US20140353486A1 - Methods for determining total body skeletal muscle mass - Google Patents

Methods for determining total body skeletal muscle mass Download PDF

Info

Publication number
US20140353486A1
US20140353486A1 US14/363,779 US201214363779A US2014353486A1 US 20140353486 A1 US20140353486 A1 US 20140353486A1 US 201214363779 A US201214363779 A US 201214363779A US 2014353486 A1 US2014353486 A1 US 2014353486A1
Authority
US
United States
Prior art keywords
creatinine
creatine
subject
biological sample
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/363,779
Other languages
English (en)
Inventor
Michael S. Leonard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of California
GlaxoSmithKline LLC
Original Assignee
University of California
GlaxoSmithKline LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=48574852&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20140353486(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by University of California, GlaxoSmithKline LLC filed Critical University of California
Priority to US14/363,779 priority Critical patent/US20140353486A1/en
Assigned to GLAXOSMITHKLINE LLC, KINEMED, INC. reassignment GLAXOSMITHKLINE LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: EVANS, WILLIAM, HELLERSTEIN, MARC K.
Assigned to THE REGENTS OF THE UNIVERSITY OF CALIFORNIA reassignment THE REGENTS OF THE UNIVERSITY OF CALIFORNIA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KINEMED, INC.
Publication of US20140353486A1 publication Critical patent/US20140353486A1/en
Assigned to GLAXOSMITHKLINE LLC, KINEMED, INC. reassignment GLAXOSMITHKLINE LLC CORRECTIVE ASSIGNMENT TO CORRECT THE SECOND ASSIGNEE'S ADDRESS PREVIOUSLY RECORDED AT REEL: 033875 FRAME: 0583. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: EVANS, WILLIAM, HELLERSTEIN, MARC K.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4869Determining body composition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/0045Devices for taking samples of body liquids
    • A61B10/007Devices for taking samples of body liquids for taking urine samples
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4519Muscles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7233Mass spectrometers interfaced to liquid or supercritical fluid chromatograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/70Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving creatine or creatinine
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0027Methods for using particle spectrometers
    • H01J49/0036Step by step routines describing the handling of the data generated during a measurement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/004Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/493Physical analysis of biological material of liquid biological material urine

Definitions

  • This invention relates to methods for determining the total body pool size of creatine and total body skeletal muscle mass in a subject by the use of an orally administered tracer dose of D3-creatine, and encompasses improved methods for determining the concentration of creatinine in a biological sample.
  • Skeletal muscle plays a central role in metabolic adaptations to increasing and decreasing physical activity, in disease (e.g. cachexia), in obesity, and in aging (e.g. sarcopenia).
  • Sarcopenia is described as the age-associated loss of skeletal muscle (Evans (1995) J. Gerontol. 50A:5-8) and has been associated with mobility disability (Janssen and Ross, (2005) J. Nutr. Health Aging 9:408-19) and greatly increased health-care costs for elderly people (Janssen et al. (2004) J. Am. Geriatr. Soc. 52:80-5).
  • Loss of skeletal muscle with advancing age is associated with decreased energy requirements and concomitant increase in body fatness, weakness and disability, insulin resistance and risk of diabetes.
  • Loss of skeletal muscle associated with an underlying illness is associated with a greatly increased mortality (Evans (2008) Clin. Nutr. 27:793-9).
  • the present invention is based on the finding that steady-state enrichment of D3-creatinine in a urine sample following oral administration of a single defined tracer dose of D3-creatine can be used to calculate total-body creatine pool size and skeletal muscle mass in a subject.
  • the invention is further based on the finding that the concentration of creatinine in a biological sample can be determined by measuring the concentration of creatinine M+2 isotope and dividing this concentration by a dilution factor, where the dilution factor is the ratio of the concentration of creatinine M+2 to the concentration of creatinine M+0 in the biological sample. Determining the creatinine concentration in a biological sample according to these improved methods allows for the simultaneous measurement of the concentration of creatinine and D3-creatinine in a single sample using widely-available instrumentation. Accordingly, this improved detection method will facilitate the wide-spread adaptation of the present methods for use in determining skeletal muscle mass in patients.
  • the invention provides a method for determining the total body skeletal muscle mass in a subject, where the method comprises the steps of:
  • the biological sample is a urine sample.
  • the concentration of creatinine and D3-creatinine in the urine sample is determined by HPLC/MS/MS.
  • the invention provides a method of determining the concentration of creatinine in a biological sample from a subject, said method comprising the steps of:
  • FIG. 1 Urinary D3-creatinine enrichment and total body creatine pool size in growing rats.
  • B Creatine pool size calculated from 72 h urinary D3-creatinine enrichments for the rat groups in FIG. 1 , showing clear separation of age groups (p ⁇ 0.0001).
  • FIG. 3 Even within the rat groups of different age from FIG. 1 , there is a significant correlation of creatine pool size and lean body mass by either quantitative magnetic resonance (left) or DEXA (right).
  • FIG. 6 This figure shows a flow chart for one embodiment of the method of determining total body skeletal mass.
  • the present invention is based on the finding that enrichment of D3-creatinine in a urine sample following oral administration of a single defined dose of D3-creatine can be used to calculate total-body creatine pool size and skeletal muscle mass in a subject. Accordingly, the invention provides a non-invasive, accurate method of determining total body skeletal muscle. The methods of the invention find use, inter alia, in diagnosing and monitoring medical conditions associated with changes in total body skeletal muscle mass, and in screening potential therapeutic agents to determine their effects on muscle mass.
  • D3-creatine is orally administered to a subject.
  • the present is not limited by mechanism, it is believed that the D3-creatine is rapidly absorbed, distributed, and actively transported into skeletal muscle, where it is diluted in the skeletal muscle pool of creatine.
  • Skeletal muscle contains the vast majority (>than 98%) of total-body creatine.
  • creatine is converted to creatinine by an irreversible, non-enzymatic reaction at a stable rate of about 1.7% per day.
  • This creatinine is a stable metabolite that rapidly diffuses from muscle, is not a substrate for the creatine transporter and cannot be transported back into muscle, and is excreted in urine.
  • the enrichment of a D3-creatinine in spot urine sample after a defined oral tracer dose of a D3 creatine reflects muscle creatine enrichment and can be used to directly determine creatine pool size. Skeletal muscle mass can then be calculated based on known muscle creatine content.
  • the invention provides a method of determining the total body skeletal muscle mass in a subject, where the method comprises the steps of:
  • a hydrate of D3-creatine is administered to the subject.
  • D3-creatine monohydrate is administered.
  • the dose of D3-creatine to be administered to the subject is preferably selected such that the labeled creatine is rapidly absorbed into the bloodstream and spillage of excess label into the urine is minimized.
  • the dose of D3-creatine is typically 5-250 mgs, such as 20-125 mgs.
  • 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100 mgs of D3-creatine is administered.
  • the dose is adjusted based on the gender of the subject.
  • the subject is female and 10-50, such as 20-40, or more particularly, 30 mg of D3-creatine is administered to the subject.
  • the subject is male and 40-80 mg, such as 50-70, or more particularly, 60 mg or 70 mg of D3-creatine is administered to the subject.
  • compositions adapted for oral administration may be presented as discrete units such as capsules or tablets; powders or granules; solutions or suspensions, each with aqueous or non-aqueous liquids; edible foams or whips; or oil-in-water liquid emulsions or water-in-oil liquid emulsions.
  • the active drug component may be combined with an oral, non-toxic pharmaceutically acceptable inert carrier such as ethanol, glycerol, water, and the like.
  • powders are prepared by comminuting the compound to a suitable fine size and mixing with an appropriate pharmaceutical carrier such as an edible carbohydrate, as, for example, starch or mannitol. Flavorings, preservatives, dispersing agents, and coloring agents may also be present.
  • Capsules can be made by preparing a powder, liquid, or suspension mixture and encapsulating with gelatin or some other appropriate shell material.
  • Glidants and lubricants such as colloidal silica, talc, magnesium stearate, calcium stearate, or solid polyethylene glycol may be added to the mixture before the encapsulation.
  • a disintegrating or solubilizing agent such as agar-agar, calcium carbonate or sodium carbonate may also be added to improve the availability of the medicament when the capsule is ingested.
  • suitable binders, lubricants, disintegrating agents, and coloring agents may also be incorporated into the mixture.
  • binders examples include starch, gelatin, natural sugars such as glucose or beta-lactose, corn sweeteners, natural and synthetic gums such as acacia, tragacanth, or sodium alginate, carboxymethylcellulose, polyethylene glycol, waxes, and the like.
  • Lubricants useful in these dosage forms include, for example, sodium oleate, sodium stearate, magnesium stearate, sodium benzoate, sodium acetate, sodium chloride, and the like.
  • Disintegrators include, without limitation, starch, methyl cellulose, agar, bentonite, xanthan gum, and the like.
  • Tablets can be formulated, for example, by preparing a powder mixture, granulating or slugging, adding a lubricant and disintegrant, and pressing into tablets.
  • a powder mixture may be prepared by mixing the compound, suitably comminuted, with a diluent or base as described above.
  • Optional ingredients include binders such as carboxymethylcellulose, aliginates, gelatins, or polyvinyl pyrrolidone, solution retardants such as paraffin, resorption accelerators such as a quaternary salt, and/or absorption agents such as bentonite, kaolin, or dicalcium phosphate.
  • the powder mixture may be wet-granulated with a binder such as syrup, starch paste, acadia mucilage or solutions of cellulosic or polymeric materials, and forcing through a screen.
  • a binder such as syrup, starch paste, acadia mucilage or solutions of cellulosic or polymeric materials
  • the powder mixture may be run through the tablet machine and the result is imperfectly formed slugs broken into granules.
  • the granules may be lubricated to prevent sticking to the tablet forming dies by means of the addition of stearic acid, a stearate salt, talc or mineral oil.
  • the lubricated mixture is then compressed into tablets.
  • the compounds of the present invention may also be combined with a free flowing inert carrier and compressed into tablets directly without going through the granulating or slugging steps.
  • a clear or opaque protective coating consisting of a sealing coat of shellac, a coating of sugar or polymeric material, and
  • Oral fluids such as solutions, syrups, and elixirs may be prepared in dosage unit form so that a given quantity contains a predetermined amount of the compound.
  • Syrups may be prepared, for example, by dissolving the compound in a suitably flavored aqueous solution, while elixirs are prepared through the use of a non-toxic alcoholic vehicle.
  • Suspensions may be formulated generally by dispersing the compound in a non-toxic vehicle.
  • Solubilizers and emulsifiers such as ethoxylated isostearyl alcohols and polyoxy ethylene sorbitol ethers may be added.
  • Solubilizers that may be used according to the present invention include Cremophor EL, vitamin E, PEG, and Solutol.
  • Preservatives and/or flavor additives such as peppermint oil, or natural sweeteners, saccharin, or other artificial sweeteners; and the like may also be added.
  • the urine sample in preferably collected after enrichment levels of D3-creatinine in the urine have reached a steady-state.
  • at least 6 hours or at least 12 hours is allowed to elapse after the administration of the D3-creatine but prior to the collection of the urine sample.
  • at least 24 hours is allowed to elapse.
  • at least 36 hours, at least 48 hours, at least 60 hours, or at least 72 hours are allowed to elapse after the administration of the D3-creatine and before the collection of the urine sample.
  • the invention also encompasses certain improved analytic methods for detecting creatinine and D3-creatinine in urine samples.
  • the invention provides for the detection of creatinine and D3-creatinine in urine samples by HPLC/MS, particularly HPLC/MS/MS.
  • HPLC/MS particularly HPLC/MS/MS.
  • alternate methods know in the art may also be used to detect creatinine and/or D3 creatinine in urine samples. Such methods include direct or indirect colorimetric measurements, the Jaffe method, enzymatic degradation analysis, or derivatization of the creatinine followed by GC/MS analysis of HPLC with fluorescence detection.
  • the invention provides a method of determining the concentration of creatinine in a biological sample from a subject, said method comprising the steps of:
  • the biological sample may be any appropriate sample including, but not limited to, urine, blood, serum, plasma, or tissue.
  • the biological sample is a urine sample.
  • the biological sample is a blood sample.
  • the peak area of the creatinine M+2 isotope peak is determined using liquid chromatography/mass spectroscopy (LC/MS/MS).
  • the dilution factor is 0.0002142 ⁇ 0.0000214. More particularly, the dilution factor is 0.0002142 ⁇ 0.00001, such as 0.0002142 ⁇ 0.000005.
  • the methods of the invention are useful for diagnosing and monitoring medical conditions associated with changes in total body skeletal muscle mass.
  • medical conditions in which loss of muscle mass plays an important role in function, performance status, or survival include, but are not limited to frailty and sarcopenia in the elderly; cachexia (e.g., associated with cancer, chronic obstructive pulmonary disease (COPD), heart failure, HIV-infection, tuberculosis, end stage renal disease (ESRD); muscle wasting associated with HIV therapy, disorders involving mobility disability (e.g., arthritis, chronic lung disease); neuromuscular diseases (e.g., stroke, amyotrophic lateral sclerosis); rehabilitation after trauma, surgery (including hip-replacement surgery), medical illnesses or other conditions requiring bed-rest; recovery from catabolic illnesses such as infectious or neoplastic conditions; metabolic or hormonal disorders (e.g., diabetes mellitus, hypogonadal states, thyroid disease); response to medications (e.g., glucocorticoids, thyroid hormone); malnutrition
  • the methods of the invention are also useful for screening test compounds to identify therapeutic compounds that increase total body skeletal muscle mass.
  • the total body skeletal mass of a subject is measured according to the method before and after a test compound is administered to the subject.
  • the assessment of total body skeletal muscle mass can be repeated at appropriate intervals to monitor the effect of the test compound on total body skeletal muscle mass.
  • a dose of 0.475 mg D3-creatine per rat was determined to be rapidly and completely absorbed and reach the systemic circulation with minimal urinary spillage, such that >99% of the D3-creatine tracer dose should be available to equilibrate with the body creatine pool.
  • the creatine dilution method was then used to determine urinary D3-creatine enrichment and the time to isotopic steady state in growing rats.
  • a single oral dose of 0.475 mg D3-creatine per rat was given to two groups of rats, 9 and 17 weeks of age, and urine was collected at 24, 48, and 72 hour time points after dosing.
  • MPE mole percent excess
  • FIG. 1B shows the total body creatine pool sizes calculated from urinary enrichment 72 h after the tracer dose for the 9 and 17 week-old rat groups and indicates the creatine pool size for the larger, older rats is significantly larger than for the smaller, younger rats.
  • LBM lean body mass
  • QMR quantitative magnetic resonance
  • DEXA DEXA
  • Urine pharmacokinetic analyses for each collection interval may include quantitation of MPE ratio by IRMS, ratio of deuterium-labeled creatine+deuterium-labeled creatinine to total creatine+total creatinine by LCMS, total creatinine, creatine pool size, and % of deuterium-labeled creatine dose excreted in urine.
  • Steady-state enrichment can be assessed both visually and from the estimate of the slope from the linear regression of enrichment (MPE) vs time (midpoint of each urine collection interval).
  • a mixed effect ANOVA model can be fit with time (continuous variable) as a fixed effect and subject as a random effect. The coefficient for the slope of the time effect can be used to evaluate steady-state. The 90% confidence intervals for the slope can be calculated.
  • Creatine pool size can be estimated once steady-state enrichment has been achieved a for each collection interval during steady-state according to the formula: [Amount of D3 Cr dosed (g) ⁇ total Amount of urinary D3 Cr(0 ⁇ t) (g)]/enrichment ratio(t) where t is the urine collection interval during steady-state.
  • Muscle mass can be estimated from the creatine pool size by assuming that the creatine concentration is 4.3 g/kg of whole wet muscle mass (WWM) (Kreisberg (1970) J Appl Physiol 28:264-7).
  • Muscle mass creatine pool size/Cr concentration in muscle
  • Creatine pool size can also be estimated by total urine creatinine (moles/day) divided by K (1/day).
  • the excretion rate constant (K) can be estimated using a rate excretion method by estimating the declining slope of the line for the log of the amount of D3-creatine in urine collection interval vs. time (midpoint of that urine collection interval) for each collection interval over time. This estimate of K can be used in calculating creatine pool size from 24 hr urinary creatinine excretion rather than using an estimate of turnover form the literature.
  • the separation of D3-creatine was carried out using an Acquity UPLC (Waters Corp., Milford, Ma.) equipped with a Zorbax Hilic Plus silica analytical column (50 ⁇ 2.1 mm, Rapid Resolution HD 1.8 ⁇ , Agilent Corp., Santa Clara Calif.). Injection volume is typically 8 ⁇ L.
  • Mobile phase A (MP A) consisted of 10 mM ammonium formate in water and mobile phase B is acetonitrile. Gradient chromatography was employed with initial mobile phase composition of 2% 10 mM ammonium formate with a flow rate of 0.7 mL/min. This was held for 0.5 minute and then a linear gradient to 50% MPA was achieved at 2.3 minutes. This was immediately increased to 80% and held for 0.4 minutes and then returned to starting conditions at 2.9 minutes. The total run time was 3.5 minutes. This gradient allowed baseline separation of the D3-creatine from interfering compounds.
  • the detection of D3-creatine was carried out using a Sciex API5000 (Applied Biosystems, Foster City, Calif.).
  • the HPLC system was connected to the API5000 through a turbo ion spray source operating in positive ionization mode using the following parameters: ionization temperature of 650° C., ionspray voltage of 2500 V, curtain gas setting of 45 (N 2 ), nebulizer gas setting was 65 (N 2 ), drying gas setting was 70 (N 2 ), collision gas setting of 3 (N 2 ). All other mass spectrometer parameters were optimized for the individual transitions.
  • the separation of the creatinine and D3-creatinine analytes were carried out using an Acquity UPLC (Waters Corp., Milford, Mass.) equipped with a Zorbax Hilic Plus silica analytical column , dimensions of 50 ⁇ 2.1 mm (Rapid Resolution HD 1.8 ⁇ , Agilent Corp., Santa Clara Calif.). Injection volume was typically 5 ⁇ L.
  • Mobile phase A consisted of 5 mM ammonium formate and mobile phase B was acetonitrile.
  • Gradient chromatography was employed with initial mobile phase composition of 2% 5 mM ammonium formate with a flow rate of 0.7 mL/min. This was held for 0.4 minute and then a linear gradient to 40% MPA was achieved at 2.1 minutes. This was immediately increased to 50% at 2.2 minutes and held for 0.4 minutes and then returned to starting conditions at 2.7 minutes. The total run time was 3.5 minutes. This gradient allowed baseline separation of the d3-creatinine and creatinine from interfering compounds.
  • the detection of the creatinine and D3-creatinine analytes was carried out using a Sciex API5000 (Applied Biosystems, Foster City, Calif.).
  • the HPLC system was connected to the API5000 through a turbo ion spray source operating in positive ionization mode using the following parameters: ionization temperature of 350° C., ionspray voltage of 5500 V, curtain gas setting of 45 (N 2 ), nebulizer gas setting was 60 (N 2 ), drying gas setting was 65 (N 2 ), collision gas setting of 3 (N 2 ). All other mass spectrometer parameters were optimized for the individual transitions.
  • MRM ion transitions
  • Endogenous creatinine concentration values are determined in human urine clinical samples using a D3-creatinine calibration standard curve.
  • the D3-creatinine isotope behaves similarly to creatinine throughout the extraction and HPLC-MS/MS procedures, thus allowing clean urine matrix to prepare standards and QC samples.
  • the MRM of (M+2) endogenous creatinine (116/44) is monitored.
  • a correction factor that represents the ratio of the MRM of 116/44 to 114/44, is used to correct the calculated concentrations determined from the d3-creatinine calibration curve.
  • the isotope ratio (M+2) MRM/(M+0) MRM or correction factor is 0.00286. Therefore, the amount of D3-creatinine, which would come from the D3 creatine dose and the endogenous creatinine, can be quantitated from the single D3-creatinine calibration curve.
  • Acetonitrile and Water purchased from Sigma Aldrich (St. Louis, Mo.).
  • Ammonium Formate purchased from Sigma Aldrich (St. Louis, Mo.).
  • Reference Standards of d3-Creatine (monohydrate) and d3-creatinine were purchased from CDN Isotopes, Montreal Canada.
  • Stock solutions of d3-creatine and d3-creatinine are prepared at 1.0 mg/mL in water and confirmation of equivalence is performed. Dilute solutions ranging from 0.1 ⁇ g/mL to 100 ⁇ g/mL and 0.2 ⁇ g/mL to 200 ⁇ g/mL are prepared in water and used to prepare calibration standards and quality control (QC) samples in human urine for d3-creatine and d3-creatinine, respectively.
  • Isotopically labelled internal standards for creatine (SIL) ( 13 C 3 2 H 3 15 N 1 -creatine) and creatinine (SIL) ( 13 C 3 2 H 4 15 N 1 -creatinine) are prepared at 1.0 mg/mL in water. Dilute solutions of these are prepared at 500 ng/mL in acetonitrile and used as an extraction solvent for the urine standards, quality controls and study samples.
  • Sample Preparation (d3-creatine, creatinine and d3-creatinine in urine) A 200 ⁇ L aliquot of the internal standard working solution (500 ng/mL) in acetonitrile is added to each well, except double blank samples, acetonitrile is added. A 40 ⁇ L aliquot of sample, standard or QC is transferred to the appropriate wells in the plate containing the SIL. The plate is sealed and vortex mixed for approximately 3 minutes. The plate is centrifuged at approximately 3000 g for 5 minutes. Supernatant is transferred to a clean 96 well plate and then injected onto the HPLC-MS/MS system for analysis. D3-creatine and d3-creatinine are analyzed from separate human urine samples.
  • the separation of d3-creatine, d3-creatinine and creatinine is carried out using an Acquity UPLC (Waters Corp., Milford, Mass.) equipped with a Agilent Zorbax Hilic Plus silica analytical column, dimensions of 50 ⁇ 2.1 mm (Rapid Resolution HD 1.8 ⁇ , Agilent Corp., Santa Clara Calif.). Injection volume is typically 2 ⁇ L.
  • mobile phase A consists of 10 mM ammonium formate and mobile phase B is acetonitrile.
  • Gradient chromatography is employed with initial mobile phase composition at 2% 10 mM ammonium formate with a flow rate of 0.7 mL/min. This is held for 0.5 minute and then a linear gradient to 50% MPA is achieved at 2.3 minutes. This is increased to 80% over 0.2 minutes and held for 0.4 minutes and then returned to starting conditions at 3.0 minutes. The total run time is 3.5 minutes.
  • the detection of d3-creatine is carried out using a Sciex API5000 (Applied Biosystems, Foster City, Calif.).
  • the HPLC system is connected to the API5000 through a turbo ion spray source operating in positive ionization mode using the following parameters: ionization temperature of 650° C., ionspray voltage of 2500 V, curtain gas setting of 45 (N 2 ), nebulizer gas setting is 65 (N 2 ), drying gas setting is 70 (N 2 ), collision gas setting of 3 (N 2 ). All other mass spectrometer parameters are optimized for the individual transitions.
  • D3-creatinine mobile phase A consisted of 5 mM ammonium formate, and mobile phase B is acetonitrile. Gradient chromatography is employed with initial mobile phase composition at 2% 5 mM ammonium formate with a flow rate of 0.7 mL/min. This is held for 0.4 minute and then a linear gradient to 60% acetonitrile is achieved at 2.1 minutes. This is immediately increased to 50% acetonitrile and held for 0.4 minutes and then returned to starting conditions at 2.7 minutes. The total run time is 3.5 minutes. The detection of the creatinine and d3-creatinine analytes is carried out using a Sciex API5000 (Applied Biosystems, Foster City, Calif.).
  • the HPLC system was connected to the API5000 through a turbo ion spray source operating in positive ionization mode using the following parameters: ionization temperature of 350° C., ionspray voltage of 5500 V, curtain gas setting of 45 (N 2 ), nebulizer gas setting was 60 (N 2 ), drying gas setting was 65 (N 2 ), collision gas setting of 3 (N 2 ). All other mass spectrometer parameters are optimized for the individual transitions.
  • the M+2 isotope MRM is acquired to avoid diluting the sample with a surrogate matrix (a creatinine free control urine is not available).
  • a creatinine free control urine is not available.
  • These isotopes will behave similarly throughout the extraction and HPLC-MS/MS procedures, thus allowing clean urine matrix to prepare standards and QC samples as well as allowing for the quantification of endogenous creatinine using a calibration curve that was generated from the deuterated form of creatinine. Therefore, the amount of d3-creatinine and the endogenous creatinine, can be quantitated from the single d3-creatinine calibration curve.
  • HPLC-MS/MS data were acquired and processed (integrated) using AnalystTM software (Version 1.4.2, MDS Sciex, Canada).
  • AnalystTM software Version 1.4.2, MDS Sciex, Canada.
  • a calibration plot of area ratio versus d3-creatinine concentration was constructed and a weighted 1/x 2 linear regression applied to the data.
  • a surrogate matrix or a surrogate analyte must be used.
  • human urine can be used since d3-creatinine is not found endogenously and the quantification of creatinine can be determined from the d3-creatinine calibration curve. The equivalency of d3-creatinine and creatinine is shown.
  • This method is used to determine the amount of d3 creatinine in human urine that has been converted from a dose of d3 creatine. Additionally, the amount of endogenous creatinine will be determined using the d3 creatinine standard curve. The amount of endogenous creatinine is much greater (1000 fold) than the levels of d3-creatinine in the human clinical urine samples, therefore instead of diluting the sample, the M+2 isotope of creatinine will be monitored. This will allow the simultaneous measurement of creatinine and d3-creatinine from one sample using a urine matrix calibration curve. The peak area of the MRM of (M+2) endogenous creatinine (116/44) is monitored along with the d3 creatinine MRM of 117/47. A correction factor that represents the ratio of the MRM of 116/44 to 114/44, is used to correct the calculated concentrations determined from the d3-creatinine calibration curve.
  • the isotope ratio is determined using two different experimental procedures.
  • the original experimental design uses one standard concentration, a 200 ng/mL creatinine solution (Table 2a).
  • the peak area of the creatinine is monitored at both the M+0 and M+2 MRM transitions (114/44 and 116/44), respectively.
  • One solution was used to reduce variation which may occur from separate injections and preparation of separate solutions.
  • This concentration is chosen because it allows the peak area of both MRMs to be in the detector range, and with adequate signal to noise for the smaller peak.
  • some variability in the day to day measurements is observed ( ⁇ 10%) as shown in Table 3. Therefore, an additional experiment to generate this response ratio was performed.
  • the response ratio is experimentally determined using two separate solutions.
  • a separate solution for each MRM transition is prepared which gives peak areas that are closer in magnitude to each other.
  • a 10 ng/mL solution of creatinine is used to acquire the MRM transition of 114/44 and a 500 ng/mL solution is used to acquire the MRM transition of 116/44.
  • These solutions are injected on the LC/MS/MS system in replicates of 10 and the mean peak area ratio (PAR) for each solution is determined.
  • the response ratio is then calculated by dividing the mean PAR of 116/44 by the corrected PAR of 114/44.
  • the PAR from the 10 ng/mL solutions is multiplied by 50 (since 500 ng/mL is 50 times larger than the 10 ng/mL), an example is shown in Table 2b. This allows the peak area of both solutions to be closer in value and potentially eliminating errors associated with integrating peaks with vastly different signal to noise values.
  • the corrected peak area ratio would be equivalent to a 500 ng/mL creatinine standard monitoring the peak area of the MRM transition of 114/44.
  • the isotope ratio (response ratio) was determined on multiple occasions over a four month time span and on two different triple quadrapole instruments. The mean of these nine values was determined and the inverse of this response ratio is the dilution factor used to correct the creatinine values in the LIMS system. See Table 3.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Urology & Nephrology (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Rheumatology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
US14/363,779 2011-12-07 2012-12-06 Methods for determining total body skeletal muscle mass Abandoned US20140353486A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/363,779 US20140353486A1 (en) 2011-12-07 2012-12-06 Methods for determining total body skeletal muscle mass

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201161567952P 2011-12-07 2011-12-07
US201261708013P 2012-09-30 2012-09-30
US14/363,779 US20140353486A1 (en) 2011-12-07 2012-12-06 Methods for determining total body skeletal muscle mass
PCT/US2012/068068 WO2013086070A1 (fr) 2011-12-07 2012-12-06 Procédés de détermination de la masse musculaire squelettique totale du corps

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2012/068068 A-371-Of-International WO2013086070A1 (fr) 2011-12-07 2012-12-06 Procédés de détermination de la masse musculaire squelettique totale du corps

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/098,217 Continuation US9737260B2 (en) 2011-12-07 2016-04-13 Methods for determining total body skeletal muscle mass

Publications (1)

Publication Number Publication Date
US20140353486A1 true US20140353486A1 (en) 2014-12-04

Family

ID=48574852

Family Applications (4)

Application Number Title Priority Date Filing Date
US14/363,779 Abandoned US20140353486A1 (en) 2011-12-07 2012-12-06 Methods for determining total body skeletal muscle mass
US15/098,217 Active US9737260B2 (en) 2011-12-07 2016-04-13 Methods for determining total body skeletal muscle mass
US15/645,646 Abandoned US20170367648A1 (en) 2011-12-07 2017-07-10 Methods for determining total body skeletal muscle mass
US16/058,777 Abandoned US20190029591A1 (en) 2011-12-07 2018-08-08 Methods for determining total body skeletal muscle mass

Family Applications After (3)

Application Number Title Priority Date Filing Date
US15/098,217 Active US9737260B2 (en) 2011-12-07 2016-04-13 Methods for determining total body skeletal muscle mass
US15/645,646 Abandoned US20170367648A1 (en) 2011-12-07 2017-07-10 Methods for determining total body skeletal muscle mass
US16/058,777 Abandoned US20190029591A1 (en) 2011-12-07 2018-08-08 Methods for determining total body skeletal muscle mass

Country Status (6)

Country Link
US (4) US20140353486A1 (fr)
EP (2) EP2788772B1 (fr)
JP (3) JP6294233B2 (fr)
CA (1) CA2858368A1 (fr)
ES (1) ES2668678T3 (fr)
WO (1) WO2013086070A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9037417B2 (en) 2004-02-20 2015-05-19 The Regents Of The University Of California Molecular flux rates through critical pathways measured by stable isotope labeling In Vivo, as biomarkers of drug action and disease activity
US9134319B2 (en) 2013-03-15 2015-09-15 The Regents Of The University Of California Method for replacing biomarkers of protein kinetics from tissue samples by biomarkers of protein kinetics from body fluids after isotopic labeling in vivo
US9737260B2 (en) 2011-12-07 2017-08-22 Glaxosmithkline Llc Methods for determining total body skeletal muscle mass
US10386371B2 (en) 2011-09-08 2019-08-20 The Regents Of The University Of California Metabolic flux measurement, imaging and microscopy
US11182920B2 (en) 2018-04-26 2021-11-23 Jerry NAM Automated determination of muscle mass from images

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2014278023B2 (en) * 2013-06-12 2019-11-07 Glaxosmithkline Intellectual Property (No. 2) Limited Methods for determining total body skeletal muscle mass
JP6886241B2 (ja) * 2016-01-07 2021-06-16 味の素株式会社 骨格筋面積の評価方法
EP3732986A4 (fr) * 2017-12-25 2021-12-01 Meiji Co., Ltd Poudre de lait écrémé
WO2023073588A1 (fr) * 2021-11-01 2023-05-04 Dh Technologies Development Pte. Ltd. Utilisation de l'abondance isotopique naturelle de composés pour étendre la plage dynamique d'un instrument
CN115078584B (zh) * 2022-06-27 2023-06-27 四川大学 一种简单快速、低成本、高通量的肌肉质量测量方法及检测试剂盒

Family Cites Families (131)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4065552A (en) 1975-05-05 1977-12-27 Giovanni Giacomo Costa Method of detecting malignant neoplasms
US4332784A (en) 1979-02-06 1982-06-01 The Radiochemical Centre Limited Dual isotope assays
SU968036A1 (ru) 1980-03-10 1982-10-23 Научно-исследовательский институт медицинской радиологии АМН СССР Способ получени меченого белка
US5317098A (en) 1986-03-17 1994-05-31 Hiroaki Shizuya Non-radioisotope tagging of fragments
DE3667103D1 (en) 1986-06-09 1989-12-28 Bruker Analytische Messtechnik Method for determining the turnover of organic material in living tissue and nmr spectrometer for performing this method
US4940658A (en) 1986-11-20 1990-07-10 University Patents, Inc. Assay for sulfhydryl amino acids and methods for detecting and distinguishing cobalamin and folic acid deficency
WO1989001342A2 (fr) 1987-08-07 1989-02-23 Mallinckrodt, Inc. Composition diagnostique ou radiotherapeutique comprenant un compose a base d'hydrogene
US5042488A (en) 1987-09-29 1991-08-27 The Washington University Methods employing deuterium for obtaining direct, observable deuterium magnetic resonance images in vivo and in situ
US6004781A (en) 1988-01-22 1999-12-21 The General Hospital Corporation Nucleic acid encoding Ig-CD4 fusion proteins
JPH04504049A (ja) 1989-03-20 1992-07-23 アンティキャンサー インコーポレイテッド インビトロにおける組織の生存能力及び増殖能力を測定する、自生状態法及びシステム
GB2229718B (en) 1989-03-22 1993-01-06 Inst Molekularnoi Genetik Method for preparing hydrogen-isotape labelled biologically active organic compounds
US5217903A (en) 1990-05-15 1993-06-08 Trustees Of Boston University Measuring connective tissue breakdown products in body fluids
CA2027714C (fr) 1990-07-13 2003-01-28 Kenneth W. Turtletaub Methode de mesure pour les systemes biologiques
US5209919A (en) 1990-07-13 1993-05-11 Regents Of The University Of California Method of measurement in biological systems
US5597548A (en) 1990-07-18 1997-01-28 Board Of Regents, The University Of Texas System 13 C Isotopomer analyses in intact tissue using (13 C) homonuclear decoupling
HU208084B (en) 1991-10-31 1993-08-30 Hyd Kutato Fejlesztoe Kft Process for producing compositions suitable for curing tumorous diseases
US5394236A (en) 1992-02-03 1995-02-28 Rutgers, The State University Methods and apparatus for isotopic analysis
AU3892593A (en) 1992-04-08 1993-11-18 Paavo Kai Johannes Kinnunen Composition for therapeutic or diagnostic use, process for its preparation and its use
US5338686A (en) 1992-04-29 1994-08-16 Hellerstein Marc K Method for measuring in vivo synthesis of biopolymers
JP2960832B2 (ja) 1992-05-08 1999-10-12 ペルマテック テクノロジー アクチェンゲゼルシャフト エストラジオールの投与システム
US5366885A (en) 1992-06-09 1994-11-22 Barranco Iii Sam C Method and kit for testing tumors for drug sensitivity
US5432058A (en) 1992-09-30 1995-07-11 Lange, Iii; Louis G. Method for measuring human cholesterol absorption using metabolically stable isotopes
US5506147A (en) 1993-04-15 1996-04-09 Kolhouse; J. Fred Non-invasive evaluation of maldigestion and malaborption
EP0650396B1 (fr) 1993-05-17 1998-01-14 AMERSHAM INTERNATIONAL plc Dispositifs et procedes permettant de mesurer des processus cellulaires biochimiques
US5439803A (en) 1993-08-13 1995-08-08 The Regents Of The University Of Michigan Isotope and assay for glycolysis and the pentose phosphate pathway
US5756067A (en) 1993-11-08 1998-05-26 Peptide Delivery Systems Pty Ltd Labelled diagnostic compositions and method of their use
US5628328A (en) * 1995-04-25 1997-05-13 Iowa State University Research Foundation Method for measuring muscle mass
PT781145E (pt) 1995-08-08 2003-11-28 Otsuka Pharma Co Ltd Composicoes de diagnostico e sua utilizacao para deteccao de anomalias do sistema nervoso central
US5922554A (en) 1995-10-30 1999-07-13 The Regents Of The University Of California Inhibition of cellular uptake of cholesterol
CA2213935C (fr) 1996-08-27 2002-10-01 Tokyo Gas Co., Ltd. Agent diagnostique pour le diabete
AU745236B2 (en) 1997-02-14 2002-03-14 George Washington University, The An assay for the measurement of DNA synthesis rates
AU745912B2 (en) 1997-03-14 2002-04-11 George Washington University, The A device for continuous isotope ratio monitoring following fluorine based chemical reactions
US5910403A (en) 1997-05-15 1999-06-08 The Regents Of University Of California Methods for measuring cellular proliferation and destruction rates in vitro and in vivo
US5961470A (en) 1997-07-09 1999-10-05 Wagner; David A. Breath test for assessing hepatic function
US6329208B1 (en) 1997-07-16 2001-12-11 Board Of Regents, The University Of Texas System Methods for determining gluconeogenesis, anapleurosis and pyruvate recycling
CA2249173C (fr) 1997-10-06 2008-12-16 Tokyo Gas Co., Ltd. Agent diagnostique pour l'exploration fonctionnelle du foie
US6306660B1 (en) 1997-10-14 2001-10-23 Bayer Corporation Method for improving the accuracy of the semi-quantitative determination of analyte in fluid samples
US5924995A (en) 1997-11-10 1999-07-20 Meretek Diagnostics Non-invasive method for the functional assessment of infants and children with an inherited metabolic disorder
JP2002513911A (ja) 1998-05-06 2002-05-14 アイソテクニカ、インコーポレーテッド 糖尿病症状の診断及び血糖コントロール監視用13cグルコース呼気試験
US6461870B2 (en) 1998-05-06 2002-10-08 Isotechnika Inc. 13C glucose breath test for the diagnosis of diabetic indications and monitoring glycemic control
US6284219B1 (en) 1998-06-30 2001-09-04 Phenome Sciences Inc. In vivo determination of metabolic function for use in therapy management
US6625547B1 (en) 1998-08-05 2003-09-23 Washington State University Research Foundation Relative rates of cytochrome p450 metabolism
ATE536422T1 (de) 1998-08-25 2011-12-15 Univ Washington Schnelle quantitative analyse von proteinen oder proteinfunktionen in komplexen gemischen
DE19839491A1 (de) 1998-08-29 2000-03-02 Hermann Heumann Verfahren zur Markierung von Biopolymeren mit Isotopen
US6653076B1 (en) 1998-08-31 2003-11-25 The Regents Of The University Of Washington Stable isotope metabolic labeling for analysis of biopolymers
US6693186B2 (en) 1998-09-01 2004-02-17 Antex Biologics Inc Neisseria meningitidis polypeptide, nucleic acid sequence and uses thereof
US6887712B1 (en) 1998-11-09 2005-05-03 Atherogenics, Inc. Methods and compositions to lower plasma cholesterol levels
MXPA01009213A (es) 1999-03-17 2002-10-11 Univ North Carolina Metodo para seleccionar compuestos candidatos, por la susceptibilidad a la excrecion biliar.
US20030119069A1 (en) 1999-04-20 2003-06-26 Target Discovery, Inc. Labeling of protein samples
WO2000063683A1 (fr) 1999-04-20 2000-10-26 Target Discovery, Inc. Procedes de cartographie peptidique de polypeptides, etablissement de profils et systeme de base de donnees bioinformatique
US6764817B1 (en) 1999-04-20 2004-07-20 Target Discovery, Inc. Methods for conducting metabolic analyses
US6391649B1 (en) 1999-05-04 2002-05-21 The Rockefeller University Method for the comparative quantitative analysis of proteins and other biological material by isotopic labeling and mass spectroscopy
EP1187600A1 (fr) * 1999-06-07 2002-03-20 Fortress Systems, L.l.c. Procede destine a augmenter une concentration stable de creatine cellulaire
US7057168B2 (en) 1999-07-21 2006-06-06 Sionex Corporation Systems for differential ion mobility analysis
US6653090B1 (en) 1999-11-05 2003-11-25 University Of Alberta Methods for measuring the metabolism of and screening for drugs in isolated hearts
US6566086B1 (en) 2000-01-28 2003-05-20 Fal Diagnostics Diagnostic kit for detecting creatine levels
JP2001211782A (ja) 2000-02-02 2001-08-07 Masa Yamamoto tob遺伝子欠損ノックアウト非ヒト哺乳動物
WO2001084143A1 (fr) 2000-04-13 2001-11-08 Thermo Finnigan Llc Analyse proteomique par spectrometrie de masse parallele
WO2001080715A2 (fr) 2000-04-21 2001-11-01 The Trustees Of Columbia University In The City Of New York Procedes d'identification de composes utiles dans la prevention d'evenements vasculaires aigus chez un sujet
WO2001086306A2 (fr) 2000-05-05 2001-11-15 Purdue Research Foundation Peptides a signature a affinite selective permettant l'identification et la quantification de proteines
JP2003533680A (ja) 2000-05-18 2003-11-11 メタボリック ソリューションズ,インコーポレイティド リバースアイソトープ希釈アッセイ及びラクトース不耐性アッセイ
US6680203B2 (en) 2000-07-10 2004-01-20 Esperion Therapeutics, Inc. Fourier transform mass spectrometry of complex biological samples
US7048907B2 (en) 2001-02-05 2006-05-23 Biophysics Assay Laboratory, Inc. Synthesis, compositions and methods for the measurement of the concentration of stable-isotope labeled compounds in life forms and life form excretory products
GB0106923D0 (en) 2001-03-20 2001-05-09 Univ Dundee Liver function test
US7256047B2 (en) 2001-05-01 2007-08-14 Board Of Regents, The University Of Texas System Measurement of gluconeogenesis and intermediary metabolism using stable isotopes
JP2004536600A (ja) 2001-06-26 2004-12-09 ニュー ヨーク ステイト オフィス オブ メンタル ヘルス 細胞に基づいた高スループットスクリーニング法
JP2003079270A (ja) 2001-09-10 2003-03-18 Japan Science & Technology Corp ミエリン発達障害モデル非ヒト動物
US6835927B2 (en) 2001-10-15 2004-12-28 Surromed, Inc. Mass spectrometric quantification of chemical mixture components
US6756586B2 (en) 2001-10-15 2004-06-29 Vanderbilt University Methods and apparatus for analyzing biological samples by mass spectrometry
IL161498A0 (en) 2001-10-24 2004-09-27 Univ California Measurement of protein synthesis rates in humans and experimental system by use of isotopically labeled water
DE60211744T3 (de) 2001-12-08 2010-07-01 Micromass Uk Ltd. Massenspektrometrie-verfahren
US7635841B2 (en) 2001-12-12 2009-12-22 Micromass Uk Limited Method of mass spectrometry
WO2003068919A2 (fr) 2002-02-12 2003-08-21 The Regents Of The University Of California Mesure de vitesses de biosynthese et de degradation de molecules biologiques inaccessibles ou peu accessibles a un echantillonnage direct, de maniere non invasive, par incorporation d'etiquettes dans des derives metaboliques et des produits cataboliques
US20060100903A1 (en) 2002-03-22 2006-05-11 Los Angeles Biomedical Research Institute At Harbor-Ucla Medical Center Method of enhancing the efficiency of a pharmaceutical business
US20050281745A1 (en) 2002-03-22 2005-12-22 Los Angeles Biomedical Research Institute At Harbor-Ucla Medical Center Stable isotope based dynamic metabolic profiling of living organisms for characterization of metabolic diseases, drug testing and drug development
US20030180800A1 (en) 2002-03-22 2003-09-25 Lee Wai-Nang Paul Stable isotope based dynamic metabolic profiling of living organisms for characterization of metabolic diseases, drug testing and drug development
US20030180710A1 (en) 2002-03-22 2003-09-25 Lee Wai-Nang Paul Method of enhancing the efficiency of a pharmaceutical business
WO2003087314A2 (fr) 2002-04-05 2003-10-23 The Regents Of The University Of California Procede permettant d'isoler et de mesurer la proliferation de cellules retenant des marqueurs a long terme et de cellules souches
US20030211036A1 (en) 2002-05-07 2003-11-13 Hadassa Degani Method and apparatus for monitoring and quantitatively evaluating tumor perfusion
WO2004003493A2 (fr) 2002-06-26 2004-01-08 The Regents Of The University Of California Methodes et trousses servant a determiner la depense energetique dans des organismes vivants par la production d'eau metabolique
US7510880B2 (en) 2002-06-26 2009-03-31 Gross Richard W Multidimensional mass spectrometry of serum and cellular lipids directly from biologic extracts
EP1546364A4 (fr) 2002-07-30 2006-09-06 Univ California Procede de mesure automatique a grande echelle des taux de flux moleculaire proteomique ou organeomique par spectrometrie de masse
WO2004016156A2 (fr) 2002-08-16 2004-02-26 The Regents Of The University Of California Test de tolerance au glucose a recyclage hepatique dynamique
AU2003268416A1 (en) 2002-09-04 2004-03-29 The Regents Of The University Of California Methods for measuring rates of replication and death of nfectious microbial agents in an infected host organism
ATE415486T1 (de) 2002-09-13 2008-12-15 Univ California Verfahren zur messung der geschwindigkeiten des cholesterinrückwärtstransports in vivo als index für anti-artherogenese
SG152923A1 (en) 2002-09-16 2009-06-29 Univ California Biochemical methods for measuring metabolic fitness of tissues or whole organisms
US20070248540A1 (en) 2002-09-16 2007-10-25 The Regents Of The University Of California Biochemical methods for measuring metabolic fitness of tissues or whole organisms
JP4754831B2 (ja) 2002-10-29 2011-08-24 ターゲット・ディスカバリー・インコーポレイテッド 質量分析法のイオン化効率の増大方法
US7504233B2 (en) 2002-11-04 2009-03-17 The Regents Of The University Of California Methods for determining the metabolism of sugars and fats in an individual
US20040121305A1 (en) 2002-12-18 2004-06-24 Wiegand Roger Charles Generation of efficacy, toxicity and disease signatures and methods of use thereof
US6906320B2 (en) 2003-04-02 2005-06-14 Merck & Co., Inc. Mass spectrometry data analysis techniques
US20050014181A1 (en) 2003-06-18 2005-01-20 Galis Zorina S. Methods and compositions for the assessment of polymer assembly
EP1644856A2 (fr) 2003-06-30 2006-04-12 Ajinomoto Co., Inc. Methode d'analyse de flux metabolique intracellulaire au moyen d'un substrat marque par un isotope
WO2005009597A2 (fr) 2003-07-03 2005-02-03 The Regents Of The University Of California Methodes de comparaison des debits relatifs de deux ou de plusieurs molecules biologiques in vivo a l'aide d'un seul protocole
US7262020B2 (en) 2003-07-03 2007-08-28 The Regents Of The University Of California Methods for comparing relative flux rates of two or more biological molecules in vivo through a single protocol
WO2005010506A1 (fr) * 2003-07-09 2005-02-03 Tokyo Gas Company Limited Procédé de mesure de concentration isotopique
US20050202406A1 (en) 2003-11-25 2005-09-15 The Regents Of The University Of California Method for high-throughput screening of compounds and combinations of compounds for discovery and quantification of actions, particularly unanticipated therapeutic or toxic actions, in biological systems
US8510054B2 (en) 2004-02-05 2013-08-13 Ajinomoto Co., Inc. Intracellular metabolic flux analysis method using substrate labeled with isotope
US20050180949A1 (en) 2004-02-13 2005-08-18 Nuvelo, Inc. hC1Q/TNF7 and uses thereof
TW200538738A (en) 2004-02-20 2005-12-01 Univ California Molecular flux rates through critical pathways measured by stable isotope labeling in vivo, as biomarkers of drug action and disease activity
EP1723252A4 (fr) 2004-03-11 2009-07-29 Univ California Caracterisation temporelle ou spatiale d'evenements de biosynthese dans des organismes vivants par etablissement d'empreintes isotopiques dans des conditions de gradients isotopiques imposees
WO2005094327A2 (fr) 2004-03-29 2005-10-13 The Regents Of The University Of California Isolation de cellules epitheliales ou de leurs contenus biochimiques a partir de feces apres marquage isotopique in vivo
WO2005098024A1 (fr) 2004-03-30 2005-10-20 Kinemed, Inc. Mesure in vivo des flux relatifs a travers la ribonucleotide reductase par rapport aux voies du desoxyribonucleoside au moyen d'isotopes
JP4654592B2 (ja) 2004-04-02 2011-03-23 味の素株式会社 代謝フラックスの決定方法
US20090042741A1 (en) 2004-05-06 2009-02-12 Arizona Board Of Regents, Acting For And On Behalf Of Arizona State University Microarray of three-dimensional heteropolymer microstructures and method therefor
WO2005110448A2 (fr) * 2004-05-07 2005-11-24 Thermo Formulations Ltd. Composition nutritionnelle destinee a augmenter l'absorption de creatine dans les muscles squelettiques
WO2006050130A2 (fr) 2004-10-29 2006-05-11 Target Discovery, Inc. Analyse de glycanes utilisant le glucose deutere
WO2006081521A2 (fr) 2005-01-26 2006-08-03 The Regents Of The University Of Colorado Methodes pour diagnostic et intervention de troubles hepatiques
MX2007009450A (es) * 2005-02-07 2007-10-23 New Cell Formulations Ltd Sales de acido hidroxicitrico de creatina y metodos para su produccion y uso en individuos.
DK1886112T3 (da) 2005-04-06 2014-09-08 Univ St Louis Fremgangsmåde til Måling af metabolismen af neuralt afledte biomolekyler in vivo
US20060251576A1 (en) 2005-05-03 2006-11-09 The Regents Of The University Of California Methods for measuring cholesterol metabolism and transport
TW200711660A (en) 2005-06-10 2007-04-01 Univ California Monitoring two dimensions of diabetes pathogenesis separately or concurrently (insulin sensitivity and beta-cell sufficiency): uses in diagnosis, prognosis, assessment of disease risk, and drug development
US20060281188A1 (en) * 2005-06-13 2006-12-14 Cornell Research Foundation, Inc. Ratiometric test strip and method
WO2006138479A2 (fr) 2005-06-15 2006-12-28 Arizona Board Of Regents For And On Behalf Of Arizona State University Microreseaux a microstructure et microdomaine, procedes d'elaboration et utilisations
WO2006138717A2 (fr) 2005-06-16 2006-12-28 California Pacific Medical Center Research Institute Procedes et appareil de determination de proportions de matieres corporelles
JP5448447B2 (ja) 2006-05-26 2014-03-19 国立大学法人京都大学 ケミカルゲノム情報に基づく、タンパク質−化合物相互作用の予測と化合物ライブラリーの合理的設計
US20080128608A1 (en) 2006-11-06 2008-06-05 The Scripps Research Institute Nanostructure-initiator mass spectrometry
JP2008157905A (ja) * 2006-12-25 2008-07-10 Hectef Standard Reference Center Foundation 添加法による生体試料中蛋白・ペプチドの定量方法
JP2010540911A (ja) * 2007-10-01 2010-12-24 ディーエイチ テクノロジーズ デベロップメント プライベート リミテッド アルコール消費の複合化した代謝産物の分析
RU2508114C2 (ru) 2007-11-13 2014-02-27 Феникс Байотекнолоджи Инк. Способ определения вероятности терапевтического ответа на противораковую химиотерапию сердечным гликозидом
US8574543B2 (en) 2007-12-14 2013-11-05 Los Angeles Biomedical Research Institute At Harbor-Ucla Medical Center Method of isotope labeling and determining protein synthesis, quantitation and protein expression
US8859725B2 (en) 2008-07-31 2014-10-14 Queen Mary And Westfield College, University Of London Healthy kidney biomarkers
WO2010136455A1 (fr) * 2009-05-25 2010-12-02 Metabolic Renal Disease, S.L. Procédés et réactifs permettant un dosage quantitatif des métabolites présents dans des échantillons biologiques
WO2010144876A1 (fr) 2009-06-12 2010-12-16 University Of Louisville Research Foundation, Inc Méthodes pour détecter un cancer chez un animal
FR2947908A1 (fr) * 2009-07-09 2011-01-14 Royal Canin Sas Utilisation de la creatinine comme agent de dilution pour determiner la composition corporelle d'un mammifere
JP5662182B2 (ja) * 2010-02-08 2015-01-28 地方独立行政法人神奈川県立病院機構 生体試料中のアミンの測定方法およびその方法を用いる患者のスクリーニング方法
US9658213B2 (en) 2010-06-18 2017-05-23 The Regents Of The University Of California Isotopic labeling for the measurement of global protein levels and turnover in vivo
JP2014526685A (ja) 2011-09-08 2014-10-06 ザ・リージェンツ・オブ・ザ・ユニバーシティ・オブ・カリフォルニア 代謝流量測定、画像化、および顕微鏡法
EP2788772B1 (fr) 2011-12-07 2018-02-14 GlaxoSmithKline LLC Procédés de détermination de la masse musculaire squelettique totale du corps
US9134319B2 (en) 2013-03-15 2015-09-15 The Regents Of The University Of California Method for replacing biomarkers of protein kinetics from tissue samples by biomarkers of protein kinetics from body fluids after isotopic labeling in vivo
AU2014278023B2 (en) 2013-06-12 2019-11-07 Glaxosmithkline Intellectual Property (No. 2) Limited Methods for determining total body skeletal muscle mass

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MacNeil et al. Journal of Chromatography B, vol. 827, 2005, pages 210-215. *
Stimpson et al. Journal of Applied Physiology, vol. 112, March 15, 2012, pages 1940-1948. *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9037417B2 (en) 2004-02-20 2015-05-19 The Regents Of The University Of California Molecular flux rates through critical pathways measured by stable isotope labeling In Vivo, as biomarkers of drug action and disease activity
US9043159B2 (en) 2004-02-20 2015-05-26 The Regents Of The University Of California Molecular flux rates through critical pathways measured by stable isotope labeling in vivo, as biomarkers of drug action and disease activity
US9720002B2 (en) 2004-02-20 2017-08-01 The Regents Of The University Of California Molecular flux rates through critical pathways measured by stable isotope labeling in vivo, as biomarkers of drug action and disease activity
US9778268B2 (en) 2004-02-20 2017-10-03 The Regents Of The University Of California Molecular flux rates through critical pathways measured by stable isotope labeling in vivo, as biomarkers of drug action and disease activity
US10466253B2 (en) 2004-02-20 2019-11-05 The Regents Of The University Of California Molecular flux rates through critical pathways measured by stable isotope labeling in vivo, as biomarkers of drug action and disease activity
US10386371B2 (en) 2011-09-08 2019-08-20 The Regents Of The University Of California Metabolic flux measurement, imaging and microscopy
US9737260B2 (en) 2011-12-07 2017-08-22 Glaxosmithkline Llc Methods for determining total body skeletal muscle mass
US9134319B2 (en) 2013-03-15 2015-09-15 The Regents Of The University Of California Method for replacing biomarkers of protein kinetics from tissue samples by biomarkers of protein kinetics from body fluids after isotopic labeling in vivo
US11182920B2 (en) 2018-04-26 2021-11-23 Jerry NAM Automated determination of muscle mass from images

Also Published As

Publication number Publication date
ES2668678T3 (es) 2018-05-21
EP2788772A1 (fr) 2014-10-15
EP2788772A4 (fr) 2015-04-15
US20160220182A1 (en) 2016-08-04
JP6294233B2 (ja) 2018-03-14
EP3435088A1 (fr) 2019-01-30
US20190029591A1 (en) 2019-01-31
JP2020073890A (ja) 2020-05-14
JP2015500484A (ja) 2015-01-05
US9737260B2 (en) 2017-08-22
CA2858368A1 (fr) 2013-06-13
JP2018138914A (ja) 2018-09-06
EP2788772B1 (fr) 2018-02-14
US20170367648A1 (en) 2017-12-28
WO2013086070A1 (fr) 2013-06-13

Similar Documents

Publication Publication Date Title
US9737260B2 (en) Methods for determining total body skeletal muscle mass
Andreasen et al. A fatal poisoning involving 25C-NBOMe
Zollinger et al. Absorption, distribution, metabolism, and excretion (ADME) of 14 C-sonidegib (LDE225) in healthy volunteers
Chen et al. Measurement of caffeine and its three primary metabolites in human plasma by HPLC‐ESI‐MS/MS and clinical application
TW201514495A (zh) 診斷心臟衰竭之方法
Shibasaki et al. Simultaneous determination of prednisolone, prednisone, cortisol, and cortisone in plasma by GC–MS: estimating unbound prednisolone concentration in patients with nephrotic syndrome during oral prednisolone therapy
JP6319855B2 (ja) 全身の骨格筋量を決定するための方法
Attimarad et al. Determination on vildagliptin in rat plasma by capillary electrophoresis tandem mass spectrometry: It’s application to pharmacokinetic study
Horita et al. Two methods for assessment of choline status in a randomized crossover study with varying dietary choline intake in people: Isotope dilution MS of plasma and in vivo single-voxel magnetic resonance spectroscopy of liver
Qiu et al. Simultaneous determination of bosentan and glimepiride in human plasma by ultra performance liquid chromatography tandem mass spectrometry and its application to a pharmacokinetic study
Yu et al. Simultaneous determination of macitentan and its active metabolite in human plasma by liquid chromatography-tandem mass spectrometry
Li et al. Determination of TBI-166, a novel antituberculotic, in Rat plasma by liquid chromatography–tandem mass spectrometry
Feng et al. LC–MS-MS with post-column reagent addition for the determination of zolpidem and its metabolite zolpidem phenyl-4-carboxylic acid in oral fluid after a single dose
Xuejing et al. UHPLC–MS/MS analysis of sphingosine 1‐phosphate in joint cavity dialysate and hemodialysis solution of adjuvant arthritis rats: Application to geniposide pharmacodynamic study
Wang et al. Measurement of 1-and 3-methylhistidine in human urine by ultra performance liquid chromatography–tandem mass spectrometry
Pesakova et al. Liquid chromatography-tandem mass spectrometry method for determination of total and free teriflunomide concentration in serum of patients with multiple sclerosis
Li et al. Simultaneous determination and determination of sildenafil and its active metabolite in human plasma using LC–MS/MS method
Brozmanova et al. Liquid chromatography-tandem mass spectrometry method for quantification of gentamicin and its individual congeners in serum and comparison results with two immunoanalytical methods (fluorescence polarization immunoassay and chemiluminiscent microparticle immunoassay)
Arafat et al. Determination of loperamide in human plasma and saliva by liquid chromatography–tandem mass spectrometry
Yang et al. Large inter-individual variability in pharmacokinetics of dexmedetomidine and its two major N-glucuronides in adult intensive care unit patients
Li et al. An improved LC–MS/MS method for determination of cinacalcet in human plasma and its application to the evaluation of food intake effect on the pharmacokinetics of cinacalcet in healthy volunteers
Fabre et al. Assay of methotrexate and 7-hydroxymethotrexate by gradient-elution high-performance liquid chromatography and its application in a high-dose pharmacokinetic study
Szpot et al. Toxicological Aspects of Methotrexate Intoxication: Concentrations in Postmortem Biological Samples and Autopsy Findings. Toxics 2022, 10, 572
Pigliasco et al. Innovative LC-MS/MS method for therapeutic drug monitoring of fenfluramine and cannabidiol in the plasma of pediatric patients with epilepsy
Gottardo et al. Fatal, intentional overdose of ranolazine: Postmortem distribution of parent drug and its major metabolite

Legal Events

Date Code Title Description
AS Assignment

Owner name: KINEMED, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HELLERSTEIN, MARC K.;EVANS, WILLIAM;SIGNING DATES FROM 20140914 TO 20140917;REEL/FRAME:033875/0583

Owner name: GLAXOSMITHKLINE LLC, PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HELLERSTEIN, MARC K.;EVANS, WILLIAM;SIGNING DATES FROM 20140914 TO 20140917;REEL/FRAME:033875/0583

AS Assignment

Owner name: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, CALIF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KINEMED, INC.;REEL/FRAME:034149/0348

Effective date: 20141007

AS Assignment

Owner name: GLAXOSMITHKLINE LLC, DELAWARE

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE SECOND ASSIGNEE'S ADDRESS PREVIOUSLY RECORDED AT REEL: 033875 FRAME: 0583. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNORS:HELLERSTEIN, MARC K.;EVANS, WILLIAM;SIGNING DATES FROM 20140914 TO 20140917;REEL/FRAME:038749/0706

Owner name: KINEMED, INC., CALIFORNIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE SECOND ASSIGNEE'S ADDRESS PREVIOUSLY RECORDED AT REEL: 033875 FRAME: 0583. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNORS:HELLERSTEIN, MARC K.;EVANS, WILLIAM;SIGNING DATES FROM 20140914 TO 20140917;REEL/FRAME:038749/0706

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION