one such map 2400 . It depicts how a defect 2402 may be portrayed. But it is possible to show any of the further refined subject matters in FIG. 2 . Once quantitative data has been obtained, providing such output is merely a matter of changing the code in the plotting program/script.
  • each wafer spatial distribution can be cross-correlated by referencing with ellipsometry data to correct for layer thickness variability and cross-calibrated with independent contamination characterization data obtained, for example, by Total Reflection X-ray Fluorescence (TXRF), Time of Flight Secondary Ion Mass Spectroscopy (TOF-SIMS) and the like.
  • TXRF Total Reflection X-ray Fluorescence
  • TOF-SIMS Time of Flight Secondary Ion Mass Spectroscopy
  • These initial or corrected spatial distributions can then be compared to those from wafers known to be within specification, to determine if the samples in question have any defects or problematic features which warrant further testing.
  • Human decisions may be employed (e.g., in inspecting a generated heat map 2400 ) initially in determining the standard for what is an acceptable or unsatisfactory wafer, until the tool is properly calibrated to be able to flag wafers autonomously. For a well-characterized process in a fab, human decisions would then only need to be made to determine the root cause of any systemic problem with yields, based on the characteristics of flagged wafers.
  • FIG. 5 provides a plot 2500 illustrating a first method embodiment hereof that may be used in making such determinations.
  • This method like the others discussed and illustrated below relies on characterizing SHG response with multiple shutter blocking events in which interrogation laser is gated for periods of time.
  • a section of a sample to be interrogated is charged (typically by a laser) to saturation.
  • a single source is used to generate as pump beam and probe beam, although separate pump and probe sources can be used in other embodiments.
  • the SHG signal may be monitored.
  • the saturation level may be known by virtue of material characterization and/or observing asymptotic behavior of the SHG signal intensity associate with charging (I ch ).
  • the electromagnetic radiation from the laser is blocked from the sample section.
  • the laser (probe beam) is so-gated for a selected period of time (t b11 ).
  • an SHG intensity measurement (I dch1 ) is made with the laser (probe beam) exposing the surface, thus observing the decay of charge at a first discharge point.
  • a second blocking event occurs for a time (t b12 ) different than the first in order to identify another point along what will become a composite decay curve.
  • SHG signal intensity (I dchs2 ) is measured again. This reduced signal indicates charge decay over the second gating event or blocking interval.
  • a third differently-timed blocking event (t b13 ) follows and subsequent SHG interrogation and signal intensity measurement (I mo ) is made for a third measurement of charge decay in relation to SHG intensity.
  • the sample is charged to a saturation level
  • the sample can be charged to a charge level below saturation.
  • the three blocking times t b11 , t b12 and t b13 are different, in other examples, the three blocking times t b11 , t b12 and t b13 can be the same.
  • the sample can be charged to a charging level initially and the SHG intensity measurement (I dch1 ), (I dch2 ) and (I dch3 ) can be obtained at different time intervals after the initial charging event.
  • these three points can be used to construct a composite charge decay curve. It is referred to herein as a “composite” curve in the sense that its components come from a plurality of related events. And while still further repetition (with the possibility of different gating times employed to generate more decay curve data points or the use of same-relation timing to confirm certainty and/or remove error from measurements for selected points) may be employed so that four or more block-then-detect cycles are employed, it should be observed that as few as two such cycles may be employed.
  • the method above can provide parameter vs. time (such as interfacial leakage current or occupied trap density v. time) kinetic curve by obtaining measurements at a few time points.
  • a time constant ( ⁇ ) can be extracted from the parameter vs. time kinetic curve.
  • the time constant can be attributed to a time constant characteristic for a certain type of defect.
  • the decay-dependent data obtained may be preceded (as in the example) by SHG data acquisition while saturating the material with the interrogation (or probe) laser.
  • charging will not necessarily go to saturation (e.g., as noted above).
  • the measurement necessary be made prior to the blocking of a/the charging laser.
  • the charging will not necessarily be performed with the interrogation/probe laser (e.g., see optional pump/probe methodology cited above).
  • the sample material is typically moved or indexed to locate another section for the same (or similar) testing. In this manner, a plurality of sections or even every section of the sample material may be interrogated and quantified in scanning the entire wafer as discussed above.
  • FIG. 6 and plot 2600 illustrate an alternative (or complimentary approach) to acquiring charge decay related data by scanning is shown in plot 2600 .
  • this method after charging to saturation a/the first time, continuous (or at least semi-continuous) discharge over multiple blocking time intervals (t b11 , t b12 , t b13 ) is investigated by laser pulses from an interrogation or a probe laser measuring different SHG intensities (I dch1 , I dch2 , I dch3 ).
  • the intensity and/or frequency of the laser pulses from the interrogation/probe laser are selected such that the average power of the interrogation/probe laser is reduced to avoid recharging the material between blocking intervals while still obtaining a reasonable SHG signal. To do so, as little as one to three laser pulses may be applied. So-reduced (in number and/or power), the material excitation resulting from the interrogation or probe laser pulses may be ignored or taken into account by calibration and or modeling considerations.
  • a separate pump source can be used for charging.
  • the probe beam can be used to charge the sample.
  • the delay between pulses may be identical or tuned to account for the expected transient charge decay profile or for other practical reason.
  • the delay is described in terms of “gating” or “blocking” above, it is to be appreciated that the delay may be produced using one or more optical delay lines as discussed above in connection with FIG. 1C . Still further, the same may hold true for the blocking/gating discussed in association with FIG. 5 .
  • the method in FIG. 6 may be practiced with various modifications to the number of blocking or delay times or events.
  • SHG signal may or may not be measured during charge to saturation.
  • the method in FIG. 6 may be practiced (as illustrated) such that the final gating period takes the SHG signal to null. Confirmation of this may be obtained by repeating the method at the same site in a mode where charging intensity (I ch ) is measured or by only observing the SHG signal in (re)charging to saturation.
  • FIGS. 7A-7E are instructive regarding the manner in which the subject hardware is used to obtain the decay-related data points.
  • FIG. 7A provides a chart 2700 illustrating a series of laser pulses 2702 in which intermediate or alternating pulses are blocked by shutter hardware (e.g., as described above) in a so-called “pulse picking” approach. Over a given time interval, it is possible to let individual pulses through (indicated by solid line) and block others (as indicated by dashed line).
  • FIG. 7B provides a chart 2710 illustrating the manner in which resolution of a blocking technique for SHG investigation can be limited by the repetition (rep) rate of the probe laser.
  • a decay curve like decay curve 2712 it is possible to resolve the time delay profile with blocking of every other pulse using a pulsed laser illustrated to operate at the same time scale as in FIG. 7A .
  • a shorter curve 2714 cannot be resolved or observed under such circumstances.
  • use optical delay stage(s) can offer additional utility.
  • chart 2720 in FIG. 7C illustrates (graphically and with text) how blocking and introducing a delay with respect to a reference time associated with charging the sample can offer overlapping areas of usefulness, in terms of the decay time of the curve relative to the rep rate of the laser. It also shows how there are short time ranges when only delay stages would allow interrogation of the decay curve, and longer time ranges when only blocking the pumping and/or the probing beam would be practical.
  • FIGS. 7D and 7E further illustrate the utility of the combined block/delay apparatus.
  • Chart 2730 illustrates exemplary SHG signals produced by individual laser pulses 2702 .
  • X range between each such pulse may be interrogated by varying optical delay.
  • additional utility over a range (Y) may be achieved with a system combining a delay stage and blocking or shutter means such as a chopper, shutter, or modulator.
  • chart 2740 such a system is able to measure decay curves (and their associated time constants) in the range from one to several pulse times.
  • time constants can range between 0.1 femtosecond and 1 femtosecond, 1 femtosecond and 10 femtoseconds, 10 femtoseconds and 100 femtoseconds, 100 femtoseconds and 1 picosecond, between 1 picosecond and 10 picoseconds, between 10 picoseconds and 100 picoseconds, between 100 picoseconds and 1 nanosecond, between 1 nanosecond and 10 nanoseconds, between 10 nanosecond and 100 nanoseconds, between 100 nanoseconds and 1 microsecond, between 1 nanoseconds and 100 microseconds, between 100 microseconds and 1 millisecond, between 1 microsecond and 100 milliseconds, between 100 microsecond and 1 second, between 1 second and 10 seconds, or between 10 second and 100 seconds or larger or smaller.
  • time delays ( ⁇ ) for example between the probe and pump (or pump and probe) can be, for example, between 0.1 femtosecond and 1 femtosecond, 1 femtosecond and 10 femtoseconds, 10 femtoseconds and 100 femtoseconds, 100 femtoseconds and 1 picosecond, between 1 picosecond and 10 picoseconds, between 10 picoseconds and 100 picoseconds, between 100 picoseconds and 1 nanosecond, between 1 nanosecond and 10 nanoseconds, between 10 nanosecond and 100 nanoseconds, between 100 nanoseconds and 1 microsecond, between 1 nanoseconds and 100 microseconds, between 100 microseconds and 1 millisecond, between 1 microsecond and 100 milliseconds, between 100 microsecond and 1 second, between 1 second and 10 seconds, between 10 second and 100 seconds. Values outside these ranges are also possible.
  • FIGS. 9A and 9B Two such approaches are illustrated in FIGS. 9A and 9B .
  • Systems 2900 and 2900 ′ use gate electrodes 2910 and 2920 , respectively, made of a conductive material that is transparent in the visible light range. Such an electrode may touch a wafer 2020 to be inspected, but need not as they may only be separated by a minimal distance.
  • the electric field in the dielectric can be estimated by extracting the electrode-dielectric-substrate structure parameters using AC measurement of the Capacitance-Voltage curve (CV-curve).
  • CV-curve measurement can be done by using a standard CV-measurement setup available on the market, connected to a material sample in the subject tool (e.g., the applied voltage is to provide the electric field in the dielectric between about 0.1 MV/cm and about 5 MV/cm).
  • the wafer may be held upon a conductive chuck 2030 providing electrical substrate contact.
  • a gate electrode would be an ultra-thin Au film or Al film on a glass of 10-30 A thickness which can reduce the sensitivity due to absorption of some photons by the thin semi-transparent metal layer.
  • electrodes 2910 and 2920 present no appreciable absorption issues (although some refraction-based considerations may arise that can be calibrated out or may be otherwise accounted for in the system).
  • These electrodes may comprise a transparent conductor gate layer 2930 made of a material such as ZnO, SnO or the like connected with an electrical contact 2932 .
  • An anti-reflective top coat 2934 may be included in the construction.
  • Gate layer 2930 may be set upon a transparent carrier made 2936 of dielectric (SiO 2 ) with a thickness (D gc ) as shown.
  • the transparent carrier comprises an insulator that is used as a gate for a noncontact electrode that may employ for example capacitive coupling to perform electrical measurements, similar to those described in the portion of U.S. Provisional Application No. 61/980,860, filed on Apr. 17, 2014, titled “W AFER M ETROLOGY T ECHNOLOGIES ,” referred to as Section IV entitled, “F IELD -B IASED SHG M ETROLOGY ,” which is incorporated herein by reference in its entirety. See also co-pending U.S. patent application Ser. No. ______, filed Apr.
  • D gc would be calibrated by measuring CV curve on the semiconductor substrate with a non-invasive approach and used in electric field (E) calculation when applied voltage is known.
  • a negligible gap distance between the gate and sample can be an air gap.
  • the electrode can be directly in contact with the sample rather than being separated by an air gap or dielectric. Accordingly normal CV or IV measurements may be performed in various embodiments.
  • deionized water may be helpful in reducing boundary-layer reflection without any ill effect (or at least one that cannot be addressed).
  • Deionized (or clean-room grade) water can maintain cleanliness around the electrically sensitive and chemically pure substrate wafers. Deionized water is actually less conductive than regular water.
  • FIG. 9B a related construction is shown with the difference being the architecture of the carrier or gate-holder 2938 .
  • the carrier or gate-holder 2938 is configured as a ring, optimally formed by etched away in the center and leaving material around the electrode perimeter as produced using MEMS techniques. But in any case, because of the large unoccupied zone through with the laser and SHG radiation must pass, it may be especially desirable to fill the same with DI water as described above.
  • each embodiment would typically be stationary with respect to the radiation exciting the material in use.
  • the electrode structure(s) Prior to and after use, the electrode structure(s) may be stowed by a robotic arm or carriage assembly (not shown).
  • the electrode directly contacts the wafer to perform electrical measurements such as measuring current flow.
  • non-contact methods of measuring current such as for example using electrodes that are capacatively coupled with the sample, can also be used.
  • the systems and methods described herein can be used to characterize a sample (e.g., a semiconductor wafer or a portion thereof).
  • a sample e.g., a semiconductor wafer or a portion thereof.
  • the systems and methods described herein can be used to detect defects or contaminants in the sample as discussed above.
  • the systems and methods described herein can be configured to characterize the sample during fabrication or production of the semiconductor wafer.
  • the systems and methods can be used along a semiconductor fabrication line in a semiconductor fabrication facility.
  • the systems and methods described herein can be integrated with the semiconductor fabrication/production line.
  • the systems and methods described herein can be integrated into a semiconductor fab line with automated wafer handling capabilities.
  • the system can be equipped with an attached Equipment Front End Module (EFEM), which accepts wafer cassettes such as a Front Opening Unified Pod (FOUP)
  • EFEM Equipment Front End Module
  • FOUP Front Opening Unified Pod
  • the system can be configured such that once the cassettes are mounted on the EFEM, the FOUP is opened, and a robotic arm selects individual wafers from the FOUP and moves them through an automatically actuated door included in the system, into a light-tight process box, and onto a bias-capable vacuum chuck.
  • the chuck may be designed to fit complementary with the robotic arm so that it may lay the sample on top. At some point in this process, the wafer can be held over a scanner for identification of its unique laser mark.
  • a system configured to be integrated in a semiconductor fabrication/assembly line can have automated wafer handling capability from the FOUP or other type of cassette; integration with an EFEM as discussed above, a chuck designed in a way to be compatible with robotic handling, automated light-tight doors which open and close to allow movement of the robotic wand/arm and software signaling to EFEM for wafer loading/unloading and wafer identification.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • the processor can be part of a computer system that also has a user interface port that communicates with a user interface, and which receives commands entered by a user, has at least one memory (e.g., hard drive or other comparable storage, and random access memory) that stores electronic information including a program that operates under control of the processor and with communication via the user interface port, and a video output that produces its output via any kind of video output format, e.g., VGA, DVI, EIDMI, DisplayPort, or any other form.
  • a user interface port that communicates with a user interface, and which receives commands entered by a user
  • has at least one memory e.g., hard drive or other comparable storage, and random access memory
  • stores electronic information including a program that operates under control of the processor and with communication via the user interface port, and a video output that produces its output via any kind of video output format, e.g., VGA, DVI, EIDMI, DisplayPort, or any other form.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. These devices may also be used to select values for devices as described herein.
  • a software module may reside in Random Access Memory (RAM), flash memory, Read Only Memory (ROM), Electrically Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium.
  • the storage medium may be integral to the processor.
  • the processor and the storage medium may reside in an ASIC.
  • the ASIC may reside in a user terminal.
  • the processor and the storage medium may reside as discrete components in a user terminal.
  • the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored on, transmitted over or resulting analysis/calculation data output as one or more instructions, code or other information on a computer-readable medium.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage media may be any available media that can be accessed by a computer.
  • such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory storage can also be rotating magnetic hard disk drives, optical disk drives, or flash memory based storage drives or other such solid state, magnetic, or optical storage devices.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium.
  • Disk and disc includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
  • Operations as described herein can be carried out on or over a website.
  • the website can be operated on a server computer, or operated locally, e.g., by being downloaded to the client computer, or operated via a server farm.
  • the website can be accessed over a mobile phone or a PDA, or on any other client.
  • the website can use HTML code in any form, e.g., MHTML, or XML, and via any form such as cascading style sheets (“CSS”) or other.
  • the computers described herein may be any kind of computer, either general purpose, or some specific purpose computer such as a workstation.
  • the programs may be written in C, or Java, Brew or any other programming language.
  • the programs may be resident on a storage medium, e.g., magnetic or optical, e.g. the computer hard drive, a removable disk or media such as a memory stick or SD media, or other removable medium.
  • the programs may also be run over a network, for example, with a server or other machine sending signals to the local machine, which allows the local machine to carry out the operations described herein.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
US14/690,256 2014-04-17 2015-04-17 Charge decay measurement systems and methods Abandoned US20150331029A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/690,256 US20150331029A1 (en) 2014-04-17 2015-04-17 Charge decay measurement systems and methods
US15/880,308 US20180292441A1 (en) 2014-04-17 2018-01-25 Charge decay measurement systems and methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201461980860P 2014-04-17 2014-04-17
US14/690,256 US20150331029A1 (en) 2014-04-17 2015-04-17 Charge decay measurement systems and methods

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/880,308 Continuation US20180292441A1 (en) 2014-04-17 2018-01-25 Charge decay measurement systems and methods

Publications (1)

Publication Number Publication Date
US20150331029A1 true US20150331029A1 (en) 2015-11-19

Family

ID=54324589

Family Applications (13)

Application Number Title Priority Date Filing Date
US14/690,256 Abandoned US20150331029A1 (en) 2014-04-17 2015-04-17 Charge decay measurement systems and methods
US14/690,279 Abandoned US20150330909A1 (en) 2014-04-17 2015-04-17 Wafer metrology techonologies
US14/690,251 Abandoned US20150331036A1 (en) 2014-04-17 2015-04-17 Field-biased second harmonic generation metrology
US14/690,179 Abandoned US20150330908A1 (en) 2014-04-17 2015-04-17 Pump and probe type second harmonic generation metrology
US15/799,594 Active US10663504B2 (en) 2014-04-17 2017-10-31 Field-biased second harmonic generation metrology
US15/806,271 Active US10591525B2 (en) 2014-04-17 2017-11-07 Wafer metrology technologies
US15/880,308 Abandoned US20180292441A1 (en) 2014-04-17 2018-01-25 Charge decay measurement systems and methods
US15/882,433 Active US10613131B2 (en) 2014-04-17 2018-01-29 Pump and probe type second harmonic generation metrology
US16/703,709 Active US11415617B2 (en) 2014-04-17 2019-12-04 Field-biased second harmonic generation metrology
US16/773,693 Active US11293965B2 (en) 2014-04-17 2020-01-27 Wafer metrology technologies
US16/841,324 Active US11150287B2 (en) 2014-04-17 2020-04-06 Pump and probe type second harmonic generation metrology
US17/449,077 Active US11821911B2 (en) 2014-04-17 2021-09-27 Pump and probe type second harmonic generation metrology
US17/667,404 Pending US20220413029A1 (en) 2014-04-17 2022-02-08 Wafer metrology technologies

Family Applications After (12)

Application Number Title Priority Date Filing Date
US14/690,279 Abandoned US20150330909A1 (en) 2014-04-17 2015-04-17 Wafer metrology techonologies
US14/690,251 Abandoned US20150331036A1 (en) 2014-04-17 2015-04-17 Field-biased second harmonic generation metrology
US14/690,179 Abandoned US20150330908A1 (en) 2014-04-17 2015-04-17 Pump and probe type second harmonic generation metrology
US15/799,594 Active US10663504B2 (en) 2014-04-17 2017-10-31 Field-biased second harmonic generation metrology
US15/806,271 Active US10591525B2 (en) 2014-04-17 2017-11-07 Wafer metrology technologies
US15/880,308 Abandoned US20180292441A1 (en) 2014-04-17 2018-01-25 Charge decay measurement systems and methods
US15/882,433 Active US10613131B2 (en) 2014-04-17 2018-01-29 Pump and probe type second harmonic generation metrology
US16/703,709 Active US11415617B2 (en) 2014-04-17 2019-12-04 Field-biased second harmonic generation metrology
US16/773,693 Active US11293965B2 (en) 2014-04-17 2020-01-27 Wafer metrology technologies
US16/841,324 Active US11150287B2 (en) 2014-04-17 2020-04-06 Pump and probe type second harmonic generation metrology
US17/449,077 Active US11821911B2 (en) 2014-04-17 2021-09-27 Pump and probe type second harmonic generation metrology
US17/667,404 Pending US20220413029A1 (en) 2014-04-17 2022-02-08 Wafer metrology technologies

Country Status (4)

Country Link
US (13) US20150331029A1 (de)
EP (1) EP3132467A4 (de)
KR (1) KR102609862B1 (de)
WO (1) WO2015161136A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10551325B2 (en) 2014-11-12 2020-02-04 Femtometrix, Inc. Systems for parsing material properties from within SHG signals
US10591525B2 (en) 2014-04-17 2020-03-17 Femtometrix, Inc. Wafer metrology technologies
US10989664B2 (en) 2015-09-03 2021-04-27 California Institute Of Technology Optical systems and methods of characterizing high-k dielectrics
CN113056814A (zh) * 2018-04-27 2021-06-29 菲拓梅里克斯公司 确定半导体器件特性的系统和方法
US11946863B2 (en) 2018-05-15 2024-04-02 Femtometrix, Inc. Second Harmonic Generation (SHG) optical inspection system designs

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10763179B2 (en) * 2015-02-27 2020-09-01 Semilab Semiconductor Physics Laboratory Co., Ltd. Non-contact method to monitor and quantify effective work function of metals
FR3049710B1 (fr) * 2016-03-31 2020-06-19 Unity Semiconductor Procede et systeme d'inspection par effet doppler laser de plaquettes pour la microelectronique ou l'optique
US10533836B2 (en) * 2016-09-15 2020-01-14 The Regents Of The University Of Michigan Multidimensional coherent spectroscopy using frequency combs
US10989679B2 (en) * 2017-02-28 2021-04-27 Tokyo Institute Of Technology Time-resolved photoemission electron microscopy and method for imaging carrier dynamics using the technique
GB2587940B (en) * 2018-04-02 2023-06-14 Applied Materials Inc Inline chamber metrology
WO2019210229A1 (en) * 2018-04-27 2019-10-31 SK Hynix Inc. Field-biased nonlinear optical metrology using corona discharge source
US10901054B1 (en) * 2018-05-25 2021-01-26 Hrl Laboratories, Llc Integrated optical waveguide and electronic addressing of quantum defect centers
KR20200032801A (ko) * 2018-09-18 2020-03-27 삼성전자주식회사 기판의 결함 검출 방법 및 이를 수행하기 위한 장치
KR102370795B1 (ko) * 2020-03-25 2022-03-07 고려대학교 산학협력단 반도체 소자에 트랩이 미치는 영향을 예측하는 트랩 분석 모델링 시스템 및 그 동작 방법
CN112098498B (zh) * 2020-06-29 2024-05-03 平高集团有限公司 绝缘材料表面缺陷检测方法及装置
KR102628611B1 (ko) * 2020-09-01 2024-01-29 건국대학교 산학협력단 반도체 소자의 시뮬레이션 방법 및 장치
KR20230144174A (ko) * 2022-04-06 2023-10-16 동국대학교 산학협력단 반도체 소자의 분석 방법 및 이를 위한 분석 장치
WO2024015795A1 (en) * 2022-07-12 2024-01-18 Femtometrix, Inc. Method and apparatus for non-invasive semiconductor technique for measuring dielectric/semiconductor interface trap density using scanning electron microscope charging
US20240176206A1 (en) * 2022-11-29 2024-05-30 Kla Corporation Interface-based thin film metrology using second harmonic generation
JP2024080718A (ja) 2022-12-05 2024-06-17 三星電子株式会社 対象物の表面を検査する装置

Family Cites Families (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH538687A (de) * 1971-11-23 1973-06-30 Bbc Brown Boveri & Cie Verfahren und Einrichtung zur Untersuchung der Störstellenkonzentration von Halbleitern
JPS55138438A (en) * 1979-04-16 1980-10-29 Olympus Optical Co Automatic exposing device for endoscope
US4286215A (en) * 1979-05-18 1981-08-25 Bell Telephone Laboratories, Incorporated Method and apparatus for the contactless monitoring carrier lifetime in semiconductor materials
US4652757A (en) 1985-08-02 1987-03-24 At&T Technologies, Inc. Method and apparatus for optically determining defects in a semiconductor material
US4812756A (en) 1987-08-26 1989-03-14 International Business Machines Corporation Contactless technique for semicondutor wafer testing
DE68925810T2 (de) 1989-01-13 1996-09-26 Ibm Verfahren und Vorrichtung zur Erzeugung von blaugrüner Lichtstrahlung
JPH0816607B2 (ja) * 1990-10-30 1996-02-21 インターナショナル・ビジネス・マシーンズ・コーポレイション 薄膜処理制御方法
JP2682465B2 (ja) * 1994-09-26 1997-11-26 株式会社日立製作所 表面計測装置
US5557409A (en) 1994-10-13 1996-09-17 Advanced Micro Devices Inc. Characterization of an external silicon interface using optical second harmonic generation
FR2726369B1 (fr) 1994-11-02 1996-12-20 Alcatel Cable Procede de mesure du declin de potentiel et de la mobilite electronique d'un materiau
US6321601B1 (en) * 1996-08-06 2001-11-27 Brown University Research Foundation Optical method for the characterization of laterally-patterned samples in integrated circuits
US5814820A (en) 1996-02-09 1998-09-29 The Board Of Trustees Of The University Of Illinois Pump probe cross correlation fluorescence frequency domain microscope and microscopy
WO1997041418A1 (en) 1996-04-26 1997-11-06 Brown University Research Foundation Optical method for determining the mechanical properties of a material
US5844684A (en) 1997-02-28 1998-12-01 Brown University Research Foundation Optical method for determining the mechanical properties of a material
US5748317A (en) 1997-01-21 1998-05-05 Brown University Research Foundation Apparatus and method for characterizing thin film and interfaces using an optical heat generator and detector
US6483580B1 (en) 1998-03-06 2002-11-19 Kla-Tencor Technologies Corporation Spectroscopic scatterometer system
IL126949A (en) * 1998-11-08 2004-03-28 Nova Measuring Instr Ltd Apparatus for integrated monitoring of wafers and for process control in semiconductor manufacturing and a method for use thereof
US7158284B2 (en) * 1999-03-18 2007-01-02 Vanderbilt University Apparatus and methods of using second harmonic generation as a non-invasive optical probe for interface properties in layered structures
WO2000055885A1 (en) 1999-03-18 2000-09-21 Vanderbilt University Contactless optical probe for use in semiconductor processing metrology
US6856159B1 (en) * 1999-03-18 2005-02-15 Vanderbilt University Contactless optical probe for use in semiconductor processing metrology
US6512385B1 (en) 1999-07-26 2003-01-28 Paul Pfaff Method for testing a device under test including the interference of two beams
US6147799A (en) 1999-10-08 2000-11-14 Agilent Technologies Inc. Physically compact variable optical delay element having wide adjustment range
US6356377B1 (en) 1999-11-10 2002-03-12 Agere Systems Guardian Corp. Mems variable optical delay lines
JP2002091512A (ja) 2000-09-12 2002-03-29 Meidensha Corp シーケンサのプログラミング支援装置
US6900894B2 (en) 2000-11-16 2005-05-31 Process Diagnostics, Inc. Apparatus and method for measuring dose and energy of ion implantation by employing reflective optics
US6791099B2 (en) 2001-02-14 2004-09-14 Applied Materials, Inc. Laser scanning wafer inspection using nonlinear optical phenomena
US6650800B2 (en) * 2001-03-19 2003-11-18 General Instrument Corporation Time slot tunable all-optical packet data demultiplexer
US7142756B2 (en) 2001-04-12 2006-11-28 Omniguide, Inc. High index-contrast fiber waveguides and applications
JP3210654B1 (ja) 2001-05-02 2001-09-17 レーザーテック株式会社 光学式走査装置及び欠陥検出装置
US20030148391A1 (en) * 2002-01-24 2003-08-07 Salafsky Joshua S. Method using a nonlinear optical technique for detection of interactions involving a conformational change
US6795175B2 (en) 2002-05-21 2004-09-21 The Boeing Company System and method for imaging contamination on a surface
US6788405B2 (en) 2002-06-12 2004-09-07 The Boeing Company Nonlinear optical system for sensing the presence of contamination on a semiconductor wafer
US7304305B2 (en) 2002-06-19 2007-12-04 The Boeing Company Difference-frequency surface spectroscopy
US6781686B2 (en) 2002-06-19 2004-08-24 The Boeing Company Femtosecond optical surface imaging
US6882414B2 (en) 2002-06-19 2005-04-19 The Boeing Company Broadband infrared spectral surface spectroscopy
US6819844B2 (en) 2002-06-20 2004-11-16 The Boeing Company Fiber-optic based surface spectroscopy
WO2004003653A1 (en) * 2002-06-28 2004-01-08 Pirelli & C. S.P.A. Four-wave-mixing based optical wavelength converter device
US7248062B1 (en) 2002-11-04 2007-07-24 Kla-Tencor Technologies Corp. Contactless charge measurement of product wafers and control of corona generation and deposition
JP3918054B2 (ja) * 2003-01-23 2007-05-23 独立行政法人物質・材料研究機構 物質の光応答を測定する方法およびその装置
KR101159070B1 (ko) 2003-03-11 2012-06-25 삼성전자주식회사 고유전율 산화막 형성방법, 이 방법으로 형성된 유전막이구비된 커패시터 및 그 제조방법
JP2004311580A (ja) 2003-04-03 2004-11-04 Toshiba Corp 半導体評価装置及び半導体評価方法
JP2005035235A (ja) 2003-07-18 2005-02-10 Noritsu Koki Co Ltd 画像露光装置
US20050058165A1 (en) * 2003-09-12 2005-03-17 Lightwave Electronics Corporation Laser having <100>-oriented crystal gain medium
GB2424069B (en) * 2003-11-25 2007-11-14 Univ Leland Stanford Junior Method for determining the optical nonlinearity profile of a material
US7362496B2 (en) 2004-04-20 2008-04-22 The Boeing Company Fiber gain medium and method of coupling pump energy into the same
JP2006054375A (ja) * 2004-08-13 2006-02-23 Shin Etsu Handotai Co Ltd 半導体ウェーハの評価装置
US7202691B2 (en) 2005-05-31 2007-04-10 Semiconductor Diagnostics, Inc. Non-contact method for acquiring charge-voltage data on miniature test areas of semiconductor product wafers
US7580138B2 (en) 2005-07-12 2009-08-25 Sematech, Inc. Methods and systems for characterizing semiconductor materials
US7433056B1 (en) 2005-07-15 2008-10-07 Kla-Tencor Technologies Corporation Scatterometry metrology using inelastic scattering
US7893703B2 (en) 2005-08-19 2011-02-22 Kla-Tencor Technologies Corp. Systems and methods for controlling deposition of a charge on a wafer for measurement of one or more electrical properties of the wafer
WO2007049259A1 (en) * 2005-10-24 2007-05-03 Optical Metrology Patents Limited An optical measurement apparatus and method
US7718969B2 (en) * 2005-12-27 2010-05-18 Rensselaer Polytechnic Institute Methods and systems for generating amplified terahertz radiation for analyzing remotely-located objects
KR100683384B1 (ko) 2005-12-30 2007-02-15 동부일렉트로닉스 주식회사 반도체 소자의 계면 전하포획 밀도 측정 방법
JP4996856B2 (ja) 2006-01-23 2012-08-08 株式会社日立ハイテクノロジーズ 欠陥検査装置およびその方法
US7595204B2 (en) 2006-03-07 2009-09-29 Sematech, Inc. Methods and systems for determining trapped charge density in films
US7894126B2 (en) 2006-04-21 2011-02-22 Eth Zurich Broadband Terahertz radiation generation and detection system and method
US7537804B2 (en) 2006-04-28 2009-05-26 Micron Technology, Inc. ALD methods in which two or more different precursors are utilized with one or more reactants to form materials over substrates
US7659979B2 (en) 2006-10-17 2010-02-09 Kla-Tencor Corporation Optical inspection apparatus and method
US7684047B2 (en) 2006-10-27 2010-03-23 Lockheed Martin Corporation Apparatus and method for two wave mixing (TWM) based ultrasonic laser testing
GB0621560D0 (en) * 2006-10-31 2006-12-06 Infinitesima Ltd Probe assembly for a scanning probe microscope
JP5109123B2 (ja) 2007-03-08 2012-12-26 国立大学法人東京工業大学 電界分布又はキャリア分布を高次高調波の強度に基づいて検出する検出装置及びその検出方法
US7830527B2 (en) 2007-04-13 2010-11-09 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Multiple frequency optical mixer and demultiplexer and apparatus for remote sensing
US8525287B2 (en) 2007-04-18 2013-09-03 Invisage Technologies, Inc. Materials, systems and methods for optoelectronic devices
US7982944B2 (en) 2007-05-04 2011-07-19 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Method and apparatus for optical frequency comb generation using a monolithic micro-resonator
JP5276347B2 (ja) * 2007-07-03 2013-08-28 国立大学法人 新潟大学 シリコンウェーハ中に存在する原子空孔の定量評価装置、その方法、シリコンウェーハの製造方法、及び薄膜振動子
US9285338B2 (en) 2007-07-19 2016-03-15 University of Pittsburgh—of the Commonwealth System of Higher Education Separation of particles using multiplexed dielectrophoresis
WO2009015474A1 (en) 2007-07-31 2009-02-05 Ye Hu Method of ferroelectronic domain inversion and its applications
US8264693B2 (en) * 2007-12-06 2012-09-11 The Regents Of The University Of Michigan Method and system for measuring at least one property including a magnetic property of a material using pulsed laser sources
US7781739B1 (en) 2008-03-12 2010-08-24 Physical Optics Corporation Quantum-imaging system and mode of operation and method of fabrication thereof
US8009279B2 (en) * 2009-01-12 2011-08-30 Corning Incorporated Characterization of non-linear optical materials using bragg coupling
EP2211343A1 (de) 2009-01-27 2010-07-28 Thomson Licensing Optisches Aufzeichnungsmedium für hohe Datendichte
JP2010190722A (ja) 2009-02-18 2010-09-02 Hitachi High-Technologies Corp 欠陥検査方法及び欠陥検査装置
US20100272134A1 (en) 2009-04-22 2010-10-28 Blanding Douglass L Rapid Alignment Methods For Optical Packages
BR112012024411A2 (pt) 2010-03-31 2016-05-31 Kaneka Corp estrutura, chip para sensor de ressonância de plásmon de superfície localizada, sensor de ressonância de plásmon de superfície localizada e métodos de fabricação
US8573785B2 (en) 2010-11-23 2013-11-05 Corning Incorporated Wavelength-switched optical systems
CN102353882B (zh) 2011-06-09 2014-02-19 北京大学 一种半导体器件的栅介质层陷阱密度和位置的测试方法
US8755044B2 (en) * 2011-08-15 2014-06-17 Kla-Tencor Corporation Large particle detection for multi-spot surface scanning inspection systems
US9652729B2 (en) 2011-10-27 2017-05-16 International Business Machines Corporation Metrology management
KR101829676B1 (ko) * 2011-12-29 2018-02-20 삼성전자주식회사 웨이퍼 열 처리 방법
US20130242303A1 (en) * 2012-03-13 2013-09-19 Nanometrics Incorporated Dual angles of incidence and azimuth angles optical metrology
KR20130107818A (ko) * 2012-03-23 2013-10-02 삼성전자주식회사 레이저 간섭계 및 이 레이저 간섭계를 이용한 변위 측정 시스템
US9194908B2 (en) 2012-03-28 2015-11-24 Infinitum Solutions, Inc. Metrology for contactless measurement of electrical resistance change in magnetoresistive samples
WO2014012848A1 (en) 2012-07-17 2014-01-23 École Polytechnique Federale De Lausanne (Epfl) Device and method for measuring and imaging second harmonic generation scattered radiation
WO2014205413A2 (en) * 2013-06-21 2014-12-24 Invenio Imaging Inc. Multi-photon systems and methods
EP2840385A1 (de) 2013-08-23 2015-02-25 DCG Systems, Inc. Lock-in Thermographie-Verfahren und System zur Bestimmung von Materialschichtprobenparametern
WO2015161136A1 (en) 2014-04-17 2015-10-22 Femtometrix, Inc. Wafer metrology technologies
CN105092999B (zh) 2014-05-19 2017-12-12 罗克韦尔自动化技术公司 利用多个指示的电力质量事件定位
WO2016007950A1 (en) 2014-07-11 2016-01-14 Vanderbilt Universtiy Apparatus and methods for probing a material as a function of depth using depth-dependent second harmonic generation
US10551325B2 (en) 2014-11-12 2020-02-04 Femtometrix, Inc. Systems for parsing material properties from within SHG signals
CN108369186B (zh) 2015-09-03 2022-05-27 加州理工学院 表征高k介质的光学系统以及方法
TWI795596B (zh) 2015-10-05 2023-03-11 加州理工學院 特徵化高介電係數電介質之方法及其光學系統
JP6604629B2 (ja) 2016-02-15 2019-11-13 株式会社Screenホールディングス 検査装置及び検査方法
US9554738B1 (en) 2016-03-30 2017-01-31 Zyomed Corp. Spectroscopic tomography systems and methods for noninvasive detection and measurement of analytes using collision computing
CN114812808A (zh) 2016-11-29 2022-07-29 光热光谱股份有限公司 用于增强光热成像和光谱的方法和设备
US10274310B2 (en) 2016-12-22 2019-04-30 The Boeing Company Surface sensing systems and methods for imaging a scanned surface of a sample via sum-frequency vibrational spectroscopy
US10942116B2 (en) 2017-10-09 2021-03-09 Photothermal Spectroscopy Corp. Method and apparatus for enhanced photo-thermal imaging and spectroscopy
US10591526B1 (en) 2018-04-09 2020-03-17 Cadence Design Systems, Inc. Systems and methods to generate a test bench for electrostatic discharge analysis of an integrated circuit design
WO2019210229A1 (en) 2018-04-27 2019-10-31 SK Hynix Inc. Field-biased nonlinear optical metrology using corona discharge source
CN113056814A (zh) 2018-04-27 2021-06-29 菲拓梅里克斯公司 确定半导体器件特性的系统和方法
WO2019222260A1 (en) 2018-05-15 2019-11-21 Femtometrix, Inc. Second harmonic generation (shg) optical inspection system designs

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Glinka et al. “Ultrafast dynamics of interfacial electric fields in semiconductor heterostructures monitored by pump-probe second-harmonic generation”, November 2002, Appl. Phys. Lett., Vol. 81, No. 20, Pages 3717-3719 *
Marka et al. “Two-color optical technique for characterization of x-ray radiation-enhanced electron transport in SiO2”, J. Appl. Phys., Vol. 93, No. 4, 15 February 2003, Pages 1865-1870 *
Wang et al. “Non-degenerate fs pump-probe study on InGaN with multi-wavelength second-harmonic generation”, July 2005, Optics Express, Vol. 13, No. 14 , Pages 5245-5252 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11150287B2 (en) 2014-04-17 2021-10-19 Femtometrix, Inc. Pump and probe type second harmonic generation metrology
US11415617B2 (en) 2014-04-17 2022-08-16 Femtometrix, Inc. Field-biased second harmonic generation metrology
US10613131B2 (en) 2014-04-17 2020-04-07 Femtometrix, Inc. Pump and probe type second harmonic generation metrology
US10663504B2 (en) 2014-04-17 2020-05-26 Femtometrix, Inc. Field-biased second harmonic generation metrology
US11821911B2 (en) 2014-04-17 2023-11-21 Femtometrix, Inc. Pump and probe type second harmonic generation metrology
US11293965B2 (en) 2014-04-17 2022-04-05 Femtometrix, Inc. Wafer metrology technologies
US10591525B2 (en) 2014-04-17 2020-03-17 Femtometrix, Inc. Wafer metrology technologies
US10551325B2 (en) 2014-11-12 2020-02-04 Femtometrix, Inc. Systems for parsing material properties from within SHG signals
US11199507B2 (en) * 2014-11-12 2021-12-14 Femtometrix, Inc. Systems for parsing material properties from within SHG signals
US11988611B2 (en) 2014-11-12 2024-05-21 Femtometrix, Inc. Systems for parsing material properties from within SHG signals
US11808706B2 (en) 2015-09-03 2023-11-07 California Institute Of Technology Optical systems and methods of characterizing high-k dielectrics
US10989664B2 (en) 2015-09-03 2021-04-27 California Institute Of Technology Optical systems and methods of characterizing high-k dielectrics
CN113056814A (zh) * 2018-04-27 2021-06-29 菲拓梅里克斯公司 确定半导体器件特性的系统和方法
US11946863B2 (en) 2018-05-15 2024-04-02 Femtometrix, Inc. Second Harmonic Generation (SHG) optical inspection system designs

Also Published As

Publication number Publication date
US20150330908A1 (en) 2015-11-19
US20210055338A1 (en) 2021-02-25
US11150287B2 (en) 2021-10-19
KR20170005015A (ko) 2017-01-11
US20220413029A1 (en) 2022-12-29
US20180217192A1 (en) 2018-08-02
US20180299497A1 (en) 2018-10-18
US20150330909A1 (en) 2015-11-19
US11293965B2 (en) 2022-04-05
WO2015161136A1 (en) 2015-10-22
KR102609862B1 (ko) 2023-12-04
US20200348348A1 (en) 2020-11-05
US11415617B2 (en) 2022-08-16
US20150331036A1 (en) 2015-11-19
US11821911B2 (en) 2023-11-21
US20180292441A1 (en) 2018-10-11
US20200400732A1 (en) 2020-12-24
US10591525B2 (en) 2020-03-17
EP3132467A1 (de) 2017-02-22
US10663504B2 (en) 2020-05-26
EP3132467A4 (de) 2017-11-01
US20180217193A1 (en) 2018-08-02
US20220260626A1 (en) 2022-08-18
US10613131B2 (en) 2020-04-07

Similar Documents

Publication Publication Date Title
US11293965B2 (en) Wafer metrology technologies
US11946863B2 (en) Second Harmonic Generation (SHG) optical inspection system designs
US20200088784A1 (en) Systems and methods for determining characteristics of semiconductor devices
JP2021522686A (ja) コロナ放電を使用したバイアス場非線形光学計測法
US20220364850A1 (en) Second-harmonic generation for critical dimensional metrology
US20240077302A1 (en) Dimensional metrology using non-linear optics
TW202419817A (zh) 使用非線性光學器件的尺寸計量
CN117881958A (zh) 用于临界尺度计量的二次谐波产生
TW202102843A (zh) 使用電暈放電源的場偏置非線性光學計量

Legal Events

Date Code Title Description
AS Assignment

Owner name: FEMTOMETRIX, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KRYGER, MARC;CHANGALA, JOHN;REEL/FRAME:039021/0498

Effective date: 20160624

AS Assignment

Owner name: FEMTOMETRIX, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KOLDIAEV, VIKTOR;KRYGER, MARC;CHANGALA, JOHN;REEL/FRAME:039028/0867

Effective date: 20140304

Owner name: FEMTOMETRIX, INC., CALIFORNIA

Free format text: CERTIFICATE OF CONVERSION FROM A NON-DELAWARE CORPORATION TO A DELAWARE CORPORATION;ASSIGNOR:FEMTOMETRIX, INC.;REEL/FRAME:039194/0850

Effective date: 20140826

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION