US20140053956A1 - Method for manufacturing a three-dimensional article - Google Patents

Method for manufacturing a three-dimensional article Download PDF

Info

Publication number
US20140053956A1
US20140053956A1 US13/972,127 US201313972127A US2014053956A1 US 20140053956 A1 US20140053956 A1 US 20140053956A1 US 201313972127 A US201313972127 A US 201313972127A US 2014053956 A1 US2014053956 A1 US 2014053956A1
Authority
US
United States
Prior art keywords
heat treatment
powder
article
base material
conducted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/972,127
Other languages
English (en)
Inventor
Thomas Etter
Julius SCHURB
Lukas Emanuel Rickenbacher
Andreas Künzler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ansaldo Energia IP UK Ltd
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46969988&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20140053956(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Assigned to ALSTOM TECHNOLOGY LTD reassignment ALSTOM TECHNOLOGY LTD ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Rickenbacher, Lukas Emanuel, Schurb, Julius, ETTER, THOMAS, KUENZLER, ANDREAS
Publication of US20140053956A1 publication Critical patent/US20140053956A1/en
Assigned to GENERAL ELECTRIC TECHNOLOGY GMBH reassignment GENERAL ELECTRIC TECHNOLOGY GMBH CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: ALSTOM TECHNOLOGY LTD
Assigned to ANSALDO ENERGIA IP UK LIMITED reassignment ANSALDO ENERGIA IP UK LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GENERAL ELECTRIC TECHNOLOGY GMBH
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D23/00Casting processes not provided for in groups B22D1/00 - B22D21/00
    • B22D23/06Melting-down metal, e.g. metal particles, in the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/38Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1035Liquid phase sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to the technology of high-temperature resistant components, especially for gas turbines. It refers to a method for manufacturing a three-dimensional article.
  • FIG. 5 shows a basic SLM arrangement 10 , wherein a 3-dimensional article 11 is manufactured by successive addition of powder layers 12 of a predetermined layer thickness d, area and contour, which are then melted by means of a scanned laser beam 14 from a laser device 13 and controlled by a control unit 15 .
  • a first specimen 16 a extending in z-direction shows properties different from a second specimen 16 b extending in the xy-plane.
  • FIG. 2 shows Young's modulus E at room temperature for three groups of specimen of identical nominal composition, namely A 1 - 3 , B 1 - 3 and C 1 - 3 .
  • the first group, A 1 - 3 is related to a reference plate made by a non-additive manufacturing process.
  • the second group, B 1 - 3 is related to an SLM-processed specimen extending in the z-axis (like specimen 16 a in FIG. 1 ).
  • the third group, C 1 - 3 is related to an SLM-processed specimen extending in the xy-plane (like specimen 16 b in FIG. 1 ).
  • Young's modulus E shows a substantial anisotropy with a difference of more than 20 GPa between the z-axis specimen B 1 and the xy-plane specimen C 1 , and is much lower (more than 50 GPa) for both specimen compared to the reference specimen A 1 .
  • the present invention assumes that an additional treatment may be necessary to reduce this anisotropy in the properties of an article made by an additive manufacturing process.
  • Document US 2012/000890 A1 discloses a method using laser metal forming (LMF) for repairing gas turbine blades which repairs a thickness-reduced portion of a blade tip of a gas turbine blade.
  • the method comprises a thickness-reduced portion removing step of working a surface of the blade tip into a flat surface by removing the thickness-reduced portion of the blade tip, a build-up welding step of forming a built-up portion with a predetermined thickness by melting powder of a build-up material higher in ductility than a base material forming the gas turbine blade by a laser beam and building up the melted powder in multiple layers on the blade tip whose surface is worked into the flat surface, a forming step of working the built-up portion into the same shape as a shape that the blade tip originally has before suffering a thickness loss; and a heat-treatment step of removing a residual strain caused by laser welding in the build-up welding step.
  • LMF laser metal forming
  • Document WO 2012/016836 A1 teaches a method for manufacturing a component by selective laser melting (SLM) comprising: building a heat treatment device adapted to provide a heat treatment to the component as part of the same selective laser melting for manufacturing the component; and providing a heat treatment to the component by the heat treatment device.
  • SLM selective laser melting
  • the heat treatment is used to make the component devoid of unwanted material property, for example, like ductility instead of embrittlement.
  • the method according to the invention for manufacturing a three-dimensional article comprises the steps of
  • said additive manufacturing process is one of laser metal forming (LMF), laser engineered net shape (LENS) or direct metal deposition (DMD), and that a metallic base material of wire form is used.
  • LMF laser metal forming
  • LENS laser engineered net shape
  • DMD direct metal deposition
  • said additive manufacturing process is one of selective laser melting (SLM), selective laser sintering (SLS) or electron beam melting (EBM), and that a metallic base material of powder form is used.
  • SLM selective laser melting
  • SLS selective laser sintering
  • EBM electron beam melting
  • said method comprises the steps of:
  • the grain size distribution of said powder is adjusted to the layer thickness of said powder layer in order to establish a good flowability, which is required for preparing powder layers with regular and uniform thickness.
  • the powder grains have a spherical shape.
  • an exact grain size distribution of the powder is obtained by sieving and/or winnowing (air separation).
  • said powder is provided by means of a powder metallurgical process, specifically one of gas or water atomization, plasma-rotating-electrode process or mechanical milling.
  • said additive manufacturing process uses a suspension instead of powder.
  • said metallic base material is a high-temperature Ni-based alloy.
  • said metallic base material is a high-temperature Co-based alloy.
  • said metallic base material is a high-temperature Fe-based alloy.
  • said alloy can contain finely dispersed oxides, specifically one of Y 2 O 3 , AlO 3 , ThO 2 , HfO 2 , ZrO 2 .
  • said heat treatment is used to reduce the anisotropy of Young's modulus.
  • said heat treatment is a combination of different individual heat treatments.
  • said heat treatment consists of multiple steps, each representing a specific combination of heating rate, hold temperature, hold time and cooling rate.
  • At least one of said heat treatment steps is conducted at a sufficient high temperature and for a hold time long enough to partially or completely dissolve constituents in the microstructure of said manufactured article, specifically intermetallic phases, carbides or nitrides.
  • At least one of said heat treatment steps is conducted at a sufficient high temperature and for a hold time long enough to precipitate metal-carbides, metal-nitrides or metal-carbonitrides, specifically one of M(C, N), M 6 C, M 7 C 3 or M 23 C 6 .
  • At least one of said heat treatment steps is conducted at a sufficient high temperature and for a hold time long enough to precipitate intermetallic phases, specifically one Ni 3 (Al, Ti) known as gamma-prime, or Ni 3 (Nb, Al, Ti), known as gamma-double-prime, or Ni 3 Nb known as delta-phase.
  • Ni 3 (Al, Ti) known as gamma-prime
  • Ni 3 (Nb, Al, Ti) known as gamma-double-prime
  • Ni 3 Nb known as delta-phase.
  • At least one of said heat treatment steps is conducted at a sufficient high temperature and for a hold time long enough to precipitate metal-borides, specifically M 3 B 2 , to improve grain boundary strength.
  • At least one of said heat treatment steps is conducted at a sufficient high temperature and for a hold time long enough to modify the volume fraction, size, shape and distribution of said precipitations.
  • At least one of said heat treatment steps can be conducted additionally under hot isostatic pressing (HIP) conditions, to further improve the microstructure.
  • HIP hot isostatic pressing
  • individual heat treatments or heat treatment steps, respectively, said manufactured articles are subjected to additional processing steps, specifically one of machining, welding or brazing.
  • FIG. 1 shows the different orientation of two specimen made by an additive manufacturing process like SLM
  • FIG. 2 shows values of Young's modulus at room temperature for three groups of specimen made of Hastelloy® X with and without heat treatment
  • FIG. 3 shows values of Young's modulus at 750° C. for three groups of specimen made of Hastelloy® X with and without heat treatment;
  • FIG. 4 shows photographs of the microstructure in two different magnifications (100 ⁇ m and 50 ⁇ m) for three different specimen made of Hastelloy® X without and with heat treatment;
  • FIG. 5 shows a basic arrangement for SLM manufacturing, which may be used in the present invention.
  • One drawback of powder-based additive manufacturing technology can be the strong anisotropy of material properties resulting from the layer-wise build-up process.
  • the Young's modulus (E in FIGS. 2 and 3 ) is significantly lower along the z-axis (z-specimen (B 1 -B 3 in FIG. 2 and B 1 ′-B 3 ′ in FIG. 3 ) compared to xy-specimens (C 1 -C 3 in FIG. 2 and C 1 ′-C 3 ′ in FIG. 3 ), for instance.
  • the z-axis is parallel to the build direction (see FIGS. 1 and 5 ).
  • specimen A 1 ′, B 1 ′ and C 1 ′ are without heat treatment, while specimen B 2 ′ and C 2 ′ were held for 0.5 h at 1125° C., and specimen B 3 ′ and C 3 ′ were held for 2 h at 1190° C.).
  • the present invention relates to the heat treatment of articles/components made of Ni/Co/Fe-based superalloys produced by a powder-based additive manufacturing technology, such as selective laser melting SLM or laser metal forming LMF.
  • a powder-based additive manufacturing technology such as selective laser melting SLM or laser metal forming LMF.
  • These articles have different microstructures compared to conventionally cast material or wrought products of the same alloy (specimen A 1 -A 3 in FIG. 2 and A 1 ′ in FIG. 3 ), for instance.
  • the material is very homogeneous with respect to chemical composition and principally free of segregations.
  • the material in the “as built” condition has a very fine microstructure (e.g. precipitates and grain size), much finer compared to conventionally cast or wrought superalloys.
  • Ni/Co/Fe-based superalloys produced by powder-based additive manufacturing technologies are generally free of residual eutectic contents and heat treatments can be realized at higher temperatures compared to conventionally cast components of same composition. This allows an adjustment of the microstructure over a wide range, including grain size and precipitation optimization, leading to improved material properties.
  • the present invention disclosure relates to specially adjusted heat treatments for Ni/Co/Fe based superalloys processed by powder-based additive manufacturing technology to reduce inherent anisotropy of this technology.
  • This invention disclosure is based on the discovery that anisotropic material behaviour can be reduced by appropriate heat treatments.
  • this invention disclosure includes the manufacturing of three-dimensional articles specifically made of a Ni/Co/Fe based superalloy by powder-based additive manufacturing technologies followed by a specially adapted heat treatment resulting in reduced anisotropic material behaviour.
  • Said powder-based additive manufacturing technology is especially selective laser melting (SLM), selective laser sintering (SLS), electron beam melting (EBM), laser metal forming (LMF), laser engineered net shape (LENS), direct metal deposition (DMD) or like processes.
  • SLM selective laser melting
  • SLS selective laser sintering
  • EBM electron beam melting
  • LMF laser metal forming
  • LENS laser engineered net shape
  • DMD direct metal deposition
  • Said powder-based additive manufacturing technology may be used to build up an article, such as a blade or vane of a gas turbine, entirely or partly, e.g. blade crown build up.
  • manufacturing of the three-dimensional articles comprises the following steps:
  • the grain size distribution of the powder used in this process is adjusted to the layer thickness d to have to a good flowability, which is required for preparing powder layers with regular and uniform thickness d.
  • the powder grains of the powder used in this process have a spherical shape.
  • the exact grain size distribution of the powder may be obtained by sieving and/or winnowing (air separation).
  • the powder may be obtained by gas or water atomization, plasma-rotating-electrode process, mechanical milling and like powder metallurgical processes.
  • a suspension may be used instead of powder.
  • said high temperature material is a Ni-based alloy
  • a plurality of commercially available alloys may be used like Waspaloy®, Hastelloy® X, IN617®, IN718®, IN625®, Mar-M247®, IN100®, IN738®, 1N792®, Mar-M200®, B1900®, RENE 80®, Alloy 713®, Haynes 230®, Haynes 282®, or other derivatives.
  • said high temperature material is a Co-based alloy
  • a plurality of commercially available alloys may be used like FSX 414®, X-40®, X-45®, MAR-M 509® or MAR-M 302®.
  • said high temperature material is a Fe-based alloy
  • a plurality of commercially available alloys may be used like A 286®, Alloy 800 H®, N 155®, S 590®, Alloy 802®, Incoloy MA 956®, Incoloy MA 957® or PM 2000®.
  • these alloys may contain fine dispersed oxides such as Y 2 O 3 , AlO 3 , ThO 2 , HfO 2 , ZrO 2 .
  • the heat treatment according to the invention advantageously reduces anisotropic material behaviour, especially the Young's modulus E (see FIGS. 2 and 3 ).
  • the Young's modulus Eat room temperature FIG. 2
  • B 1 no heat treatment HT
  • B 2 0.5 h at 1125° C.
  • B 3 2 h at 1190° C.
  • FIG. 4 shows photographs of the microstructure in two different magnifications (100 ⁇ m and 50 ⁇ m) for three different z-direction specimen B 4 , B 5 and B 6 made of Hastelloy® X after having been tensile-tested, with and without heat treatment, whereby specimen B 4 had no heat treatment with a tensile test conducted at 750° C., specimen B 5 had a heat treatment for 0.5 h at 1125° C. with a tensile test conducted at room temperature, and specimen B 6 had a heat treatment for 2 h at 1190° C. with a tensile test conducted at room temperature.
  • the whole article may be subjected to said heat treatment. In other cases, only part of it may be subjected to said heat treatment.
  • Said heat treatment can be one-time treatment. However, it can be a combination of different individual heat treatments.
  • said heat treatment may consist of multiple steps, each representing a specific combination of heating rate, hold temperature, hold time and cooling rate.
  • the three-dimensional articles may be subject to different processing steps such as, but not limited to, machining, welding or brazing, especially in order to use the specific advantages of the specific microstructure, e.g. small grains, which are beneficial for welding.
  • At least one of said heat treatment steps should be conducted at a sufficient high temperature and for a hold time long enough to partially or completely dissolve constituents in said microstructure such as intermetallic phases, carbides or nitrides. Furthermore, it is clear that at least one of said heat treatment steps is conducted at a sufficient high temperature and for a hold time long enough to recrystallize and/or coarsen the grains.
  • At least one of said heat treatment steps may be conducted at a sufficient high temperature and for a hold time long enough to precipitate metal-carbides, metal-nitrides or metal-carbonitrides such as but not limited to, M(C, N), M 6 C, M 7 C 3 or M 23 C 6 .
  • At least one of said heat treatment steps may be conducted at a sufficient high temperature and for a hold time long enough to precipitate intermetallic phases such as, but not limited to, Ni 3 (Al, Ti) known as gamma-prime, or Ni 3 (Nb, Al, Ti), known as gamma-double-prime, or Ni 3 Nb known as delta-phase.
  • intermetallic phases such as, but not limited to, Ni 3 (Al, Ti) known as gamma-prime, or Ni 3 (Nb, Al, Ti), known as gamma-double-prime, or Ni 3 Nb known as delta-phase.
  • At least one of said heat treatment steps is conducted at a sufficient high temperature and for a hold time long enough to precipitate metal-borides such as, but not limited to, M 3 B 2 , to improve grain boundary strength.
  • At least one of said heat treatment steps is conducted at a sufficient high temperature and for a hold time long enough to modify the volume fraction, size, shape and distribution of said precipitations mentioned before.
  • At least one of said heat treatment steps can be conducted additionally under isostatic pressure, known as hot isostatic pressing HIP, to further improve the microstructure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)
US13/972,127 2012-08-21 2013-08-21 Method for manufacturing a three-dimensional article Abandoned US20140053956A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP12181126.9A EP2700459B1 (en) 2012-08-21 2012-08-21 Method for manufacturing a three-dimensional article
EP12181126.9 2012-08-21

Publications (1)

Publication Number Publication Date
US20140053956A1 true US20140053956A1 (en) 2014-02-27

Family

ID=46969988

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/972,127 Abandoned US20140053956A1 (en) 2012-08-21 2013-08-21 Method for manufacturing a three-dimensional article

Country Status (7)

Country Link
US (1) US20140053956A1 (enExample)
EP (1) EP2700459B1 (enExample)
JP (1) JP5901585B2 (enExample)
KR (1) KR101627520B1 (enExample)
CN (1) CN103624257B (enExample)
CA (1) CA2824042C (enExample)
RU (1) RU2566117C2 (enExample)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014007867A1 (de) * 2014-06-03 2015-12-03 Airbus Defence and Space GmbH Verfahren zur Wärmebehandlung eines Werkstücks aus einer Nickelbasislegierung
EP3072611A2 (en) 2015-03-26 2016-09-28 Honeywell International Inc. Net-shape or near-net shape powder metal components and methods for producing the same
WO2017117041A1 (en) * 2015-12-28 2017-07-06 Matheson Tri-Gas, Inc. Use of reactive fluids in additive manufacturing and the products made therefrom
WO2017184771A1 (en) * 2016-04-20 2017-10-26 Arconic Inc. Fcc materials of aluminum, cobalt, iron and nickel, and products made therefrom
WO2017184756A1 (en) * 2016-04-20 2017-10-26 Arconic Inc. Hcp materials of aluminum, titanium, and zirconium, and products made therefrom
WO2017184745A1 (en) * 2016-04-20 2017-10-26 Arconic Inc. Fcc materials of aluminum, cobalt, nickel and titanium, and products made therefrom
WO2017184762A1 (en) * 2016-04-20 2017-10-26 Arconic Inc. Fcc materials of aluminum, cobalt, chromium, and nickel, and products made therefrom
WO2017184778A1 (en) * 2016-04-20 2017-10-26 Arconic Inc. Fcc materials of aluminum, cobalt and nickel, and products made therefrom
WO2017189460A1 (en) * 2016-04-25 2017-11-02 Arconic Inc. Bcc materials of titanium, aluminum, vanadium, and iron, and products made therefrom
WO2017189456A1 (en) * 2016-04-25 2017-11-02 Arconic Inc. Alpha-beta titanium alloys having aluminum and molybdenum, and products made therefrom
WO2017189459A1 (en) * 2016-04-25 2017-11-02 Arconic Inc. Bcc materials of titanium, aluminum, niobium, vanadium, and molybdenum, and products made therefrom
US20170326690A1 (en) * 2016-05-16 2017-11-16 Arconic Inc. Multi-component alloy products, and methods of making and using the same
US9959613B2 (en) 2015-03-20 2018-05-01 Technology Research Association For Future Additive Manufacturing Optical Processing head, optical processing apparatus, and control method and control program of optical processing apparatus
US10094240B2 (en) 2015-02-12 2018-10-09 United Technologies Corporation Anti-deflection feature for additively manufactured thin metal parts and method of additively manufacturing thin metal parts
RU2687332C2 (ru) * 2014-04-24 2019-05-13 Сандвик Интеллекчуал Проперти Аб Способ создания порошка кермета или цементированного карбида
US20190168302A1 (en) * 2015-12-25 2019-06-06 Daihen Corporation Metal powder, method of producing additively-manufactured article, and additively-manufactured article
US10724122B2 (en) 2016-03-10 2020-07-28 Nuovo Pignone Tecnologie Srl High oxidation-resistant alloy and gas turbine applications using the same
EP3751574A2 (en) 2014-06-25 2020-12-16 Canary Medical Inc. Devices, systems and methods for using and monitoring orthopedic hardware
US10889872B2 (en) 2017-08-02 2021-01-12 Kennametal Inc. Tool steel articles from additive manufacturing
US11033959B2 (en) 2014-07-21 2021-06-15 Nuovo Pignone Srl Method for manufacturing machine components by additive manufacturing
RU2751039C1 (ru) * 2020-07-23 2021-07-07 Нуово Пиньоне Текнолоджи Срл Сплав с высокой стойкостью к окислению и применения для газовых турбин с использованием этого сплава
US11148359B2 (en) 2016-12-22 2021-10-19 Hilti Aktiengesellschaft Method for layered production of a component from a powdery material
CN113522688A (zh) * 2020-03-30 2021-10-22 中微半导体设备(上海)股份有限公司 耐等离子体腐蚀部件及其制备方法,等离子体处理设备
US11229952B2 (en) 2018-08-20 2022-01-25 Honeywell International Inc. System and method for forming part from rapidly manufactured article
US11407034B2 (en) 2017-07-06 2022-08-09 OmniTek Technology Ltda. Selective laser melting system and method of using same
US11434766B2 (en) 2015-03-05 2022-09-06 General Electric Company Process for producing a near net shape component with consolidation of a metallic powder
US11458573B2 (en) * 2017-11-13 2022-10-04 Trumpf Laser- Und Systemtechnik Gmbh Layer selective exposure in the overhang region in generative manufacturing
US11478854B2 (en) 2014-11-18 2022-10-25 Sigma Labs, Inc. Multi-sensor quality inference and control for additive manufacturing processes
US11674904B2 (en) * 2015-09-30 2023-06-13 Sigma Additive Solutions, Inc. Systems and methods for additive manufacturing operations
EP4212113A1 (en) 2014-06-25 2023-07-19 Canary Medical Switzerland AG Devices monitoring spinal implants
CN116748531A (zh) * 2023-06-08 2023-09-15 西北有色金属研究院 一种具有梯度晶体结构m2高速钢刀具的制备方法
EP4449979A2 (en) 2014-06-25 2024-10-23 Canary Medical Switzerland AG Devices, systems and methods for using and monitoring implants
EP4249616A4 (en) * 2020-11-19 2024-11-13 AECC Shanghai Commercial Aircraft Engine Manufacturing Co., Ltd. MOLDED BODIES WITH LOW STRETCH ANISOTROPY, MANUFACTURING METHOD AND MOLDING POWDER THEREFOR
EP4501218A2 (en) 2014-09-17 2025-02-05 Canary Medical Inc. Devices, systems and methods for using and monitoring medical devices

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2918358B1 (en) * 2014-03-12 2017-06-21 Safran Landing Systems UK Limited Method for producing a component involving flow-forming
JP2015194137A (ja) * 2014-03-31 2015-11-05 株式会社東芝 タービン翼の製造方法
WO2015157816A1 (en) * 2014-04-15 2015-10-22 Commonwealth Scientific And Industrial Research Organisation Process for producing a preform using cold spray
JP5943963B2 (ja) * 2014-05-20 2016-07-05 有限会社 ナプラ 三次元造形用材料、及び、三次元造形方法
AT14301U1 (de) * 2014-07-09 2015-07-15 Plansee Se Verfahren zur Herstellung eines Bauteils
EP3025809B1 (en) * 2014-11-28 2017-11-08 Ansaldo Energia IP UK Limited Method for manufacturing a component using an additive manufacturing process
EP3034203A1 (en) * 2014-12-19 2016-06-22 Alstom Technology Ltd Method for producing a metallic component
WO2016145397A1 (en) * 2015-03-12 2016-09-15 Alcoa Inc. Aluminum alloy products, and methods of making the same
FR3034466B1 (fr) * 2015-04-03 2018-03-16 Safran Helicopter Engines Limiteur de debit
US9694423B2 (en) * 2015-04-09 2017-07-04 Siemens Energy, Inc. Laser additive manufacturing using filler material suspended in a liquid carrier
EP3313648B1 (en) * 2015-06-23 2023-08-02 SHPP Global Technologies B.V. Improved manufacturability of amorphous polymers in powder bed fusion processes
US9771629B2 (en) * 2015-06-25 2017-09-26 General Electric Company Methods for marking and marked articles using additive manufacturing technique
US10343330B2 (en) * 2015-07-31 2019-07-09 The Boeing Company Systems for additively manufacturing composite parts
KR101616499B1 (ko) * 2015-08-11 2016-04-29 한국생산기술연구원 3d 금속 조형품의 석출경화를 위한 열처리 방법
EP3156164A1 (de) * 2015-10-14 2017-04-19 Siemens Aktiengesellschaft Verfahren zur herstellung eines werkstücks durch generatives herstellen ; entsprechendes werkstück
TWI576872B (zh) 2015-12-17 2017-04-01 財團法人工業技術研究院 磁性元件的製造方法
WO2017211602A1 (en) * 2016-06-07 2017-12-14 Eos Gmbh Electro Optical Systems Powder mixture for use in the manufacture of a three-dimensional object by means of an additive manufacturing method
EP3254783A1 (en) * 2016-06-07 2017-12-13 EOS GmbH Electro Optical Systems Powder mixture for use in the manufacture of a three-dimensional object by means of an additive manufacturing method
CN106180720B (zh) * 2016-07-07 2017-12-05 四川三阳激光增材制造技术有限公司 一种具有优化网状内结构的金属件激光增材制备方法
CN110249068B (zh) * 2017-02-07 2022-03-01 Eos有限公司电镀光纤系统 钛合金零件的热处理方法
FI127380B (en) 2017-09-25 2018-04-30 Teknologian Tutkimuskeskus Vtt Oy The method for manufacturing the multimaterial component and the multimaterial component
DE102017219333A1 (de) 2017-10-27 2019-05-02 Siemens Aktiengesellschaft Verfahren zur Modifikation von Bauteilen unter Einsatz additiver Fertigung
EP3552803A1 (en) * 2018-04-13 2019-10-16 CL Schutzrechtsverwaltungs GmbH Method for additively manufacturing at least one three-dimensional object
KR102128777B1 (ko) * 2018-06-20 2020-07-02 한국생산기술연구원 금속 미세조직 제어 적층성형 방법
DE102018211158A1 (de) 2018-07-06 2020-01-09 MTU Aero Engines AG Schaufelanordnung für eine Gasturbine und Verfahren zum Herstellen der Schaufelanordnung
KR102147808B1 (ko) * 2018-07-13 2020-08-25 한국항공우주산업 주식회사 선택용융적층법을 이용한 물성평가용 판상시편 제조방법
WO2020041726A1 (en) * 2018-08-24 2020-02-27 Oregon State University Additive-containing alloy embodiments and methods of making and using the same
CN109014200B (zh) * 2018-08-30 2019-07-19 华中科技大学 一种大型金属零件的增材制造方法及装置
US11511844B2 (en) 2019-01-14 2022-11-29 The Boeing Company Aircraft with rotatably coupled fuselage end cargo door
DE102019200620A1 (de) 2019-01-18 2020-07-23 MTU Aero Engines AG Verfahren zur Herstellung von Laufschaufeln aus Ni-Basislegierungen und entsprechend hergestellte Laufschaufel
CN109811164B (zh) * 2019-03-01 2020-10-16 中南大学 一种增材制造铝合金的制备方法
JP7218225B2 (ja) * 2019-03-22 2023-02-06 三菱重工業株式会社 積層造形用合金粉末、積層造形物及び積層造形方法
US11648729B2 (en) * 2019-06-03 2023-05-16 The Boeing Company Additive manufacturing powder particle, method for treating the additive manufacturing powder particle, and method for additive manufacturing
RU2713255C1 (ru) * 2019-09-23 2020-02-04 федеральное государственное автономное образовательное учреждение высшего образования "Самарский национальный исследовательский университет имени академика С.П. Королёва" Способ формирования композиционного материала методом селективного лазерного плавления порошка жаропрочного никелевого сплава на подложке из титанового сплава
RU2717768C1 (ru) * 2019-10-15 2020-03-25 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ) Способ аддитивного формования изделий из порошковых материалов
CN111097904B (zh) * 2019-12-31 2021-08-03 福达合金材料股份有限公司 保留镍粉各向异性的银镍电接触材料及其制备方法
EP3858519A1 (en) * 2020-01-29 2021-08-04 Siemens Aktiengesellschaft 3d printing method and tool
RU2771397C1 (ru) * 2021-08-09 2022-05-04 Юрий Анатольевич Алексеев Дульный тормоз-компенсатор-пламегаситель и способ его изготовления

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3847680A (en) * 1970-04-02 1974-11-12 Sherritt Gordon Mines Ltd Dispersion strengthened metals and alloys and process for producing same
US3917463A (en) * 1973-02-16 1975-11-04 Mitsubishi Metal Corp Nickel-base heat resistant and wear resistant alloy
JP2002038237A (ja) * 2000-07-25 2002-02-06 Genichi Myojin Fe−Ni系合金薄板
US20120000890A1 (en) * 2010-06-14 2012-01-05 Shoko Ito Method for repairing gas turbine blades and gas turbine blade
US20130228302A1 (en) * 2011-11-04 2013-09-05 Alstom Technology Ltd Process for the production of articles made of a gamma-prime precipitation-strengthened nickel-base superalloy by selective laser melting (slm)
US9200855B2 (en) * 2012-03-06 2015-12-01 Honeywell International Inc. Tubular heat exchange systems

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3765958A (en) * 1970-04-20 1973-10-16 Aeronautics Of Space Method of heat treating a formed powder product material
JPH04344881A (ja) * 1991-05-21 1992-12-01 Kubota Corp 金属部品の形成方法
US5496682A (en) * 1993-10-15 1996-03-05 W. R. Grace & Co.-Conn. Three dimensional sintered inorganic structures using photopolymerization
US5640667A (en) * 1995-11-27 1997-06-17 Board Of Regents, The University Of Texas System Laser-directed fabrication of full-density metal articles using hot isostatic processing
DE19649865C1 (de) 1996-12-02 1998-02-12 Fraunhofer Ges Forschung Verfahren zur Herstellung eines Formkörpers
JP2000104101A (ja) * 1998-09-28 2000-04-11 Sanyo Electric Co Ltd 造形装置
US6228437B1 (en) 1998-12-24 2001-05-08 United Technologies Corporation Method for modifying the properties of a freeform fabricated part
AT409235B (de) 1999-01-19 2002-06-25 Boehler Edelstahl Verfahren und vorrichtung zur herstellung von metallpulver
JP2003518193A (ja) * 1999-11-16 2003-06-03 トリトン・システムズ・インコーポレイテツド 不連続強化金属基複合材料のレーザー加工
RU2217266C2 (ru) * 1999-12-30 2003-11-27 Физический институт им. П.Н. Лебедева РАН Способ изготовления объёмных изделий из биметаллических порошковых композиций
RU2217265C2 (ru) * 2000-01-28 2003-11-27 Физический институт им. П.Н. Лебедева РАН Способ изготовления объёмных изделий из порошковых композиций
FR2811922B1 (fr) * 2000-07-20 2003-01-10 Optoform Sarl Procedes De Prot Composition de pate chargee de poudre metallique, procede d'obtention de produits metalliques a partir de ladite composition, et produit metallique obtenu selon ledit procede
DE10039143C1 (de) 2000-08-07 2002-01-10 Fraunhofer Ges Forschung Verfahren zur Herstellung präziser Bauteile mittels Lasersintern und deren Nachbehandlung
SE520974C2 (sv) 2001-05-11 2003-09-16 Iuc Karlskoga Ab Sätt vid friformning av metallpulver och metallpulverblandning
US20040081573A1 (en) * 2002-10-23 2004-04-29 3D Systems, Inc. Binder removal in selective laser sintering
US7073561B1 (en) * 2004-11-15 2006-07-11 Henn David S Solid freeform fabrication system and method
DE102005008044A1 (de) 2005-02-19 2006-08-31 Degussa Ag Polymerpulver mit Blockpolyetheramid, Verwendung in einem formgebenden Verfahren und Formkörper, hergestellt aus diesem Polymerpulver
DE102005030067A1 (de) * 2005-06-27 2006-12-28 FHS Hochschule für Technik, Wirtschaft und soziale Arbeit St. Gallen Verfahren und Vorrichtung zur Herstellung eines dreidimensionalen Gegenstandes durch ein generatives 3D-Verfahren
JP5016300B2 (ja) * 2006-11-27 2012-09-05 パナソニック株式会社 三次元形状造形物の製造方法
JP2010203258A (ja) * 2009-02-27 2010-09-16 Mitsubishi Heavy Ind Ltd 動翼の補修方法
DE102009028105A1 (de) * 2009-07-30 2011-02-03 Robert Bosch Gmbh Generatives Verfahren zur Serienfertigung von metallischen Bauteilen
IT1395649B1 (it) 2009-07-31 2012-10-16 Avio Spa Procedimento di fabbricazione di componenti ottenuti per sinterizzazione di leghe co-cr-mo aventi migliorata duttilita' alle alte temperature
JP5579839B2 (ja) 2010-05-25 2014-08-27 パナソニック株式会社 粉末焼結積層用金属粉末、それを用いた三次元形状造形物の製造方法および得られる三次元形状造形物
US8617661B2 (en) * 2010-05-25 2013-12-31 The Curators Of The University Of Missouri Systems and methods for fabricating a direct metal deposition structure having fully forged structural qualities
EP2415552A1 (en) 2010-08-05 2012-02-08 Siemens Aktiengesellschaft A method for manufacturing a component by selective laser melting
GB201017692D0 (en) 2010-10-20 2010-12-01 Materials Solutions Heat treatments of ALM formed metal mixes to form super alloys
ITVR20100232A1 (it) 2010-12-09 2012-06-10 Eurocoating S P A Metodo di trattamento termico di pezzi in acciaio inossidabile indurente per precipitazione realizzati con tecniche di prototipazione rapida e simili
CH705750A1 (de) * 2011-10-31 2013-05-15 Alstom Technology Ltd Verfahren zur Herstellung von Komponenten oder Abschnitten, die aus einer Hochtemperatur-Superlegierung bestehen.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3847680A (en) * 1970-04-02 1974-11-12 Sherritt Gordon Mines Ltd Dispersion strengthened metals and alloys and process for producing same
US3917463A (en) * 1973-02-16 1975-11-04 Mitsubishi Metal Corp Nickel-base heat resistant and wear resistant alloy
JP2002038237A (ja) * 2000-07-25 2002-02-06 Genichi Myojin Fe−Ni系合金薄板
US20120000890A1 (en) * 2010-06-14 2012-01-05 Shoko Ito Method for repairing gas turbine blades and gas turbine blade
US20130228302A1 (en) * 2011-11-04 2013-09-05 Alstom Technology Ltd Process for the production of articles made of a gamma-prime precipitation-strengthened nickel-base superalloy by selective laser melting (slm)
US9200855B2 (en) * 2012-03-06 2015-12-01 Honeywell International Inc. Tubular heat exchange systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NPL: Machine translation of JP 2002038237A, 02-2002 *

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2687332C2 (ru) * 2014-04-24 2019-05-13 Сандвик Интеллекчуал Проперти Аб Способ создания порошка кермета или цементированного карбида
DE102014007867A1 (de) * 2014-06-03 2015-12-03 Airbus Defence and Space GmbH Verfahren zur Wärmebehandlung eines Werkstücks aus einer Nickelbasislegierung
EP4212113A1 (en) 2014-06-25 2023-07-19 Canary Medical Switzerland AG Devices monitoring spinal implants
EP3751574A2 (en) 2014-06-25 2020-12-16 Canary Medical Inc. Devices, systems and methods for using and monitoring orthopedic hardware
US12419567B2 (en) 2014-06-25 2025-09-23 Canary Medical Switzerland Ag Devices, systems and methods for using and monitoring orthopedic hardware
US12138029B2 (en) 2014-06-25 2024-11-12 Canary Medical Switzerland Ag Devices, systems and methods for using and monitoring spinal implants
EP4449979A2 (en) 2014-06-25 2024-10-23 Canary Medical Switzerland AG Devices, systems and methods for using and monitoring implants
US11033959B2 (en) 2014-07-21 2021-06-15 Nuovo Pignone Srl Method for manufacturing machine components by additive manufacturing
EP4501218A2 (en) 2014-09-17 2025-02-05 Canary Medical Inc. Devices, systems and methods for using and monitoring medical devices
US11931956B2 (en) 2014-11-18 2024-03-19 Divergent Technologies, Inc. Multi-sensor quality inference and control for additive manufacturing processes
US11478854B2 (en) 2014-11-18 2022-10-25 Sigma Labs, Inc. Multi-sensor quality inference and control for additive manufacturing processes
US12296533B2 (en) 2014-11-18 2025-05-13 Divergent Technologies, Inc. Multi-sensor quality inference and control for additive manufacturing processes
US10094240B2 (en) 2015-02-12 2018-10-09 United Technologies Corporation Anti-deflection feature for additively manufactured thin metal parts and method of additively manufacturing thin metal parts
US11434766B2 (en) 2015-03-05 2022-09-06 General Electric Company Process for producing a near net shape component with consolidation of a metallic powder
US9959613B2 (en) 2015-03-20 2018-05-01 Technology Research Association For Future Additive Manufacturing Optical Processing head, optical processing apparatus, and control method and control program of optical processing apparatus
EP3072611A2 (en) 2015-03-26 2016-09-28 Honeywell International Inc. Net-shape or near-net shape powder metal components and methods for producing the same
US11674904B2 (en) * 2015-09-30 2023-06-13 Sigma Additive Solutions, Inc. Systems and methods for additive manufacturing operations
US12019026B2 (en) 2015-09-30 2024-06-25 Divergent Technologies, Inc. Systems and methods for additive manufacturing operations
US12292384B2 (en) 2015-09-30 2025-05-06 Divergent Technologies, Inc. Systems and methods for additive manufacturing operations
US11185924B2 (en) * 2015-12-25 2021-11-30 Daihen Corporation Metal powder, method of producing additively-manufactured article, and additively-manufactured article
US20190168302A1 (en) * 2015-12-25 2019-06-06 Daihen Corporation Metal powder, method of producing additively-manufactured article, and additively-manufactured article
US10967431B2 (en) 2015-12-25 2021-04-06 Daihen Corporation Metal powder, method of producing additively-manufactured article, and additively-manufactured article
WO2017117041A1 (en) * 2015-12-28 2017-07-06 Matheson Tri-Gas, Inc. Use of reactive fluids in additive manufacturing and the products made therefrom
US12305292B2 (en) 2015-12-28 2025-05-20 Matheson Tri-Gas, Inc. Use of reactive fluids in additive manufacturing and the products made therefrom
US10724122B2 (en) 2016-03-10 2020-07-28 Nuovo Pignone Tecnologie Srl High oxidation-resistant alloy and gas turbine applications using the same
US10161021B2 (en) 2016-04-20 2018-12-25 Arconic Inc. FCC materials of aluminum, cobalt and nickel, and products made therefrom
US10202673B2 (en) 2016-04-20 2019-02-12 Arconic Inc. Fcc materials of aluminum, cobalt, iron and nickel, and products made therefrom
WO2017184778A1 (en) * 2016-04-20 2017-10-26 Arconic Inc. Fcc materials of aluminum, cobalt and nickel, and products made therefrom
WO2017184762A1 (en) * 2016-04-20 2017-10-26 Arconic Inc. Fcc materials of aluminum, cobalt, chromium, and nickel, and products made therefrom
WO2017184745A1 (en) * 2016-04-20 2017-10-26 Arconic Inc. Fcc materials of aluminum, cobalt, nickel and titanium, and products made therefrom
RU2713668C1 (ru) * 2016-04-20 2020-02-06 Арконик Инк. Материалы с гпу-структурой на основе алюминия, титана и циркония и изделия, полученные из них
WO2017184756A1 (en) * 2016-04-20 2017-10-26 Arconic Inc. Hcp materials of aluminum, titanium, and zirconium, and products made therefrom
WO2017184771A1 (en) * 2016-04-20 2017-10-26 Arconic Inc. Fcc materials of aluminum, cobalt, iron and nickel, and products made therefrom
CN108884518A (zh) * 2016-04-20 2018-11-23 奥科宁克公司 铝、钛和锆的hcp材料及由其制成的产物
KR20180122026A (ko) * 2016-04-25 2018-11-09 아르코닉 인코포레이티드 티타늄, 알루미늄, 니오븀, 바나듐 및 몰리브덴의 bcc 재료, 및 그로부터 제조된 제품
CN109257932A (zh) * 2016-04-25 2019-01-22 奥科宁克有限公司 钛、铝、铌、钒和钼的bcc材料以及由其制成的产品
WO2017189459A1 (en) * 2016-04-25 2017-11-02 Arconic Inc. Bcc materials of titanium, aluminum, niobium, vanadium, and molybdenum, and products made therefrom
WO2017189456A1 (en) * 2016-04-25 2017-11-02 Arconic Inc. Alpha-beta titanium alloys having aluminum and molybdenum, and products made therefrom
WO2017189460A1 (en) * 2016-04-25 2017-11-02 Arconic Inc. Bcc materials of titanium, aluminum, vanadium, and iron, and products made therefrom
KR102251066B1 (ko) * 2016-04-25 2021-05-11 아르코닉 인코포레이티드 티타늄, 알루미늄, 니오븀, 바나듐 및 몰리브덴의 bcc 재료, 및 그로부터 제조된 제품
RU2729569C2 (ru) * 2016-04-25 2020-08-07 Хаумет Аэроспейс Инк. Материалы с оцк-структурой на основе титана, алюминия, ванадия и железа и изделия, полученные из них
US20170326690A1 (en) * 2016-05-16 2017-11-16 Arconic Inc. Multi-component alloy products, and methods of making and using the same
WO2017200985A1 (en) * 2016-05-16 2017-11-23 Arconic Inc. Multi-component alloy products, and methods of making and using the same
US11148359B2 (en) 2016-12-22 2021-10-19 Hilti Aktiengesellschaft Method for layered production of a component from a powdery material
US11407034B2 (en) 2017-07-06 2022-08-09 OmniTek Technology Ltda. Selective laser melting system and method of using same
US10889872B2 (en) 2017-08-02 2021-01-12 Kennametal Inc. Tool steel articles from additive manufacturing
US11458573B2 (en) * 2017-11-13 2022-10-04 Trumpf Laser- Und Systemtechnik Gmbh Layer selective exposure in the overhang region in generative manufacturing
US11229952B2 (en) 2018-08-20 2022-01-25 Honeywell International Inc. System and method for forming part from rapidly manufactured article
CN113522688B (zh) * 2020-03-30 2022-12-30 中微半导体设备(上海)股份有限公司 耐等离子体腐蚀部件及其制备方法,等离子体处理设备
CN113522688A (zh) * 2020-03-30 2021-10-22 中微半导体设备(上海)股份有限公司 耐等离子体腐蚀部件及其制备方法,等离子体处理设备
RU2751039C1 (ru) * 2020-07-23 2021-07-07 Нуово Пиньоне Текнолоджи Срл Сплав с высокой стойкостью к окислению и применения для газовых турбин с использованием этого сплава
EP4249616A4 (en) * 2020-11-19 2024-11-13 AECC Shanghai Commercial Aircraft Engine Manufacturing Co., Ltd. MOLDED BODIES WITH LOW STRETCH ANISOTROPY, MANUFACTURING METHOD AND MOLDING POWDER THEREFOR
CN116748531A (zh) * 2023-06-08 2023-09-15 西北有色金属研究院 一种具有梯度晶体结构m2高速钢刀具的制备方法

Also Published As

Publication number Publication date
RU2566117C2 (ru) 2015-10-20
CA2824042C (en) 2018-04-03
JP5901585B2 (ja) 2016-04-13
KR20140025282A (ko) 2014-03-04
EP2700459A1 (en) 2014-02-26
JP2014040663A (ja) 2014-03-06
KR101627520B1 (ko) 2016-06-07
CA2824042A1 (en) 2014-02-21
CN103624257B (zh) 2017-03-01
CN103624257A (zh) 2014-03-12
RU2013138729A (ru) 2015-02-27
EP2700459B1 (en) 2019-10-02

Similar Documents

Publication Publication Date Title
CA2824042C (en) Method for manufacturing a three-dimensional article
AU2013263783B2 (en) Method for manufacturing a metallic component by additive laser manufacturing
EP2586887B1 (en) Method for manufacturing components or coupons made of a high temperature superalloy
US9764423B2 (en) Method for manufacturing a hybrid component
EP2886225B1 (en) Gamma prime precipitation strengthened nickel-base superalloy for use in powder based additive manufacturing process
US20140295087A1 (en) Method for additively manufacturing an article made of a difficult-to-weld material
EP2865465A1 (en) Method for manufacturing a metallic component by additive laser manufacturing
EP2589449A1 (en) A process for the production of articles made of a gamma-prime precipitation-strengthened nickel-base superalloy by selective laser melting (SLM)
KR20160064957A (ko) 적층 가공 프로세스를 사용하여 구성요소를 제조하기 위한 방법
Kulkarni Additive manufacturing of nickel based superalloy

Legal Events

Date Code Title Description
AS Assignment

Owner name: ALSTOM TECHNOLOGY LTD, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ETTER, THOMAS;SCHURB, JULIUS;RICKENBACHER, LUKAS EMANUEL;AND OTHERS;SIGNING DATES FROM 20131024 TO 20131027;REEL/FRAME:031510/0677

AS Assignment

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, SWITZERLAND

Free format text: CHANGE OF NAME;ASSIGNOR:ALSTOM TECHNOLOGY LTD;REEL/FRAME:038216/0193

Effective date: 20151102

AS Assignment

Owner name: ANSALDO ENERGIA IP UK LIMITED, GREAT BRITAIN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENERAL ELECTRIC TECHNOLOGY GMBH;REEL/FRAME:041731/0626

Effective date: 20170109

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION