US20150034756A1 - Bobbin winding machine - Google Patents
Bobbin winding machine Download PDFInfo
- Publication number
- US20150034756A1 US20150034756A1 US14/345,065 US201214345065A US2015034756A1 US 20150034756 A1 US20150034756 A1 US 20150034756A1 US 201214345065 A US201214345065 A US 201214345065A US 2015034756 A1 US2015034756 A1 US 2015034756A1
- Authority
- US
- United States
- Prior art keywords
- toothed belt
- bobbin winding
- flyer
- traversing
- winding machine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000004804 winding Methods 0.000 title claims abstract description 83
- 239000000463 material Substances 0.000 claims description 14
- 238000013016 damping Methods 0.000 claims description 7
- 229910000831 Steel Inorganic materials 0.000 claims description 6
- 239000010959 steel Substances 0.000 claims description 6
- 239000004753 textile Substances 0.000 claims description 6
- 229920002635 polyurethane Polymers 0.000 claims description 4
- 239000004814 polyurethane Substances 0.000 claims description 4
- 230000000694 effects Effects 0.000 description 6
- 230000002411 adverse Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000002074 melt spinning Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000012761 high-performance material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H54/00—Winding, coiling, or depositing filamentary material
- B65H54/02—Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers
- B65H54/28—Traversing devices; Package-shaping arrangements
- B65H54/2836—Traversing devices; Package-shaping arrangements with a rotating guide for traversing the yarn
- B65H54/2839—Traversing devices; Package-shaping arrangements with a rotating guide for traversing the yarn counter rotating guides, e.g. wings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H54/00—Winding, coiling, or depositing filamentary material
- B65H54/02—Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers
- B65H54/28—Traversing devices; Package-shaping arrangements
- B65H54/2821—Traversing devices driven by belts or chains
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H54/00—Winding, coiling, or depositing filamentary material
- B65H54/02—Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers
- B65H54/28—Traversing devices; Package-shaping arrangements
- B65H54/2881—Traversing devices with a plurality of guides for winding on a plurality of bobbins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2701/00—Handled material; Storage means
- B65H2701/30—Handled filamentary material
- B65H2701/31—Textiles threads or artificial strands of filaments
Definitions
- the invention relates to a bobbin winding machine having a plurality of winding stations according to the precharacterizing clause of Claim 1 .
- a generic bobbin winding machine is known from EP 0 965 554 A2.
- Bobbin winding machines of this type are used in the production of synthetic threads for the purpose of winding the threads into bobbins.
- high thread running speeds are generated which may lie in the range above 6000 m/min. Since in the melt-spinning process the threads are extruded, treated and guided within a spinning position as a thread group, the winding of the threads and the bobbins likewise takes place in parallel next to one another.
- the known bobbin winding machine has a projecting bobbin winding spindle on which a plurality of winding stations arranged in a distributed manner are formed.
- a traversing device which has a flyer traversing unit for each winding station.
- Flyer traversing units of this type are suitable, in particular, for being able to guide the respective thread to and fro in the winding station at high speeds.
- the flyer traversing units have two contradirectionally rotating flyer rotors which guide the thread alternately to and fro.
- the flyer traversing units are driven synchronously, the torque of an electric motor being transmitted via a belt drive to each of the flyer traversing units.
- the toothed belt has two opposite profile sides, on which a toothing having a multiplicity of projecting belt teeth is formed.
- the toothed belt is guided within the belt drive via at least one driving wheel and a plurality of drive wheels, the driving wheel and drive wheels being in engagement with the opposite profile sides of the toothed belt.
- the starting load and braking load generated via the driving wheel are absorbed by the opposite profile side which is usually designed to be more wear-resistant.
- alternating meshing on the toothed belt causes vibrations to occur on the toothed belt, this, as what is known as the polygon effect, adversely influencing the uniformity of traversing in the winding stations.
- the polygon effect is additionally promoted also by the unequal manufacturing tolerances of the profile sides.
- the object of the invention is to provide a bobbin winding machine of the generic type, in which the flyer traversing units can be driven with high uniformity in the winding stations.
- the toothed belt is coupled to the toothed drive wheels and to the toothed driving wheel via a toothed profile side.
- the joint engagement of the driving wheel with the drive wheels on one toothed profile side of the toothed belt does not have an adverse effect upon the positioning accuracy for driving the flyer rotors.
- the wear phenomena generated by the driving wheel on the toothed profile side of the toothed belt can be limited in such a way that, even if there was a plurality of drive wheels, no phase differences arise between the driven flyer rotors of the flyer traversing units. If all toothed wheels contact the toothed belt on one side only, the other side of the toothed belt may be toothed as well or flat.
- Belt guidance between the drive wheels and the driving wheel can be improved further in that the deflecting rollers have in each case a guide casing with one or more continuous guide grooves, and in that the toothed belt can be guided on the flat side by the guide casing with or without an endless longitudinal web. Transverse guidance of the toothed belt is thereby generated and prevents the toothed belt from moving up and down. In particular, what is achieved thereby is that the belt teeth can roll on the drive wheels under identical geometric conditions.
- these are preferably arranged together with the drive wheels and the driving wheel on a plate-shaped carrier which is held movably on a machine stand.
- a traversing distance formed between the flyer rotors and a following contact roller can be kept constant even with growing bobbin diameters and with a movable pressure roller.
- a plurality of damping elements are provided between the traversing carrier and the machine stand, so that the vibrations generated by the drive of the bobbin winding spindles and the winding of the bobbins are not transmitted to the drive system of the traversing device.
- each of the flyer traversing units has a power divider which is coupled to the drive wheel and which drives two rotatable flyer rotors contradirectionally.
- adjacent flyer rotors can be driven codirectionally or contradirectionally.
- the bobbin winding machine is preferably designed in such a way that the power dividers are formed alternately by one of two types of gear which generate an opposite direction of rotation on the flyer rotors.
- the generation of noise can be influenced positively by the development of the invention in which the flat side of the toothed belt carries a damping textile ply, the basic material of the toothed belt being formed from a polyurethane, and a plurality of steel cords being embedded in the basic material.
- High-performance materials of this type have proved especially appropriate for driving a plurality of flyer traversing units in the bobbin winding machine reliably.
- ten, twelve or even more flyer traversing units of the traversing device can be driven reliably via one belt drive in the bobbin winding machine.
- the spacing of the belt teeth influences an exciting frequency of the toothed belt.
- the development of the invention is especially advantageous in which the profile side of the toothed belt has a multiplicity of belt teeth with a spacing in the range of between 4 mm and 5 mm. It became apparent, surprisingly, that a spacing in the range of between 4 mm and 5 mm has an especially beneficial effect upon the drive of the flyer traversing units and the laying of the threads to form the bobbins.
- FIG. 1 illustrates diagrammatically a front view of an exemplary embodiment of the bobbin winding machine according to the invention
- FIG. 2 illustrates diagrammatically a top view of the exemplary embodiment from FIG. 1
- FIG. 3 illustrates diagrammatically a cross-sectional view of an exemplary embodiment of a deflecting roller
- FIG. 4 illustrates diagrammatically a cross-sectional view of a further exemplary embodiment of a deflecting roller
- FIG. 5 illustrates diagrammatically a partial view of the toothed belt of the exemplary embodiment according to FIGS. 1 and 2
- FIG. 6 illustrates diagrammatically a cross-sectional view of the toothed belt from FIG. 5 .
- FIGS. 1 and 2 illustrate an exemplary embodiment of the bobbin winding machine according to the invention in various views.
- FIG. 1 shows diagrammatically a front view
- FIG. 2 diagrammatically a top view of the exemplary embodiment.
- the illustrated exemplary embodiment of the bobbin winding machine according to the invention is conventionally used in a production process for synthetic threads in a melt-spinning plant for winding a group of threads which are extruded, drafted and treated as a thread group and are delivered to the bobbin winding machine.
- the bobbin winding machine one of a plurality of winding stations is formed for each of the threads.
- the exemplary embodiment has altogether four winding stations 5 . 1 , 5 . 2 , 5 . 3 and 5 . 4 in order in each of the winding stations 5 . 1 to 5 . 4 to wind a thread into in each case a bobbin 6 . 1 to 6 . 4 .
- the bobbins 6 . 1 to 6 . 4 are held next to one another on a projecting bobbin winding spindle 2 .
- the bobbin winding spindle 2 is driven in such a way that the threads are wound on the bobbins 6 . 1 to 6 . 4 at an essentially constant winding speed.
- the bobbin winding spindle 2 is preceded by a traversing device 7 .
- the traversing device 7 has for each of the winding stations 5 . 1 to 5 . 4 in each case a flyer traversing unit 8 . 1 to 8 . 4 .
- the flyer traversing units 8 . 1 to 8 . 4 are driven as a drive group by an electric motor 10 .
- the electric motor 10 is coupled to the flyer traversing units 8 . 1 to 8 . 4 via a belt drive 9 .
- the belt drive 9 has for each flyer traversing unit 8 . 1 to 8 .
- a drive wheel 11 . 1 to 11 . 4 which are coupled to a driving wheel 14 via a toothed belt 12 .
- the driving wheel 14 is driven directly via the electric motor 10 , the driving wheel 14 and the drive wheels 11 . 1 to 11 . 4 rotating codirectionally by means of the toothed belt 12 .
- the toothed belt 12 has on one profile side a multiplicity of belt teeth which engage into toothings of the driving wheel 14 and toothings of the drive wheels 11 . 1 to 11 . 4 .
- the deflecting roller 16 . 1 is arranged between the drive wheels 11 . 1 and 11 . 2 , the deflecting roller 16 . 2 between the drive wheels 11 . 2 and 11 . 3 and the deflecting roller 16 . 3 between the drive wheels 11 . 3 and 11 . 4 .
- the deflecting rollers 16 . 1 , 16 . 2 and 16 . 3 are assigned to a flat side of the toothed belt 12 .
- the toothed belt 12 can be guided with alternating looping between the drive wheels 11 . 1 to 11 . 4 and the deflecting rollers 16 . 1 to 16 . 3 .
- the return of the toothed belt 9 takes place via two guide wheels 15 . 1 and 15 . 2 which have a toothing and which cooperate with the profile side of the toothed belt 12 .
- each of the flyer traversing units 8 . 1 to 8 . 4 has a power divider 13 which is coupled directly to one of the drive wheels 11 . 1 to 11 . 4 .
- the winding station 5 . 4 having the flyer traversing unit 8 . 4 is shown diagrammatically in FIG. 1 .
- Each of the flying units 8 . 1 to 8 . 4 and each of the following winding stations 5 . 1 to 5 . 4 are constructed identically, and therefore the winding station 5 . 4 having the flyer traversing unit 8 . 4 is explained by way of example by means of the illustration in FIG. 1 .
- a first flyer rotor 17 . 1 having a first flyer set and a second flyer rotor 17 . 2 having a second flyer set are driven contradirectionally by the power divider 13 .
- the flyers of the flyer rotors 17 . 1 and 17 . 2 are assigned a guide ruler 26 , at which guide edge a thread 31 can be guided to and fro via the two flyer sets.
- the flyer sets of the flyer rotors 17 . 1 and 17 . 2 are designed in such a way that adjacent flyer rotors of adjacent flyer traversing devices 8 . 1 and 8 . 2 mesh with one another.
- the power divider 13 is preferably formed by two types of gear which generate an opposite direction of rotation on the rotor flyers.
- the power divider 13 can be designed as a left-handed gear or right-handed gear.
- the power dividers 13 are designed identically, so that each of the driven flyer rotors 17 . 1 and 17 . 2 of the flyer traversing units 8 . 1 to 8 . 4 can be driven identically in the same direction of rotation.
- the flyer traversing unit 8 . 4 is arranged on a plate-shaped traversing carrier 21 which extends over the entire traversing apparatus 7 and carries the belt drive 9 and also the other flyer traversing units 8 . 1 to 8 . 3 .
- the traversing carrier 21 is supported on pivoting arms 19 which are held pivotably in a machine stand 1 via a plurality of damping elements 32 and which carry a pressure roller 18 at their free ends.
- the pressure roller 18 is mounted rotatably on the pivoting arms 19 and bears against the surface of the bobbins 6 . 1 to 6 . 4 during the winding operation.
- the traversing carrier 21 is held next to the pressure roller 18 by the pivoting arm 19 , so that the traversing carrier 21 is guided movably, together with the pivoting arm 19 , on the machine stand 1 .
- a traversing distance formed between the guide rulers 26 and the pressure roller 18 is consequently kept constant independently of the respective position of the pivoting arm 19 .
- the threads can be guided to and fro with identical drag lengths by the flyer traversing units 8 . 1 to 8 . 4 .
- a spindle carrier 4 in the machine stand 1 is designed as a bobbin winding turret, on which a second bobbin winding spindle 3 is held in a projecting manner.
- Each of the bobbin winding spindles 2 and 3 can be driven independently of one another, the spindle carrier 4 likewise being assigned a drive. In this exemplary embodiment, the drives are not illustrated.
- the bobbin winding spindle 2 is guided by the movement of the spindle carrier 4 .
- the bobbin winding spindle 2 is guided out of the winding region into a changing region and the bobbin winding spindles 3 are guided out of the changing region into the winding region. Continuous winding of the threads is to that extent possible.
- the threads When the threads are being wound into the bobbins 6 . 1 to 6 . 4 , they are guided to and fro at a stipulated traversing frequency by the flyer traversing units 8 . 1 to 8 . 4 .
- the traversing frequency of the flyer traversing units 8 . 1 to 8 . 4 is determined by the electric motor 10 and is transferred from the driving wheel 14 to the drive wheels 11 . 1 to 11 . 4 via the toothed belt 12 .
- it is customary for the traversing frequency to be varied during the winding of the threads in order to avoid what are known as pattern-breaking windings.
- These changes are likewise carried out directly via the electric motor 10 and the belt drive 9 . High dynamic loads thus occur on the toothed belt 12 and are accompanied by speed changes.
- the toothed belt is preferably guided positively on the circumference of the deflecting rollers 16 .
- FIG. 3 illustrates an exemplary embodiment of a deflecting roller 16 . 1 diagrammatically in a cross-sectional view.
- the deflecting roller 16 . 1 has a guide casing 28 which is mounted rotatably on a shaft 33 .
- the guide casing 28 has on the circumference a guide groove 29 which receives a flat side 23 of the toothed belt 12 .
- the toothed belt has a profile side 27 having the belt teeth 22 .
- FIG. 4 shows a deflecting roller 16 . 1 diagrammatically in a cross section.
- the guide casing 28 has two guide grooves 29 running parallel.
- the guide grooves 29 are designed in such a way that two longitudinal webs 30 on the flat side 23 of the toothed belt 12 can be guided therein. Reliable and quiet running of the toothed belt 12 is consequently achieved particularly in the region of the drive wheels 11 . 1 to 11 . 4 .
- the design of the toothed belt 12 of the belt drive 9 can be explained particularly by means of the illustrations belonging to FIGS. 5 and 6 .
- FIG. 5 illustrates a partial view of the toothed belt 12
- FIG. 6 a cross-sectional view of the toothed belt 12 .
- the toothed belt 12 has a profile side 27 and an opposite flat side 23 .
- a multiplicity of belt teeth 22 are formed on the profile side 27 .
- the toothed belt 12 is designed as an endless belt.
- the belt teeth 22 integrally formed on the profile side have in each case the form of a parabola with completely filled tooth tips.
- the parabolic form of the belt teeth 22 is essentially identical to the known high-performance profiles bearing the designation RPP.
- the spacing which is depicted in FIG. 5 by reference letter T, designates in this case the distance between adjacent belt teeth 22 on the profile side 27 .
- the spacing T is set at a value in the range of between 4 mm and 5 mm.
- the construction of the toothed belt 12 may be gathered essentially from the illustration in FIG. 6 .
- the toothed belt 12 is formed from a thermoplastic basic material, preferably a polyurethane.
- a plurality of steel cords 24 are embedded next to one another within the basic material.
- a textile ply 25 is provided in each case on the outer flat side 23 and on the outer profile side 27 and covers the surface of the toothed belt 12 .
- Textile plies 25 of this type have an especially advantageous effect on noise reduction. Moreover, the high coefficients of friction of the basic material can consequently be reduced.
- thermoplastic basic material when used in the bobbin winding machine, has proved appropriate, in particular, with respect to the conditions prevailing in the surroundings.
- the volatile constituents such as, for example, preparation residues, which are detached from the threads cannot lead to any adverse chemical reactions on the toothed belt 12 .
- Premature wear and abrasion due to chemical attack by preparation residues has advantageously been avoidable.
- the steel cords 24 illustrated in FIG. 6 within the basic materials are one example of strand material for increasing the strength.
- Other strand materials such as, for example, carbon fibres, are basically also possible.
- the drive wheels 11 . 1 to 11 . 4 illustrated in FIGS. 1 and 2 and also the driving wheel 14 and guide wheels 15 . 1 and 15 . 2 are preferably designed with a circular tooth profile for the belt drive 9 .
- Profiles of this type which are also known, for example, under the reference letters HDT as high-performance profiles, have, together with the parabolic profile chosen on the belt, a beneficial effect upon the running behaviour and the tooth flank wear and also on the rolling behaviour of the teeth.
- the fly traversing units 8 . 1 to 8 . 4 of the traversing device 7 can consequently be driven reliably and free of slip.
- the introduction of a torque, via the driving wheel 14 and the transmission of the torque to the drive wheels 11 . 1 to 11 . 4 can advantageously be carried out via the profile side 27 of the toothed belt 12 .
- the loads generated by the driving wheel 14 during the starting, changing and braking of the traversing frequency do not have an adverse effect upon the positioning accuracy of the phase positions of the flyer traversing units. High uniformity in the winding of the threads in each of the winding stations 5 . 1 to 5 . 4 can consequently be achieved.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Spinning Or Twisting Of Yarns (AREA)
- Winding Filamentary Materials (AREA)
- Manufacture Of Motors, Generators (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102011114025.9 | 2011-09-21 | ||
DE102011114025A DE102011114025A1 (de) | 2011-09-21 | 2011-09-21 | Aufspulmaschine |
PCT/EP2012/067979 WO2013041442A1 (en) | 2011-09-21 | 2012-09-13 | Bobbin winding machine |
Publications (1)
Publication Number | Publication Date |
---|---|
US20150034756A1 true US20150034756A1 (en) | 2015-02-05 |
Family
ID=46881050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/345,065 Abandoned US20150034756A1 (en) | 2011-09-21 | 2012-09-13 | Bobbin winding machine |
Country Status (7)
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3315441A1 (en) * | 2016-11-01 | 2018-05-02 | TMT Machinery, Inc. | Traversing unit and yarn winding device |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013008825A1 (de) * | 2013-05-24 | 2014-11-27 | Oerlikon Textile Gmbh & Co. Kg | Aufspulmaschine |
DE102016002762B4 (de) * | 2016-03-05 | 2023-05-25 | Saurer Spinning Solutions Gmbh & Co. Kg | Fadenchangiereinrichtung für eine Spulvorrichtung einer Kreuzspulen herstellenden Textilmaschine |
DE102019104570A1 (de) * | 2018-03-02 | 2019-09-05 | Oerlikon Textile Gmbh & Co. Kg | Verfahren und Messvorrichtung zur Funktionsprüfung einer Flügelchangierung |
DE102019008783A1 (de) * | 2019-12-18 | 2021-06-24 | Detlef Görgens | Satelliten-Einzelantrieb für ein Falschdrallaggregat in einer Texturiermaschine |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1108933A (en) * | 1964-05-29 | 1968-04-10 | Leesona Holt Ltd | Improvement in winding machines |
US4505436A (en) * | 1983-01-19 | 1985-03-19 | Barmag Barmer Maschinenfabrik Ag | Yarn winding apparatus |
JPS59194977A (ja) * | 1983-01-19 | 1984-11-05 | バルマ−ク・バルメル・マシ−ネンフアブリ−ク・アクチエンゲゼルシヤフト | 巻取装置 |
JPS62146880A (ja) * | 1985-12-20 | 1987-06-30 | Teijin Seiki Co Ltd | 糸条の巻取機 |
JP2505140B2 (ja) * | 1991-12-05 | 1996-06-05 | 村田機械株式会社 | 紡糸巻取機 |
JP2530545B2 (ja) * | 1992-08-19 | 1996-09-04 | 東レエンジニアリング株式会社 | トラバ―ス装置 |
DE4304055C1 (de) * | 1993-02-11 | 1994-03-24 | Neumag Gmbh | Changiervorrichtung |
DE4425133C2 (de) * | 1994-07-15 | 1997-03-13 | Neumag Gmbh | Aufspulmaschine |
JP2000007217A (ja) * | 1998-06-17 | 2000-01-11 | Murata Mach Ltd | 糸条綾振り装置 |
EP0965554A3 (en) | 1998-06-17 | 2000-08-16 | Murata Kikai Kabushiki Kaisha | Yarn traverse device and take-up winder having the same |
JP3146209B1 (ja) * | 1999-11-17 | 2001-03-12 | 東レエンジニアリング株式会社 | トラバース装置、そのトラバース装置を備えた巻取機およびトラバースカセット調整用治具 |
JP2004144105A (ja) * | 2002-08-29 | 2004-05-20 | Mitsuboshi Belting Ltd | ポリウレタン製歯付ベルト |
CN1810618A (zh) * | 2005-01-28 | 2006-08-02 | 苏拉有限及两合公司 | 卷绕多股长丝的方法和装置 |
JP5907972B2 (ja) * | 2010-10-09 | 2016-04-26 | エーリコン テクスティル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトOerlikon Textile GmbH & Co. KG | 巻取り機および歯付きベルト |
-
2011
- 2011-09-21 DE DE102011114025A patent/DE102011114025A1/de not_active Withdrawn
-
2012
- 2012-09-13 JP JP2014531176A patent/JP6016926B2/ja active Active
- 2012-09-13 CN CN201280045162.6A patent/CN103827007B/zh active Active
- 2012-09-13 US US14/345,065 patent/US20150034756A1/en not_active Abandoned
- 2012-09-13 IN IN2857CHN2014 patent/IN2014CN02857A/en unknown
- 2012-09-13 EP EP12761722.3A patent/EP2758330B1/en not_active Not-in-force
- 2012-09-13 WO PCT/EP2012/067979 patent/WO2013041442A1/en active Application Filing
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3315441A1 (en) * | 2016-11-01 | 2018-05-02 | TMT Machinery, Inc. | Traversing unit and yarn winding device |
CN108002113A (zh) * | 2016-11-01 | 2018-05-08 | 日本Tmt机械株式会社 | 横动装置以及丝线卷绕装置 |
EP3560869A1 (en) * | 2016-11-01 | 2019-10-30 | TMT Machinery, Inc. | Traverse unit and yarn winding device |
Also Published As
Publication number | Publication date |
---|---|
EP2758330B1 (en) | 2016-05-04 |
JP6016926B2 (ja) | 2016-10-26 |
WO2013041442A1 (en) | 2013-03-28 |
JP2014530155A (ja) | 2014-11-17 |
CN103827007B (zh) | 2016-01-20 |
EP2758330A1 (en) | 2014-07-30 |
IN2014CN02857A (enrdf_load_stackoverflow) | 2015-07-03 |
DE102011114025A1 (de) | 2013-03-21 |
CN103827007A (zh) | 2014-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2758330B1 (en) | Bobbin winding machine | |
US8707667B2 (en) | Textile machine with a plurality of workstations | |
CN107624104A (zh) | 卷绕机 | |
CN209835283U (zh) | 一种可控制速度的喂入机 | |
US2778578A (en) | Winding machine | |
WO2007134555A2 (en) | Method and device for yarn traversing upon winding the yarn on a bobbin | |
CN110257969A (zh) | 一种直捻机 | |
CN103180234B (zh) | 纱线供给-分离设备 | |
CN110709546A (zh) | 用于绳的整经机及相应的方法 | |
US6895736B2 (en) | Thread-guiding device for collecting spun yarns on bobbins particularly for open-end spinning frames | |
CN113755982A (zh) | 一种棉纱生产用卷捻装置 | |
JP5907972B2 (ja) | 巻取り機および歯付きベルト | |
EP0060570B1 (en) | Grooved roller for a winding machine | |
EP3894618B1 (en) | Warping machine for a rope, rope manufacturing machine and corresponding use | |
CN214934825U (zh) | 一种用于化纤生产的卷绕落丝车 | |
US9725277B2 (en) | Winding machine | |
CN212558817U (zh) | 一种防止涤纶丝断丝的导丝装置 | |
CN220977268U (zh) | 一种导纱机构及细纱机 | |
CN214527312U (zh) | 一种混纺纱的张力卷绕结构 | |
CN109056130B (zh) | 一种加弹机的丝束快速移动机构 | |
JP4397820B2 (ja) | 繊維束の巻取装置 | |
CN210001968U (zh) | 一种纺丝机的集束装置 | |
CN120246768A (zh) | 一种收卷装置和碳纤维生产系统 | |
JPH0930727A (ja) | 糸状又は帯状巻回物のトラバース方法及び装置 | |
CN104058301A (zh) | 一种纺线连续生产装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: OERLIKON TEXTILE GMBH & CO. KG, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VOSS, RAINALD;OESTERWIND, ROLAND;SIGNING DATES FROM 20140910 TO 20140915;REEL/FRAME:033954/0097 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |