US20140308865A1 - Stretchable and dimensionally stable woven fabric made from polytrimethylene terephthalate based core spun yarns. - Google Patents

Stretchable and dimensionally stable woven fabric made from polytrimethylene terephthalate based core spun yarns. Download PDF

Info

Publication number
US20140308865A1
US20140308865A1 US14/364,077 US201214364077A US2014308865A1 US 20140308865 A1 US20140308865 A1 US 20140308865A1 US 201214364077 A US201214364077 A US 201214364077A US 2014308865 A1 US2014308865 A1 US 2014308865A1
Authority
US
United States
Prior art keywords
fabric
yarn
core spun
core
cotton
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/364,077
Other languages
English (en)
Inventor
Akshay Kumar
Gowri Nagarajan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DuPont Industrial Biosciences USA LLC
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Assigned to E. I. DUPONT DE NEMOURS AND COMPANY reassignment E. I. DUPONT DE NEMOURS AND COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NAGARAJAN, Gowri, KUMAR, AKSHAY
Publication of US20140308865A1 publication Critical patent/US20140308865A1/en
Assigned to E I DU PONT INDIA PVT. LTD. reassignment E I DU PONT INDIA PVT. LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NAGARAJAN, Gowri, KUMAR, AKSHAY
Assigned to E. I. DU PONT DE NEMOURS AND COMPANY reassignment E. I. DU PONT DE NEMOURS AND COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: E I DU PONT INDIA PVT. LTD.
Assigned to E. I. DU PONT DE NEMOURS AND COMPANY reassignment E. I. DU PONT DE NEMOURS AND COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: E. I. DU PONT INDIA PVT. LTD.
Assigned to DUPONT INDUSTRIAL BIOSCIENCES USA, LLC reassignment DUPONT INDUSTRIAL BIOSCIENCES USA, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: E. I. DU PONT DE NEMOURS AND COMPANY
Assigned to DUPONT INDUSTRIAL BIOSCIENCES USA, LLC reassignment DUPONT INDUSTRIAL BIOSCIENCES USA, LLC CORRECTIVE ASSIGNMENT TO CORRECT THE ENTITY TYPE PREVIOUSLY RECORDED AT REEL: 049879 FRAME: 0043. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: E. I. DU PONT DE NEMOURS AND COMPANY
Abandoned legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/36Cored or coated yarns or threads
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/32Elastic yarns or threads ; Production of plied or cored yarns, one of which is elastic
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/32Elastic yarns or threads ; Production of plied or cored yarns, one of which is elastic
    • D02G3/328Elastic yarns or threads ; Production of plied or cored yarns, one of which is elastic containing elastane
    • D03D15/08
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/208Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads cellulose-based
    • D03D15/217Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads cellulose-based natural from plants, e.g. cotton
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/40Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads
    • D03D15/44Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads with specific cross-section or surface shape
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/40Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads
    • D03D15/47Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads multicomponent, e.g. blended yarns or threads
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/56Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads elastic
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • D10B2201/01Natural vegetable fibres
    • D10B2201/02Cotton
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • D10B2201/20Cellulose-derived artificial fibres
    • D10B2201/22Cellulose-derived artificial fibres made from cellulose solutions
    • D10B2201/24Viscose
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/061Load-responsive characteristics elastic
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2501/00Wearing apparel
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2503/00Domestic or personal
    • D10B2503/06Bed linen
    • D10B2503/062Fitted bedsheets
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/08Upholstery, mattresses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2904Staple length fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3008Woven fabric has an elastic quality
    • Y10T442/3024Including elastic strand or strip

Definitions

  • This invention relates to polytrimethylene terephthalate (PTT) based core spun yarns, wherein the core of the yarn comprises a stretchable filament and the sheath comprises polytrimethylene terephthalate based staple fiber.
  • PTT polytrimethylene terephthalate
  • This invention further relates to highly stretchable fabrics that exhibit high recovery and low growth, wherein the PTT based core spun yarn is in the weft direction.
  • the apparel industry has a constant demand for better and newer varieties of fabrics to cater to the insatiable and evolving needs of the discerning consumers.
  • One of the needs of the apparel industry is a demand for stretchable fabrics with a wearable feel.
  • Core spun yarns are widely used for manufacturing stretch fabrics used for manufacturing denims, bottoms and shirts.
  • CSY's known in the art typically have cotton, polyethylene terephthalate (PET), viscose, nylon or their blends as their sheath component with Lycra or spandex filament forming the core.
  • the CSY garments have stretch level ranging from 7 to 35% depending upon the percentage of spandex in the core.
  • the fabric manufactured with stretch level 8 to 15% is called a comfort stretch fabric.
  • the fabric with stretch level 16 to 35% is called as super stretch fabric.
  • a fabric with a stretch level of 35% has a high spandex percentage (about 9 to 10%). This leads to high growth % or low recovery potential which is undesirable.
  • a fabric with almost 15% stretch level has almost 5% growth and only 70% recovery level. This causes baggy formation and dimensional instability in the final garment after some usage.
  • WO 2008130563 discloses elastic composite yarn used as warp and filling yarn for woven fabric comprising a filamentary core comprising elastic performance filament(s) and inelastic control filament(s), and a fibrous sheath comprising spun staple fibers.
  • a core spun yarn comprising a core comprising a stretchable filament surrounded by a sheath comprising a polytrimethylene terephthalate based staple fiber in combination with a second staple fiber.
  • a fabric comprising the core spun yarn described hereinabove.
  • FIG. 1 is a schematic representation of core spun yarn production.
  • FIG. 2 is a schematic representation of fabric (denim) production using core spun yarn.
  • a fabric made of a core spun yarn is described herein. Also described is the CSY which comprises polytrimethylene terephthalate based staple fibers.
  • a CSY is a yarn that consists of an inner core yarn surrounded by staple fibers. The surrounding staple fibers thus form the sheath of the CSY.
  • a core spun yarn combines the strength and/or elongation of the core thread and the characteristics of the staple fiber sheath which form the surface.
  • the fabric is a stretchable, dimensionally stable woven fabric that is comfortable to wear, has high stretch properties coupled with good stretch recovery and less growth.
  • the fabric in addition to above features, also addresses practical aspects of growth in highly stretchable, heavy fabrics like denims, bottom fabrics, and suiting fabrics.
  • polytrimethylene terephthalate As used herein the terms “polytrimethylene terephthalate” or “PTT” are used interchangeably.
  • the polytrimethylene terephthalate is bio-sourced, bio-based or petroleum based.
  • staple fiber refers to a fiber of standardized length unlike a continuous fiber which is known as a filament. Staple fibers are cut to a specific length from the continuous filament fiber. Usually the staple fiber is cut in lengths ranging from 11 ⁇ 2 inches to 8 inches long.
  • a core spun yarn has an inner core comprising a stretchable filament and is surrounded by a sheath of polytrimethylene terephthalate staple fibers in combination with a second staple fiber.
  • the stretchable filament may be a spandex filament.
  • Spandex is a polyurethane-polyurea copolymer known for its elasticity and stretch.
  • a continuous spandex filament gives stretch to the CSY.
  • polytrimethylene terephthalate based staple fibers refers to 100% polytrimethyelene terephthalate (PTT) staple fibers or PTT in combination with another polymer selected from nylon, styrene, polyethylene terephthalate (PET) or blends thereof staple fibers.
  • the PTT based staple fibers are in combination with a second staple fiber selected from: cotton, polyester, viscose, nylon, modal, tencel, wool or combinations thereof.
  • a second staple fiber selected from: cotton, polyester, viscose, nylon, modal, tencel, wool or combinations thereof.
  • the polytrimethylene terephthalate based staple fibers is in combination with cotton and viscose. These form the sheath of the core spun yarn.
  • the polytrimethylene terephthalate content in the outer sheath is from 10% to 60%, or from 25% to 50%, or from 35% to 40%.
  • the percentage of polytrimethylene terephthalate used in weft yarn of the sheath contributes to the stretch recovery properties in the CSY.
  • a “woven fabric” is used to define a fabric manufactured by interlacing of two sets of yarn called warp yarns (warp) and weft yarns (weft). Warp runs in the fabric in a length-wise direction and weft yarns runs in the fabric in a width-wise direction.
  • the fabrics are woven by the techniques well known in the art such as plain weave, satin weave, and twill weave.
  • the core of the CSY can be a stretchable fiber or filament selected from a group of spandex and Lyrca®.
  • the stretchable fiber percentage in the yarn was in the range of 2% to 10%, or 5 to 8%, or 5 to 6%.
  • the sheath comprises a weft yarn being the CSY as described herein, and a warp yarn is a staple fiber yarn selected from cotton, nylon, polyester (for example PET, PTT), wool, viscose, and combinations thereof.
  • stretchable refers to the property of a fabric to extend to a certain length percentage when a fixed amount of load is applied.
  • a fabric with good stretch property is defined by the ability of the fabric to extend to its maximum and recover with a minimum amount of growth left in the fabric, after removal of the applied load.
  • An example of good stretch property in a fabric is approximately 15% stretch.
  • Such fabrics are called “comfort-stretch” fabrics. Stretch property and growth is measured using standard ASTM international procedures (see Table 1).
  • An aspect of the invention is a fabric made up of a core spun yarn wherein the inner core of the core spun yarn comprises a stretchable filament and is surrounded by a sheath of polytrimethylene terephthalate based staple fibers in combination with a second fiber.
  • the fabrics of this invention have high “dimensional stability” which means that they have maximum recovery and minimum growth left in the fabric after the stretch is released.
  • stretch recovery refers to the ability of the fabric to extend to its maximum and recover with minimum amount of growth left in the fabric, after removal of the applied load.
  • An acceptable stretch recovery has more than 70% stretch recovery.
  • a recovery of more than 70% and a growth of less than 2.5% in a fabric make it a dimensionally stable fabric. The stretch recovery and growth properties of the fabrics remain constant throughout the life of the fabric.
  • ASTM refers to American Society for Testing and Materials (ASTM International; West Conshohocken, Pa.). ASTM International publishes the Annual Book of ASTM Standards each year.
  • the fabric of this invention has stretch recovery in the range of 75 to 95%, or 80 to 95%.
  • the fabric of this invention has growth of less than 2.5%, or less than 2.3%.
  • the fabrics of this invention have a good wearable feel, provide ultraviolet protection, provide acid and alkali resistance during washing because of the PTT sheath in the core spun yarn of the fabric.
  • the fabric of the invention is selected from plain fabric, denim fabric, bottom fabric, shirt fabric, piece-dyed fabric, printed fabric, checked fabric, and striped fabric.
  • the fabric described herein may be used, for example, in the manufacture of garments, sheeting material like bed sheets, furnishings, or upholstery.
  • An aspect of the invention is the method of manufacturing the core spun yarn wherein, the sheath is a bicomponent fiber comprising PTT and cotton staple fibers, the process comprises the steps of:
  • the steps (a) to (e) apply to cotton staple fiber. After the combing of the cotton staple fiber, the cotton fiber is mixed with the PTT based fiber and are subjected to the process steps (f) to (n) as mentioned above.
  • blow-room process refers to a process where the fiber after opening and mixing is processed in a “blow-room line”.
  • a blow-room line consists of a number of machines used in succession to open and clean the cotton fiber. About 40% to 70% trash is removed in the blow-room section.
  • the objects (cotton and PTT staple fibers) of the blow-room are opened followed by cleaning where the fibers are opened from a larger tuft size (in hundreds of grams) to a smaller tuft size (in mgs). This is followed by cleaning which removes dirt, dust, broken seeds, broken leaves, and other unwanted materials from the fiber.
  • Both the processes are accompanied with mixing and blending to make a good quality yarn and to decrease production.
  • lap or fleece formation where the opened and cleaned fiber is transferred into sheet form having definite width and length which is called lap or in a modern system this sheet can be directly feed to the carding machine into fleece form.
  • carding refers to a process of disentangling fiber bunches into individual fibers and arranging them in a parallel direction after individualizing the fiber. It also further eliminates trash and other foreign materials and fibers that are unacceptable for manufacture.
  • the operation is performed on cotton, wool, waste silk, and synthetic staple fibers by a carding machine that consists of a moving conveyor belt with fine wire brushes and a revolving cylinder.
  • the material delivered from the carding machine is called a sliver or a card sliver.
  • the carding process opens up the collected mass of fibers so that the fibers become individual fibers.
  • the fibers in the card sliver are not completely aligned or oriented in the fiber axis. Some fibers lie haphazardly in the sliver.
  • the card sliver is given a minimum of two drafting processes before it goes to the next machine. In this process, the sliver is passed between sets of rollers that are running at different speeds, each succeeding pair rotating faster than the previous so that the fibers are pulled in a lengthwise direction. These two drafting operations can also be achieved by the sliver lap and ribbon lap machines. To improve the uniformity of the sliver, slivers are subjected to a process called doubling.
  • Doubling is the process of combining a number of slivers. By this process, the thin and thick places present in the sliver are evened out.
  • 16-20 card slivers are creeled and passed through the feed table to three pairs of drafting rollers for the drafting operation.
  • the drafted slivers are then taken to two pairs of calender rollers that compress the sliver material.
  • This drafted and compressed sliver material called lap is wound on a spool. This process is known as “lap formation”.
  • “Combing” is an additional fiber alignment operation performed on very fine yarns intended for finer fabrics. (Inexpensive and coarser fabrics are made from slivers processed without this further refining.) Fine-tooth combs are applied to the sliver from combing, separating out the shorter fibers, called noils, and aligning the longer fibers to a higher level of parallelism. The resulting strand is called a comb sliver. With its long fibers, the comb sliver provides a smoother, more even yarn.
  • drawing refers to a process (after carding) where several slivers are combined into one strand that is drawn to be longer and thinner.
  • the sliver that comes out of the carding machine has a high mass/length variation along the length.
  • doubling and drafting processes are carried out in a draw frame machine.
  • the first process of drawing is called a breaker drawing and the second process of drawing is called a finisher drawing.
  • Drawing frames have several pairs of rollers through which the slivers pass. Each successive pair of rollers runs at a higher speed than the preceding pair so that the sliver is pulled longer and thinner as it moves through the drawing frame. The operation is repeated through several stages.
  • the sliver delivered from the finisher draw frame has a minimal mass/length variation and fibers oriented toward the strand axis contribute to tensile properties.
  • the linear density of the sliver is approximately 140 times of the required final yarn. This needs to be further reduced to the required yarn linear density.
  • the fibers need to held to each other in a continuous form and need to have strength so that the fibers can be processed on the next machine.
  • the term “yarn spinning” refers to the process of the formation of the final yarn.
  • the core spun yarn has a core of elastomeric fiber and a sheath of staple fibers.
  • Core-spinning is a process by which fibers are twisted around an existing yarn, either filament or staple spun yarn, to produce a sheath—core structure in which the already formed yarn is the core.
  • Core-spun yarns are produced by many spinning systems, for example, ring spinning system, core wrap spinning method, patterned spinning system, core-twin spinning system, composite electrostatic spinning system, rotor spinning system, friction spinning system, or air jet spinning system. These are conventional systems which are well known to a person skilled in the art.
  • An embodiment of this invention is the spinning of a PTT based fiber-cotton sheath using a ring spinning system to produce the core spun fiber as described herein. The process is schematically shown in FIG. 1 .
  • Ring spinning produces yarn in a small package called cop or bobbin. Since cops from ring frames are not suitable for further processing, the winding process serves to achieve additional objectives made necessary by the requirements of the subsequent processing stages.
  • winding refers to a process of obtaining a larger package from several small ring bobbins. This conversion process provides one with the possibility of cutting out unwanted and problematic objectionable faults. The process of removing such objectionable faults is called as yarn ‘clearing’.
  • conditioning refers to the process to provide an economical device for supplying the necessary moisture in a short time, in order to achieve a lasting improvement in quality and processability of yarn in a subsequent process by reducing the snarling tendency.
  • Moisture in the atmosphere has a great impact on the physical properties of textile fibers and yarns. Relative humidity and temperature will decide the amount of moisture in the atmosphere. High relative humidity in different departments of spinning is not desirable. But on the other hand, a high degree of moisture improves the physical properties of yarn. Moreover, it helps the yarn to attain the standard moisture regain value of the fiber.
  • An aspect of the invention is the method of manufacturing the core spun yarn wherein, the sheath is a blend or combination of PTT and any other staple fiber other than cotton, the process comprises the steps of:
  • An aspect of the invention is the method of manufacturing a denim fabric using the core spun yarn of the invention and indigo dyed cotton staple fiber yarn, wherein the process comprises the steps of:
  • An aspect of the invention is the method of manufacturing a plain bottom-weight fabric using the core spun yarn of the invention and any other staple fiber yarn, wherein the process comprises the steps of:
  • An aspect of the invention of the invention is the method of manufacturing a striped fabric using the core spun yarn of the invention and any other staple fiber yarn, wherein the process comprises the steps of:
  • steps in the manufacturing process can be modified depending on the desired final product. For example, the steps of mercerizing followed by bleaching are done prior to the finishing step only when cotton staple fiber yarns are present in the fabric.
  • the process of dyeing is required only for colored fabrics. It is obvious for someone with skill in the art that the step of dyeing is omitted when a plain fabric is desired.
  • the polytrimethylene terephthalate based core spun yarn forms the weft yarn of the fabric.
  • printed refers to the fabric which is printed in the fabric form.
  • warping refers to a process of winding the yarns on a warp beam.
  • sizing refers to a process of coating the threads normally with starch.
  • weaving refers to a process where the fabric is manufactured on a loom in a weaving process with warp threads coming from weavers beam interlaced with weft yarns put in width wise direction.
  • deizing refers to a process of removing the sizing applied on the warp with the help of enzyme or any other suitable chemicals.
  • Scouring refers to a process of chemical washing on cotton fabric to remove natural wax and non-fibrous impurities from the fibers and any added soiling or dirt. Scouring is usually carried out in iron vessels called kiers. The fabric is boiled in an alkali, which forms a soap with free fatty acids (saponification). A kier is usually enclosed, so the solution of sodium hydroxide can be boiled under pressure, excluding oxygen which would degrade the cellulose in the fiber. If the appropriate reagents are used, scouring will also remove sizing from the fabric although desizing often precedes scouring and is considered to be a separate process known as fabric preparation. Preparation and scouring are prerequisites to most of the other finishing processes. At this stage even the most naturally white cotton fibers are yellowish.
  • heat setting is a thermal process taking place mostly in dry heat (160° C. to 180° C. for 30 to 45 s) environment.
  • the effect of the process gives the fabric a dimensional stability and, very often, other desirable attributes like wrinkle resistance or temperature resistance.
  • mercerizing refers to a process of treating the fabric with alkali. This process removes convolutions from a cotton fiber structure and makes it round which improves the hand feel of the fabric, making it more lustrous. In cotton based fabric, mercerizing improves the strength of the fabric as well.
  • Bleaching refers to a process where any contaminations, colored or oil stain are removed from the fabric. Bleaching is normally done by treating the fabric with sodium hypochlorite or hydrogen peroxide solution.
  • the term “dyeing” used herein refers to a process where the fabric after bleaching is dyed with a color.
  • the warp cotton yarn and the weft PTT based yarn are dyed separately by a respective known dyeing method.
  • the warp yarn or PTT based core weft yarn may be dyed separately or together, and patterns are formed accordingly.
  • finishing refers to a process performed to the fabric after weaving to improve the look, performance, or “hand” (feel) of the finished textile or clothing.
  • the different finishing techniques are bio-polishing, raising, fulling, calendaring, anti-microbial finishing, anti-static finishing, non-slip finishing and others known in the art. Suitable finishing agents are used for these finishes.
  • the term “sanforizing” used herein refers to a process of treatment used particularly for cotton fabrics and other textiles made from natural or chemical fibers. It is a method of stretching, shrinking and fixing the woven cloth in both length and width, before cutting and producing to reduce the shrinkage which would otherwise occur after washing.
  • yarn dyeing used herein refers to a process where the yarn in warp and weft need to be dyed. This is done in a high temperature and high pressure dyeing machine.
  • sectional warping refers to a process of winding the yarns on a drum as per color pattern. Once all the yarn patterns are wound on the drum they can be wound to a warper beam to insert in the fabric as per stripe effect needed in the fabric.
  • denim used herein is a rugged cotton twill textile, in which the weft passes under two (“double”) or more warp threads. Denim was traditionally colored blue with indigo dyes.
  • indigo dyeing refers to a process of dyeing the cotton warp fibers with indigo dye using standard indigo dyeing processes like indigo rope dyeing process, indigo one-sheet dye slashing, indigo double sheet dyeing etc.
  • Singeing refers to a process of burning off loose fibers sticking out of textile goods. Singeing is a part of the pretreatment processes carried out in textile processing, and is usually the first step carried out after weaving. Singeing is often carried out on cotton fabrics, or fabrics with cotton blends and results in increased wettability (better dyeing characteristics, improved reflection, no “frosty” appearance), a smoother surface (better clarity in printing), improved visibility of the fabric structure, less pilling, and decreased contamination through removal of fluff and lint. Singeing usually involves passing/exposing one or both sides of a fabric over a gas flame to burn off the protruding fibers.
  • thermoplastic fibers Other methods of singeing include infra-red singeing and heat singeing for thermoplastic fibers. Singeing of yarns is called “gassing.” Cellulosic fibers such as cotton are easily singed because the protruding fibers burn to a light trace ash which is easily removed.
  • This example illustrates a process of making core spun yarn using polytrimethylene terephthalate staple fibers and cotton staple fibers.
  • Polytrimethylene terephthalate staple fibers 35 kg, 38 mm fiber length, 1.5 Denier
  • staple cotton (from combed sliver) fibers 65 kg, 31 mm upper quartile mean length, 4.0 ⁇ g/inch
  • the fibers were opened manually, and then mixed together.
  • the fibers were mixed by laying 2 layers of cotton and 1 layers of PTT. This process is called a stack mixing process. Then the entire fiber mass was taken from the stack by vertically withdrawing the material, and fed into a blow-room line.
  • the process parameters of the blow-room line selected for PTT/cotton fiber processing were:
  • Feed rollers and beaters blades setting 1.7 mm
  • Waste collection setting was set to ‘0’
  • Fine opening beater speed 450 rpm
  • the fiber fleece was fed to a carding machine using an aero-pneumatic acro feeding system.
  • the process parameters for the carding machine were:
  • a sliver came out of the carding machine having a very high mass/length variation along the length. To minimize the variation the carding slivers were doubled together and simultaneously drafted six times to further orient the fibers in the resultant sliver along the length direction. The doubling and drafting process was carried out on a draw frame machine. Two such drawing processes were done to reduce the mass/length variation in the sliver to a minimal level, and to orient the fiber along the length direction. The card sliver was processed on two sets of draw frames with the listed parameters.
  • the sliver from the finisher draw frame was converted to roving on the speed frame with the process parameters as listed:
  • the roving made on the speed frame converts into the yarns by drafting it further along the final spinning machine called a ring frame.
  • the yarn count spun was 9.6 s Ne.
  • the denier of core spandex filament was 70 D.
  • Spandex was given a draft of 2.1 before putting it into the yarn.
  • the spandex % in the final yarn was 6.3%.
  • the process parameters of the ring frame were:
  • the yarn was conditioned in an autoclave at 70° C. for 50 min.
  • the yarn cones were directly used as weft in the fabric manufacturing process where stretch in the fabric is required in a widthwise direction. However, these yarns can be used in a lengthwise direction also to get a warp way stretch or bi-stretch fabrics.
  • This example illustrates a process of making denim fabric using core spun yarn obtained from Example 1 as weft.
  • the fabric was manufactured using an airjet weaving machine.
  • the warp was 100% indigo dyed cotton staple fibers.
  • the weft was the core spun yarn obtained from Example 1.
  • the process parameters of the machine were:
  • Warp count (7.2 s+6.4 s) Ne (1+1), 100% cotton ring yarn
  • the fabric obtained was singed on a fabric singeing machine by passing over a set of burners at 80 mpm.
  • the protruding fibers on the surface were burnt, therefor removed.
  • the fabric was then desized by padding with enzymes for 12 to 18 hrs.
  • the fabric is then washed with water.
  • the fabric was mercerized by treating it with 18.5% NaOH solution at 65° C. at 40 mpm.
  • the fabric was then dried at 105° C. by passing it through a set of calendar rollers.
  • the fabric was then passed through a sanforizing machine adjusting skew, length and width shrinkage by passing it over a rubber roller in a steam chamber (Monforte) at 50 mpm. This made a final garment dimensionally stable, with an acceptable percentage of shrinking and improved hand feel of the fabric.
  • the resultant fabric was a ready finished fabric and can be converted into garments.
  • Table 1 below shows the tests results for the desired properties of a denim fabric made by the example above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Botany (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Woven Fabrics (AREA)
US14/364,077 2011-12-13 2012-12-12 Stretchable and dimensionally stable woven fabric made from polytrimethylene terephthalate based core spun yarns. Abandoned US20140308865A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IN3626/DEL/2011 2011-12-13
IN3626DE2011 2011-12-13
PCT/US2012/069231 WO2013090422A1 (en) 2011-12-13 2012-12-12 Stretchable and dimensionally stable woven fabric made from polytrimethylene terephthalate based core spun yarns.

Publications (1)

Publication Number Publication Date
US20140308865A1 true US20140308865A1 (en) 2014-10-16

Family

ID=47501463

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/364,077 Abandoned US20140308865A1 (en) 2011-12-13 2012-12-12 Stretchable and dimensionally stable woven fabric made from polytrimethylene terephthalate based core spun yarns.

Country Status (7)

Country Link
US (1) US20140308865A1 (ja)
EP (1) EP2791404B1 (ja)
JP (1) JP6338249B2 (ja)
KR (1) KR102057479B1 (ja)
CN (1) CN103998662B (ja)
BR (1) BR112014014229B1 (ja)
WO (1) WO2013090422A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130312236A1 (en) * 2011-05-10 2013-11-28 Danyang Danqi Yuyue Textile Company Limited Method for preparing high-grade and casual fabric with special leather feel using biologically corn-based fibres
CN104294438A (zh) * 2014-11-04 2015-01-21 江苏工程职业技术学院 一种壳聚糖改性氨纶-Lyocell多功能包芯纱制备方法
US20150259843A1 (en) * 2014-03-11 2015-09-17 Welspun India Limited Natural finish fabric
CN105568490A (zh) * 2015-12-17 2016-05-11 常熟市荣程纺织品有限公司 一种爽肤型面料
EP3202965A1 (en) * 2016-02-06 2017-08-09 Sysco Guest Supply, LLC Textile structures comprising core spun yarns and associated methods for manufacture
CN109183250A (zh) * 2018-08-10 2019-01-11 韶关市顺昌布厂有限公司 一种织物及其制备方法
WO2019077633A1 (en) * 2017-10-18 2019-04-25 Arvind Limited PROCESS FOR COLORING FABRICS HAVING THERMOPLASTIC FIBERS USING OXIDATIVE COLORANTS
US20200181812A1 (en) * 2018-12-06 2020-06-11 Vishal Pacheriwala Woven fabric, a composition of the woven fabric and a weaving method thereof
US10988868B2 (en) 2015-03-20 2021-04-27 Sysco Guest Supply, Llc Textile structures comprising core spun yarns and associated methods for manufacture
US20230035755A1 (en) * 2021-07-30 2023-02-02 Vishal Pacheriwala Fabric made of multi-filament polyester warp yarns of yarn size of 75 denier or above and cellulose fiber weft yarns
US11591748B2 (en) 2020-01-14 2023-02-28 Shadow Works, Llc Heat treated multilayer knitted textile of liquid crystal polymer fibers and modified polyacrylonitrile fibers, and process for making same
US11624133B2 (en) 2018-04-04 2023-04-11 Vishal Pacheriwala Woven fabric made of cotton or regenerated cellulose fibers or a combination thereof and polyesters
US20230183894A1 (en) * 2016-12-13 2023-06-15 Bearaby Inc. Blanket
US11806480B2 (en) 2018-11-16 2023-11-07 Bearaby Inc. Layered yarn and weighted blanket for deep pressure therapy
US20230366134A1 (en) * 2018-04-16 2023-11-16 Indo Count Industries Ltd. Fibers, woven fabrics including the fibers, and methods of manufacturing the same
WO2023220630A1 (en) 2022-05-10 2023-11-16 Ascend Performance Materials Operations Llc Alkali-treated fabrics/fibers/staples with improved antimicrobial properties
US11965273B2 (en) 2017-03-27 2024-04-23 Sysco Guest Supply, Inc. Terry towels comprising core spun yarns and associated methods for manufacture

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103388208B (zh) * 2013-07-31 2016-04-06 安徽裕华纺织有限公司 竹节弹力针织纱及其制作工艺
EP3086943A4 (en) * 2013-12-23 2017-10-04 The North Face Apparel Corporation Textile constructs formed with fusible filaments
CN103981609B (zh) * 2014-02-19 2016-03-23 浙江春江轻纺集团有限责任公司 一种吸湿抗菌保健纱线及加工方法
TR201701687A2 (tr) * 2017-02-06 2018-08-27 Sanko Tekstil Isletmeleri Sanayi Ve Ticaret Anonim Sirketi Esnek ve geri toplama özelliğine sahip kumaş ve bu kumaşların elde edilmesinde kullanılan iplik
TWI640665B (zh) * 2017-07-21 2018-11-11 潤泰全球股份有限公司 Method for manufacturing elastic fabric
KR101977060B1 (ko) 2017-07-21 2019-05-10 주식회사 대영패브릭 신축성 및 터치감이 우수한 복합 방적사원단의 제조방법
CN107663688A (zh) * 2017-08-30 2018-02-06 孚日集团股份有限公司 一种镂空面料及其制造工艺
CN109750408A (zh) * 2017-11-01 2019-05-14 柏尔股份有限公司 多机能皮芯式纤维的凉感丹宁布料制造方法
CN109750398A (zh) * 2017-11-02 2019-05-14 柏尔股份有限公司 多机能皮芯式纤维及其复合纱线的制造方法
CN208087828U (zh) * 2018-03-19 2018-11-13 广东前进牛仔布有限公司 一种骨架纱线和牛仔织物
US11359309B2 (en) 2018-12-21 2022-06-14 Target Brands, Inc. Ring spun yarn and method
CN110093701B (zh) * 2019-05-22 2022-01-07 绍兴程盛纺织有限公司 松弛弹性包芯纱的生产方法
CN110373763B (zh) * 2019-06-14 2021-11-16 徐州天虹时代纺织有限公司 一种短纤包丙纶纱线及其制备方法和一种织物
CN110318133B (zh) * 2019-06-14 2021-08-17 徐州天虹时代纺织有限公司 一种弹性纱线及其制造方法和织物
CN111534900A (zh) * 2020-05-08 2020-08-14 杭州新天元织造有限公司 一种凉爽薄型仿毛色纺面料的生产工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040011017A1 (en) * 2000-10-06 2004-01-22 Yasunori Yuuki Spum yarn
JP2004036016A (ja) * 2002-07-01 2004-02-05 Toyobo Co Ltd 複合弾性糸
US20090191777A1 (en) * 2008-01-25 2009-07-30 Invista North America S.A.R.L. Stretch wovens with separated elastic yarn system
WO2011044728A1 (en) * 2009-10-14 2011-04-21 Dow Global Technologies Inc. Method to prevent curling in stretch fabrics with intentionally distressed areas and fabrics made thereby
US20130260129A1 (en) * 2010-11-12 2013-10-03 Sanko Tekstil Isletmeleri San. Ve Tic. A.S. Composite stretch yarn, process and fabric

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4104190B2 (ja) * 1997-07-08 2008-06-18 旭化成せんい株式会社 複合糸
JP4363718B2 (ja) * 1999-09-29 2009-11-11 旭化成せんい株式会社 ポリウレタンポリウレア含有交編織物
US6752945B2 (en) * 2000-09-12 2004-06-22 E. I. Du Pont De Nemours And Company Process for making poly(trimethylene terephthalate) staple fibers
CN100540771C (zh) * 2005-12-21 2009-09-16 浙江华孚色纺有限公司 细旦莫代尔纤维混色纺纱线及其生产方法
KR101376865B1 (ko) * 2006-12-04 2014-03-20 인비스타 테크놀러지스 에스.에이.알.엘. 폴리에스테르 이성분 필라멘트를 포함하는 신장성 제직물
ES2616332T3 (es) 2007-04-17 2017-06-12 International Textile Group, Inc. Tejido de mezclilla
CN101191273A (zh) * 2007-12-17 2008-06-04 扬州纪元纺织有限公司 四面弹力麂皮绒
KR100934271B1 (ko) * 2009-08-17 2009-12-28 (주)황성 고강력 복합가공사

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040011017A1 (en) * 2000-10-06 2004-01-22 Yasunori Yuuki Spum yarn
JP2004036016A (ja) * 2002-07-01 2004-02-05 Toyobo Co Ltd 複合弾性糸
US20090191777A1 (en) * 2008-01-25 2009-07-30 Invista North America S.A.R.L. Stretch wovens with separated elastic yarn system
WO2011044728A1 (en) * 2009-10-14 2011-04-21 Dow Global Technologies Inc. Method to prevent curling in stretch fabrics with intentionally distressed areas and fabrics made thereby
US20130260129A1 (en) * 2010-11-12 2013-10-03 Sanko Tekstil Isletmeleri San. Ve Tic. A.S. Composite stretch yarn, process and fabric

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ASTM - D - 3107 (Year: 2015) *
machine translation of Kidaka et al. (JP 2004036016) *
Machine translation of Kidaka et al. (JP 2004036016), May 2, 2004. *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9340906B2 (en) * 2011-05-10 2016-05-17 Danyang Danqi Textile Company Limited Method for preparing high-grade and casual fabric with special leather feel using biologically corn-based fibres
US20130312236A1 (en) * 2011-05-10 2013-11-28 Danyang Danqi Yuyue Textile Company Limited Method for preparing high-grade and casual fabric with special leather feel using biologically corn-based fibres
US20150259843A1 (en) * 2014-03-11 2015-09-17 Welspun India Limited Natural finish fabric
US9732455B2 (en) * 2014-03-11 2017-08-15 Welspun India Limited Natural finish fabric
CN104294438A (zh) * 2014-11-04 2015-01-21 江苏工程职业技术学院 一种壳聚糖改性氨纶-Lyocell多功能包芯纱制备方法
US10988868B2 (en) 2015-03-20 2021-04-27 Sysco Guest Supply, Llc Textile structures comprising core spun yarns and associated methods for manufacture
CN105568490A (zh) * 2015-12-17 2016-05-11 常熟市荣程纺织品有限公司 一种爽肤型面料
EP3202965A1 (en) * 2016-02-06 2017-08-09 Sysco Guest Supply, LLC Textile structures comprising core spun yarns and associated methods for manufacture
US20230183894A1 (en) * 2016-12-13 2023-06-15 Bearaby Inc. Blanket
US11965273B2 (en) 2017-03-27 2024-04-23 Sysco Guest Supply, Inc. Terry towels comprising core spun yarns and associated methods for manufacture
WO2019077633A1 (en) * 2017-10-18 2019-04-25 Arvind Limited PROCESS FOR COLORING FABRICS HAVING THERMOPLASTIC FIBERS USING OXIDATIVE COLORANTS
US11624133B2 (en) 2018-04-04 2023-04-11 Vishal Pacheriwala Woven fabric made of cotton or regenerated cellulose fibers or a combination thereof and polyesters
US20230366134A1 (en) * 2018-04-16 2023-11-16 Indo Count Industries Ltd. Fibers, woven fabrics including the fibers, and methods of manufacturing the same
CN109183250A (zh) * 2018-08-10 2019-01-11 韶关市顺昌布厂有限公司 一种织物及其制备方法
US11806480B2 (en) 2018-11-16 2023-11-07 Bearaby Inc. Layered yarn and weighted blanket for deep pressure therapy
US11047072B2 (en) * 2018-12-06 2021-06-29 Vishal Pacheriwala Woven fabric, a composition of the woven fabric and a weaving method thereof
US20200181812A1 (en) * 2018-12-06 2020-06-11 Vishal Pacheriwala Woven fabric, a composition of the woven fabric and a weaving method thereof
US11591748B2 (en) 2020-01-14 2023-02-28 Shadow Works, Llc Heat treated multilayer knitted textile of liquid crystal polymer fibers and modified polyacrylonitrile fibers, and process for making same
US11795588B2 (en) * 2021-07-30 2023-10-24 Vishal Pacheriwala Fabric made of multi-filament polyester warp yarns of yarn size of 75 denier or above and cellulose fiber weft yarns
US20230035755A1 (en) * 2021-07-30 2023-02-02 Vishal Pacheriwala Fabric made of multi-filament polyester warp yarns of yarn size of 75 denier or above and cellulose fiber weft yarns
WO2023220630A1 (en) 2022-05-10 2023-11-16 Ascend Performance Materials Operations Llc Alkali-treated fabrics/fibers/staples with improved antimicrobial properties

Also Published As

Publication number Publication date
KR20140101851A (ko) 2014-08-20
CN103998662A (zh) 2014-08-20
CN103998662B (zh) 2017-06-13
EP2791404A1 (en) 2014-10-22
BR112014014229B1 (pt) 2021-03-23
JP6338249B2 (ja) 2018-06-06
EP2791404B1 (en) 2019-09-18
KR102057479B1 (ko) 2020-01-22
WO2013090422A1 (en) 2013-06-20
JP2015504981A (ja) 2015-02-16

Similar Documents

Publication Publication Date Title
EP2791404B1 (en) Stretchable and dimensionally stable woven fabric made from polytrimethylene terephthalate based core spun yarns.
EP2172583B1 (en) A process for manufacturing super-high-count ramie fabric
US9885127B2 (en) Processes for using recycled waste cotton material in producing a textile product and textile products produced from waste cotton material
CN104452034B (zh) 高支彩色竹节纱床品面料及其制备方法
US20230066139A1 (en) Hygro Terry Structures, Articles, and Related Processes
WO2011130276A2 (en) Processes for using recycled waste cotton material in producing a textile product and textile products produced form waste cotton material
CN107700034A (zh) 一种天丝二醋酸交织面料制造方法
US8615979B2 (en) Cotton denim fabric with a low twist and method of making thereof
CN111549436A (zh) 一种复合弹力涡流纺纱针织面料及其制备方法
CN108642648A (zh) 一种高保形保健环保面料及其生产方法
JP6254802B2 (ja) ハンカチ用布帛及びハンカチ
EP3412809A1 (en) Hygro textile structures and related processes
JP2013177708A (ja) 防シワ性に優れたハンカチ
WO2019044910A1 (ja) 長短複合紡績糸、その製造方法、及び長短複合紡績糸を含む織物、編み物又は衣料用繊維製品
CN113463245A (zh) 一种棉纱与涤长丝并捻面料加工工艺
CN110699823A (zh) 一种防尘棉布及其制作方法
JP7286122B2 (ja) 紡績糸及びその製造方法
CN110754711B (zh) 一种粗纺无捻复合羊绒衫的产品工艺
JP2018053407A (ja) 低通気性織物
Chattopadhyay et al. Introduction: textile manufacturing process
Shanmugam Wool Fibre to Fabric Conversion
CN113201844A (zh) 一种高弹性提花布生产方法
JP2023060847A (ja) 紡績糸及び織編物
Harrowfield Wool processing: fibre to fabric
DELPH et al. TECA—ITS PROPERTIES AND UTILISATION

Legal Events

Date Code Title Description
AS Assignment

Owner name: E. I. DUPONT DE NEMOURS AND COMPANY, DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KUMAR, AKSHAY;NAGARAJAN, GOWRI;SIGNING DATES FROM 20140514 TO 20140521;REEL/FRAME:033087/0800

AS Assignment

Owner name: E I DU PONT INDIA PVT. LTD., INDIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KUMAR, AKSHAY;NAGARAJAN, GOWRI;SIGNING DATES FROM 20180216 TO 20180305;REEL/FRAME:045109/0211

AS Assignment

Owner name: E. I. DU PONT DE NEMOURS AND COMPANY, DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:E I DU PONT INDIA PVT. LTD.;REEL/FRAME:045607/0770

Effective date: 20180327

AS Assignment

Owner name: E. I. DU PONT DE NEMOURS AND COMPANY, DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:E. I. DU PONT INDIA PVT. LTD.;REEL/FRAME:046481/0203

Effective date: 20180327

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

AS Assignment

Owner name: DUPONT INDUSTRIAL BIOSCIENCES USA, LLC, DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:E. I. DU PONT DE NEMOURS AND COMPANY;REEL/FRAME:049879/0043

Effective date: 20190617

AS Assignment

Owner name: DUPONT INDUSTRIAL BIOSCIENCES USA, LLC, DELAWARE

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ENTITY TYPE PREVIOUSLY RECORDED AT REEL: 049879 FRAME: 0043. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:E. I. DU PONT DE NEMOURS AND COMPANY;REEL/FRAME:050300/0408

Effective date: 20190617

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION