US20130210934A1 - Flavoring agents containing bio-derived 1,3-propanediol and its conjugate esters - Google Patents
Flavoring agents containing bio-derived 1,3-propanediol and its conjugate esters Download PDFInfo
- Publication number
- US20130210934A1 US20130210934A1 US13/834,000 US201313834000A US2013210934A1 US 20130210934 A1 US20130210934 A1 US 20130210934A1 US 201313834000 A US201313834000 A US 201313834000A US 2013210934 A1 US2013210934 A1 US 2013210934A1
- Authority
- US
- United States
- Prior art keywords
- propanediol
- composition
- phase
- bio
- mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 title claims abstract description 195
- 229920000166 polytrimethylene carbonate Polymers 0.000 title claims abstract description 194
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical class C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 title claims abstract description 187
- 150000002148 esters Chemical class 0.000 title claims abstract description 121
- 239000000796 flavoring agent Substances 0.000 title claims abstract description 13
- 235000013355 food flavoring agent Nutrition 0.000 title claims abstract description 11
- 239000000203 mixture Substances 0.000 claims abstract description 382
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 81
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 75
- 239000003921 oil Substances 0.000 claims description 53
- 235000019198 oils Nutrition 0.000 claims description 50
- ORSQLSIVTJNLHW-UHFFFAOYSA-N 1-octadecanoyloxypropyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC(CC)OC(=O)CCCCCCCCCCCCCCCCC ORSQLSIVTJNLHW-UHFFFAOYSA-N 0.000 claims description 10
- 239000003814 drug Substances 0.000 claims description 8
- XBBMJUWOCGWHRP-UHFFFAOYSA-N 3-octanoyloxypropyl octanoate Chemical compound CCCCCCCC(=O)OCCCOC(=O)CCCCCCC XBBMJUWOCGWHRP-UHFFFAOYSA-N 0.000 claims description 7
- 239000000178 monomer Substances 0.000 claims description 7
- 229940035652 propanediol dicaprylate Drugs 0.000 claims description 7
- 235000013305 food Nutrition 0.000 claims description 6
- OEZBEADGYZEZEL-UHFFFAOYSA-N 1-benzoyloxypropyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OC(CC)OC(=O)C1=CC=CC=C1 OEZBEADGYZEZEL-UHFFFAOYSA-N 0.000 claims description 5
- SVZYFNKORQHJSJ-WRBBJXAJSA-N 1-[(Z)-octadec-9-enoyl]oxypropyl (Z)-octadec-9-enoate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC(CC)OC(=O)CCCCCCC\C=C/CCCCCCCC SVZYFNKORQHJSJ-WRBBJXAJSA-N 0.000 claims description 4
- AUDYRXHLWHVSPG-UHFFFAOYSA-N 1-tetradecanoyloxypropyl tetradecanoate Chemical compound CCCCCCCCCCCCCC(=O)OC(CC)OC(=O)CCCCCCCCCCCCC AUDYRXHLWHVSPG-UHFFFAOYSA-N 0.000 claims description 4
- 235000019502 Orange oil Nutrition 0.000 claims description 4
- 239000010502 orange oil Substances 0.000 claims description 4
- TYUBFZQPOBZETC-UHFFFAOYSA-N 1-acetyloxypropyl acetate Chemical compound CC(=O)OC(CC)OC(C)=O TYUBFZQPOBZETC-UHFFFAOYSA-N 0.000 claims description 3
- OAILGPUZAJMHME-UHFFFAOYSA-N 1-docosanoyloxypropyl docosanoate Chemical compound CCCCCCCCCCCCCCCCCCCCCC(=O)OC(CC)OC(=O)CCCCCCCCCCCCCCCCCCCCC OAILGPUZAJMHME-UHFFFAOYSA-N 0.000 claims description 3
- VMAROYYZEPWFRY-UHFFFAOYSA-N 1-dodecanoyloxypropyl dodecanoate Chemical compound CCCCCCCCCCCC(=O)OC(CC)OC(=O)CCCCCCCCCCC VMAROYYZEPWFRY-UHFFFAOYSA-N 0.000 claims description 3
- FDWGPHMYOCGHQS-UHFFFAOYSA-N 1-hexadecanoyloxypropyl hexadecanoate Chemical compound CCCCCCCCCCCCCCCC(=O)OC(CC)OC(=O)CCCCCCCCCCCCCCC FDWGPHMYOCGHQS-UHFFFAOYSA-N 0.000 claims description 3
- KKWBUUVNPRNGKK-UHFFFAOYSA-N 1-pentanoyloxypropyl pentanoate Chemical compound CCCCC(=O)OC(CC)OC(=O)CCCC KKWBUUVNPRNGKK-UHFFFAOYSA-N 0.000 claims description 3
- DEIOOVWBXXWWRE-UHFFFAOYSA-N C(C=C/C(=O)O)(=O)O.C(CC)(O)O Chemical compound C(C=C/C(=O)O)(=O)O.C(CC)(O)O DEIOOVWBXXWWRE-UHFFFAOYSA-N 0.000 claims description 3
- CHZLKKJTMGYWAE-UHFFFAOYSA-N hexanedioic acid;propane-1,1-diol Chemical compound CCC(O)O.OC(=O)CCCCC(O)=O CHZLKKJTMGYWAE-UHFFFAOYSA-N 0.000 claims description 3
- 239000012071 phase Substances 0.000 description 214
- 229940035437 1,3-propanediol Drugs 0.000 description 179
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 141
- 239000004615 ingredient Substances 0.000 description 115
- 229910001868 water Inorganic materials 0.000 description 112
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 95
- 238000000034 method Methods 0.000 description 93
- -1 1,3-propanediol ester Chemical class 0.000 description 78
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 75
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 66
- 239000000284 extract Substances 0.000 description 66
- 239000003205 fragrance Substances 0.000 description 65
- 239000000047 product Substances 0.000 description 56
- 238000000605 extraction Methods 0.000 description 53
- 239000000463 material Substances 0.000 description 46
- 239000003599 detergent Substances 0.000 description 44
- 239000002904 solvent Substances 0.000 description 44
- 235000014113 dietary fatty acids Nutrition 0.000 description 43
- 229930195729 fatty acid Natural products 0.000 description 43
- 239000000194 fatty acid Substances 0.000 description 43
- 239000002537 cosmetic Substances 0.000 description 37
- 239000007788 liquid Substances 0.000 description 37
- 239000003755 preservative agent Substances 0.000 description 36
- 229960004063 propylene glycol Drugs 0.000 description 34
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 33
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 33
- 235000013772 propylene glycol Nutrition 0.000 description 33
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 30
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 30
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 30
- 239000000843 powder Substances 0.000 description 30
- 230000002335 preservative effect Effects 0.000 description 30
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 30
- 239000000126 substance Substances 0.000 description 30
- 210000004209 hair Anatomy 0.000 description 29
- 241000196324 Embryophyta Species 0.000 description 28
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 28
- 239000008367 deionised water Substances 0.000 description 28
- 229910021641 deionized water Inorganic materials 0.000 description 28
- LXCFILQKKLGQFO-UHFFFAOYSA-N methylparaben Chemical compound COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 28
- 239000002253 acid Substances 0.000 description 27
- 235000015165 citric acid Nutrition 0.000 description 25
- 150000004665 fatty acids Chemical class 0.000 description 25
- 239000004094 surface-active agent Substances 0.000 description 25
- 238000002156 mixing Methods 0.000 description 22
- 229920000642 polymer Polymers 0.000 description 22
- 229920002125 Sokalan® Polymers 0.000 description 21
- 238000013019 agitation Methods 0.000 description 21
- 239000000049 pigment Substances 0.000 description 21
- 238000012360 testing method Methods 0.000 description 21
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 20
- 238000004519 manufacturing process Methods 0.000 description 20
- 230000008569 process Effects 0.000 description 20
- 238000003756 stirring Methods 0.000 description 20
- 150000001875 compounds Chemical class 0.000 description 19
- 150000005690 diesters Chemical class 0.000 description 19
- 239000000975 dye Substances 0.000 description 19
- 235000019441 ethanol Nutrition 0.000 description 19
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 18
- 239000006210 lotion Substances 0.000 description 18
- 229910052708 sodium Inorganic materials 0.000 description 18
- 239000011734 sodium Substances 0.000 description 18
- 235000015424 sodium Nutrition 0.000 description 18
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 17
- 239000012298 atmosphere Substances 0.000 description 17
- 229910002092 carbon dioxide Inorganic materials 0.000 description 17
- 239000003054 catalyst Substances 0.000 description 17
- 238000009472 formulation Methods 0.000 description 17
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 17
- 239000000243 solution Substances 0.000 description 17
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 16
- 229920001577 copolymer Polymers 0.000 description 16
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 16
- 239000007787 solid Substances 0.000 description 16
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 15
- 244000042664 Matricaria chamomilla Species 0.000 description 15
- 235000007232 Matricaria chamomilla Nutrition 0.000 description 15
- 239000004909 Moisturizer Substances 0.000 description 15
- 229960000541 cetyl alcohol Drugs 0.000 description 15
- 239000006071 cream Substances 0.000 description 15
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 15
- 239000000839 emulsion Substances 0.000 description 15
- 230000001333 moisturizer Effects 0.000 description 15
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 15
- 239000004405 propyl p-hydroxybenzoate Substances 0.000 description 15
- 229960003415 propylparaben Drugs 0.000 description 15
- QFOHBWFCKVYLES-UHFFFAOYSA-N Butylparaben Chemical compound CCCCOC(=O)C1=CC=C(O)C=C1 QFOHBWFCKVYLES-UHFFFAOYSA-N 0.000 description 14
- 241001465754 Metazoa Species 0.000 description 14
- 239000001569 carbon dioxide Substances 0.000 description 14
- 239000004205 dimethyl polysiloxane Substances 0.000 description 14
- 238000004821 distillation Methods 0.000 description 14
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 14
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 14
- 229960002216 methylparaben Drugs 0.000 description 14
- 235000013336 milk Nutrition 0.000 description 14
- 239000008267 milk Substances 0.000 description 14
- 210000004080 milk Anatomy 0.000 description 14
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 14
- 229920001223 polyethylene glycol Polymers 0.000 description 14
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical compound OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 13
- MRUAUOIMASANKQ-UHFFFAOYSA-N cocamidopropyl betaine Chemical compound CCCCCCCCCCCC(=O)NCCC[N+](C)(C)CC([O-])=O MRUAUOIMASANKQ-UHFFFAOYSA-N 0.000 description 13
- 239000003995 emulsifying agent Substances 0.000 description 13
- 235000011187 glycerol Nutrition 0.000 description 13
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 13
- 150000003839 salts Chemical class 0.000 description 13
- 241000195493 Cryptophyta Species 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 12
- 229940008099 dimethicone Drugs 0.000 description 12
- 238000000855 fermentation Methods 0.000 description 12
- 229920001296 polysiloxane Chemical class 0.000 description 12
- ULWHHBHJGPPBCO-UHFFFAOYSA-N propane-1,1-diol Chemical class CCC(O)O ULWHHBHJGPPBCO-UHFFFAOYSA-N 0.000 description 12
- 108090000623 proteins and genes Proteins 0.000 description 12
- 239000001993 wax Substances 0.000 description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 11
- 235000007866 Chamaemelum nobile Nutrition 0.000 description 11
- 229920002472 Starch Polymers 0.000 description 11
- 150000007513 acids Chemical class 0.000 description 11
- 239000004480 active ingredient Substances 0.000 description 11
- MBMBGCFOFBJSGT-KUBAVDMBSA-N all-cis-docosa-4,7,10,13,16,19-hexaenoic acid Chemical compound CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCC(O)=O MBMBGCFOFBJSGT-KUBAVDMBSA-N 0.000 description 11
- 229940117893 apigenin Drugs 0.000 description 11
- XADJWCRESPGUTB-UHFFFAOYSA-N apigenin Natural products C1=CC(O)=CC=C1C1=CC(=O)C2=CC(O)=C(O)C=C2O1 XADJWCRESPGUTB-UHFFFAOYSA-N 0.000 description 11
- 235000008714 apigenin Nutrition 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- 230000007613 environmental effect Effects 0.000 description 11
- 230000004151 fermentation Effects 0.000 description 11
- 230000000670 limiting effect Effects 0.000 description 11
- 238000002360 preparation method Methods 0.000 description 11
- 235000018102 proteins Nutrition 0.000 description 11
- 102000004169 proteins and genes Human genes 0.000 description 11
- 230000000475 sunscreen effect Effects 0.000 description 11
- 239000000516 sunscreening agent Substances 0.000 description 11
- 229960004418 trolamine Drugs 0.000 description 11
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 10
- 239000003109 Disodium ethylene diamine tetraacetate Substances 0.000 description 10
- 229960001631 carbomer Drugs 0.000 description 10
- 239000003795 chemical substances by application Substances 0.000 description 10
- 229940073507 cocamidopropyl betaine Drugs 0.000 description 10
- 238000001816 cooling Methods 0.000 description 10
- 235000019301 disodium ethylene diamine tetraacetate Nutrition 0.000 description 10
- 239000000499 gel Substances 0.000 description 10
- 235000019388 lanolin Nutrition 0.000 description 10
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 10
- 239000002736 nonionic surfactant Substances 0.000 description 10
- 239000008389 polyethoxylated castor oil Substances 0.000 description 10
- 239000002453 shampoo Substances 0.000 description 10
- 235000019698 starch Nutrition 0.000 description 10
- 235000010215 titanium dioxide Nutrition 0.000 description 10
- 239000000341 volatile oil Substances 0.000 description 10
- ZAKOWWREFLAJOT-CEFNRUSXSA-N D-alpha-tocopherylacetate Chemical compound CC(=O)OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C ZAKOWWREFLAJOT-CEFNRUSXSA-N 0.000 description 9
- 241000282414 Homo sapiens Species 0.000 description 9
- 239000004166 Lanolin Substances 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- YBGZDTIWKVFICR-JLHYYAGUSA-N Octyl 4-methoxycinnamic acid Chemical compound CCCCC(CC)COC(=O)\C=C\C1=CC=C(OC)C=C1 YBGZDTIWKVFICR-JLHYYAGUSA-N 0.000 description 9
- 235000021355 Stearic acid Nutrition 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 9
- 230000008901 benefit Effects 0.000 description 9
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 9
- 229940039717 lanolin Drugs 0.000 description 9
- 239000012528 membrane Substances 0.000 description 9
- 230000003020 moisturizing effect Effects 0.000 description 9
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 9
- 150000007524 organic acids Chemical class 0.000 description 9
- 239000003208 petroleum Substances 0.000 description 9
- 230000000704 physical effect Effects 0.000 description 9
- 108090000765 processed proteins & peptides Proteins 0.000 description 9
- 239000008117 stearic acid Substances 0.000 description 9
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 8
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical group CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 8
- 102000004190 Enzymes Human genes 0.000 description 8
- 108090000790 Enzymes Proteins 0.000 description 8
- 238000007792 addition Methods 0.000 description 8
- 125000004432 carbon atom Chemical group C* 0.000 description 8
- 239000012141 concentrate Substances 0.000 description 8
- 235000008504 concentrate Nutrition 0.000 description 8
- ZAKOWWREFLAJOT-UHFFFAOYSA-N d-alpha-Tocopheryl acetate Natural products CC(=O)OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C ZAKOWWREFLAJOT-UHFFFAOYSA-N 0.000 description 8
- UKMSUNONTOPOIO-UHFFFAOYSA-N docosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCC(O)=O UKMSUNONTOPOIO-UHFFFAOYSA-N 0.000 description 8
- 239000000706 filtrate Substances 0.000 description 8
- 229940075529 glyceryl stearate Drugs 0.000 description 8
- 150000002334 glycols Chemical class 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- 150000002430 hydrocarbons Chemical class 0.000 description 8
- 235000019271 petrolatum Nutrition 0.000 description 8
- 239000002994 raw material Substances 0.000 description 8
- 239000008107 starch Substances 0.000 description 8
- 239000002562 thickening agent Substances 0.000 description 8
- QWGRWMMWNDWRQN-UHFFFAOYSA-N 2-methylpropane-1,3-diol Chemical compound OCC(C)CO QWGRWMMWNDWRQN-UHFFFAOYSA-N 0.000 description 7
- 240000000198 Antigonon leptopus Species 0.000 description 7
- SNPLKNRPJHDVJA-ZETCQYMHSA-N D-panthenol Chemical compound OCC(C)(C)[C@@H](O)C(=O)NCCCO SNPLKNRPJHDVJA-ZETCQYMHSA-N 0.000 description 7
- 239000002202 Polyethylene glycol Substances 0.000 description 7
- 235000000652 Rosa pendulina Nutrition 0.000 description 7
- 125000000217 alkyl group Chemical group 0.000 description 7
- 239000003945 anionic surfactant Substances 0.000 description 7
- 229940067596 butylparaben Drugs 0.000 description 7
- 150000002009 diols Chemical class 0.000 description 7
- 238000004851 dishwashing Methods 0.000 description 7
- YRIUSKIDOIARQF-UHFFFAOYSA-N dodecyl benzenesulfonate Chemical compound CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 YRIUSKIDOIARQF-UHFFFAOYSA-N 0.000 description 7
- 229940071161 dodecylbenzenesulfonate Drugs 0.000 description 7
- 239000003349 gelling agent Substances 0.000 description 7
- 229930182478 glucoside Natural products 0.000 description 7
- 125000003976 glyceryl group Chemical group [H]C([*])([H])C(O[H])([H])C(O[H])([H])[H] 0.000 description 7
- 239000005431 greenhouse gas Substances 0.000 description 7
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 7
- 229930195733 hydrocarbon Natural products 0.000 description 7
- 239000012535 impurity Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 229910052618 mica group Inorganic materials 0.000 description 7
- 239000004200 microcrystalline wax Substances 0.000 description 7
- 235000019808 microcrystalline wax Nutrition 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 7
- 239000002304 perfume Substances 0.000 description 7
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 7
- 229920000136 polysorbate Polymers 0.000 description 7
- 239000000344 soap Substances 0.000 description 7
- 229940057950 sodium laureth sulfate Drugs 0.000 description 7
- SXHLENDCVBIJFO-UHFFFAOYSA-M sodium;2-[2-(2-dodecoxyethoxy)ethoxy]ethyl sulfate Chemical compound [Na+].CCCCCCCCCCCCOCCOCCOCCOS([O-])(=O)=O SXHLENDCVBIJFO-UHFFFAOYSA-M 0.000 description 7
- 239000003381 stabilizer Substances 0.000 description 7
- UEUXEKPTXMALOB-UHFFFAOYSA-J tetrasodium;2-[2-[bis(carboxylatomethyl)amino]ethyl-(carboxylatomethyl)amino]acetate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]C(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O UEUXEKPTXMALOB-UHFFFAOYSA-J 0.000 description 7
- 229940042585 tocopherol acetate Drugs 0.000 description 7
- 150000003626 triacylglycerols Chemical class 0.000 description 7
- 229940058015 1,3-butylene glycol Drugs 0.000 description 6
- BANXPJUEBPWEOT-UHFFFAOYSA-N 2-methyl-Pentadecane Chemical compound CCCCCCCCCCCCCC(C)C BANXPJUEBPWEOT-UHFFFAOYSA-N 0.000 description 6
- WLAMNBDJUVNPJU-UHFFFAOYSA-N 2-methylbutyric acid Chemical compound CCC(C)C(O)=O WLAMNBDJUVNPJU-UHFFFAOYSA-N 0.000 description 6
- QCDWFXQBSFUVSP-UHFFFAOYSA-N 2-phenoxyethanol Chemical compound OCCOC1=CC=CC=C1 QCDWFXQBSFUVSP-UHFFFAOYSA-N 0.000 description 6
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 6
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 6
- XMSXQFUHVRWGNA-UHFFFAOYSA-N Decamethylcyclopentasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 XMSXQFUHVRWGNA-UHFFFAOYSA-N 0.000 description 6
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical group [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 6
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- 239000002671 adjuvant Substances 0.000 description 6
- KZNIFHPLKGYRTM-UHFFFAOYSA-N apigenin Chemical compound C1=CC(O)=CC=C1C1=CC(=O)C2=C(O)C=C(O)C=C2O1 KZNIFHPLKGYRTM-UHFFFAOYSA-N 0.000 description 6
- 235000013871 bee wax Nutrition 0.000 description 6
- 229940092738 beeswax Drugs 0.000 description 6
- 239000012166 beeswax Substances 0.000 description 6
- 235000019437 butane-1,3-diol Nutrition 0.000 description 6
- 229940086555 cyclomethicone Drugs 0.000 description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 6
- WSDISUOETYTPRL-UHFFFAOYSA-N dmdm hydantoin Chemical compound CC1(C)N(CO)C(=O)N(CO)C1=O WSDISUOETYTPRL-UHFFFAOYSA-N 0.000 description 6
- 150000002170 ethers Chemical class 0.000 description 6
- 150000002194 fatty esters Chemical class 0.000 description 6
- 239000002803 fossil fuel Substances 0.000 description 6
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 6
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 6
- 235000013980 iron oxide Nutrition 0.000 description 6
- 238000002803 maceration Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 239000010445 mica Substances 0.000 description 6
- 229940049964 oleate Drugs 0.000 description 6
- 150000002978 peroxides Chemical class 0.000 description 6
- 229960005323 phenoxyethanol Drugs 0.000 description 6
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 6
- 241000894007 species Species 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 6
- 229920001285 xanthan gum Polymers 0.000 description 6
- 239000000230 xanthan gum Substances 0.000 description 6
- 235000010493 xanthan gum Nutrition 0.000 description 6
- 229940082509 xanthan gum Drugs 0.000 description 6
- 239000002028 Biomass Substances 0.000 description 5
- 229930189957 Bisabolol oxide Natural products 0.000 description 5
- WJHRAVIQWFQMKF-IPYPFGDCSA-N Bisabolol oxide A Chemical compound C1CC(C)=CC[C@H]1[C@@]1(C)OC(C)(C)[C@@H](O)CC1 WJHRAVIQWFQMKF-IPYPFGDCSA-N 0.000 description 5
- 239000004215 Carbon black (E152) Substances 0.000 description 5
- 241000208421 Ericaceae Species 0.000 description 5
- 241000588724 Escherichia coli Species 0.000 description 5
- 235000010254 Jasminum officinale Nutrition 0.000 description 5
- 238000005481 NMR spectroscopy Methods 0.000 description 5
- 108091005804 Peptidases Proteins 0.000 description 5
- 239000004264 Petrolatum Substances 0.000 description 5
- 241000013557 Plantaginaceae Species 0.000 description 5
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 5
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 5
- 150000001412 amines Chemical group 0.000 description 5
- 239000003963 antioxidant agent Substances 0.000 description 5
- 235000006708 antioxidants Nutrition 0.000 description 5
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 5
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 5
- 239000004359 castor oil Substances 0.000 description 5
- 235000019438 castor oil Nutrition 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 239000008271 cosmetic emulsion Substances 0.000 description 5
- SOROIESOUPGGFO-UHFFFAOYSA-N diazolidinylurea Chemical compound OCNC(=O)N(CO)C1N(CO)C(=O)N(CO)C1=O SOROIESOUPGGFO-UHFFFAOYSA-N 0.000 description 5
- 229960001083 diazolidinylurea Drugs 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 239000008103 glucose Substances 0.000 description 5
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 5
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 230000006698 induction Effects 0.000 description 5
- 229910052500 inorganic mineral Inorganic materials 0.000 description 5
- 235000010755 mineral Nutrition 0.000 description 5
- 239000011707 mineral Substances 0.000 description 5
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 5
- 229960001679 octinoxate Drugs 0.000 description 5
- 150000002894 organic compounds Chemical class 0.000 description 5
- 229940066842 petrolatum Drugs 0.000 description 5
- 239000011541 reaction mixture Substances 0.000 description 5
- 229940079776 sodium cocoyl isethionate Drugs 0.000 description 5
- 235000000346 sugar Nutrition 0.000 description 5
- 239000013008 thixotropic agent Substances 0.000 description 5
- 239000004408 titanium dioxide Substances 0.000 description 5
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical class CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 4
- OYINQIKIQCNQOX-UHFFFAOYSA-M 2-hydroxybutyl(trimethyl)azanium;chloride Chemical compound [Cl-].CCC(O)C[N+](C)(C)C OYINQIKIQCNQOX-UHFFFAOYSA-M 0.000 description 4
- 235000001674 Agaricus brunnescens Nutrition 0.000 description 4
- 241000195940 Bryophyta Species 0.000 description 4
- 239000004322 Butylated hydroxytoluene Substances 0.000 description 4
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 4
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 4
- 235000005979 Citrus limon Nutrition 0.000 description 4
- 244000131522 Citrus pyriformis Species 0.000 description 4
- 229920002261 Corn starch Polymers 0.000 description 4
- 240000008067 Cucumis sativus Species 0.000 description 4
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 4
- FPVVYTCTZKCSOJ-UHFFFAOYSA-N Ethylene glycol distearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCOC(=O)CCCCCCCCCCCCCCCCC FPVVYTCTZKCSOJ-UHFFFAOYSA-N 0.000 description 4
- 244000166124 Eucalyptus globulus Species 0.000 description 4
- 241000282412 Homo Species 0.000 description 4
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 4
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 4
- SGVYKUFIHHTIFL-UHFFFAOYSA-N Isobutylhexyl Natural products CCCCCCCC(C)C SGVYKUFIHHTIFL-UHFFFAOYSA-N 0.000 description 4
- 240000006859 Jasminum officinale Species 0.000 description 4
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 4
- 241000219071 Malvaceae Species 0.000 description 4
- 235000019482 Palm oil Nutrition 0.000 description 4
- 229920001213 Polysorbate 20 Polymers 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 241001464837 Viridiplantae Species 0.000 description 4
- 238000002835 absorbance Methods 0.000 description 4
- 150000001298 alcohols Chemical class 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 150000001408 amides Chemical group 0.000 description 4
- BTBJBAZGXNKLQC-UHFFFAOYSA-N ammonium lauryl sulfate Chemical compound [NH4+].CCCCCCCCCCCCOS([O-])(=O)=O BTBJBAZGXNKLQC-UHFFFAOYSA-N 0.000 description 4
- 229940063953 ammonium lauryl sulfate Drugs 0.000 description 4
- 239000002280 amphoteric surfactant Substances 0.000 description 4
- 125000000129 anionic group Chemical group 0.000 description 4
- XNEFYCZVKIDDMS-UHFFFAOYSA-N avobenzone Chemical compound C1=CC(OC)=CC=C1C(=O)CC(=O)C1=CC=C(C(C)(C)C)C=C1 XNEFYCZVKIDDMS-UHFFFAOYSA-N 0.000 description 4
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid group Chemical group C(C1=CC=CC=C1)(=O)O WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 4
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 4
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 239000003240 coconut oil Substances 0.000 description 4
- 235000019864 coconut oil Nutrition 0.000 description 4
- 239000003086 colorant Substances 0.000 description 4
- 239000008120 corn starch Substances 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 238000010790 dilution Methods 0.000 description 4
- 239000012895 dilution Substances 0.000 description 4
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 4
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 4
- 239000004744 fabric Substances 0.000 description 4
- 150000002191 fatty alcohols Chemical class 0.000 description 4
- 239000006260 foam Substances 0.000 description 4
- 238000005187 foaming Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 125000005456 glyceride group Chemical group 0.000 description 4
- 229940093915 gynecological organic acid Drugs 0.000 description 4
- 239000012676 herbal extract Substances 0.000 description 4
- 239000003906 humectant Substances 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 4
- 239000002085 irritant Substances 0.000 description 4
- 231100000021 irritant Toxicity 0.000 description 4
- XUGNVMKQXJXZCD-UHFFFAOYSA-N isopropyl palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC(C)C XUGNVMKQXJXZCD-UHFFFAOYSA-N 0.000 description 4
- 239000000787 lecithin Chemical class 0.000 description 4
- 235000010445 lecithin Nutrition 0.000 description 4
- 229940067606 lecithin Drugs 0.000 description 4
- 150000002632 lipids Chemical class 0.000 description 4
- 238000002514 liquid chromatography mass spectrum Methods 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- 239000004530 micro-emulsion Substances 0.000 description 4
- 229920005615 natural polymer Polymers 0.000 description 4
- 235000005985 organic acids Nutrition 0.000 description 4
- DXGLGDHPHMLXJC-UHFFFAOYSA-N oxybenzone Chemical compound OC1=CC(OC)=CC=C1C(=O)C1=CC=CC=C1 DXGLGDHPHMLXJC-UHFFFAOYSA-N 0.000 description 4
- 239000002540 palm oil Substances 0.000 description 4
- 229940101267 panthenol Drugs 0.000 description 4
- 235000020957 pantothenol Nutrition 0.000 description 4
- 239000011619 pantothenol Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 4
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 4
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 230000036556 skin irritation Effects 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 235000013599 spices Nutrition 0.000 description 4
- 238000010561 standard procedure Methods 0.000 description 4
- 150000005846 sugar alcohols Polymers 0.000 description 4
- 229920001059 synthetic polymer Polymers 0.000 description 4
- JREYOWJEWZVAOR-UHFFFAOYSA-N triazanium;[3-methylbut-3-enoxy(oxido)phosphoryl] phosphate Chemical compound [NH4+].[NH4+].[NH4+].CC(=C)CCOP([O-])(=O)OP([O-])([O-])=O JREYOWJEWZVAOR-UHFFFAOYSA-N 0.000 description 4
- 229940088594 vitamin Drugs 0.000 description 4
- 229930003231 vitamin Natural products 0.000 description 4
- 235000013343 vitamin Nutrition 0.000 description 4
- 239000011782 vitamin Substances 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 3
- RZVXQGKUWOWXNA-UHFFFAOYSA-N 1-hydroxypropyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC(O)CC RZVXQGKUWOWXNA-UHFFFAOYSA-N 0.000 description 3
- YJIOVIZPHMGNOI-UHFFFAOYSA-N 1-hydroxypropyl tetradecanoate Chemical compound CCCCCCCCCCCCCC(=O)OC(O)CC YJIOVIZPHMGNOI-UHFFFAOYSA-N 0.000 description 3
- XDOFQFKRPWOURC-UHFFFAOYSA-N 16-methylheptadecanoic acid Chemical compound CC(C)CCCCCCCCCCCCCCC(O)=O XDOFQFKRPWOURC-UHFFFAOYSA-N 0.000 description 3
- 238000005160 1H NMR spectroscopy Methods 0.000 description 3
- 229940043268 2,2,4,4,6,8,8-heptamethylnonane Drugs 0.000 description 3
- IMHQFVGHBDXALM-UHFFFAOYSA-N 2,2-diethylhexanoic acid Chemical compound CCCCC(CC)(CC)C(O)=O IMHQFVGHBDXALM-UHFFFAOYSA-N 0.000 description 3
- MQFYRUGXOJAUQK-UHFFFAOYSA-N 2-[2-[2-(2-octadecanoyloxyethoxy)ethoxy]ethoxy]ethyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCOCCOCCOCCOC(=O)CCCCCCCCCCCCCCCCC MQFYRUGXOJAUQK-UHFFFAOYSA-N 0.000 description 3
- OSCJHTSDLYVCQC-UHFFFAOYSA-N 2-ethylhexyl 4-[[4-[4-(tert-butylcarbamoyl)anilino]-6-[4-(2-ethylhexoxycarbonyl)anilino]-1,3,5-triazin-2-yl]amino]benzoate Chemical compound C1=CC(C(=O)OCC(CC)CCCC)=CC=C1NC1=NC(NC=2C=CC(=CC=2)C(=O)NC(C)(C)C)=NC(NC=2C=CC(=CC=2)C(=O)OCC(CC)CCCC)=N1 OSCJHTSDLYVCQC-UHFFFAOYSA-N 0.000 description 3
- RFVNOJDQRGSOEL-UHFFFAOYSA-N 2-hydroxyethyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCO RFVNOJDQRGSOEL-UHFFFAOYSA-N 0.000 description 3
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 3
- LBWNKTZBTUKBOC-UHFFFAOYSA-N 3-hydroxypropyl octanoate Chemical compound CCCCCCCC(=O)OCCCO LBWNKTZBTUKBOC-UHFFFAOYSA-N 0.000 description 3
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 239000005995 Aluminium silicate Substances 0.000 description 3
- 239000004382 Amylase Substances 0.000 description 3
- 108010065511 Amylases Proteins 0.000 description 3
- 102000013142 Amylases Human genes 0.000 description 3
- 241000209524 Araceae Species 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 3
- 241001474374 Blennius Species 0.000 description 3
- 241000208195 Buxaceae Species 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- 241000282465 Canis Species 0.000 description 3
- 241000208365 Celastraceae Species 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- 241000546193 Clusiaceae Species 0.000 description 3
- 235000013162 Cocos nucifera Nutrition 0.000 description 3
- 244000060011 Cocos nucifera Species 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 235000010799 Cucumis sativus var sativus Nutrition 0.000 description 3
- 241000220272 Cunoniaceae Species 0.000 description 3
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 3
- 235000004866 D-panthenol Nutrition 0.000 description 3
- 239000011703 D-panthenol Substances 0.000 description 3
- 241000283073 Equus caballus Species 0.000 description 3
- 241000220485 Fabaceae Species 0.000 description 3
- 241000282324 Felis Species 0.000 description 3
- 241000233866 Fungi Species 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- XPJVKCRENWUEJH-UHFFFAOYSA-N Isobutylparaben Chemical compound CC(C)COC(=O)C1=CC=C(O)C=C1 XPJVKCRENWUEJH-UHFFFAOYSA-N 0.000 description 3
- 239000011786 L-ascorbyl-6-palmitate Substances 0.000 description 3
- 241000219991 Lythraceae Species 0.000 description 3
- 241000124008 Mammalia Species 0.000 description 3
- 240000003183 Manihot esculenta Species 0.000 description 3
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 3
- 102000014171 Milk Proteins Human genes 0.000 description 3
- 108010011756 Milk Proteins Proteins 0.000 description 3
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 3
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 3
- 239000005642 Oleic acid Substances 0.000 description 3
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 3
- 235000011613 Pinus brutia Nutrition 0.000 description 3
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 3
- 229920001214 Polysorbate 60 Polymers 0.000 description 3
- 239000004365 Protease Substances 0.000 description 3
- 235000004789 Rosa xanthina Nutrition 0.000 description 3
- 241001093501 Rutaceae Species 0.000 description 3
- 241000221035 Santalaceae Species 0.000 description 3
- 241000207844 Scrophulariaceae Species 0.000 description 3
- 206010040880 Skin irritation Diseases 0.000 description 3
- HVUMOYIDDBPOLL-XWVZOOPGSA-N Sorbitan monostearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O HVUMOYIDDBPOLL-XWVZOOPGSA-N 0.000 description 3
- 240000002299 Symphytum officinale Species 0.000 description 3
- 235000005865 Symphytum officinale Nutrition 0.000 description 3
- 229930003427 Vitamin E Natural products 0.000 description 3
- 102100038968 WAP four-disulfide core domain protein 1 Human genes 0.000 description 3
- 240000008042 Zea mays Species 0.000 description 3
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 3
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 150000001340 alkali metals Chemical class 0.000 description 3
- 150000001336 alkenes Chemical group 0.000 description 3
- 125000005907 alkyl ester group Chemical group 0.000 description 3
- 150000005215 alkyl ethers Chemical group 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 235000012211 aluminium silicate Nutrition 0.000 description 3
- 235000019418 amylase Nutrition 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 235000010323 ascorbic acid Nutrition 0.000 description 3
- 229960005070 ascorbic acid Drugs 0.000 description 3
- 239000011668 ascorbic acid Substances 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 3
- DBZJJPROPLPMSN-UHFFFAOYSA-N bromoeosin Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC(Br)=C(O)C(Br)=C1OC1=C(Br)C(O)=C(Br)C=C21 DBZJJPROPLPMSN-UHFFFAOYSA-N 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 150000001735 carboxylic acids Chemical class 0.000 description 3
- 125000002091 cationic group Chemical group 0.000 description 3
- 229940081733 cetearyl alcohol Drugs 0.000 description 3
- 235000020221 chamomile extract Nutrition 0.000 description 3
- 229940119217 chamomile extract Drugs 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- 229940080421 coco glucoside Drugs 0.000 description 3
- 239000000356 contaminant Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 235000005822 corn Nutrition 0.000 description 3
- 239000008406 cosmetic ingredient Substances 0.000 description 3
- 229940058010 d&c red no. 21 Drugs 0.000 description 3
- 239000002781 deodorant agent Substances 0.000 description 3
- 239000007933 dermal patch Substances 0.000 description 3
- 229960003949 dexpanthenol Drugs 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- SNPLKNRPJHDVJA-UHFFFAOYSA-N dl-panthenol Chemical compound OCC(C)(C)C(O)C(=O)NCCCO SNPLKNRPJHDVJA-UHFFFAOYSA-N 0.000 description 3
- PRAKJMSDJKAYCZ-UHFFFAOYSA-N dodecahydrosqualene Natural products CC(C)CCCC(C)CCCC(C)CCCCC(C)CCCC(C)CCCC(C)C PRAKJMSDJKAYCZ-UHFFFAOYSA-N 0.000 description 3
- DLAHAXOYRFRPFQ-UHFFFAOYSA-N dodecyl benzoate Chemical compound CCCCCCCCCCCCOC(=O)C1=CC=CC=C1 DLAHAXOYRFRPFQ-UHFFFAOYSA-N 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 229960001617 ethyl hydroxybenzoate Drugs 0.000 description 3
- 235000010228 ethyl p-hydroxybenzoate Nutrition 0.000 description 3
- 239000004403 ethyl p-hydroxybenzoate Substances 0.000 description 3
- NUVBSKCKDOMJSU-UHFFFAOYSA-N ethylparaben Chemical compound CCOC(=O)C1=CC=C(O)C=C1 NUVBSKCKDOMJSU-UHFFFAOYSA-N 0.000 description 3
- 230000001815 facial effect Effects 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 3
- 229920000591 gum Polymers 0.000 description 3
- 150000004820 halides Chemical group 0.000 description 3
- 235000008216 herbs Nutrition 0.000 description 3
- 229940088597 hormone Drugs 0.000 description 3
- 239000005556 hormone Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- WTFXARWRTYJXII-UHFFFAOYSA-N iron(2+);iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[Fe+2].[Fe+3].[Fe+3] WTFXARWRTYJXII-UHFFFAOYSA-N 0.000 description 3
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 3
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 3
- 230000007794 irritation Effects 0.000 description 3
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 3
- KUVMKLCGXIYSNH-UHFFFAOYSA-N isopentadecane Natural products CCCCCCCCCCCCC(C)C KUVMKLCGXIYSNH-UHFFFAOYSA-N 0.000 description 3
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 229920000609 methyl cellulose Polymers 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 235000010981 methylcellulose Nutrition 0.000 description 3
- 239000001923 methylcellulose Substances 0.000 description 3
- 235000021239 milk protein Nutrition 0.000 description 3
- 229940078812 myristyl myristate Drugs 0.000 description 3
- BARWIPMJPCRCTP-CLFAGFIQSA-N oleyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCCOC(=O)CCCCCCC\C=C/CCCCCCCC BARWIPMJPCRCTP-CLFAGFIQSA-N 0.000 description 3
- 239000003605 opacifier Substances 0.000 description 3
- 229960001173 oxybenzone Drugs 0.000 description 3
- OSORMYZMWHVFOZ-UHFFFAOYSA-N phenethyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCCC1=CC=CC=C1 OSORMYZMWHVFOZ-UHFFFAOYSA-N 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 229920005862 polyol Polymers 0.000 description 3
- 235000010989 polyoxyethylene sorbitan monostearate Nutrition 0.000 description 3
- 239000001818 polyoxyethylene sorbitan monostearate Substances 0.000 description 3
- 229940068977 polysorbate 20 Drugs 0.000 description 3
- 229940113124 polysorbate 60 Drugs 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 230000008313 sensitization Effects 0.000 description 3
- 231100000475 skin irritation Toxicity 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000001509 sodium citrate Substances 0.000 description 3
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 3
- QUCDWLYKDRVKMI-UHFFFAOYSA-M sodium;3,4-dimethylbenzenesulfonate Chemical compound [Na+].CC1=CC=C(S([O-])(=O)=O)C=C1C QUCDWLYKDRVKMI-UHFFFAOYSA-M 0.000 description 3
- 229950011392 sorbitan stearate Drugs 0.000 description 3
- 239000000600 sorbitol Substances 0.000 description 3
- 235000010356 sorbitol Nutrition 0.000 description 3
- 239000003549 soybean oil Substances 0.000 description 3
- 235000012424 soybean oil Nutrition 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- DZKXJUASMGQEMA-UHFFFAOYSA-N tetradecyl tetradecanoate Chemical compound CCCCCCCCCCCCCCOC(=O)CCCCCCCCCCCCC DZKXJUASMGQEMA-UHFFFAOYSA-N 0.000 description 3
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 3
- 239000004753 textile Substances 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 230000009974 thixotropic effect Effects 0.000 description 3
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- 229940046009 vitamin E Drugs 0.000 description 3
- 235000019165 vitamin E Nutrition 0.000 description 3
- 239000011709 vitamin E Substances 0.000 description 3
- 238000010792 warming Methods 0.000 description 3
- 239000000080 wetting agent Substances 0.000 description 3
- 239000008096 xylene Substances 0.000 description 3
- 239000010457 zeolite Substances 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- WQKLGQXWHKQTPO-UXRZSMILSA-N (2r,3s,4s,5r,6r)-2-(hydroxymethyl)-6-methoxyoxane-3,4,5-triol;2-(2-hydroxypropoxy)propan-1-ol Chemical compound CC(O)COC(C)CO.CC(O)COC(C)CO.CC(O)COC(C)CO.CC(O)COC(C)CO.CO[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O WQKLGQXWHKQTPO-UXRZSMILSA-N 0.000 description 2
- CMCBDXRRFKYBDG-UHFFFAOYSA-N 1-dodecoxydodecane Chemical compound CCCCCCCCCCCCOCCCCCCCCCCCC CMCBDXRRFKYBDG-UHFFFAOYSA-N 0.000 description 2
- RZRNAYUHWVFMIP-KTKRTIGZSA-N 1-oleoylglycerol Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(O)CO RZRNAYUHWVFMIP-KTKRTIGZSA-N 0.000 description 2
- AUQIXRHHSITZFM-UHFFFAOYSA-N 11-phenylundecanoic acid Chemical compound OC(=O)CCCCCCCCCCC1=CC=CC=C1 AUQIXRHHSITZFM-UHFFFAOYSA-N 0.000 description 2
- JBTBXKNLITZKLW-UHFFFAOYSA-N 13-Cyclohexyltridecanoic acid Chemical compound OC(=O)CCCCCCCCCCCCC1CCCCC1 JBTBXKNLITZKLW-UHFFFAOYSA-N 0.000 description 2
- WNWHHMBRJJOGFJ-UHFFFAOYSA-N 16-methylheptadecan-1-ol Chemical compound CC(C)CCCCCCCCCCCCCCCO WNWHHMBRJJOGFJ-UHFFFAOYSA-N 0.000 description 2
- LEEDMQGKBNGPDN-UHFFFAOYSA-N 2-methylnonadecane Chemical compound CCCCCCCCCCCCCCCCCC(C)C LEEDMQGKBNGPDN-UHFFFAOYSA-N 0.000 description 2
- GTJOHISYCKPIMT-UHFFFAOYSA-N 2-methylundecane Chemical compound CCCCCCCCCC(C)C GTJOHISYCKPIMT-UHFFFAOYSA-N 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- ALYNCZNDIQEVRV-UHFFFAOYSA-N 4-aminobenzoic acid Chemical compound NC1=CC=C(C(O)=O)C=C1 ALYNCZNDIQEVRV-UHFFFAOYSA-N 0.000 description 2
- GVTFIGQDTWPFTA-UHFFFAOYSA-N 4-bromo-2-chloro-1-isothiocyanatobenzene Chemical compound ClC1=CC(Br)=CC=C1N=C=S GVTFIGQDTWPFTA-UHFFFAOYSA-N 0.000 description 2
- HIQIXEFWDLTDED-UHFFFAOYSA-N 4-hydroxy-1-piperidin-4-ylpyrrolidin-2-one Chemical compound O=C1CC(O)CN1C1CCNCC1 HIQIXEFWDLTDED-UHFFFAOYSA-N 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 2
- 235000019489 Almond oil Nutrition 0.000 description 2
- 244000144927 Aloe barbadensis Species 0.000 description 2
- 235000002961 Aloe barbadensis Nutrition 0.000 description 2
- 241000219317 Amaranthaceae Species 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- 244000144725 Amygdalus communis Species 0.000 description 2
- 235000011437 Amygdalus communis Nutrition 0.000 description 2
- 241000208223 Anacardiaceae Species 0.000 description 2
- 241001550224 Apha Species 0.000 description 2
- 241000208327 Apocynaceae Species 0.000 description 2
- 241000208838 Asteraceae Species 0.000 description 2
- 241000271566 Aves Species 0.000 description 2
- 241001633052 Balanopaceae Species 0.000 description 2
- 241001116272 Balsaminaceae Species 0.000 description 2
- 241000218999 Begoniaceae Species 0.000 description 2
- ZCTQGTTXIYCGGC-UHFFFAOYSA-N Benzyl salicylate Chemical compound OC1=CC=CC=C1C(=O)OCC1=CC=CC=C1 ZCTQGTTXIYCGGC-UHFFFAOYSA-N 0.000 description 2
- 241000133570 Berberidaceae Species 0.000 description 2
- 241001072256 Boraginaceae Species 0.000 description 2
- SGHZXLIDFTYFHQ-UHFFFAOYSA-L Brilliant Blue Chemical compound [Na+].[Na+].C=1C=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C(=CC=CC=2)S([O-])(=O)=O)C=CC=1N(CC)CC1=CC=CC(S([O-])(=O)=O)=C1 SGHZXLIDFTYFHQ-UHFFFAOYSA-L 0.000 description 2
- 229910000906 Bronze Inorganic materials 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- 241000219172 Caricaceae Species 0.000 description 2
- 241000283153 Cetacea Species 0.000 description 2
- 241000142975 Cornaceae Species 0.000 description 2
- 241000938605 Crocodylia Species 0.000 description 2
- 241000219104 Cucurbitaceae Species 0.000 description 2
- 241000218691 Cupressaceae Species 0.000 description 2
- 244000303965 Cyamopsis psoralioides Species 0.000 description 2
- 241000208663 Daphniphyllaceae Species 0.000 description 2
- 229920001353 Dextrin Polymers 0.000 description 2
- 239000004375 Dextrin Substances 0.000 description 2
- 241000234272 Dioscoreaceae Species 0.000 description 2
- 241001148765 Dryopteridaceae Species 0.000 description 2
- QZKRHPLGUJDVAR-UHFFFAOYSA-K EDTA trisodium salt Chemical compound [Na+].[Na+].[Na+].OC(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O QZKRHPLGUJDVAR-UHFFFAOYSA-K 0.000 description 2
- 241000792913 Ebenaceae Species 0.000 description 2
- 241001112083 Elaeocarpaceae Species 0.000 description 2
- 241000195955 Equisetum hyemale Species 0.000 description 2
- 241000620209 Escherichia coli DH5[alpha] Species 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- 235000004692 Eucalyptus globulus Nutrition 0.000 description 2
- 241000221017 Euphorbiaceae Species 0.000 description 2
- 241000219428 Fagaceae Species 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 241001071804 Gentianaceae Species 0.000 description 2
- 239000009429 Ginkgo biloba extract Substances 0.000 description 2
- 241001106479 Haloragaceae Species 0.000 description 2
- 235000003222 Helianthus annuus Nutrition 0.000 description 2
- 244000020551 Helianthus annuus Species 0.000 description 2
- 241001143502 Hippocastanaceae Species 0.000 description 2
- 241001091442 Hydrangeaceae Species 0.000 description 2
- 241001113566 Hydrocharitaceae Species 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- 229920001202 Inulin Polymers 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- CMHMMKSPYOOVGI-UHFFFAOYSA-N Isopropylparaben Chemical compound CC(C)OC(=O)C1=CC=C(O)C=C1 CMHMMKSPYOOVGI-UHFFFAOYSA-N 0.000 description 2
- 235000004412 Jasminum grandiflorum Nutrition 0.000 description 2
- 241000588748 Klebsiella Species 0.000 description 2
- QAQJMLQRFWZOBN-LAUBAEHRSA-N L-ascorbyl-6-palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](O)[C@H]1OC(=O)C(O)=C1O QAQJMLQRFWZOBN-LAUBAEHRSA-N 0.000 description 2
- 241000207923 Lamiaceae Species 0.000 description 2
- 239000005639 Lauric acid Substances 0.000 description 2
- 241000219163 Lecythidaceae Species 0.000 description 2
- 241000949478 Lemanea fluviatilis Species 0.000 description 2
- 240000000599 Lentinula edodes Species 0.000 description 2
- 235000001715 Lentinula edodes Nutrition 0.000 description 2
- FHLGUOHLUFIAAA-UHFFFAOYSA-N Linalyl butyrate Chemical compound CCCC(=O)OC(C)(C=C)CCC=C(C)C FHLGUOHLUFIAAA-UHFFFAOYSA-N 0.000 description 2
- 235000017617 Lonicera japonica Nutrition 0.000 description 2
- 244000167230 Lonicera japonica Species 0.000 description 2
- 241001570521 Lonicera periclymenum Species 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 241000218377 Magnoliaceae Species 0.000 description 2
- 235000017945 Matricaria Nutrition 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- 241000218231 Moraceae Species 0.000 description 2
- 241000220214 Moringaceae Species 0.000 description 2
- 241001081833 Myristicaceae Species 0.000 description 2
- 241000219926 Myrtaceae Species 0.000 description 2
- PVCJKHHOXFKFRP-UHFFFAOYSA-N N-acetylethanolamine Chemical compound CC(=O)NCCO PVCJKHHOXFKFRP-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 0 OCCCO.[1*]C(=O)OC.[1*]C=COCCCOC=C[2*].[2*]C(=O)OC Chemical compound OCCCO.[1*]C(=O)OC.[1*]C=COCCCOC=C[2*].[2*]C(=O)OC 0.000 description 2
- 241000207834 Oleaceae Species 0.000 description 2
- 241000233855 Orchidaceae Species 0.000 description 2
- 241000308150 Orobanchaceae Species 0.000 description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 235000021314 Palmitic acid Nutrition 0.000 description 2
- 241000233805 Phoenix Species 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 241000218641 Pinaceae Species 0.000 description 2
- 241000209504 Poaceae Species 0.000 description 2
- 229920000688 Poly[(2-ethyldimethylammonioethyl methacrylate ethyl sulfate)-co-(1-vinylpyrrolidone)] Polymers 0.000 description 2
- 239000004698 Polyethylene Chemical class 0.000 description 2
- 229920002565 Polyethylene Glycol 400 Polymers 0.000 description 2
- 241000208476 Primulaceae Species 0.000 description 2
- RJKFOVLPORLFTN-LEKSSAKUSA-N Progesterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H](C(=O)C)[C@@]1(C)CC2 RJKFOVLPORLFTN-LEKSSAKUSA-N 0.000 description 2
- ZTHYODDOHIVTJV-UHFFFAOYSA-N Propyl gallate Chemical compound CCCOC(=O)C1=CC(O)=C(O)C(O)=C1 ZTHYODDOHIVTJV-UHFFFAOYSA-N 0.000 description 2
- 241000736301 Pteridaceae Species 0.000 description 2
- 241000750718 Pterocarpus santalinus Species 0.000 description 2
- VYGQUTWHTHXGQB-FFHKNEKCSA-N Retinol Palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C VYGQUTWHTHXGQB-FFHKNEKCSA-N 0.000 description 2
- 241000866168 Rhoipteleaceae Species 0.000 description 2
- AUNGANRZJHBGPY-SCRDCRAPSA-N Riboflavin Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-SCRDCRAPSA-N 0.000 description 2
- 241000220317 Rosa Species 0.000 description 2
- 244000052585 Rosa centifolia Species 0.000 description 2
- 235000016588 Rosa centifolia Nutrition 0.000 description 2
- 241000109329 Rosa xanthina Species 0.000 description 2
- 241001107098 Rubiaceae Species 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- 241000218998 Salicaceae Species 0.000 description 2
- 241001453637 Salviniaceae Species 0.000 description 2
- 235000008632 Santalum album Nutrition 0.000 description 2
- 241000758724 Schisandraceae Species 0.000 description 2
- 206010070834 Sensitisation Diseases 0.000 description 2
- 241000208292 Solanaceae Species 0.000 description 2
- 241000169054 Tecophilaeaceae Species 0.000 description 2
- MUMGGOZAMZWBJJ-DYKIIFRCSA-N Testostosterone Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 MUMGGOZAMZWBJJ-DYKIIFRCSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- PHYFQTYBJUILEZ-UHFFFAOYSA-N Trioleoylglycerol Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC(OC(=O)CCCCCCCC=CCCCCCCCC)COC(=O)CCCCCCCC=CCCCCCCCC PHYFQTYBJUILEZ-UHFFFAOYSA-N 0.000 description 2
- 241000209471 Trochodendraceae Species 0.000 description 2
- 241000233945 Typhaceae Species 0.000 description 2
- 241000218215 Urticaceae Species 0.000 description 2
- 241000219094 Vitaceae Species 0.000 description 2
- 235000018936 Vitellaria paradoxa Nutrition 0.000 description 2
- 241001135917 Vitellaria paradoxa Species 0.000 description 2
- 240000006365 Vitis vinifera Species 0.000 description 2
- 235000014787 Vitis vinifera Nutrition 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- 235000011054 acetic acid Nutrition 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 125000002252 acyl group Chemical group 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 150000004996 alkyl benzenes Chemical class 0.000 description 2
- JAZBEHYOTPTENJ-JLNKQSITSA-N all-cis-5,8,11,14,17-icosapentaenoic acid Chemical compound CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O JAZBEHYOTPTENJ-JLNKQSITSA-N 0.000 description 2
- 239000004191 allura red AC Substances 0.000 description 2
- 235000012741 allura red AC Nutrition 0.000 description 2
- 235000020224 almond Nutrition 0.000 description 2
- 239000008168 almond oil Substances 0.000 description 2
- 235000011399 aloe vera Nutrition 0.000 description 2
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 description 2
- 229940024606 amino acid Drugs 0.000 description 2
- 235000001014 amino acid Nutrition 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 238000005349 anion exchange Methods 0.000 description 2
- 229920006318 anionic polymer Polymers 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229940089116 arnica extract Drugs 0.000 description 2
- 238000000222 aromatherapy Methods 0.000 description 2
- 235000010385 ascorbyl palmitate Nutrition 0.000 description 2
- 229960005193 avobenzone Drugs 0.000 description 2
- JPNZKPRONVOMLL-UHFFFAOYSA-N azane;octadecanoic acid Chemical class [NH4+].CCCCCCCCCCCCCCCCCC([O-])=O JPNZKPRONVOMLL-UHFFFAOYSA-N 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 2
- QUKGYYKBILRGFE-UHFFFAOYSA-N benzyl acetate Chemical compound CC(=O)OCC1=CC=CC=C1 QUKGYYKBILRGFE-UHFFFAOYSA-N 0.000 description 2
- 229960004217 benzyl alcohol Drugs 0.000 description 2
- 235000019445 benzyl alcohol Nutrition 0.000 description 2
- 229960003237 betaine Drugs 0.000 description 2
- 235000013361 beverage Nutrition 0.000 description 2
- 239000011942 biocatalyst Substances 0.000 description 2
- 229940073609 bismuth oxychloride Drugs 0.000 description 2
- 239000004327 boric acid Substances 0.000 description 2
- 239000010974 bronze Substances 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 239000004203 carnauba wax Substances 0.000 description 2
- 235000013869 carnauba wax Nutrition 0.000 description 2
- 229920006317 cationic polymer Polymers 0.000 description 2
- 239000003093 cationic surfactant Substances 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- WOWHHFRSBJGXCM-UHFFFAOYSA-M cetyltrimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+](C)(C)C WOWHHFRSBJGXCM-UHFFFAOYSA-M 0.000 description 2
- CEZCCHQBSQPRMU-UHFFFAOYSA-L chembl174821 Chemical compound [Na+].[Na+].COC1=CC(S([O-])(=O)=O)=C(C)C=C1N=NC1=C(O)C=CC2=CC(S([O-])(=O)=O)=CC=C12 CEZCCHQBSQPRMU-UHFFFAOYSA-L 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 235000012000 cholesterol Nutrition 0.000 description 2
- 239000005515 coenzyme Substances 0.000 description 2
- 238000004040 coloring Methods 0.000 description 2
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 2
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 2
- 235000005687 corn oil Nutrition 0.000 description 2
- 239000002285 corn oil Substances 0.000 description 2
- 229940075479 d & c red no. 27 Drugs 0.000 description 2
- GHVNFZFCNZKVNT-UHFFFAOYSA-N decanoic acid Chemical compound CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 2
- PGRHXDWITVMQBC-UHFFFAOYSA-N dehydroacetic acid Chemical compound CC(=O)C1C(=O)OC(C)=CC1=O PGRHXDWITVMQBC-UHFFFAOYSA-N 0.000 description 2
- 230000002951 depilatory effect Effects 0.000 description 2
- 235000019425 dextrin Nutrition 0.000 description 2
- 125000004985 dialkyl amino alkyl group Chemical group 0.000 description 2
- LVTYICIALWPMFW-UHFFFAOYSA-N diisopropanolamine Chemical compound CC(O)CNCC(C)O LVTYICIALWPMFW-UHFFFAOYSA-N 0.000 description 2
- 229940043276 diisopropanolamine Drugs 0.000 description 2
- YIOJGTBNHQAVBO-UHFFFAOYSA-N dimethyl-bis(prop-2-enyl)azanium Chemical compound C=CC[N+](C)(C)CC=C YIOJGTBNHQAVBO-UHFFFAOYSA-N 0.000 description 2
- REZZEXDLIUJMMS-UHFFFAOYSA-M dimethyldioctadecylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCCCC REZZEXDLIUJMMS-UHFFFAOYSA-M 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 235000020669 docosahexaenoic acid Nutrition 0.000 description 2
- 229940090949 docosahexaenoic acid Drugs 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-M dodecanoate Chemical compound CCCCCCCCCCCC([O-])=O POULHZVOKOAJMA-UHFFFAOYSA-M 0.000 description 2
- CNRDTAOOANTPCG-UHFFFAOYSA-N dodecyl carbamate Chemical compound CCCCCCCCCCCCOC(N)=O CNRDTAOOANTPCG-UHFFFAOYSA-N 0.000 description 2
- 230000002500 effect on skin Effects 0.000 description 2
- 235000020673 eicosapentaenoic acid Nutrition 0.000 description 2
- 229960005135 eicosapentaenoic acid Drugs 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000032050 esterification Effects 0.000 description 2
- 238000005886 esterification reaction Methods 0.000 description 2
- 229940093476 ethylene glycol Drugs 0.000 description 2
- 235000019634 flavors Nutrition 0.000 description 2
- 239000006081 fluorescent whitening agent Substances 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 229940068052 ginkgo biloba extract Drugs 0.000 description 2
- 235000020686 ginkgo biloba extract Nutrition 0.000 description 2
- 229960005150 glycerol Drugs 0.000 description 2
- 229940074047 glyceryl cocoate Drugs 0.000 description 2
- 229940074046 glyceryl laurate Drugs 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 230000037308 hair color Effects 0.000 description 2
- 239000008266 hair spray Substances 0.000 description 2
- XJNUECKWDBNFJV-UHFFFAOYSA-N hexadecyl 2-ethylhexanoate Chemical compound CCCCCCCCCCCCCCCCOC(=O)C(CC)CCCC XJNUECKWDBNFJV-UHFFFAOYSA-N 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 238000000265 homogenisation Methods 0.000 description 2
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 239000003752 hydrotrope Substances 0.000 description 2
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 2
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 2
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 2
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 2
- VAMFXQBUQXONLZ-UHFFFAOYSA-N icos-1-ene Chemical compound CCCCCCCCCCCCCCCCCCC=C VAMFXQBUQXONLZ-UHFFFAOYSA-N 0.000 description 2
- VKOBVWXKNCXXDE-UHFFFAOYSA-N icosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCC(O)=O VKOBVWXKNCXXDE-UHFFFAOYSA-N 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000000976 ink Substances 0.000 description 2
- 229940029339 inulin Drugs 0.000 description 2
- JYJIGFIDKWBXDU-MNNPPOADSA-N inulin Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)OC[C@]1(OC[C@]2(OC[C@]3(OC[C@]4(OC[C@]5(OC[C@]6(OC[C@]7(OC[C@]8(OC[C@]9(OC[C@]%10(OC[C@]%11(OC[C@]%12(OC[C@]%13(OC[C@]%14(OC[C@]%15(OC[C@]%16(OC[C@]%17(OC[C@]%18(OC[C@]%19(OC[C@]%20(OC[C@]%21(OC[C@]%22(OC[C@]%23(OC[C@]%24(OC[C@]%25(OC[C@]%26(OC[C@]%27(OC[C@]%28(OC[C@]%29(OC[C@]%30(OC[C@]%31(OC[C@]%32(OC[C@]%33(OC[C@]%34(OC[C@]%35(OC[C@]%36(O[C@@H]%37[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O%37)O)[C@H]([C@H](O)[C@@H](CO)O%36)O)[C@H]([C@H](O)[C@@H](CO)O%35)O)[C@H]([C@H](O)[C@@H](CO)O%34)O)[C@H]([C@H](O)[C@@H](CO)O%33)O)[C@H]([C@H](O)[C@@H](CO)O%32)O)[C@H]([C@H](O)[C@@H](CO)O%31)O)[C@H]([C@H](O)[C@@H](CO)O%30)O)[C@H]([C@H](O)[C@@H](CO)O%29)O)[C@H]([C@H](O)[C@@H](CO)O%28)O)[C@H]([C@H](O)[C@@H](CO)O%27)O)[C@H]([C@H](O)[C@@H](CO)O%26)O)[C@H]([C@H](O)[C@@H](CO)O%25)O)[C@H]([C@H](O)[C@@H](CO)O%24)O)[C@H]([C@H](O)[C@@H](CO)O%23)O)[C@H]([C@H](O)[C@@H](CO)O%22)O)[C@H]([C@H](O)[C@@H](CO)O%21)O)[C@H]([C@H](O)[C@@H](CO)O%20)O)[C@H]([C@H](O)[C@@H](CO)O%19)O)[C@H]([C@H](O)[C@@H](CO)O%18)O)[C@H]([C@H](O)[C@@H](CO)O%17)O)[C@H]([C@H](O)[C@@H](CO)O%16)O)[C@H]([C@H](O)[C@@H](CO)O%15)O)[C@H]([C@H](O)[C@@H](CO)O%14)O)[C@H]([C@H](O)[C@@H](CO)O%13)O)[C@H]([C@H](O)[C@@H](CO)O%12)O)[C@H]([C@H](O)[C@@H](CO)O%11)O)[C@H]([C@H](O)[C@@H](CO)O%10)O)[C@H]([C@H](O)[C@@H](CO)O9)O)[C@H]([C@H](O)[C@@H](CO)O8)O)[C@H]([C@H](O)[C@@H](CO)O7)O)[C@H]([C@H](O)[C@@H](CO)O6)O)[C@H]([C@H](O)[C@@H](CO)O5)O)[C@H]([C@H](O)[C@@H](CO)O4)O)[C@H]([C@H](O)[C@@H](CO)O3)O)[C@H]([C@H](O)[C@@H](CO)O2)O)[C@@H](O)[C@H](O)[C@@H](CO)O1 JYJIGFIDKWBXDU-MNNPPOADSA-N 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- VKPSKYDESGTTFR-UHFFFAOYSA-N isododecane Natural products CC(C)(C)CC(C)CC(C)(C)C VKPSKYDESGTTFR-UHFFFAOYSA-N 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 229940113094 isopropylparaben Drugs 0.000 description 2
- 238000002307 isotope ratio mass spectrometry Methods 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 229940070765 laurate Drugs 0.000 description 2
- 235000021374 legumes Nutrition 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 239000002932 luster Substances 0.000 description 2
- RLSSMJSEOOYNOY-UHFFFAOYSA-N m-cresol Chemical compound CC1=CC=CC(O)=C1 RLSSMJSEOOYNOY-UHFFFAOYSA-N 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 235000011929 mousse Nutrition 0.000 description 2
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical compound CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 description 2
- JPMIIZHYYWMHDT-UHFFFAOYSA-N octhilinone Chemical compound CCCCCCCCN1SC=CC1=O JPMIIZHYYWMHDT-UHFFFAOYSA-N 0.000 description 2
- 239000004006 olive oil Substances 0.000 description 2
- 235000008390 olive oil Nutrition 0.000 description 2
- WFTPSUGFEZHCGU-UHFFFAOYSA-N omega-Cyclohexylundecanoic acid Chemical compound OC(=O)CCCCCCCCCCC1CCCCC1 WFTPSUGFEZHCGU-UHFFFAOYSA-N 0.000 description 2
- BWOROQSFKKODDR-UHFFFAOYSA-N oxobismuth;hydrochloride Chemical compound Cl.[Bi]=O BWOROQSFKKODDR-UHFFFAOYSA-N 0.000 description 2
- 229940023569 palmate Drugs 0.000 description 2
- SSZBUIDZHHWXNJ-UHFFFAOYSA-N palmityl stearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCCCCCCCCCCCCCCC SSZBUIDZHHWXNJ-UHFFFAOYSA-N 0.000 description 2
- 235000011837 pasties Nutrition 0.000 description 2
- 229940086539 peg-7 glyceryl cocoate Drugs 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 239000003209 petroleum derivative Substances 0.000 description 2
- ZQBAKBUEJOMQEX-UHFFFAOYSA-N phenyl salicylate Chemical compound OC1=CC=CC=C1C(=O)OC1=CC=CC=C1 ZQBAKBUEJOMQEX-UHFFFAOYSA-N 0.000 description 2
- ZYIBVBKZZZDFOY-UHFFFAOYSA-N phloxine O Chemical compound O1C(=O)C(C(=C(Cl)C(Cl)=C2Cl)Cl)=C2C21C1=CC(Br)=C(O)C(Br)=C1OC1=C(Br)C(O)=C(Br)C=C21 ZYIBVBKZZZDFOY-UHFFFAOYSA-N 0.000 description 2
- 238000013031 physical testing Methods 0.000 description 2
- IUGYQRQAERSCNH-UHFFFAOYSA-N pivalic acid Chemical compound CC(C)(C)C(O)=O IUGYQRQAERSCNH-UHFFFAOYSA-N 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000371 poly(diallyldimethylammonium chloride) polymer Polymers 0.000 description 2
- 229920000573 polyethylene Chemical class 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 229950008882 polysorbate Drugs 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 2
- 229940116393 ppg-20 methyl glucose ether Drugs 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 2
- NGVDGCNFYWLIFO-UHFFFAOYSA-N pyridoxal 5'-phosphate Chemical compound CC1=NC=C(COP(O)(O)=O)C(C=O)=C1O NGVDGCNFYWLIFO-UHFFFAOYSA-N 0.000 description 2
- 238000000197 pyrolysis Methods 0.000 description 2
- TVRGPOFMYCMNRB-UHFFFAOYSA-N quinizarine green ss Chemical compound C1=CC(C)=CC=C1NC(C=1C(=O)C2=CC=CC=C2C(=O)C=11)=CC=C1NC1=CC=C(C)C=C1 TVRGPOFMYCMNRB-UHFFFAOYSA-N 0.000 description 2
- ARIWANIATODDMH-UHFFFAOYSA-N rac-1-monolauroylglycerol Chemical compound CCCCCCCCCCCC(=O)OCC(O)CO ARIWANIATODDMH-UHFFFAOYSA-N 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- 235000020746 red clover extract Nutrition 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 230000002040 relaxant effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000000518 rheometry Methods 0.000 description 2
- 229940092258 rosemary extract Drugs 0.000 description 2
- 235000020748 rosemary extract Nutrition 0.000 description 2
- 239000001233 rosmarinus officinalis l. extract Substances 0.000 description 2
- 229930182490 saponin Natural products 0.000 description 2
- 235000017709 saponins Nutrition 0.000 description 2
- 150000007949 saponins Chemical class 0.000 description 2
- 239000008159 sesame oil Substances 0.000 description 2
- 235000011803 sesame oil Nutrition 0.000 description 2
- 229940057910 shea butter Drugs 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- KVMUSGMZFRRCAS-UHFFFAOYSA-N sodium;5-oxo-1-(4-sulfophenyl)-4-[(4-sulfophenyl)diazenyl]-4h-pyrazole-3-carboxylic acid Chemical compound [Na+].OC(=O)C1=NN(C=2C=CC(=CC=2)S(O)(=O)=O)C(=O)C1N=NC1=CC=C(S(O)(=O)=O)C=C1 KVMUSGMZFRRCAS-UHFFFAOYSA-N 0.000 description 2
- 238000000638 solvent extraction Methods 0.000 description 2
- 239000011877 solvent mixture Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- JIWBIWFOSCKQMA-UHFFFAOYSA-N stearidonic acid Natural products CCC=CCC=CCC=CCC=CCCCCC(O)=O JIWBIWFOSCKQMA-UHFFFAOYSA-N 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 2
- CXVGEDCSTKKODG-UHFFFAOYSA-N sulisobenzone Chemical compound C1=C(S(O)(=O)=O)C(OC)=CC(O)=C1C(=O)C1=CC=CC=C1 CXVGEDCSTKKODG-UHFFFAOYSA-N 0.000 description 2
- 229960000368 sulisobenzone Drugs 0.000 description 2
- 230000035900 sweating Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- 239000004149 tartrazine Substances 0.000 description 2
- 235000012756 tartrazine Nutrition 0.000 description 2
- HLZKNKRTKFSKGZ-UHFFFAOYSA-N tetradecan-1-ol Chemical compound CCCCCCCCCCCCCCO HLZKNKRTKFSKGZ-UHFFFAOYSA-N 0.000 description 2
- TUNFSRHWOTWDNC-UHFFFAOYSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCCC(O)=O TUNFSRHWOTWDNC-UHFFFAOYSA-N 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 2
- 229930003799 tocopherol Natural products 0.000 description 2
- 239000011732 tocopherol Substances 0.000 description 2
- LINXHFKHZLOLEI-UHFFFAOYSA-N trimethyl-[phenyl-bis(trimethylsilyloxy)silyl]oxysilane Chemical compound C[Si](C)(C)O[Si](O[Si](C)(C)C)(O[Si](C)(C)C)C1=CC=CC=C1 LINXHFKHZLOLEI-UHFFFAOYSA-N 0.000 description 2
- 229940026256 trioctyldodecyl citrate Drugs 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- BIEMOBPNIWQLMF-UHFFFAOYSA-N tris(2-octyldodecyl) 2-hydroxypropane-1,2,3-tricarboxylate Chemical compound CCCCCCCCCCC(CCCCCCCC)COC(=O)CC(O)(C(=O)OCC(CCCCCCCC)CCCCCCCCCC)CC(=O)OCC(CCCCCCCC)CCCCCCCCCC BIEMOBPNIWQLMF-UHFFFAOYSA-N 0.000 description 2
- 229960000281 trometamol Drugs 0.000 description 2
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 2
- 150000003722 vitamin derivatives Chemical class 0.000 description 2
- 239000003643 water by type Substances 0.000 description 2
- 230000002087 whitening effect Effects 0.000 description 2
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 2
- NOOLISFMXDJSKH-UTLUCORTSA-N (+)-Neomenthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@@H]1O NOOLISFMXDJSKH-UTLUCORTSA-N 0.000 description 1
- QIJRTFXNRTXDIP-UHFFFAOYSA-N (1-carboxy-2-sulfanylethyl)azanium;chloride;hydrate Chemical compound O.Cl.SCC(N)C(O)=O QIJRTFXNRTXDIP-UHFFFAOYSA-N 0.000 description 1
- DYWNLSQWJMTVGJ-UHFFFAOYSA-N (1-hydroxy-1-phenylpropan-2-yl)azanium;chloride Chemical compound Cl.CC(N)C(O)C1=CC=CC=C1 DYWNLSQWJMTVGJ-UHFFFAOYSA-N 0.000 description 1
- PICABBUEHGURLB-XTICBAGASA-N (1r,4ar,4br,10ar)-1,4a-dimethyl-7-propan-2-yl-2,3,4,4b,5,6,10,10a-octahydrophenanthrene-1-carboxylic acid;propane-1,2,3-triol Chemical compound OCC(O)CO.C([C@@H]12)CC(C(C)C)=CC1=CC[C@@H]1[C@]2(C)CCC[C@@]1(C)C(O)=O PICABBUEHGURLB-XTICBAGASA-N 0.000 description 1
- DEQUKPCANKRTPZ-UHFFFAOYSA-N (2,3-dihydroxyphenyl)-phenylmethanone Chemical compound OC1=CC=CC(C(=O)C=2C=CC=CC=2)=C1O DEQUKPCANKRTPZ-UHFFFAOYSA-N 0.000 description 1
- BOCBOJPUWMTAJB-UHFFFAOYSA-N (2-butylphenyl) 2-hydroxybenzoate Chemical compound CCCCC1=CC=CC=C1OC(=O)C1=CC=CC=C1O BOCBOJPUWMTAJB-UHFFFAOYSA-N 0.000 description 1
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- CUNWUEBNSZSNRX-RKGWDQTMSA-N (2r,3r,4r,5s)-hexane-1,2,3,4,5,6-hexol;(z)-octadec-9-enoic acid Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO.OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO.CCCCCCCC\C=C/CCCCCCCC(O)=O.CCCCCCCC\C=C/CCCCCCCC(O)=O.CCCCCCCC\C=C/CCCCCCCC(O)=O CUNWUEBNSZSNRX-RKGWDQTMSA-N 0.000 description 1
- DSEKYWAQQVUQTP-XEWMWGOFSA-N (2r,4r,4as,6as,6as,6br,8ar,12ar,14as,14bs)-2-hydroxy-4,4a,6a,6b,8a,11,11,14a-octamethyl-2,4,5,6,6a,7,8,9,10,12,12a,13,14,14b-tetradecahydro-1h-picen-3-one Chemical compound C([C@H]1[C@]2(C)CC[C@@]34C)C(C)(C)CC[C@]1(C)CC[C@]2(C)[C@H]4CC[C@@]1(C)[C@H]3C[C@@H](O)C(=O)[C@@H]1C DSEKYWAQQVUQTP-XEWMWGOFSA-N 0.000 description 1
- NRTKYSGFUISGRQ-UHFFFAOYSA-N (3-heptanoyloxy-2,2-dimethylpropyl) heptanoate Chemical compound CCCCCCC(=O)OCC(C)(C)COC(=O)CCCCCC NRTKYSGFUISGRQ-UHFFFAOYSA-N 0.000 description 1
- IXRAQYMAEVFORF-UTLNTRLCSA-N (3S,8S,9S,10R,13S,14S,17R)-10,13-dimethyl-17-[(2R)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthrene-3,16-diol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC(O)[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 IXRAQYMAEVFORF-UTLNTRLCSA-N 0.000 description 1
- LDVVMCZRFWMZSG-OLQVQODUSA-N (3ar,7as)-2-(trichloromethylsulfanyl)-3a,4,7,7a-tetrahydroisoindole-1,3-dione Chemical compound C1C=CC[C@H]2C(=O)N(SC(Cl)(Cl)Cl)C(=O)[C@H]21 LDVVMCZRFWMZSG-OLQVQODUSA-N 0.000 description 1
- YYGNTYWPHWGJRM-UHFFFAOYSA-N (6E,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene Chemical compound CC(C)=CCCC(C)=CCCC(C)=CCCC=C(C)CCC=C(C)CCC=C(C)C YYGNTYWPHWGJRM-UHFFFAOYSA-N 0.000 description 1
- ALSTYHKOOCGGFT-KTKRTIGZSA-N (9Z)-octadecen-1-ol Chemical compound CCCCCCCC\C=C/CCCCCCCCO ALSTYHKOOCGGFT-KTKRTIGZSA-N 0.000 description 1
- CUXYLFPMQMFGPL-WPOADVJFSA-N (9Z,11E,13E)-octadeca-9,11,13-trienoic acid Chemical compound CCCC\C=C\C=C\C=C/CCCCCCCC(O)=O CUXYLFPMQMFGPL-WPOADVJFSA-N 0.000 description 1
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 1
- JXNPEDYJTDQORS-HZJYTTRNSA-N (9Z,12Z)-octadecadien-1-ol Chemical compound CCCCC\C=C/C\C=C/CCCCCCCCO JXNPEDYJTDQORS-HZJYTTRNSA-N 0.000 description 1
- IKYKEVDKGZYRMQ-PDBXOOCHSA-N (9Z,12Z,15Z)-octadecatrien-1-ol Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCCO IKYKEVDKGZYRMQ-PDBXOOCHSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- ICLYJLBTOGPLMC-KVVVOXFISA-N (z)-octadec-9-enoate;tris(2-hydroxyethyl)azanium Chemical compound OCCN(CCO)CCO.CCCCCCCC\C=C/CCCCCCCC(O)=O ICLYJLBTOGPLMC-KVVVOXFISA-N 0.000 description 1
- QMMJWQMCMRUYTG-UHFFFAOYSA-N 1,2,4,5-tetrachloro-3-(trifluoromethyl)benzene Chemical compound FC(F)(F)C1=C(Cl)C(Cl)=CC(Cl)=C1Cl QMMJWQMCMRUYTG-UHFFFAOYSA-N 0.000 description 1
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- QLAJNZSPVITUCQ-UHFFFAOYSA-N 1,3,2-dioxathietane 2,2-dioxide Chemical compound O=S1(=O)OCO1 QLAJNZSPVITUCQ-UHFFFAOYSA-N 0.000 description 1
- ATIAIEWDRRJGSL-UHFFFAOYSA-N 1,3-bis(2-hydroxyethyl)-5,5-dimethylimidazolidine-2,4-dione Chemical compound CC1(C)N(CCO)C(=O)N(CCO)C1=O ATIAIEWDRRJGSL-UHFFFAOYSA-N 0.000 description 1
- PQUXFUBNSYCQAL-UHFFFAOYSA-N 1-(2,3-difluorophenyl)ethanone Chemical compound CC(=O)C1=CC=CC(F)=C1F PQUXFUBNSYCQAL-UHFFFAOYSA-N 0.000 description 1
- TUSDEZXZIZRFGC-UHFFFAOYSA-N 1-O-galloyl-3,6-(R)-HHDP-beta-D-glucose Natural products OC1C(O2)COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC1C(O)C2OC(=O)C1=CC(O)=C(O)C(O)=C1 TUSDEZXZIZRFGC-UHFFFAOYSA-N 0.000 description 1
- XLTMWFMRJZDFFD-UHFFFAOYSA-N 1-[(2-chloro-4-nitrophenyl)diazenyl]naphthalen-2-ol Chemical compound OC1=CC=C2C=CC=CC2=C1N=NC1=CC=C([N+]([O-])=O)C=C1Cl XLTMWFMRJZDFFD-UHFFFAOYSA-N 0.000 description 1
- FKKAGFLIPSSCHT-UHFFFAOYSA-N 1-dodecoxydodecane;sulfuric acid Chemical compound OS(O)(=O)=O.CCCCCCCCCCCCOCCCCCCCCCCCC FKKAGFLIPSSCHT-UHFFFAOYSA-N 0.000 description 1
- OVYMWJFNQQOJBU-UHFFFAOYSA-N 1-octanoyloxypropan-2-yl octanoate Chemical compound CCCCCCCC(=O)OCC(C)OC(=O)CCCCCCC OVYMWJFNQQOJBU-UHFFFAOYSA-N 0.000 description 1
- FRPZMMHWLSIFAZ-UHFFFAOYSA-N 10-undecenoic acid Chemical compound OC(=O)CCCCCCCCC=C FRPZMMHWLSIFAZ-UHFFFAOYSA-N 0.000 description 1
- FUFLCEKSBBHCMO-UHFFFAOYSA-N 11-dehydrocorticosterone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)C(=O)CO)C4C3CCC2=C1 FUFLCEKSBBHCMO-UHFFFAOYSA-N 0.000 description 1
- FPIPGXGPPPQFEQ-UHFFFAOYSA-N 13-cis retinol Natural products OCC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-UHFFFAOYSA-N 0.000 description 1
- LGEZTMRIZWCDLW-UHFFFAOYSA-N 14-methylpentadecyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCCCCCCCCCCCCC(C)C LGEZTMRIZWCDLW-UHFFFAOYSA-N 0.000 description 1
- VOXZDWNPVJITMN-ZBRFXRBCSA-N 17β-estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 VOXZDWNPVJITMN-ZBRFXRBCSA-N 0.000 description 1
- RAXXELZNTBOGNW-UHFFFAOYSA-N 1H-imidazole Chemical class C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 1
- SXNBVULTHKFMNO-UHFFFAOYSA-N 2,2-dihydroxyoctadecanoic acid Chemical class CCCCCCCCCCCCCCCCC(O)(O)C(O)=O SXNBVULTHKFMNO-UHFFFAOYSA-N 0.000 description 1
- DGSZGZSCHSQXFV-UHFFFAOYSA-N 2,3-bis(2-ethylhexanoyloxy)propyl 2-ethylhexanoate Chemical compound CCCCC(CC)C(=O)OCC(OC(=O)C(CC)CCCC)COC(=O)C(CC)CCCC DGSZGZSCHSQXFV-UHFFFAOYSA-N 0.000 description 1
- OVSKIKFHRZPJSS-UHFFFAOYSA-N 2,4-D Chemical compound OC(=O)COC1=CC=C(Cl)C=C1Cl OVSKIKFHRZPJSS-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- QAQJMLQRFWZOBN-UHFFFAOYSA-N 2-(3,4-dihydroxy-5-oxo-2,5-dihydrofuran-2-yl)-2-hydroxyethyl hexadecanoate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(O)C1OC(=O)C(O)=C1O QAQJMLQRFWZOBN-UHFFFAOYSA-N 0.000 description 1
- FLPJVCMIKUWSDR-UHFFFAOYSA-N 2-(4-formylphenoxy)acetamide Chemical compound NC(=O)COC1=CC=C(C=O)C=C1 FLPJVCMIKUWSDR-UHFFFAOYSA-N 0.000 description 1
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- OBETXYAYXDNJHR-UHFFFAOYSA-N 2-Ethylhexanoic acid Chemical compound CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 1
- RJASFPFZACBKBE-UHFFFAOYSA-N 2-Methylpropyl phenylacetate Chemical compound CC(C)COC(=O)CC1=CC=CC=C1 RJASFPFZACBKBE-UHFFFAOYSA-N 0.000 description 1
- MJQVZIANGRDJBT-VAWYXSNFSA-N 2-Phenylethyl 3-phenyl-2-propenoate Chemical compound C=1C=CC=CC=1/C=C/C(=O)OCCC1=CC=CC=C1 MJQVZIANGRDJBT-VAWYXSNFSA-N 0.000 description 1
- MGYUQZIGNZFZJS-KTKRTIGZSA-N 2-[2-[(z)-octadec-9-enoxy]ethoxy]ethanol Chemical compound CCCCCCCC\C=C/CCCCCCCCOCCOCCO MGYUQZIGNZFZJS-KTKRTIGZSA-N 0.000 description 1
- DWHIUNMOTRUVPG-UHFFFAOYSA-N 2-[2-[2-[2-[2-[2-(2-dodecoxyethoxy)ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethanol Chemical compound CCCCCCCCCCCCOCCOCCOCCOCCOCCOCCOCCO DWHIUNMOTRUVPG-UHFFFAOYSA-N 0.000 description 1
- GIOMCCKTXLHGSZ-UHFFFAOYSA-N 2-[3-(2-dodecanoyloxyethyl)-4,4-dimethyl-2,5-dioxoimidazolidin-1-yl]ethyl dodecanoate Chemical compound CCCCCCCCCCCC(=O)OCCN1C(=O)N(CCOC(=O)CCCCCCCCCCC)C(C)(C)C1=O GIOMCCKTXLHGSZ-UHFFFAOYSA-N 0.000 description 1
- BTMZHHCFEOXAAN-UHFFFAOYSA-N 2-[bis(2-hydroxyethyl)amino]ethanol;2-dodecylbenzenesulfonic acid Chemical compound OCCN(CCO)CCO.CCCCCCCCCCCCC1=CC=CC=C1S(O)(=O)=O BTMZHHCFEOXAAN-UHFFFAOYSA-N 0.000 description 1
- NCKMMSIFQUPKCK-UHFFFAOYSA-N 2-benzyl-4-chlorophenol Chemical compound OC1=CC=C(Cl)C=C1CC1=CC=CC=C1 NCKMMSIFQUPKCK-UHFFFAOYSA-N 0.000 description 1
- CZVOIAOPRGNENY-UHFFFAOYSA-N 2-butyloctyl 2-hydroxybenzoate Chemical compound CCCCCCC(CCCC)COC(=O)C1=CC=CC=C1O CZVOIAOPRGNENY-UHFFFAOYSA-N 0.000 description 1
- SZTBMYHIYNGYIA-UHFFFAOYSA-N 2-chloroacrylic acid Chemical compound OC(=O)C(Cl)=C SZTBMYHIYNGYIA-UHFFFAOYSA-N 0.000 description 1
- ZVUNTIMPQCQCAQ-UHFFFAOYSA-N 2-dodecanoyloxyethyl dodecanoate Chemical compound CCCCCCCCCCCC(=O)OCCOC(=O)CCCCCCCCCCC ZVUNTIMPQCQCAQ-UHFFFAOYSA-N 0.000 description 1
- JGUMTYWKIBJSTN-UHFFFAOYSA-N 2-ethylhexyl 4-[[4,6-bis[4-(2-ethylhexoxycarbonyl)anilino]-1,3,5-triazin-2-yl]amino]benzoate Chemical compound C1=CC(C(=O)OCC(CC)CCCC)=CC=C1NC1=NC(NC=2C=CC(=CC=2)C(=O)OCC(CC)CCCC)=NC(NC=2C=CC(=CC=2)C(=O)OCC(CC)CCCC)=N1 JGUMTYWKIBJSTN-UHFFFAOYSA-N 0.000 description 1
- CTXGTHVAWRBISV-UHFFFAOYSA-N 2-hydroxyethyl dodecanoate Chemical compound CCCCCCCCCCCC(=O)OCCO CTXGTHVAWRBISV-UHFFFAOYSA-N 0.000 description 1
- LVYLCBNXHHHPSB-UHFFFAOYSA-N 2-hydroxyethyl salicylate Chemical compound OCCOC(=O)C1=CC=CC=C1O LVYLCBNXHHHPSB-UHFFFAOYSA-N 0.000 description 1
- AFDSETGKYZMEEA-HZJYTTRNSA-N 2-hydroxylinoleic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCC(O)C(O)=O AFDSETGKYZMEEA-HZJYTTRNSA-N 0.000 description 1
- BFWRTWBSOCPDQX-UHFFFAOYSA-N 2-hydroxypropanoate;n-(3-morpholin-4-ium-4-ylpropyl)octadecanamide Chemical compound CC(O)C(O)=O.CCCCCCCCCCCCCCCCCC(=O)NCCCN1CCOCC1 BFWRTWBSOCPDQX-UHFFFAOYSA-N 0.000 description 1
- VCNPGCHIKPSUSP-UHFFFAOYSA-N 2-hydroxypropyl tetradecanoate Chemical compound CCCCCCCCCCCCCC(=O)OCC(C)O VCNPGCHIKPSUSP-UHFFFAOYSA-N 0.000 description 1
- 229940100555 2-methyl-4-isothiazolin-3-one Drugs 0.000 description 1
- ICIDSZQHPUZUHC-UHFFFAOYSA-N 2-octadecoxyethanol Chemical compound CCCCCCCCCCCCCCCCCCOCCO ICIDSZQHPUZUHC-UHFFFAOYSA-N 0.000 description 1
- LEACJMVNYZDSKR-UHFFFAOYSA-N 2-octyldodecan-1-ol Chemical compound CCCCCCCCCCC(CO)CCCCCCCC LEACJMVNYZDSKR-UHFFFAOYSA-N 0.000 description 1
- PTPDZZWUOHQSLG-UHFFFAOYSA-N 2-octyldodecyl 2,2-dimethylpropanoate Chemical compound CCCCCCCCCCC(COC(=O)C(C)(C)C)CCCCCCCC PTPDZZWUOHQSLG-UHFFFAOYSA-N 0.000 description 1
- FZIPCQLKPTZZIM-UHFFFAOYSA-N 2-oxidanylpropane-1,2,3-tricarboxylic acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O.OC(=O)CC(O)(C(O)=O)CC(O)=O FZIPCQLKPTZZIM-UHFFFAOYSA-N 0.000 description 1
- DSVUBXQDJGJGIC-UHFFFAOYSA-N 3',6'-dihydroxy-4',5'-diiodospiro[2-benzofuran-3,9'-xanthene]-1-one Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C(I)=C1OC1=C(I)C(O)=CC=C21 DSVUBXQDJGJGIC-UHFFFAOYSA-N 0.000 description 1
- UIVPNOBLHXUKDX-UHFFFAOYSA-N 3,5,5-trimethylhexyl 3,5,5-trimethylhexanoate Chemical compound CC(C)(C)CC(C)CCOC(=O)CC(C)CC(C)(C)C UIVPNOBLHXUKDX-UHFFFAOYSA-N 0.000 description 1
- AMHRXSOVSAQOKL-UHFFFAOYSA-N 3-Phenylpropyl formate Chemical compound O=COCCCC1=CC=CC=C1 AMHRXSOVSAQOKL-UHFFFAOYSA-N 0.000 description 1
- VFDASNWZZRLEAU-UHFFFAOYSA-N 3-bromo-4-[3-(2-bromo-4-carbamimidoylphenoxy)propoxy]benzenecarboximidamide;2-hydroxyethanesulfonic acid Chemical compound OCCS(O)(=O)=O.OCCS(O)(=O)=O.BrC1=CC(C(=N)N)=CC=C1OCCCOC1=CC=C(C(N)=N)C=C1Br VFDASNWZZRLEAU-UHFFFAOYSA-N 0.000 description 1
- 229940099451 3-iodo-2-propynylbutylcarbamate Drugs 0.000 description 1
- WYVVKGNFXHOCQV-UHFFFAOYSA-N 3-iodoprop-2-yn-1-yl butylcarbamate Chemical compound CCCCNC(=O)OCC#CI WYVVKGNFXHOCQV-UHFFFAOYSA-N 0.000 description 1
- PIFPCDRPHCQLSJ-WYIJOVFWSA-N 4,8,12,15,19-Docosapentaenoic acid Chemical compound CC\C=C\CC\C=C\C\C=C\CC\C=C\CC\C=C\CCC(O)=O PIFPCDRPHCQLSJ-WYIJOVFWSA-N 0.000 description 1
- CYDQOEWLBCCFJZ-UHFFFAOYSA-N 4-(4-fluorophenyl)oxane-4-carboxylic acid Chemical compound C=1C=C(F)C=CC=1C1(C(=O)O)CCOCC1 CYDQOEWLBCCFJZ-UHFFFAOYSA-N 0.000 description 1
- OSDLLIBGSJNGJE-UHFFFAOYSA-N 4-chloro-3,5-dimethylphenol Chemical compound CC1=CC(O)=CC(C)=C1Cl OSDLLIBGSJNGJE-UHFFFAOYSA-N 0.000 description 1
- KFZXVMNBUMVKLN-UHFFFAOYSA-N 4-chloro-5-methyl-2-propan-2-ylphenol Chemical compound CC(C)C1=CC(Cl)=C(C)C=C1O KFZXVMNBUMVKLN-UHFFFAOYSA-N 0.000 description 1
- CFKMVGJGLGKFKI-UHFFFAOYSA-N 4-chloro-m-cresol Chemical compound CC1=CC(O)=CC=C1Cl CFKMVGJGLGKFKI-UHFFFAOYSA-N 0.000 description 1
- HBTAOSGHCXUEKI-UHFFFAOYSA-N 4-chloro-n,n-dimethyl-3-nitrobenzenesulfonamide Chemical compound CN(C)S(=O)(=O)C1=CC=C(Cl)C([N+]([O-])=O)=C1 HBTAOSGHCXUEKI-UHFFFAOYSA-N 0.000 description 1
- MSTNYGQPCMXVAQ-KIYNQFGBSA-N 5,6,7,8-tetrahydrofolic acid Chemical compound N1C=2C(=O)NC(N)=NC=2NCC1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 MSTNYGQPCMXVAQ-KIYNQFGBSA-N 0.000 description 1
- 229940046305 5-bromo-5-nitro-1,3-dioxane Drugs 0.000 description 1
- 229940100484 5-chloro-2-methyl-4-isothiazolin-3-one Drugs 0.000 description 1
- KGKQNDQDVZQTAG-UHFFFAOYSA-N 8-methylnonyl 2,2-dimethylpropanoate Chemical compound CC(C)CCCCCCCOC(=O)C(C)(C)C KGKQNDQDVZQTAG-UHFFFAOYSA-N 0.000 description 1
- 229940125664 ABTL0812 Drugs 0.000 description 1
- 244000215068 Acacia senegal Species 0.000 description 1
- 241000207965 Acanthaceae Species 0.000 description 1
- 241001143500 Aceraceae Species 0.000 description 1
- 241000169676 Achariaceae Species 0.000 description 1
- 241001116481 Achatocarpaceae Species 0.000 description 1
- 240000000073 Achillea millefolium Species 0.000 description 1
- 235000007754 Achillea millefolium Nutrition 0.000 description 1
- 241000142992 Acoraceae Species 0.000 description 1
- 241000219066 Actinidiaceae Species 0.000 description 1
- 241000208834 Adoxaceae Species 0.000 description 1
- 241001119624 Aesculus chinensis Species 0.000 description 1
- 241000009794 Agaricomycetes Species 0.000 description 1
- 244000251953 Agaricus brunnescens Species 0.000 description 1
- 240000007440 Agaricus campestris Species 0.000 description 1
- 235000004570 Agaricus campestris Nutrition 0.000 description 1
- 241000746976 Agavaceae Species 0.000 description 1
- 241000393419 Agdestidaceae Species 0.000 description 1
- 241000219479 Aizoaceae Species 0.000 description 1
- 241000801946 Akaniaceae Species 0.000 description 1
- 241000209514 Alismataceae Species 0.000 description 1
- 241000123646 Allioideae Species 0.000 description 1
- 240000002234 Allium sativum Species 0.000 description 1
- 241000246485 Alseuosmiaceae Species 0.000 description 1
- 241000556591 Alstroemeriaceae Species 0.000 description 1
- 241000307143 Altingiaceae Species 0.000 description 1
- 241000120585 Alzateaceae Species 0.000 description 1
- 241001237961 Amanita rubescens Species 0.000 description 1
- 241000867477 Amara Species 0.000 description 1
- 241000234270 Amaryllidaceae Species 0.000 description 1
- 241001081146 Amborellaceae Species 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 241000893024 Ancistrocladaceae Species 0.000 description 1
- 241000005044 Anemiaceae Species 0.000 description 1
- 241000862523 Anisophylleaceae Species 0.000 description 1
- 241001081440 Annonaceae Species 0.000 description 1
- 241000208173 Apiaceae Species 0.000 description 1
- WPQRDUGBKUNFJW-SLUROAMNSA-N Apigenin 7-(6''-p-coumarylglucoside) Natural products O=C(OC[C@@H]1[C@@H](O)[C@H](O)[C@H](O)[C@H](Oc2cc(O)c3C(=O)C=C(c4ccc(O)cc4)Oc3c2)O1)/C=C/c1ccc(O)cc1 WPQRDUGBKUNFJW-SLUROAMNSA-N 0.000 description 1
- 241000542898 Aponogetonaceae Species 0.000 description 1
- 241000209034 Aquifoliaceae Species 0.000 description 1
- 241000208340 Araliaceae Species 0.000 description 1
- 241001116439 Araucariaceae Species 0.000 description 1
- 241000233788 Arecaceae Species 0.000 description 1
- 241000758795 Aristolochiaceae Species 0.000 description 1
- 241000208983 Arnica Species 0.000 description 1
- 241000086254 Arnica montana Species 0.000 description 1
- 241000049464 Artemisia apiacea Species 0.000 description 1
- 235000011570 Artemisia caruifolia var apiacea Nutrition 0.000 description 1
- 241000512259 Ascophyllum nodosum Species 0.000 description 1
- 241000123643 Asparagaceae Species 0.000 description 1
- 241000499316 Asphodelaceae Species 0.000 description 1
- 241000134854 Aspleniaceae Species 0.000 description 1
- 241000500139 Asteliaceae Species 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 241000454552 Astrocaryum murumuru Species 0.000 description 1
- 235000000016 Astrocaryum murumuru Nutrition 0.000 description 1
- 241000015157 Attalea maripa Species 0.000 description 1
- 241001081831 Austrobaileyaceae Species 0.000 description 1
- 241000778364 Avicennioideae Species 0.000 description 1
- 241001503393 Aytoniaceae Species 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- 235000011461 Bactris gasipaes Nutrition 0.000 description 1
- 244000232745 Bactris gasipaes Species 0.000 description 1
- 241001116412 Balanophoraceae Species 0.000 description 1
- 241001330002 Bambuseae Species 0.000 description 1
- 235000009376 Basellaceae Nutrition 0.000 description 1
- 241000219300 Basellaceae Species 0.000 description 1
- 241000209450 Bataceae Species 0.000 description 1
- 235000021357 Behenic acid Nutrition 0.000 description 1
- 244000036905 Benincasa cerifera Species 0.000 description 1
- 235000011274 Benincasa cerifera Nutrition 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- MOZDKDIOPSPTBH-UHFFFAOYSA-N Benzyl parahydroxybenzoate Chemical compound C1=CC(O)=CC=C1C(=O)OCC1=CC=CC=C1 MOZDKDIOPSPTBH-UHFFFAOYSA-N 0.000 description 1
- KWIUHFFTVRNATP-UHFFFAOYSA-N Betaine Natural products C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 1
- 241000219495 Betulaceae Species 0.000 description 1
- 241001090347 Bignoniaceae Species 0.000 description 1
- 241000934828 Bixaceae Species 0.000 description 1
- 241001148771 Blechnaceae Species 0.000 description 1
- 241000563996 Bonnetiaceae Species 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 241000219193 Brassicaceae Species 0.000 description 1
- LVDKZNITIUWNER-UHFFFAOYSA-N Bronopol Chemical compound OCC(Br)(CO)[N+]([O-])=O LVDKZNITIUWNER-UHFFFAOYSA-N 0.000 description 1
- 241001116792 Bruniaceae Species 0.000 description 1
- 241000231390 Burmanniaceae Species 0.000 description 1
- 241000208229 Burseraceae Species 0.000 description 1
- 241000489499 Butomaceae Species 0.000 description 1
- 239000004255 Butylated hydroxyanisole Substances 0.000 description 1
- 241000648065 Byblidaceae Species 0.000 description 1
- 241000209432 Cabombaceae Species 0.000 description 1
- 241000219357 Cactaceae Species 0.000 description 1
- 101100352919 Caenorhabditis elegans ppm-2 gene Proteins 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- BCZXFFBUYPCTSJ-UHFFFAOYSA-L Calcium propionate Chemical compound [Ca+2].CCC([O-])=O.CCC([O-])=O BCZXFFBUYPCTSJ-UHFFFAOYSA-L 0.000 description 1
- 240000005589 Calophyllum inophyllum Species 0.000 description 1
- 241000218346 Calycanthaceae Species 0.000 description 1
- 241000134157 Calyceraceae Species 0.000 description 1
- 240000006833 Camellia sasanqua Species 0.000 description 1
- 241000208671 Campanulaceae Species 0.000 description 1
- 241000218330 Canellaceae Species 0.000 description 1
- 241000218235 Cannabaceae Species 0.000 description 1
- 241000234586 Cannaceae Species 0.000 description 1
- 241000873224 Capparaceae Species 0.000 description 1
- 239000005632 Capric acid (CAS 334-48-5) Substances 0.000 description 1
- 241000208828 Caprifoliaceae Species 0.000 description 1
- 239000005635 Caprylic acid (CAS 124-07-2) Substances 0.000 description 1
- 239000005745 Captan Substances 0.000 description 1
- 241000563994 Cardiopteridaceae Species 0.000 description 1
- 241000558330 Carlemanniaceae Species 0.000 description 1
- 241001249067 Caryocaraceae Species 0.000 description 1
- 241000219321 Caryophyllaceae Species 0.000 description 1
- 241000219500 Casuarinaceae Species 0.000 description 1
- 235000017186 Celastrus paniculatus Nutrition 0.000 description 1
- 240000006739 Celastrus paniculatus Species 0.000 description 1
- 241000220269 Cephalotaceae Species 0.000 description 1
- 241000488900 Cephalotaxaceae Species 0.000 description 1
- 241001453446 Ceratophyllaceae Species 0.000 description 1
- 241000758793 Cercidiphyllaceae Species 0.000 description 1
- 241001310324 Cetraria islandica Species 0.000 description 1
- 241000196240 Characeae Species 0.000 description 1
- 240000006162 Chenopodium quinoa Species 0.000 description 1
- 235000015493 Chenopodium quinoa Nutrition 0.000 description 1
- 229920002101 Chitin Polymers 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- 241000758719 Chloranthaceae Species 0.000 description 1
- WJLVQTJZDCGNJN-UHFFFAOYSA-N Chlorhexidine hydrochloride Chemical compound Cl.Cl.C=1C=C(Cl)C=CC=1NC(N)=NC(N)=NCCCCCCN=C(N)N=C(N)NC1=CC=C(Cl)C=C1 WJLVQTJZDCGNJN-UHFFFAOYSA-N 0.000 description 1
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical class ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 241001083898 Chrysobalanaceae Species 0.000 description 1
- 244000182633 Cinchona succirubra Species 0.000 description 1
- 235000006768 Cinchona succirubra Nutrition 0.000 description 1
- 241000984092 Cistaceae Species 0.000 description 1
- 241000207199 Citrus Species 0.000 description 1
- 241000468081 Citrus bergamia Species 0.000 description 1
- 240000002319 Citrus sinensis Species 0.000 description 1
- 235000005976 Citrus sinensis Nutrition 0.000 description 1
- 241000758346 Clethraceae Species 0.000 description 1
- PIFPCDRPHCQLSJ-UHFFFAOYSA-N Clupanodonic acid Natural products CCC=CCCC=CCC=CCCC=CCCC=CCCC(O)=O PIFPCDRPHCQLSJ-UHFFFAOYSA-N 0.000 description 1
- 229910021580 Cobalt(II) chloride Inorganic materials 0.000 description 1
- 241000934836 Cochlospermaceae Species 0.000 description 1
- 241000196226 Codiaceae Species 0.000 description 1
- 241000113542 Codium tomentosum Species 0.000 description 1
- 108010035532 Collagen Chemical class 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 241000580536 Columelliaceae Species 0.000 description 1
- 241000221032 Combretaceae Species 0.000 description 1
- 241000233833 Commelinaceae Species 0.000 description 1
- 235000006965 Commiphora myrrha Nutrition 0.000 description 1
- 240000007311 Commiphora myrrha Species 0.000 description 1
- 241001117247 Connaraceae Species 0.000 description 1
- 241000134383 Conocephalaceae Species 0.000 description 1
- 241000207782 Convolvulaceae Species 0.000 description 1
- 229910021592 Copper(II) chloride Inorganic materials 0.000 description 1
- 235000002787 Coriandrum sativum Nutrition 0.000 description 1
- 244000018436 Coriandrum sativum Species 0.000 description 1
- 241000218168 Coriariaceae Species 0.000 description 1
- MFYSYFVPBJMHGN-ZPOLXVRWSA-N Cortisone Chemical compound O=C1CC[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 MFYSYFVPBJMHGN-ZPOLXVRWSA-N 0.000 description 1
- MFYSYFVPBJMHGN-UHFFFAOYSA-N Cortisone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)(O)C(=O)CO)C4C3CCC2=C1 MFYSYFVPBJMHGN-UHFFFAOYSA-N 0.000 description 1
- 241000208374 Corynocarpaceae Species 0.000 description 1
- 241000234597 Costaceae Species 0.000 description 1
- 241000220284 Crassulaceae Species 0.000 description 1
- 235000008440 Crataegus cuneata Nutrition 0.000 description 1
- 244000160089 Crataegus cuneata Species 0.000 description 1
- 241001091479 Crossosomataceae Species 0.000 description 1
- 241000160706 Crypteroniaceae Species 0.000 description 1
- 235000009849 Cucumis sativus Nutrition 0.000 description 1
- 241000005212 Culcitaceae Species 0.000 description 1
- 241001148785 Cyatheaceae Species 0.000 description 1
- 241000218931 Cycadaceae Species 0.000 description 1
- 241001116911 Cyclanthaceae Species 0.000 description 1
- 241001117843 Cymodoceaceae Species 0.000 description 1
- 241000499399 Cynomoriaceae Species 0.000 description 1
- 241000234646 Cyperaceae Species 0.000 description 1
- 241000208482 Cyrillaceae Species 0.000 description 1
- AUNGANRZJHBGPY-UHFFFAOYSA-N D-Lyxoflavin Natural products OCC(O)C(O)C(O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- UMVMVEZHMZTUHD-UHFFFAOYSA-N DL-Propylene glycol dibenzoate Chemical compound C=1C=CC=CC=1C(=O)OC(C)COC(=O)C1=CC=CC=C1 UMVMVEZHMZTUHD-UHFFFAOYSA-N 0.000 description 1
- 239000011627 DL-alpha-tocopherol Substances 0.000 description 1
- 235000001815 DL-alpha-tocopherol Nutrition 0.000 description 1
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Natural products CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 description 1
- 241001117813 Datiscaceae Species 0.000 description 1
- 241001148787 Davalliaceae Species 0.000 description 1
- JDRSMPFHFNXQRB-CMTNHCDUSA-N Decyl beta-D-threo-hexopyranoside Chemical compound CCCCCCCCCCO[C@@H]1O[C@H](CO)C(O)[C@H](O)C1O JDRSMPFHFNXQRB-CMTNHCDUSA-N 0.000 description 1
- 229920000727 Decyl polyglucose Polymers 0.000 description 1
- 241001081830 Degeneriaceae Species 0.000 description 1
- 239000004287 Dehydroacetic acid Substances 0.000 description 1
- 241001453215 Dennstaedtiaceae Species 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 241000758335 Diapensiaceae Species 0.000 description 1
- 241000208379 Dichapetalaceae Species 0.000 description 1
- 241000195958 Dicksoniaceae Species 0.000 description 1
- 241000219297 Didiereaceae Species 0.000 description 1
- 241001106478 Dilleniaceae Species 0.000 description 1
- 241000123586 Dipsacaceae Species 0.000 description 1
- 241001453845 Dipteridaceae Species 0.000 description 1
- 241000123611 Dipterocarpaceae Species 0.000 description 1
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical compound [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- 229920004511 Dow Corning® 200 Fluid Polymers 0.000 description 1
- 241000208711 Droseraceae Species 0.000 description 1
- 229920005682 EO-PO block copolymer Polymers 0.000 description 1
- 241000409875 Ecdeiocoleaceae Species 0.000 description 1
- 241001117772 Elaeagnaceae Species 0.000 description 1
- 241000563967 Elatinaceae Species 0.000 description 1
- 235000015489 Emblica officinalis Nutrition 0.000 description 1
- 241000218670 Ephedraceae Species 0.000 description 1
- 241000195952 Equisetaceae Species 0.000 description 1
- 241001112007 Eriocaulaceae Species 0.000 description 1
- 241000393406 Erythropalaceae Species 0.000 description 1
- 241001081474 Erythroxylaceae Species 0.000 description 1
- 241001529485 Escalloniaceae Species 0.000 description 1
- 239000004144 Ethoxylated Mono- and Di-Glyceride Substances 0.000 description 1
- FMRHJJZUHUTGKE-UHFFFAOYSA-N Ethylhexyl salicylate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1O FMRHJJZUHUTGKE-UHFFFAOYSA-N 0.000 description 1
- DBVJJBKOTRCVKF-UHFFFAOYSA-N Etidronic acid Chemical compound OP(=O)(O)C(O)(C)P(O)(O)=O DBVJJBKOTRCVKF-UHFFFAOYSA-N 0.000 description 1
- 241000208686 Eucommiaceae Species 0.000 description 1
- 241001081832 Eupomatiaceae Species 0.000 description 1
- 241000758792 Eupteleaceae Species 0.000 description 1
- 239000001263 FEMA 3042 Substances 0.000 description 1
- 241000731959 Flagellariaceae Species 0.000 description 1
- 235000016640 Flammulina velutipes Nutrition 0.000 description 1
- 240000006499 Flammulina velutipes Species 0.000 description 1
- 241001106480 Fouquieriaceae Species 0.000 description 1
- 241001655748 Francoaceae Species 0.000 description 1
- 241000893026 Frankeniaceae Species 0.000 description 1
- 241000195482 Fucaceae Species 0.000 description 1
- 241000218174 Fumarioideae Species 0.000 description 1
- OPGOLNDOMSBSCW-CLNHMMGSSA-N Fursultiamine hydrochloride Chemical compound Cl.C1CCOC1CSSC(\CCO)=C(/C)N(C=O)CC1=CN=C(C)N=C1N OPGOLNDOMSBSCW-CLNHMMGSSA-N 0.000 description 1
- 240000008397 Ganoderma lucidum Species 0.000 description 1
- 235000001637 Ganoderma lucidum Nutrition 0.000 description 1
- 241001427367 Gardena Species 0.000 description 1
- 241000209015 Garryaceae Species 0.000 description 1
- 240000001238 Gaultheria procumbens Species 0.000 description 1
- 235000007297 Gaultheria procumbens Nutrition 0.000 description 1
- 241001529500 Geissolomataceae Species 0.000 description 1
- 241000208150 Geraniaceae Species 0.000 description 1
- 241001112537 Gesneriaceae Species 0.000 description 1
- 241000218791 Ginkgoaceae Species 0.000 description 1
- 241000931143 Gleditsia sinensis Species 0.000 description 1
- 241000196117 Gleicheniaceae Species 0.000 description 1
- 108010025885 Glycerol dehydratase Proteins 0.000 description 1
- HDIFHQMREAYYJW-XGXNLDPDSA-N Glyceryl Ricinoleate Chemical compound CCCCCC[C@@H](O)C\C=C/CCCCCCCC(=O)OCC(O)CO HDIFHQMREAYYJW-XGXNLDPDSA-N 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 241000218665 Gnetaceae Species 0.000 description 1
- 241000218674 Gnetum Species 0.000 description 1
- 241000894684 Gomortegaceae Species 0.000 description 1
- 241000757411 Goodeniaceae Species 0.000 description 1
- 241001608236 Goupiaceae Species 0.000 description 1
- 241001453878 Grammitidaceae Species 0.000 description 1
- 235000007710 Grifola frondosa Nutrition 0.000 description 1
- 240000001080 Grifola frondosa Species 0.000 description 1
- 241000543436 Grubbiaceae Species 0.000 description 1
- 229920002907 Guar gum Polymers 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 241001107125 Gunneraceae Species 0.000 description 1
- 241001112846 Gyrostemonaceae Species 0.000 description 1
- 241000534640 Haemodoraceae Species 0.000 description 1
- 241000142952 Hamamelidaceae Species 0.000 description 1
- 241000234318 Heliconiaceae Species 0.000 description 1
- 241001081202 Hernandiaceae Species 0.000 description 1
- 241000120607 Heteropyxidaceae Species 0.000 description 1
- CMBYOWLFQAFZCP-UHFFFAOYSA-N Hexyl dodecanoate Chemical compound CCCCCCCCCCCC(=O)OCCCCCC CMBYOWLFQAFZCP-UHFFFAOYSA-N 0.000 description 1
- 244000284380 Hibiscus rosa sinensis Species 0.000 description 1
- 235000000100 Hibiscus rosa sinensis Nutrition 0.000 description 1
- 241001082209 Himantandraceae Species 0.000 description 1
- 241000732093 Hoplestigmataceae Species 0.000 description 1
- 241000208208 Humiriaceae Species 0.000 description 1
- 241000207932 Hydrophyllaceae Species 0.000 description 1
- 241000659433 Hydrostachyaceae Species 0.000 description 1
- SHBUUTHKGIVMJT-UHFFFAOYSA-N Hydroxystearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OO SHBUUTHKGIVMJT-UHFFFAOYSA-N 0.000 description 1
- 241001148749 Hymenophyllaceae Species 0.000 description 1
- 241001527937 Hymenophyllopsidaceae Species 0.000 description 1
- 241000832224 Hypericaceae Species 0.000 description 1
- 241000234275 Hypoxidaceae Species 0.000 description 1
- 241000644152 Hypsizygus tessulatus Species 0.000 description 1
- 241000208457 Icacinaceae Species 0.000 description 1
- 241001113425 Iridaceae Species 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 241000737280 Isoetaceae Species 0.000 description 1
- 239000005058 Isophorone diisocyanate Substances 0.000 description 1
- 241000169636 Ixonanthaceae Species 0.000 description 1
- 241000207840 Jasminum Species 0.000 description 1
- 241000758791 Juglandaceae Species 0.000 description 1
- 241000731961 Juncaceae Species 0.000 description 1
- 241000542895 Juncaginaceae Species 0.000 description 1
- 102000011782 Keratins Human genes 0.000 description 1
- 108010076876 Keratins Proteins 0.000 description 1
- 241000307178 Koeberliniaceae Species 0.000 description 1
- 235000010629 Konigspalme Nutrition 0.000 description 1
- 241000934809 Krameriaceae Species 0.000 description 1
- 235000000072 L-ascorbyl-6-palmitate Nutrition 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- 241000169635 Lacistemataceae Species 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- 241001598113 Laminaria digitata Species 0.000 description 1
- 241000295519 Laminaria ochroleuca Species 0.000 description 1
- 241001466452 Laminariaceae Species 0.000 description 1
- 241001083838 Lardizabalaceae Species 0.000 description 1
- 241000218195 Lauraceae Species 0.000 description 1
- 244000165082 Lavanda vera Species 0.000 description 1
- 235000010663 Lavandula angustifolia Nutrition 0.000 description 1
- 244000208060 Lawsonia inermis Species 0.000 description 1
- 241000982172 Lemanea fucina Species 0.000 description 1
- 241001428371 Lemaneaceae Species 0.000 description 1
- 241000595914 Lennoaceae Species 0.000 description 1
- 241000207990 Lentibulariaceae Species 0.000 description 1
- 241000234280 Liliaceae Species 0.000 description 1
- 241001072276 Limnanthaceae Species 0.000 description 1
- 241000542878 Limnocharitaceae Species 0.000 description 1
- 241000208202 Linaceae Species 0.000 description 1
- 241001453894 Lindsaeaceae Species 0.000 description 1
- OYHQOLUKZRVURQ-HZJYTTRNSA-N Linoleic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(O)=O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 1
- 241001523547 Loasaceae Species 0.000 description 1
- 241001113846 Loganiaceae Species 0.000 description 1
- 241001453744 Lomariopsidaceae Species 0.000 description 1
- 241000114343 Lonicera caprifolium Species 0.000 description 1
- 241001609159 Lophosoriaceae Species 0.000 description 1
- 241000221040 Loranthaceae Species 0.000 description 1
- 241000234329 Lowiaceae Species 0.000 description 1
- 241000557070 Lunulariaceae Species 0.000 description 1
- 241000499310 Luzuriagaceae Species 0.000 description 1
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 1
- 241000195948 Lycopodiaceae Species 0.000 description 1
- 241000005043 Lygodiaceae Species 0.000 description 1
- 241001249546 Malesherbiaceae Species 0.000 description 1
- 241000208949 Malpighiaceae Species 0.000 description 1
- 235000011430 Malus pumila Nutrition 0.000 description 1
- 244000070406 Malus silvestris Species 0.000 description 1
- 235000015103 Malus silvestris Nutrition 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 1
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 241000234676 Marantaceae Species 0.000 description 1
- 241000195962 Marattiaceae Species 0.000 description 1
- 241000543367 Marcgraviaceae Species 0.000 description 1
- 241001148464 Marchantiaceae Species 0.000 description 1
- 241000736303 Marsileaceae Species 0.000 description 1
- 241000134172 Martyniaceae Species 0.000 description 1
- 241001453717 Matoniaceae Species 0.000 description 1
- 241001276616 Mayacaceae Species 0.000 description 1
- 241000596440 Medusagynaceae Species 0.000 description 1
- 241001264677 Melaleuca hypericifolia Species 0.000 description 1
- 241000489991 Melanthiaceae Species 0.000 description 1
- 241001534872 Melastomataceae Species 0.000 description 1
- 241000158728 Meliaceae Species 0.000 description 1
- 241000218164 Menispermaceae Species 0.000 description 1
- 235000006679 Mentha X verticillata Nutrition 0.000 description 1
- 235000002899 Mentha suaveolens Nutrition 0.000 description 1
- 241001479543 Mentha x piperita Species 0.000 description 1
- 235000004357 Mentha x piperita Nutrition 0.000 description 1
- 235000001636 Mentha x rotundifolia Nutrition 0.000 description 1
- 241001105566 Menyanthaceae Species 0.000 description 1
- 241000198601 Meripilaceae Species 0.000 description 1
- 241001453713 Metaxyaceae Species 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 241000617443 Misodendraceae Species 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 241001081171 Monimiaceae Species 0.000 description 1
- 241000365112 Monsonia angustifolia Species 0.000 description 1
- 241000120601 Mouriri Species 0.000 description 1
- 241000234615 Musaceae Species 0.000 description 1
- 241001115514 Myricaceae Species 0.000 description 1
- 241001646136 Myrothamnaceae Species 0.000 description 1
- 240000009023 Myrrhis odorata Species 0.000 description 1
- 235000007265 Myrrhis odorata Nutrition 0.000 description 1
- 241000758344 Myrsinaceae Species 0.000 description 1
- KWIUHFFTVRNATP-UHFFFAOYSA-O N,N,N-trimethylglycinium Chemical compound C[N+](C)(C)CC(O)=O KWIUHFFTVRNATP-UHFFFAOYSA-O 0.000 description 1
- OTGQIQQTPXJQRG-UHFFFAOYSA-N N-(octadecanoyl)ethanolamine Chemical compound CCCCCCCCCCCCCCCCCC(=O)NCCO OTGQIQQTPXJQRG-UHFFFAOYSA-N 0.000 description 1
- OVBPIULPVIDEAO-UHFFFAOYSA-N N-Pteroyl-L-glutaminsaeure Natural products C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-UHFFFAOYSA-N 0.000 description 1
- 229910004619 Na2MoO4 Inorganic materials 0.000 description 1
- 241000234479 Narcissus Species 0.000 description 1
- 240000005407 Nasturtium officinale Species 0.000 description 1
- 235000017879 Nasturtium officinale Nutrition 0.000 description 1
- 240000002853 Nelumbo nucifera Species 0.000 description 1
- 235000006508 Nelumbo nucifera Nutrition 0.000 description 1
- 241000209445 Nelumbonaceae Species 0.000 description 1
- 241000208719 Nepenthaceae Species 0.000 description 1
- 241001453801 Nephrolepidaceae Species 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 241000219469 Nyctaginaceae Species 0.000 description 1
- 241000209490 Nymphaea Species 0.000 description 1
- 241000209477 Nymphaeaceae Species 0.000 description 1
- 241000209018 Nyssaceae Species 0.000 description 1
- 241000567232 Ochnaceae Species 0.000 description 1
- 235000010676 Ocimum basilicum Nutrition 0.000 description 1
- 240000007926 Ocimum gratissimum Species 0.000 description 1
- 241001530776 Octoknemaceae Species 0.000 description 1
- 235000004496 Oenothera biennis Nutrition 0.000 description 1
- 240000008916 Oenothera biennis Species 0.000 description 1
- 241000221014 Olacaceae Species 0.000 description 1
- 241001148803 Oleandraceae Species 0.000 description 1
- 241000120611 Oliniaceae Species 0.000 description 1
- 241000219929 Onagraceae Species 0.000 description 1
- 241001671300 Oncothecaceae Species 0.000 description 1
- 241000005190 Onocleaceae Species 0.000 description 1
- 241000737251 Ophioglossaceae Species 0.000 description 1
- 244000248557 Ophiopogon japonicus Species 0.000 description 1
- 241001127739 Opiliaceae Species 0.000 description 1
- 241000196128 Osmundaceae Species 0.000 description 1
- 241000208165 Oxalidaceae Species 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 241001106477 Paeoniaceae Species 0.000 description 1
- OQILCOQZDHPEAZ-UHFFFAOYSA-N Palmitinsaeure-octylester Natural products CCCCCCCCCCCCCCCC(=O)OCCCCCCCC OQILCOQZDHPEAZ-UHFFFAOYSA-N 0.000 description 1
- 241000558265 Pandaceae Species 0.000 description 1
- 241000233929 Pandanaceae Species 0.000 description 1
- 241000218180 Papaveraceae Species 0.000 description 1
- 241000218995 Passifloraceae Species 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 241000207960 Pedaliaceae Species 0.000 description 1
- 241000120623 Penaeaceae Species 0.000 description 1
- LRBQNJMCXXYXIU-PPKXGCFTSA-N Penta-digallate-beta-D-glucose Natural products OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-PPKXGCFTSA-N 0.000 description 1
- 241000134143 Pentaphragmataceae Species 0.000 description 1
- 241000563949 Pentaphylacaceae Species 0.000 description 1
- 241000832226 Peraceae Species 0.000 description 1
- 241000639566 Peranemaceae Species 0.000 description 1
- 244000025272 Persea americana Species 0.000 description 1
- 235000008673 Persea americana Nutrition 0.000 description 1
- 244000264897 Persea americana var. americana Species 0.000 description 1
- 241000186152 Petrosaviaceae Species 0.000 description 1
- 241000972673 Phellodendron amurense Species 0.000 description 1
- 241000605543 Philesiaceae Species 0.000 description 1
- 241000169085 Philydraceae Species 0.000 description 1
- 241000070023 Phoenicopterus roseus Species 0.000 description 1
- 241000131786 Phrymaceae Species 0.000 description 1
- 240000009120 Phyllanthus emblica Species 0.000 description 1
- 241000219505 Phytolaccaceae Species 0.000 description 1
- 241000218657 Picea Species 0.000 description 1
- 235000012550 Pimpinella anisum Nutrition 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 241000758706 Piperaceae Species 0.000 description 1
- 235000010582 Pisum sativum Nutrition 0.000 description 1
- 240000004713 Pisum sativum Species 0.000 description 1
- 241001092092 Pittosporaceae Species 0.000 description 1
- 241001453814 Plagiogyriaceae Species 0.000 description 1
- 241000209464 Platanaceae Species 0.000 description 1
- 235000007685 Pleurotus columbinus Nutrition 0.000 description 1
- 241000222351 Pleurotus cornucopiae Species 0.000 description 1
- 240000001462 Pleurotus ostreatus Species 0.000 description 1
- 235000001603 Pleurotus ostreatus Nutrition 0.000 description 1
- 241000209454 Plumbaginaceae Species 0.000 description 1
- 241000218688 Podocarpaceae Species 0.000 description 1
- 241000500034 Podostemaceae Species 0.000 description 1
- 241001105552 Polemoniaceae Species 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 229920000691 Poly[bis(2-chloroethyl) ether-alt-1,3-bis[3-(dimethylamino)propyl]urea] Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920002582 Polyethylene Glycol 600 Polymers 0.000 description 1
- 241000208977 Polygalaceae Species 0.000 description 1
- 241000219050 Polygonaceae Species 0.000 description 1
- 229920002367 Polyisobutene Polymers 0.000 description 1
- 241000196124 Polypodiaceae Species 0.000 description 1
- 241000222341 Polyporaceae Species 0.000 description 1
- 229920000289 Polyquaternium Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 241000757039 Pontederiaceae Species 0.000 description 1
- 241000219304 Portulacaceae Species 0.000 description 1
- 241000756999 Potamogetonaceae Species 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 235000016551 Potentilla erecta Nutrition 0.000 description 1
- 240000000103 Potentilla erecta Species 0.000 description 1
- ORNBQBCIOKFOEO-YQUGOWONSA-N Pregnenolone Natural products O=C(C)[C@@H]1[C@@]2(C)[C@H]([C@H]3[C@@H]([C@]4(C)C(=CC3)C[C@@H](O)CC4)CC2)CC1 ORNBQBCIOKFOEO-YQUGOWONSA-N 0.000 description 1
- 108010065027 Propanediol Dehydratase Proteins 0.000 description 1
- 241000208465 Proteaceae Species 0.000 description 1
- 241000195971 Psilotaceae Species 0.000 description 1
- 241000596526 Quiinaceae Species 0.000 description 1
- 241001128129 Rafflesiaceae Species 0.000 description 1
- 241000218201 Ranunculaceae Species 0.000 description 1
- 241000731264 Rapateaceae Species 0.000 description 1
- 235000019484 Rapeseed oil Nutrition 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 241000405414 Rehmannia Species 0.000 description 1
- 241001016380 Reseda luteola Species 0.000 description 1
- 241001128145 Resedaceae Species 0.000 description 1
- 241000731960 Restionaceae Species 0.000 description 1
- VYGQUTWHTHXGQB-UHFFFAOYSA-N Retinol hexadecanoate Natural products CCCCCCCCCCCCCCCC(=O)OCC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C VYGQUTWHTHXGQB-UHFFFAOYSA-N 0.000 description 1
- 241000219100 Rhamnaceae Species 0.000 description 1
- 241000120622 Rhizophoraceae Species 0.000 description 1
- 235000001466 Ribes nigrum Nutrition 0.000 description 1
- 241001312569 Ribes nigrum Species 0.000 description 1
- 241000308399 Roridulaceae Species 0.000 description 1
- 235000016785 Rosa della China Nutrition 0.000 description 1
- 241000220222 Rosaceae Species 0.000 description 1
- 244000178231 Rosmarinus officinalis Species 0.000 description 1
- 235000009715 Rubus hirsutus Nutrition 0.000 description 1
- 240000005737 Rubus hirsutus Species 0.000 description 1
- 241000489522 Ruscaceae Species 0.000 description 1
- SVPMAKCIPCYPBW-UHFFFAOYSA-L S(=O)(=O)([O-])[O-].C(CCCCCCCCCCCCCCCCC)(=O)OCC(O)CO.[Na+].[Na+] Chemical compound S(=O)(=O)([O-])[O-].C(CCCCCCCCCCCCCCCCC)(=O)OCC(O)CO.[Na+].[Na+] SVPMAKCIPCYPBW-UHFFFAOYSA-L 0.000 description 1
- 241001083952 Sabiaceae Species 0.000 description 1
- 241000208460 Salvadoraceae Species 0.000 description 1
- 241001093760 Sapindaceae Species 0.000 description 1
- 241000220217 Sapotaceae Species 0.000 description 1
- 241000120573 Sarcolaenaceae Species 0.000 description 1
- 241000208437 Sarraceniaceae Species 0.000 description 1
- 241000758742 Saururaceae Species 0.000 description 1
- 241000220151 Saxifragaceae Species 0.000 description 1
- 241001122838 Scheuchzeriaceae Species 0.000 description 1
- 241000737261 Schizaeaceae Species 0.000 description 1
- 241001516602 Schlechtendalia chinensis Species 0.000 description 1
- 206010039792 Seborrhoea Diseases 0.000 description 1
- 241000195975 Selaginellaceae Species 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 241001093962 Simaroubaceae Species 0.000 description 1
- 206010040914 Skin reaction Diseases 0.000 description 1
- 206010070835 Skin sensitisation Diseases 0.000 description 1
- 241000233782 Smilacaceae Species 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 239000004280 Sodium formate Substances 0.000 description 1
- 240000003768 Solanum lycopersicum Species 0.000 description 1
- NWGKJDSIEKMTRX-AAZCQSIUSA-N Sorbitan monooleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O NWGKJDSIEKMTRX-AAZCQSIUSA-N 0.000 description 1
- 241000272503 Sparassis radicata Species 0.000 description 1
- 241000934848 Sphaerosepalaceae Species 0.000 description 1
- 241000563987 Sphenostemonaceae Species 0.000 description 1
- 241000159165 Spondias Species 0.000 description 1
- 235000005139 Spondias Nutrition 0.000 description 1
- 241001671220 Stachyuraceae Species 0.000 description 1
- 241001671215 Staphyleaceae Species 0.000 description 1
- 241000244978 Stemonaceae Species 0.000 description 1
- 229930182558 Sterol Natural products 0.000 description 1
- 241000563954 Strasburgeriaceae Species 0.000 description 1
- 241000234262 Strelitziaceae Species 0.000 description 1
- 241001060310 Styracaceae Species 0.000 description 1
- 235000000126 Styrax benzoin Nutrition 0.000 description 1
- 244000028419 Styrax benzoin Species 0.000 description 1
- 102000005158 Subtilisins Human genes 0.000 description 1
- 108010056079 Subtilisins Proteins 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical class OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 241001060368 Symplocaceae Species 0.000 description 1
- 241000893011 Tamaricaceae Species 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 241001116495 Taxaceae Species 0.000 description 1
- 241000308398 Tetrameristaceae Species 0.000 description 1
- BHEOSNUKNHRBNM-UHFFFAOYSA-N Tetramethylsqualene Natural products CC(=C)C(C)CCC(=C)C(C)CCC(C)=CCCC=C(C)CCC(C)C(=C)CCC(C)C(C)=C BHEOSNUKNHRBNM-UHFFFAOYSA-N 0.000 description 1
- 241001122767 Theaceae Species 0.000 description 1
- 241001148746 Thelypteridaceae Species 0.000 description 1
- 241000758330 Theophrastaceae Species 0.000 description 1
- JZRWCGZRTZMZEH-UHFFFAOYSA-N Thiamine Natural products CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N JZRWCGZRTZMZEH-UHFFFAOYSA-N 0.000 description 1
- 241001276599 Thurniaceae Species 0.000 description 1
- 241001534930 Thymelaeaceae Species 0.000 description 1
- 235000007303 Thymus vulgaris Nutrition 0.000 description 1
- 240000002657 Thymus vulgaris Species 0.000 description 1
- 241000005045 Thyrsopteridaceae Species 0.000 description 1
- HXWJFEZDFPRLBG-UHFFFAOYSA-N Timnodonic acid Natural products CCCC=CC=CCC=CCC=CCC=CCCCC(O)=O HXWJFEZDFPRLBG-UHFFFAOYSA-N 0.000 description 1
- 241000307181 Tovariaceae Species 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 241000908178 Tremella fuciformis Species 0.000 description 1
- 241000222433 Tricholomataceae Species 0.000 description 1
- XEFQLINVKFYRCS-UHFFFAOYSA-N Triclosan Chemical compound OC1=CC(Cl)=CC=C1OC1=CC=C(Cl)C=C1Cl XEFQLINVKFYRCS-UHFFFAOYSA-N 0.000 description 1
- 241001633060 Trigoniaceae Species 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- 241000617412 Triuridaceae Species 0.000 description 1
- 241000208236 Tropaeolaceae Species 0.000 description 1
- 241000001727 Tropicoporus linteus Species 0.000 description 1
- 241000142927 Tuber magnatum Species 0.000 description 1
- 241000190080 Turneraceae Species 0.000 description 1
- 241000218220 Ulmaceae Species 0.000 description 1
- 241001473768 Ulmus rubra Species 0.000 description 1
- 241000196251 Ulva arasakii Species 0.000 description 1
- 241000196246 Ulvaceae Species 0.000 description 1
- 241000308152 Vahliaceae Species 0.000 description 1
- 241000792902 Valerianaceae Species 0.000 description 1
- 235000009499 Vanilla fragrans Nutrition 0.000 description 1
- 244000263375 Vanilla tahitensis Species 0.000 description 1
- 235000012036 Vanilla tahitensis Nutrition 0.000 description 1
- 241000756903 Velloziaceae Species 0.000 description 1
- 241001073567 Verbenaceae Species 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 244000172533 Viola sororia Species 0.000 description 1
- 241001106476 Violaceae Species 0.000 description 1
- FPIPGXGPPPQFEQ-BOOMUCAASA-N Vitamin A Natural products OC/C=C(/C)\C=C\C=C(\C)/C=C/C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-BOOMUCAASA-N 0.000 description 1
- 229930003779 Vitamin B12 Natural products 0.000 description 1
- 229930003316 Vitamin D Natural products 0.000 description 1
- QYSXJUFSXHHAJI-XFEUOLMDSA-N Vitamin D3 Natural products C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C/C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-XFEUOLMDSA-N 0.000 description 1
- 229930003448 Vitamin K Natural products 0.000 description 1
- 235000009754 Vitis X bourquina Nutrition 0.000 description 1
- 235000012333 Vitis X labruscana Nutrition 0.000 description 1
- 241001148807 Vittarioideae Species 0.000 description 1
- 241001123252 Vochysiaceae Species 0.000 description 1
- 240000006794 Volvariella volvacea Species 0.000 description 1
- 235000004501 Volvariella volvacea Nutrition 0.000 description 1
- 241000218661 Welwitschiaceae Species 0.000 description 1
- 241000218315 Winteraceae Species 0.000 description 1
- 241001276591 Xyridaceae Species 0.000 description 1
- 241000196113 Zamiaceae Species 0.000 description 1
- 241000234299 Zingiberaceae Species 0.000 description 1
- 241001123264 Zosteraceae Species 0.000 description 1
- 241000159213 Zygophyllaceae Species 0.000 description 1
- NWGKJDSIEKMTRX-BFWOXRRGSA-N [(2r)-2-[(3r,4s)-3,4-dihydroxyoxolan-2-yl]-2-hydroxyethyl] (z)-octadec-9-enoate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](O)C1OC[C@H](O)[C@H]1O NWGKJDSIEKMTRX-BFWOXRRGSA-N 0.000 description 1
- WPQRDUGBKUNFJW-ZZSHFKPLSA-N [(2r,3s,4s,5r,6s)-3,4,5-trihydroxy-6-[5-hydroxy-2-(4-hydroxyphenyl)-4-oxochromen-7-yl]oxyoxan-2-yl]methyl (e)-3-(4-hydroxyphenyl)prop-2-enoate Chemical compound C([C@@H]1[C@H]([C@@H]([C@@H](O)[C@H](OC=2C=C3C(C(C=C(O3)C=3C=CC(O)=CC=3)=O)=C(O)C=2)O1)O)O)OC(=O)\C=C\C1=CC=C(O)C=C1 WPQRDUGBKUNFJW-ZZSHFKPLSA-N 0.000 description 1
- FHKPLLOSJHHKNU-INIZCTEOSA-N [(3S)-3-[8-(1-ethyl-5-methylpyrazol-4-yl)-9-methylpurin-6-yl]oxypyrrolidin-1-yl]-(oxan-4-yl)methanone Chemical compound C(C)N1N=CC(=C1C)C=1N(C2=NC=NC(=C2N=1)O[C@@H]1CN(CC1)C(=O)C1CCOCC1)C FHKPLLOSJHHKNU-INIZCTEOSA-N 0.000 description 1
- WUBKCBOQNXUQDU-UHFFFAOYSA-N [2-(dihydroxymethoxy)phenyl]-phenylmethanone Chemical compound OC(O)OC1=CC=CC=C1C(=O)C1=CC=CC=C1 WUBKCBOQNXUQDU-UHFFFAOYSA-N 0.000 description 1
- YRXGUZPUZBCGST-UHFFFAOYSA-N [2-(hydroxymethoxy)phenyl]-phenylmethanone Chemical compound OCOC1=CC=CC=C1C(=O)C1=CC=CC=C1 YRXGUZPUZBCGST-UHFFFAOYSA-N 0.000 description 1
- CVPZXHCZKMFVOZ-UHFFFAOYSA-N [4-(benzoyloxymethyl)cyclohexyl]methyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC(CC1)CCC1COC(=O)C1=CC=CC=C1 CVPZXHCZKMFVOZ-UHFFFAOYSA-N 0.000 description 1
- NHPSEMMYKFZYGA-UHFFFAOYSA-N [C].CCCCCCCCCCCCCCCCCC(O)=O Chemical group [C].CCCCCCCCCCCCCCCCCC(O)=O NHPSEMMYKFZYGA-UHFFFAOYSA-N 0.000 description 1
- RSWGJHLUYNHPMX-ONCXSQPRSA-N abietic acid Chemical compound C([C@@H]12)CC(C(C)C)=CC1=CC[C@@H]1[C@]2(C)CCC[C@@]1(C)C(O)=O RSWGJHLUYNHPMX-ONCXSQPRSA-N 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 238000004760 accelerator mass spectrometry Methods 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 150000001243 acetic acids Chemical class 0.000 description 1
- 229920006322 acrylamide copolymer Polymers 0.000 description 1
- 150000003926 acrylamides Chemical class 0.000 description 1
- 229920006243 acrylic copolymer Polymers 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 235000015107 ale Nutrition 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000005250 alkyl acrylate group Chemical group 0.000 description 1
- 150000008051 alkyl sulfates Chemical class 0.000 description 1
- JIWBIWFOSCKQMA-LTKCOYKYSA-N all-cis-octadeca-6,9,12,15-tetraenoic acid Chemical compound CC\C=C/C\C=C/C\C=C/C\C=C/CCCCC(O)=O JIWBIWFOSCKQMA-LTKCOYKYSA-N 0.000 description 1
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical compound OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 1
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 1
- 229940037003 alum Drugs 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- CEGOLXSVJUTHNZ-UHFFFAOYSA-K aluminium tristearate Chemical compound [Al+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CEGOLXSVJUTHNZ-UHFFFAOYSA-K 0.000 description 1
- 229940063655 aluminum stearate Drugs 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 229940062909 amyl salicylate Drugs 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 230000001153 anti-wrinkle effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- YZXBAPSDXZZRGB-DOFZRALJSA-N arachidonic acid Chemical class CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O YZXBAPSDXZZRGB-DOFZRALJSA-N 0.000 description 1
- 235000021342 arachidonic acid Nutrition 0.000 description 1
- BTFJIXJJCSYFAL-UHFFFAOYSA-N arachidyl alcohol Natural products CCCCCCCCCCCCCCCCCCCCO BTFJIXJJCSYFAL-UHFFFAOYSA-N 0.000 description 1
- 229940070312 arachidyl propionate Drugs 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 150000001507 asparagine derivatives Chemical class 0.000 description 1
- 235000019606 astringent taste Nutrition 0.000 description 1
- 235000021302 avocado oil Nutrition 0.000 description 1
- 239000008163 avocado oil Substances 0.000 description 1
- JXLHNMVSKXFWAO-UHFFFAOYSA-N azane;7-fluoro-2,1,3-benzoxadiazole-4-sulfonic acid Chemical compound N.OS(=O)(=O)C1=CC=C(F)C2=NON=C12 JXLHNMVSKXFWAO-UHFFFAOYSA-N 0.000 description 1
- UHHXUPJJDHEMGX-UHFFFAOYSA-K azanium;manganese(3+);phosphonato phosphate Chemical compound [NH4+].[Mn+3].[O-]P([O-])(=O)OP([O-])([O-])=O UHHXUPJJDHEMGX-UHFFFAOYSA-K 0.000 description 1
- IRERQBUNZFJFGC-UHFFFAOYSA-L azure blue Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[S-]S[S-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-].[O-][Si]([O-])([O-])[O-] IRERQBUNZFJFGC-UHFFFAOYSA-L 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 229940084850 beheneth-10 Drugs 0.000 description 1
- 229940116226 behenic acid Drugs 0.000 description 1
- 125000002511 behenyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229940095076 benzaldehyde Drugs 0.000 description 1
- BLFLLBZGZJTVJG-UHFFFAOYSA-N benzocaine Chemical compound CCOC(=O)C1=CC=C(N)C=C1 BLFLLBZGZJTVJG-UHFFFAOYSA-N 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000001518 benzyl (E)-3-phenylprop-2-enoate Substances 0.000 description 1
- 229940007550 benzyl acetate Drugs 0.000 description 1
- NGHOLYJTSCBCGC-QXMHVHEDSA-N benzyl cinnamate Chemical compound C=1C=CC=CC=1\C=C/C(=O)OCC1=CC=CC=C1 NGHOLYJTSCBCGC-QXMHVHEDSA-N 0.000 description 1
- 229940034794 benzylparaben Drugs 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- 239000007844 bleaching agent Substances 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 235000012745 brilliant blue FCF Nutrition 0.000 description 1
- 239000004161 brilliant blue FCF Substances 0.000 description 1
- XVBRCOKDZVQYAY-UHFFFAOYSA-N bronidox Chemical compound [O-][N+](=O)C1(Br)COCOC1 XVBRCOKDZVQYAY-UHFFFAOYSA-N 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- WTOOLIQYCQJDBG-BJILWQEISA-N but-1-ene;(e)-but-2-ene Chemical compound CCC=C.C\C=C\C WTOOLIQYCQJDBG-BJILWQEISA-N 0.000 description 1
- 235000014121 butter Nutrition 0.000 description 1
- SKKTUOZKZKCGTB-UHFFFAOYSA-N butyl carbamate Chemical compound CCCCOC(N)=O SKKTUOZKZKCGTB-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- DHAZIUXMHRHVMP-UHFFFAOYSA-N butyl tetradecanoate Chemical compound CCCCCCCCCCCCCC(=O)OCCCC DHAZIUXMHRHVMP-UHFFFAOYSA-N 0.000 description 1
- 235000019282 butylated hydroxyanisole Nutrition 0.000 description 1
- CZBZUDVBLSSABA-UHFFFAOYSA-N butylated hydroxyanisole Chemical compound COC1=CC=C(O)C(C(C)(C)C)=C1.COC1=CC=C(O)C=C1C(C)(C)C CZBZUDVBLSSABA-UHFFFAOYSA-N 0.000 description 1
- 229940043253 butylated hydroxyanisole Drugs 0.000 description 1
- 229940095259 butylated hydroxytoluene Drugs 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 235000010237 calcium benzoate Nutrition 0.000 description 1
- 239000004301 calcium benzoate Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 235000010331 calcium propionate Nutrition 0.000 description 1
- 239000004330 calcium propionate Substances 0.000 description 1
- HZQXCUSDXIKLGS-UHFFFAOYSA-L calcium;dibenzoate;trihydrate Chemical compound O.O.O.[Ca+2].[O-]C(=O)C1=CC=CC=C1.[O-]C(=O)C1=CC=CC=C1 HZQXCUSDXIKLGS-UHFFFAOYSA-L 0.000 description 1
- ZCZLQYAECBEUBH-UHFFFAOYSA-L calcium;octadec-9-enoate Chemical compound [Ca+2].CCCCCCCCC=CCCCCCCCC([O-])=O.CCCCCCCCC=CCCCCCCCC([O-])=O ZCZLQYAECBEUBH-UHFFFAOYSA-L 0.000 description 1
- 239000004204 candelilla wax Substances 0.000 description 1
- 235000013868 candelilla wax Nutrition 0.000 description 1
- 229940073532 candelilla wax Drugs 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- SHZIWNPUGXLXDT-UHFFFAOYSA-N caproic acid ethyl ester Natural products CCCCCC(=O)OCC SHZIWNPUGXLXDT-UHFFFAOYSA-N 0.000 description 1
- 229940117949 captan Drugs 0.000 description 1
- 229940082484 carbomer-934 Drugs 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000007765 cera alba Substances 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 229940073669 ceteareth 20 Drugs 0.000 description 1
- 229940073639 ceteareth-6 Drugs 0.000 description 1
- 229940056318 ceteth-20 Drugs 0.000 description 1
- 229960003431 cetrimonium Drugs 0.000 description 1
- 229940074979 cetyl palmitate Drugs 0.000 description 1
- 229940048851 cetyl ricinoleate Drugs 0.000 description 1
- RLGQACBPNDBWTB-UHFFFAOYSA-N cetyltrimethylammonium ion Chemical compound CCCCCCCCCCCCCCCC[N+](C)(C)C RLGQACBPNDBWTB-UHFFFAOYSA-N 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 229920001429 chelating resin Polymers 0.000 description 1
- OIQPTROHQCGFEF-UHFFFAOYSA-L chembl1371409 Chemical compound [Na+].[Na+].OC1=CC=C2C=C(S([O-])(=O)=O)C=CC2=C1N=NC1=CC=C(S([O-])(=O)=O)C=C1 OIQPTROHQCGFEF-UHFFFAOYSA-L 0.000 description 1
- HBHZKFOUIUMKHV-UHFFFAOYSA-N chembl1982121 Chemical compound OC1=CC=C2C=CC=CC2=C1N=NC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O HBHZKFOUIUMKHV-UHFFFAOYSA-N 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- WDRFFJWBUDTUCA-UHFFFAOYSA-N chlorhexidine acetate Chemical compound CC(O)=O.CC(O)=O.C=1C=C(Cl)C=CC=1NC(N)=NC(N)=NCCCCCCN=C(N)N=C(N)NC1=CC=C(Cl)C=C1 WDRFFJWBUDTUCA-UHFFFAOYSA-N 0.000 description 1
- 229960001884 chlorhexidine diacetate Drugs 0.000 description 1
- VXIVSQZSERGHQP-UHFFFAOYSA-N chloroacetamide Chemical compound NC(=O)CCl VXIVSQZSERGHQP-UHFFFAOYSA-N 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- DHNRXBZYEKSXIM-UHFFFAOYSA-N chloromethylisothiazolinone Chemical compound CN1SC(Cl)=CC1=O DHNRXBZYEKSXIM-UHFFFAOYSA-N 0.000 description 1
- 229940031956 chlorothymol Drugs 0.000 description 1
- 229960005443 chloroxylenol Drugs 0.000 description 1
- 150000001840 cholesterol esters Chemical class 0.000 description 1
- 150000001841 cholesterols Chemical class 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- NGHOLYJTSCBCGC-UHFFFAOYSA-N cis-cinnamic acid benzyl ester Natural products C=1C=CC=CC=1C=CC(=O)OCC1=CC=CC=C1 NGHOLYJTSCBCGC-UHFFFAOYSA-N 0.000 description 1
- 235000020971 citrus fruits Nutrition 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000002734 clay mineral Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- AGVAZMGAQJOSFJ-WZHZPDAFSA-M cobalt(2+);[(2r,3s,4r,5s)-5-(5,6-dimethylbenzimidazol-1-yl)-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl] [(2r)-1-[3-[(1r,2r,3r,4z,7s,9z,12s,13s,14z,17s,18s,19r)-2,13,18-tris(2-amino-2-oxoethyl)-7,12,17-tris(3-amino-3-oxopropyl)-3,5,8,8,13,15,18,19-octamethyl-2 Chemical compound [Co+2].N#[C-].[N-]([C@@H]1[C@H](CC(N)=O)[C@@]2(C)CCC(=O)NC[C@@H](C)OP(O)(=O)O[C@H]3[C@H]([C@H](O[C@@H]3CO)N3C4=CC(C)=C(C)C=C4N=C3)O)\C2=C(C)/C([C@H](C\2(C)C)CCC(N)=O)=N/C/2=C\C([C@H]([C@@]/2(CC(N)=O)C)CCC(N)=O)=N\C\2=C(C)/C2=N[C@]1(C)[C@@](C)(CC(N)=O)[C@@H]2CCC(N)=O AGVAZMGAQJOSFJ-WZHZPDAFSA-M 0.000 description 1
- 229940031728 cocamidopropylamine oxide Drugs 0.000 description 1
- 229940098691 coco monoethanolamide Drugs 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 229940096362 cocoamphoacetate Drugs 0.000 description 1
- 229940071160 cocoate Drugs 0.000 description 1
- 229940096386 coconut alcohol Drugs 0.000 description 1
- 239000007957 coemulsifier Substances 0.000 description 1
- 229920001436 collagen Chemical class 0.000 description 1
- 229960005188 collagen Drugs 0.000 description 1
- 229940039585 comfrey leaf extract Drugs 0.000 description 1
- 239000000307 commiphora myrrha gum Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 208000010247 contact dermatitis Diseases 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 229940099112 cornstarch Drugs 0.000 description 1
- 229960004544 cortisone Drugs 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 229960001305 cysteine hydrochloride Drugs 0.000 description 1
- 229940086624 d&c orange no. 10 Drugs 0.000 description 1
- 125000005534 decanoate group Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 229940073499 decyl glucoside Drugs 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- SASYSVUEVMOWPL-NXVVXOECSA-N decyl oleate Chemical compound CCCCCCCCCCOC(=O)CCCCCCC\C=C/CCCCCCCC SASYSVUEVMOWPL-NXVVXOECSA-N 0.000 description 1
- 239000013530 defoamer Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 235000019258 dehydroacetic acid Nutrition 0.000 description 1
- 229940061632 dehydroacetic acid Drugs 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 1
- 230000003745 detangling effect Effects 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical group O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 229960005215 dichloroacetic acid Drugs 0.000 description 1
- 235000015872 dietary supplement Nutrition 0.000 description 1
- 238000000113 differential scanning calorimetry Methods 0.000 description 1
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 1
- GPLRAVKSCUXZTP-UHFFFAOYSA-N diglycerol Chemical compound OCC(O)COCC(O)CO GPLRAVKSCUXZTP-UHFFFAOYSA-N 0.000 description 1
- ZCPCLAPUXMZUCD-UHFFFAOYSA-M dihexadecyl(dimethyl)azanium;chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+](C)(C)CCCCCCCCCCCCCCCC ZCPCLAPUXMZUCD-UHFFFAOYSA-M 0.000 description 1
- 229940031578 diisopropyl adipate Drugs 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- SPCNPOWOBZQWJK-UHFFFAOYSA-N dimethoxy-(2-propan-2-ylsulfanylethylsulfanyl)-sulfanylidene-$l^{5}-phosphane Chemical compound COP(=S)(OC)SCCSC(C)C SPCNPOWOBZQWJK-UHFFFAOYSA-N 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- PKPOVTYZGGYDIJ-UHFFFAOYSA-N dioctyl carbonate Chemical compound CCCCCCCCOC(=O)OCCCCCCCC PKPOVTYZGGYDIJ-UHFFFAOYSA-N 0.000 description 1
- AMTWCFIAVKBGOD-UHFFFAOYSA-N dioxosilane;methoxy-dimethyl-trimethylsilyloxysilane Chemical compound O=[Si]=O.CO[Si](C)(C)O[Si](C)(C)C AMTWCFIAVKBGOD-UHFFFAOYSA-N 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- SMVRDGHCVNAOIN-UHFFFAOYSA-L disodium;1-dodecoxydodecane;sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O.CCCCCCCCCCCCOCCCCCCCCCCCC SMVRDGHCVNAOIN-UHFFFAOYSA-L 0.000 description 1
- PMPJQLCPEQFEJW-HPKCLRQXSA-L disodium;2-[(e)-2-[4-[4-[(e)-2-(2-sulfonatophenyl)ethenyl]phenyl]phenyl]ethenyl]benzenesulfonate Chemical compound [Na+].[Na+].[O-]S(=O)(=O)C1=CC=CC=C1\C=C\C1=CC=C(C=2C=CC(\C=C\C=3C(=CC=CC=3)S([O-])(=O)=O)=CC=2)C=C1 PMPJQLCPEQFEJW-HPKCLRQXSA-L 0.000 description 1
- XGZRAKBCYZIBKP-UHFFFAOYSA-L disodium;dihydroxide Chemical compound [OH-].[OH-].[Na+].[Na+] XGZRAKBCYZIBKP-UHFFFAOYSA-L 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 229940073551 distearyldimonium chloride Drugs 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 1
- MCPKSFINULVDNX-UHFFFAOYSA-N drometrizole Chemical compound CC1=CC=C(O)C(N2N=C3C=CC=CC3=N2)=C1 MCPKSFINULVDNX-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000009050 echinacin Substances 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- JAZBEHYOTPTENJ-UHFFFAOYSA-N eicosapentaenoic acid Natural products CCC=CCC=CCC=CCC=CCC=CCCCC(O)=O JAZBEHYOTPTENJ-UHFFFAOYSA-N 0.000 description 1
- IQLUYYHUNSSHIY-HZUMYPAESA-N eicosatetraenoic acid Chemical compound CCCCCCCCCCC\C=C\C=C\C=C\C=C\C(O)=O IQLUYYHUNSSHIY-HZUMYPAESA-N 0.000 description 1
- 125000006575 electron-withdrawing group Chemical group 0.000 description 1
- 229910001651 emery Inorganic materials 0.000 description 1
- 239000003974 emollient agent Substances 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical class [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 229930182833 estradiol Natural products 0.000 description 1
- 229960005309 estradiol Drugs 0.000 description 1
- 229940011871 estrogen Drugs 0.000 description 1
- 239000000262 estrogen Substances 0.000 description 1
- 235000019334 ethoxylated mono- and di- glycerides Nutrition 0.000 description 1
- HPMLGOFBKNGJAM-ONEGZZNKSA-N ethyl (e)-3-(1h-imidazol-5-yl)prop-2-enoate Chemical compound CCOC(=O)\C=C\C1=CN=CN1 HPMLGOFBKNGJAM-ONEGZZNKSA-N 0.000 description 1
- NYNCZOLNVTXTTP-UHFFFAOYSA-N ethyl 2-(1,3-dioxoisoindol-2-yl)acetate Chemical compound C1=CC=C2C(=O)N(CC(=O)OCC)C(=O)C2=C1 NYNCZOLNVTXTTP-UHFFFAOYSA-N 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 229940068171 ethyl hexyl salicylate Drugs 0.000 description 1
- 229940071106 ethylenediaminetetraacetate Drugs 0.000 description 1
- GJQLBGWSDGMZKM-UHFFFAOYSA-N ethylhexyl palmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC(CC)CCCCC GJQLBGWSDGMZKM-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 229940045761 evening primrose extract Drugs 0.000 description 1
- 235000008524 evening primrose extract Nutrition 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 210000004709 eyebrow Anatomy 0.000 description 1
- 210000000720 eyelash Anatomy 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 229940051147 fd&c yellow no. 6 Drugs 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000012847 fine chemical Substances 0.000 description 1
- 235000021323 fish oil Nutrition 0.000 description 1
- 239000000834 fixative Substances 0.000 description 1
- VWWQXMAJTJZDQX-UYBVJOGSSA-N flavin adenine dinucleotide Chemical compound C1=NC2=C(N)N=CN=C2N1[C@@H]([C@H](O)[C@@H]1O)O[C@@H]1CO[P@](O)(=O)O[P@@](O)(=O)OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C2=NC(=O)NC(=O)C2=NC2=C1C=C(C)C(C)=C2 VWWQXMAJTJZDQX-UYBVJOGSSA-N 0.000 description 1
- 235000019162 flavin adenine dinucleotide Nutrition 0.000 description 1
- 239000011714 flavin adenine dinucleotide Substances 0.000 description 1
- 229940093632 flavin-adenine dinucleotide Drugs 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical class O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000004811 fluoropolymer Substances 0.000 description 1
- 229960000304 folic acid Drugs 0.000 description 1
- 235000019152 folic acid Nutrition 0.000 description 1
- 239000011724 folic acid Substances 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- FOYKKGHVWRFIBD-UHFFFAOYSA-N gamma-tocopherol acetate Natural products CC(=O)OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1 FOYKKGHVWRFIBD-UHFFFAOYSA-N 0.000 description 1
- 235000004611 garlic Nutrition 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 235000010985 glycerol esters of wood rosin Nutrition 0.000 description 1
- 229940096886 glyceryl abietate Drugs 0.000 description 1
- 229940087068 glyceryl caprylate Drugs 0.000 description 1
- 229940075507 glyceryl monostearate Drugs 0.000 description 1
- 229940116338 glyceryl ricinoleate Drugs 0.000 description 1
- 229940049294 glyceryl stearate se Drugs 0.000 description 1
- 125000003827 glycol group Chemical group 0.000 description 1
- 229960002389 glycol salicylate Drugs 0.000 description 1
- 229940100242 glycol stearate Drugs 0.000 description 1
- 235000002532 grape seed extract Nutrition 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 239000000665 guar gum Substances 0.000 description 1
- 235000010417 guar gum Nutrition 0.000 description 1
- 229960002154 guar gum Drugs 0.000 description 1
- 239000003722 gum benzoin Substances 0.000 description 1
- 239000008233 hard water Substances 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000036074 healthy skin Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- IUJAMGNYPWYUPM-UHFFFAOYSA-N hentriacontane Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC IUJAMGNYPWYUPM-UHFFFAOYSA-N 0.000 description 1
- 239000002638 heterogeneous catalyst Substances 0.000 description 1
- 239000011964 heteropoly acid Substances 0.000 description 1
- ACGUYXCXAPNIKK-UHFFFAOYSA-N hexachlorophene Chemical compound OC1=C(Cl)C=C(Cl)C(Cl)=C1CC1=C(O)C(Cl)=CC(Cl)=C1Cl ACGUYXCXAPNIKK-UHFFFAOYSA-N 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-M hexadecanoate Chemical compound CCCCCCCCCCCCCCCC([O-])=O IPCSVZSSVZVIGE-UHFFFAOYSA-M 0.000 description 1
- PXDJXZJSCPSGGI-UHFFFAOYSA-N hexadecanoic acid hexadecyl ester Natural products CCCCCCCCCCCCCCCCOC(=O)CCCCCCCCCCCCCCC PXDJXZJSCPSGGI-UHFFFAOYSA-N 0.000 description 1
- XAMHKORMKJIEFW-AYTKPMRMSA-N hexadecyl (z,12r)-12-hydroxyoctadec-9-enoate Chemical compound CCCCCCCCCCCCCCCCOC(=O)CCCCCCC\C=C/C[C@H](O)CCCCCC XAMHKORMKJIEFW-AYTKPMRMSA-N 0.000 description 1
- QAKXLTNAJLFSQC-UHFFFAOYSA-N hexadecyl tetradecanoate Chemical compound CCCCCCCCCCCCCCCCOC(=O)CCCCCCCCCCCCC QAKXLTNAJLFSQC-UHFFFAOYSA-N 0.000 description 1
- 229940100463 hexyl laurate Drugs 0.000 description 1
- 235000002741 hibiscus rosa-sinensis Nutrition 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 229960000890 hydrocortisone Drugs 0.000 description 1
- 229920006007 hydrogenated polyisobutylene Polymers 0.000 description 1
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 1
- 229940023564 hydroxylated lanolin Drugs 0.000 description 1
- 229940072106 hydroxystearate Drugs 0.000 description 1
- 230000000774 hypoallergenic effect Effects 0.000 description 1
- OPEHDFRKFVXKNP-UHFFFAOYSA-N icosyl propanoate Chemical compound CCCCCCCCCCCCCCCCCCCCOC(=O)CC OPEHDFRKFVXKNP-UHFFFAOYSA-N 0.000 description 1
- ZCTXEAQXZGPWFG-UHFFFAOYSA-N imidurea Chemical compound O=C1NC(=O)N(CO)C1NC(=O)NCNC(=O)NC1C(=O)NC(=O)N1CO ZCTXEAQXZGPWFG-UHFFFAOYSA-N 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000001023 inorganic pigment Substances 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 239000001034 iron oxide pigment Substances 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 229940078545 isocetyl stearate Drugs 0.000 description 1
- 229940078546 isoeicosane Drugs 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229940100554 isononyl isononanoate Drugs 0.000 description 1
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 1
- 229940075495 isopropyl palmitate Drugs 0.000 description 1
- 229940089456 isopropyl stearate Drugs 0.000 description 1
- 239000012182 japan wax Substances 0.000 description 1
- 229940119170 jojoba wax Drugs 0.000 description 1
- 229940001447 lactate Drugs 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 229940099367 lanolin alcohols Drugs 0.000 description 1
- 229940031674 laureth-7 Drugs 0.000 description 1
- PYIDGJJWBIBVIA-UYTYNIKBSA-N lauryl glucoside Chemical compound CCCCCCCCCCCCO[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O PYIDGJJWBIBVIA-UYTYNIKBSA-N 0.000 description 1
- 229940048848 lauryl glucoside Drugs 0.000 description 1
- 239000001102 lavandula vera Substances 0.000 description 1
- 235000018219 lavender Nutrition 0.000 description 1
- 229940049918 linoleate Drugs 0.000 description 1
- 229960004488 linolenic acid Drugs 0.000 description 1
- JXNPEDYJTDQORS-UHFFFAOYSA-N linoleyl alcohol Natural products CCCCCC=CCC=CCCCCCCCCO JXNPEDYJTDQORS-UHFFFAOYSA-N 0.000 description 1
- 210000000088 lip Anatomy 0.000 description 1
- AGBQKNBQESQNJD-UHFFFAOYSA-M lipoate Chemical compound [O-]C(=O)CCCCC1CCSS1 AGBQKNBQESQNJD-UHFFFAOYSA-M 0.000 description 1
- 229940057995 liquid paraffin Drugs 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000011565 manganese chloride Substances 0.000 description 1
- 235000002867 manganese chloride Nutrition 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000001819 mass spectrum Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000005374 membrane filtration Methods 0.000 description 1
- 239000001771 mentha piperita Substances 0.000 description 1
- 229940041616 menthol Drugs 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 1
- BEGLCMHJXHIJLR-UHFFFAOYSA-N methylisothiazolinone Chemical compound CN1SC=CC1=O BEGLCMHJXHIJLR-UHFFFAOYSA-N 0.000 description 1
- 239000012184 mineral wax Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000001788 mono and diglycerides of fatty acids Substances 0.000 description 1
- VYQNWZOUAUKGHI-UHFFFAOYSA-N monobenzone Chemical compound C1=CC(O)=CC=C1OCC1=CC=CC=C1 VYQNWZOUAUKGHI-UHFFFAOYSA-N 0.000 description 1
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- 239000012170 montan wax Substances 0.000 description 1
- 229940105132 myristate Drugs 0.000 description 1
- 229940043348 myristyl alcohol Drugs 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- YWFWDNVOPHGWMX-UHFFFAOYSA-N n,n-dimethyldodecan-1-amine Chemical compound CCCCCCCCCCCCN(C)C YWFWDNVOPHGWMX-UHFFFAOYSA-N 0.000 description 1
- 235000021290 n-3 DPA Nutrition 0.000 description 1
- JXTPJDDICSTXJX-UHFFFAOYSA-N n-Triacontane Natural products CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC JXTPJDDICSTXJX-UHFFFAOYSA-N 0.000 description 1
- BOUCRWJEKAGKKG-UHFFFAOYSA-N n-[3-(diethylaminomethyl)-4-hydroxyphenyl]acetamide Chemical compound CCN(CC)CC1=CC(NC(C)=O)=CC=C1O BOUCRWJEKAGKKG-UHFFFAOYSA-N 0.000 description 1
- GQEZCXVZFLOKMC-UHFFFAOYSA-N n-alpha-hexadecene Natural products CCCCCCCCCCCCCCC=C GQEZCXVZFLOKMC-UHFFFAOYSA-N 0.000 description 1
- 210000000282 nail Anatomy 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 231100000344 non-irritating Toxicity 0.000 description 1
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 239000007764 o/w emulsion Substances 0.000 description 1
- MDLWEBWGXACWGE-UHFFFAOYSA-N octadecane Chemical compound [CH2]CCCCCCCCCCCCCCCCC MDLWEBWGXACWGE-UHFFFAOYSA-N 0.000 description 1
- KPWVFNOPNOTYNJ-UHFFFAOYSA-N octadecyl benzoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)C1=CC=CC=C1 KPWVFNOPNOTYNJ-UHFFFAOYSA-N 0.000 description 1
- AEIJTFQOBWATKX-UHFFFAOYSA-N octane-1,2-diol Chemical compound CCCCCCC(O)CO AEIJTFQOBWATKX-UHFFFAOYSA-N 0.000 description 1
- 125000005474 octanoate group Chemical class 0.000 description 1
- 229960002446 octanoic acid Drugs 0.000 description 1
- 229960003921 octisalate Drugs 0.000 description 1
- WCJLCOAEJIHPCW-UHFFFAOYSA-N octyl 2-hydroxybenzoate Chemical compound CCCCCCCCOC(=O)C1=CC=CC=C1O WCJLCOAEJIHPCW-UHFFFAOYSA-N 0.000 description 1
- YPMOZWCBANATQH-UHFFFAOYSA-N octyl 7-methyloctanoate Chemical compound CCCCCCCCOC(=O)CCCCCC(C)C YPMOZWCBANATQH-UHFFFAOYSA-N 0.000 description 1
- IIGMITQLXAGZTL-UHFFFAOYSA-N octyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCCCCCCC IIGMITQLXAGZTL-UHFFFAOYSA-N 0.000 description 1
- 229940048862 octyldodecyl neopentanoate Drugs 0.000 description 1
- 235000014593 oils and fats Nutrition 0.000 description 1
- 229960002969 oleic acid Drugs 0.000 description 1
- 229940099570 oleth-2 Drugs 0.000 description 1
- 229940055577 oleyl alcohol Drugs 0.000 description 1
- XMLQWXUVTXCDDL-UHFFFAOYSA-N oleyl alcohol Natural products CCCCCCC=CCCCCCCCCCCO XMLQWXUVTXCDDL-UHFFFAOYSA-N 0.000 description 1
- 235000020660 omega-3 fatty acid Nutrition 0.000 description 1
- 229940012843 omega-3 fatty acid Drugs 0.000 description 1
- 239000006014 omega-3 oil Substances 0.000 description 1
- 235000020665 omega-6 fatty acid Nutrition 0.000 description 1
- 229940033080 omega-6 fatty acid Drugs 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 239000004482 other powder Substances 0.000 description 1
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 1
- 239000012186 ozocerite Substances 0.000 description 1
- RARSHUDCJQSEFJ-UHFFFAOYSA-N p-Hydroxypropiophenone Chemical compound CCC(=O)C1=CC=C(O)C=C1 RARSHUDCJQSEFJ-UHFFFAOYSA-N 0.000 description 1
- 229940070805 p-chloro-m-cresol Drugs 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 239000006174 pH buffer Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 229940100460 peg-100 stearate Drugs 0.000 description 1
- 229940032066 peg-4 dilaurate Drugs 0.000 description 1
- 229940094332 peg-8 dimethicone Drugs 0.000 description 1
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 1
- 229960000969 phenyl salicylate Drugs 0.000 description 1
- 229940057874 phenyl trimethicone Drugs 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- LYKRPDCJKSXAHS-UHFFFAOYSA-N phenyl-(2,3,4,5-tetrahydroxyphenyl)methanone Chemical compound OC1=C(O)C(O)=CC(C(=O)C=2C=CC=CC=2)=C1O LYKRPDCJKSXAHS-UHFFFAOYSA-N 0.000 description 1
- PETXWIMJICIQTQ-UHFFFAOYSA-N phenylmethoxymethanol Chemical compound OCOCC1=CC=CC=C1 PETXWIMJICIQTQ-UHFFFAOYSA-N 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 230000029553 photosynthesis Effects 0.000 description 1
- 238000010672 photosynthesis Methods 0.000 description 1
- SHUZOJHMOBOZST-UHFFFAOYSA-N phylloquinone Natural products CC(C)CCCCC(C)CCC(C)CCCC(=CCC1=C(C)C(=O)c2ccccc2C1=O)C SHUZOJHMOBOZST-UHFFFAOYSA-N 0.000 description 1
- 210000002826 placenta Anatomy 0.000 description 1
- 230000027086 plasmid maintenance Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 108010064470 polyaspartate Proteins 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000059 polyethylene glycol stearate Polymers 0.000 description 1
- 229920000223 polyglycerol Polymers 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 1
- 229940068968 polysorbate 80 Drugs 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 235000020777 polyunsaturated fatty acids Nutrition 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 235000011056 potassium acetate Nutrition 0.000 description 1
- 239000008057 potassium phosphate buffer Substances 0.000 description 1
- BHZRJJOHZFYXTO-UHFFFAOYSA-L potassium sulfite Chemical compound [K+].[K+].[O-]S([O-])=O BHZRJJOHZFYXTO-UHFFFAOYSA-L 0.000 description 1
- 235000019252 potassium sulphite Nutrition 0.000 description 1
- 229940078492 ppg-17 Drugs 0.000 description 1
- 229960000249 pregnenolone Drugs 0.000 description 1
- OZZAYJQNMKMUSD-DMISRAGPSA-N pregnenolone succinate Chemical compound C1C=C2C[C@@H](OC(=O)CCC(O)=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H](C(=O)C)[C@@]1(C)CC2 OZZAYJQNMKMUSD-DMISRAGPSA-N 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000186 progesterone Substances 0.000 description 1
- 229960003387 progesterone Drugs 0.000 description 1
- ZPWFUIUNWDIYCJ-UHFFFAOYSA-N propan-2-yl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC(C)C ZPWFUIUNWDIYCJ-UHFFFAOYSA-N 0.000 description 1
- NJBNJRILTKLNQZ-UHFFFAOYSA-N propyl 4-hydroxybenzoate Chemical compound CCCOC(=O)C1=CC=C(O)C=C1.CCCOC(=O)C1=CC=C(O)C=C1 NJBNJRILTKLNQZ-UHFFFAOYSA-N 0.000 description 1
- 239000000473 propyl gallate Substances 0.000 description 1
- 235000010388 propyl gallate Nutrition 0.000 description 1
- 229940075579 propyl gallate Drugs 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 235000021251 pulses Nutrition 0.000 description 1
- 235000007682 pyridoxal 5'-phosphate Nutrition 0.000 description 1
- 239000011589 pyridoxal 5'-phosphate Substances 0.000 description 1
- 229960001327 pyridoxal phosphate Drugs 0.000 description 1
- LXNHXLLTXMVWPM-UHFFFAOYSA-N pyridoxine Chemical compound CC1=NC=C(CO)C(CO)=C1O LXNHXLLTXMVWPM-UHFFFAOYSA-N 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 229940032044 quaternium-18 Drugs 0.000 description 1
- GHBFNMLVSPCDGN-UHFFFAOYSA-N rac-1-monooctanoylglycerol Chemical compound CCCCCCCC(=O)OCC(O)CO GHBFNMLVSPCDGN-UHFFFAOYSA-N 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000000979 retarding effect Effects 0.000 description 1
- 229940108325 retinyl palmitate Drugs 0.000 description 1
- 235000019172 retinyl palmitate Nutrition 0.000 description 1
- 239000011769 retinyl palmitate Substances 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 239000002151 riboflavin Substances 0.000 description 1
- 235000019192 riboflavin Nutrition 0.000 description 1
- 229960002477 riboflavin Drugs 0.000 description 1
- 229940100486 rice starch Drugs 0.000 description 1
- WBHHMMIMDMUBKC-XLNAKTSKSA-N ricinelaidic acid Chemical compound CCCCCC[C@@H](O)C\C=C\CCCCCCCC(O)=O WBHHMMIMDMUBKC-XLNAKTSKSA-N 0.000 description 1
- 238000002390 rotary evaporation Methods 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- 229960001860 salicylate Drugs 0.000 description 1
- 229940071089 sarcosinate Drugs 0.000 description 1
- 235000003441 saturated fatty acids Nutrition 0.000 description 1
- 150000004671 saturated fatty acids Chemical class 0.000 description 1
- 210000002374 sebum Anatomy 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 235000019615 sensations Nutrition 0.000 description 1
- 230000001235 sensitizing effect Effects 0.000 description 1
- 239000008257 shaving cream Substances 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229940083037 simethicone Drugs 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 208000017520 skin disease Diseases 0.000 description 1
- 231100000430 skin reaction Toxicity 0.000 description 1
- 230000035483 skin reaction Effects 0.000 description 1
- 231100000370 skin sensitisation Toxicity 0.000 description 1
- 229940107518 slippery elm bark Drugs 0.000 description 1
- 229940047670 sodium acrylate Drugs 0.000 description 1
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 description 1
- BTURAGWYSMTVOW-UHFFFAOYSA-M sodium dodecanoate Chemical compound [Na+].CCCCCCCCCCCC([O-])=O BTURAGWYSMTVOW-UHFFFAOYSA-M 0.000 description 1
- HLBBKKJFGFRGMU-UHFFFAOYSA-M sodium formate Chemical compound [Na+].[O-]C=O HLBBKKJFGFRGMU-UHFFFAOYSA-M 0.000 description 1
- 235000019254 sodium formate Nutrition 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 239000001540 sodium lactate Substances 0.000 description 1
- 235000011088 sodium lactate Nutrition 0.000 description 1
- 229940005581 sodium lactate Drugs 0.000 description 1
- 229940082004 sodium laurate Drugs 0.000 description 1
- 229940045944 sodium lauroyl glutamate Drugs 0.000 description 1
- 229940001584 sodium metabisulfite Drugs 0.000 description 1
- 235000010262 sodium metabisulphite Nutrition 0.000 description 1
- 239000011684 sodium molybdate Substances 0.000 description 1
- 235000015393 sodium molybdate Nutrition 0.000 description 1
- TVXXNOYZHKPKGW-UHFFFAOYSA-N sodium molybdate (anhydrous) Chemical compound [Na+].[Na+].[O-][Mo]([O-])(=O)=O TVXXNOYZHKPKGW-UHFFFAOYSA-N 0.000 description 1
- 229940045871 sodium palmitoyl proline Drugs 0.000 description 1
- 229960001922 sodium perborate Drugs 0.000 description 1
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 229940001482 sodium sulfite Drugs 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 229940048842 sodium xylenesulfonate Drugs 0.000 description 1
- GJIFNLAZXVYJDI-FYZYNONXSA-M sodium;(2s)-1-hexadecanoylpyrrolidine-2-carboxylate Chemical compound [Na+].CCCCCCCCCCCCCCCC(=O)N1CCC[C@H]1C([O-])=O GJIFNLAZXVYJDI-FYZYNONXSA-M 0.000 description 1
- IWIUXJGIDSGWDN-UQKRIMTDSA-M sodium;(2s)-2-(dodecanoylamino)pentanedioate;hydron Chemical compound [Na+].CCCCCCCCCCCC(=O)N[C@H](C([O-])=O)CCC(O)=O IWIUXJGIDSGWDN-UQKRIMTDSA-M 0.000 description 1
- LUPNKHXLFSSUGS-UHFFFAOYSA-M sodium;2,2-dichloroacetate Chemical compound [Na+].[O-]C(=O)C(Cl)Cl LUPNKHXLFSSUGS-UHFFFAOYSA-M 0.000 description 1
- AMJZVHHOVFFTOM-UHFFFAOYSA-M sodium;2-(2-hexanoyloxypropanoyloxy)propanoate Chemical compound [Na+].CCCCCC(=O)OC(C)C(=O)OC(C)C([O-])=O AMJZVHHOVFFTOM-UHFFFAOYSA-M 0.000 description 1
- ZUFONQSOSYEWCN-UHFFFAOYSA-M sodium;2-(methylamino)acetate Chemical compound [Na+].CNCC([O-])=O ZUFONQSOSYEWCN-UHFFFAOYSA-M 0.000 description 1
- IZWPGJFSBABFGL-GMFCBQQYSA-M sodium;2-[methyl-[(z)-octadec-9-enoyl]amino]ethanesulfonate Chemical compound [Na+].CCCCCCCC\C=C/CCCCCCCC(=O)N(C)CCS([O-])(=O)=O IZWPGJFSBABFGL-GMFCBQQYSA-M 0.000 description 1
- QAEVVAMQWJMMGX-UHFFFAOYSA-M sodium;didodecyl phosphate Chemical compound [Na+].CCCCCCCCCCCCOP([O-])(=O)OCCCCCCCCCCCC QAEVVAMQWJMMGX-UHFFFAOYSA-M 0.000 description 1
- YKLJGMBLPUQQOI-UHFFFAOYSA-M sodium;oxidooxy(oxo)borane Chemical compound [Na+].[O-]OB=O YKLJGMBLPUQQOI-UHFFFAOYSA-M 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 239000002195 soluble material Substances 0.000 description 1
- 229950004959 sorbitan oleate Drugs 0.000 description 1
- 229960005078 sorbitan sesquioleate Drugs 0.000 description 1
- 229960002920 sorbitol Drugs 0.000 description 1
- 229940084106 spermaceti Drugs 0.000 description 1
- 239000012177 spermaceti Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229940032094 squalane Drugs 0.000 description 1
- 229940031439 squalene Drugs 0.000 description 1
- TUHBEKDERLKLEC-UHFFFAOYSA-N squalene Natural products CC(=CCCC(=CCCC(=CCCC=C(/C)CCC=C(/C)CC=C(C)C)C)C)C TUHBEKDERLKLEC-UHFFFAOYSA-N 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000001546 stable isotope ratio mass spectrometry Methods 0.000 description 1
- 238000007655 standard test method Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000001256 steam distillation Methods 0.000 description 1
- 229940100459 steareth-20 Drugs 0.000 description 1
- 229940073743 steareth-20 methacrylate Drugs 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000003432 sterols Chemical class 0.000 description 1
- 235000003702 sterols Nutrition 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 239000001957 sucroglyceride Substances 0.000 description 1
- 235000010964 sucroglyceride Nutrition 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000000194 supercritical-fluid extraction Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 239000003760 tallow Substances 0.000 description 1
- LRBQNJMCXXYXIU-NRMVVENXSA-N tannic acid Chemical compound OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-NRMVVENXSA-N 0.000 description 1
- 235000015523 tannic acid Nutrition 0.000 description 1
- 229920002258 tannic acid Polymers 0.000 description 1
- 229940033123 tannic acid Drugs 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 235000019640 taste Nutrition 0.000 description 1
- 229940105956 tea-dodecylbenzenesulfonate Drugs 0.000 description 1
- 108010075550 termamyl Proteins 0.000 description 1
- 229940116411 terpineol Drugs 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
- 229960003604 testosterone Drugs 0.000 description 1
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 1
- 239000011721 thiamine Substances 0.000 description 1
- 235000019157 thiamine Nutrition 0.000 description 1
- KYMBYSLLVAOCFI-UHFFFAOYSA-N thiamine Chemical compound CC1=C(CCO)SCN1CC1=CN=C(C)N=C1N KYMBYSLLVAOCFI-UHFFFAOYSA-N 0.000 description 1
- 229960003495 thiamine Drugs 0.000 description 1
- 229960002363 thiamine pyrophosphate Drugs 0.000 description 1
- 235000008170 thiamine pyrophosphate Nutrition 0.000 description 1
- 239000011678 thiamine pyrophosphate Substances 0.000 description 1
- YXVCLPJQTZXJLH-UHFFFAOYSA-N thiamine(1+) diphosphate chloride Chemical compound [Cl-].CC1=C(CCOP(O)(=O)OP(O)(O)=O)SC=[N+]1CC1=CN=C(C)N=C1N YXVCLPJQTZXJLH-UHFFFAOYSA-N 0.000 description 1
- 239000001585 thymus vulgaris Substances 0.000 description 1
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 229960000984 tocofersolan Drugs 0.000 description 1
- 235000010384 tocopherol Nutrition 0.000 description 1
- 229960001295 tocopherol Drugs 0.000 description 1
- 235000019149 tocopherols Nutrition 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- LOIYMIARKYCTBW-OWOJBTEDSA-N trans-urocanic acid Chemical compound OC(=O)\C=C\C1=CNC=N1 LOIYMIARKYCTBW-OWOJBTEDSA-N 0.000 description 1
- LOIYMIARKYCTBW-UHFFFAOYSA-N trans-urocanic acid Natural products OC(=O)C=CC1=CNC=N1 LOIYMIARKYCTBW-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- WCLDITPGPXSPGV-UHFFFAOYSA-N tricamba Chemical compound COC1=C(Cl)C=C(Cl)C(Cl)=C1C(O)=O WCLDITPGPXSPGV-UHFFFAOYSA-N 0.000 description 1
- 229940077400 trideceth-12 Drugs 0.000 description 1
- 125000002889 tridecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229940117013 triethanolamine oleate Drugs 0.000 description 1
- BSVBQGMMJUBVOD-UHFFFAOYSA-N trisodium borate Chemical compound [Na+].[Na+].[Na+].[O-]B([O-])[O-] BSVBQGMMJUBVOD-UHFFFAOYSA-N 0.000 description 1
- UJMBCXLDXJUMFB-UHFFFAOYSA-K trisodium;5-oxo-1-(4-sulfonatophenyl)-4-[(4-sulfonatophenyl)diazenyl]-4h-pyrazole-3-carboxylate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)C1=NN(C=2C=CC(=CC=2)S([O-])(=O)=O)C(=O)C1N=NC1=CC=C(S([O-])(=O)=O)C=C1 UJMBCXLDXJUMFB-UHFFFAOYSA-K 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 235000013799 ultramarine blue Nutrition 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 229940005605 valeric acid Drugs 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- MWOOGOJBHIARFG-UHFFFAOYSA-N vanillin Chemical compound COC1=CC(C=O)=CC=C1O MWOOGOJBHIARFG-UHFFFAOYSA-N 0.000 description 1
- 235000012141 vanillin Nutrition 0.000 description 1
- FGQOOHJZONJGDT-UHFFFAOYSA-N vanillin Natural products COC1=CC(O)=CC(C=O)=C1 FGQOOHJZONJGDT-UHFFFAOYSA-N 0.000 description 1
- 229940117960 vanillin Drugs 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 235000019155 vitamin A Nutrition 0.000 description 1
- 239000011719 vitamin A Substances 0.000 description 1
- 235000019156 vitamin B Nutrition 0.000 description 1
- 239000011720 vitamin B Substances 0.000 description 1
- 235000019163 vitamin B12 Nutrition 0.000 description 1
- 239000011715 vitamin B12 Substances 0.000 description 1
- 235000019166 vitamin D Nutrition 0.000 description 1
- 239000011710 vitamin D Substances 0.000 description 1
- 150000003710 vitamin D derivatives Chemical class 0.000 description 1
- 235000019168 vitamin K Nutrition 0.000 description 1
- 239000011712 vitamin K Substances 0.000 description 1
- 150000003721 vitamin K derivatives Chemical class 0.000 description 1
- 229940045997 vitamin a Drugs 0.000 description 1
- 229940011671 vitamin b6 Drugs 0.000 description 1
- 229940046008 vitamin d Drugs 0.000 description 1
- 229940046010 vitamin k Drugs 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000010497 wheat germ oil Substances 0.000 description 1
- 229940100445 wheat starch Drugs 0.000 description 1
- 239000003871 white petrolatum Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 1
- QUEDXNHFTDJVIY-UHFFFAOYSA-N γ-tocopherol Chemical class OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1 QUEDXNHFTDJVIY-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/33—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
- A61K8/34—Alcohols
- A61K8/345—Alcohols containing more than one hydroxy group
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N1/00—Preservation of bodies of humans or animals, or parts thereof
- A01N1/02—Preservation of living parts
- A01N1/0205—Chemical aspects
- A01N1/021—Preservation or perfusion media, liquids, solids or gases used in the preservation of cells, tissue, organs or bodily fluids
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N25/00—Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
- A01N25/02—Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N3/00—Preservation of plants or parts thereof, e.g. inhibiting evaporation, improvement of the appearance of leaves or protection against physical influences such as UV radiation using chemical compositions; Grafting wax
-
- A—HUMAN NECESSITIES
- A21—BAKING; EDIBLE DOUGHS
- A21D—TREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
- A21D2/00—Treatment of flour or dough by adding materials thereto before or during baking
- A21D2/08—Treatment of flour or dough by adding materials thereto before or during baking by adding organic substances
- A21D2/14—Organic oxygen compounds
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23B—PRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
- A23B7/00—Preservation or chemical ripening of fruit or vegetables
- A23B7/14—Preserving or ripening with chemicals not covered by groups A23B7/08 or A23B7/10
- A23B7/153—Preserving or ripening with chemicals not covered by groups A23B7/08 or A23B7/10 in the form of liquids or solids
- A23B7/154—Organic compounds; Microorganisms; Enzymes
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K20/00—Accessory food factors for animal feeding-stuffs
- A23K20/10—Organic substances
- A23K20/105—Aliphatic or alicyclic compounds
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L2/00—Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
- A23L2/52—Adding ingredients
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L29/00—Foods or foodstuffs containing additives; Preparation or treatment thereof
- A23L29/03—Organic compounds
- A23L29/035—Organic compounds containing oxygen as heteroatom
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L29/00—Foods or foodstuffs containing additives; Preparation or treatment thereof
- A23L29/03—Organic compounds
- A23L29/035—Organic compounds containing oxygen as heteroatom
- A23L29/04—Fatty acids or derivatives
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L29/00—Foods or foodstuffs containing additives; Preparation or treatment thereof
- A23L29/10—Foods or foodstuffs containing additives; Preparation or treatment thereof containing emulsifiers
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L3/00—Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
- A23L3/34—Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
- A23L3/3454—Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of liquids or solids
- A23L3/3463—Organic compounds; Microorganisms; Enzymes
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/115—Fatty acids or derivatives thereof; Fats or oils
- A23L33/12—Fatty acids or derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/21—Esters, e.g. nitroglycerine, selenocyanates
- A61K31/215—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
- A61K31/22—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acyclic acids, e.g. pravastatin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K36/00—Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
- A61K36/02—Algae
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K36/00—Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
- A61K36/18—Magnoliophyta (angiosperms)
- A61K36/185—Magnoliopsida (dicotyledons)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K36/00—Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
- A61K36/18—Magnoliophyta (angiosperms)
- A61K36/185—Magnoliopsida (dicotyledons)
- A61K36/28—Asteraceae or Compositae (Aster or Sunflower family), e.g. chamomile, feverfew, yarrow or echinacea
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K36/00—Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
- A61K36/18—Magnoliophyta (angiosperms)
- A61K36/185—Magnoliopsida (dicotyledons)
- A61K36/35—Caprifoliaceae (Honeysuckle family)
- A61K36/355—Lonicera (honeysuckle)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K36/00—Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
- A61K36/18—Magnoliophyta (angiosperms)
- A61K36/185—Magnoliopsida (dicotyledons)
- A61K36/61—Myrtaceae (Myrtle family), e.g. teatree or eucalyptus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K36/00—Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
- A61K36/18—Magnoliophyta (angiosperms)
- A61K36/185—Magnoliopsida (dicotyledons)
- A61K36/73—Rosaceae (Rose family), e.g. strawberry, chokeberry, blackberry, pear or firethorn
- A61K36/738—Rosa (rose)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/10—Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/06—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
- A61K47/08—Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
- A61K47/14—Esters of carboxylic acids, e.g. fatty acid monoglycerides, medium-chain triglycerides, parabens or PEG fatty acid esters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/44—Oils, fats or waxes according to two or more groups of A61K47/02-A61K47/42; Natural or modified natural oils, fats or waxes, e.g. castor oil, polyethoxylated castor oil, montan wax, lignite, shellac, rosin, beeswax or lanolin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/02—Cosmetics or similar toiletry preparations characterised by special physical form
- A61K8/0208—Tissues; Wipes; Patches
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/33—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
- A61K8/37—Esters of carboxylic acids
- A61K8/375—Esters of carboxylic acids the alcohol moiety containing more than one hydroxy group
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/92—Oils, fats or waxes; Derivatives thereof, e.g. hydrogenation products thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q1/00—Make-up preparations; Body powders; Preparations for removing make-up
- A61Q1/02—Preparations containing skin colorants, e.g. pigments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q1/00—Make-up preparations; Body powders; Preparations for removing make-up
- A61Q1/02—Preparations containing skin colorants, e.g. pigments
- A61Q1/08—Preparations containing skin colorants, e.g. pigments for cheeks, e.g. rouge
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q1/00—Make-up preparations; Body powders; Preparations for removing make-up
- A61Q1/02—Preparations containing skin colorants, e.g. pigments
- A61Q1/10—Preparations containing skin colorants, e.g. pigments for eyes, e.g. eyeliner, mascara
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q1/00—Make-up preparations; Body powders; Preparations for removing make-up
- A61Q1/14—Preparations for removing make-up
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q11/00—Preparations for care of the teeth, of the oral cavity or of dentures; Dentifrices, e.g. toothpastes; Mouth rinses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q13/00—Formulations or additives for perfume preparations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q15/00—Anti-perspirants or body deodorants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q17/00—Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q17/00—Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
- A61Q17/005—Antimicrobial preparations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q17/00—Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
- A61Q17/04—Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
- A61Q19/002—Aftershave preparations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
- A61Q19/007—Preparations for dry skin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
- A61Q19/008—Preparations for oily skin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
- A61Q19/10—Washing or bathing preparations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q5/00—Preparations for care of the hair
- A61Q5/02—Preparations for cleaning the hair
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q5/00—Preparations for care of the hair
- A61Q5/06—Preparations for styling the hair, e.g. by temporary shaping or colouring
- A61Q5/065—Preparations for temporary colouring the hair, e.g. direct dyes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q5/00—Preparations for care of the hair
- A61Q5/12—Preparations containing hair conditioners
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q9/00—Preparations for removing hair or for aiding hair removal
- A61Q9/02—Shaving preparations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q9/00—Preparations for removing hair or for aiding hair removal
- A61Q9/04—Depilatories
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D11/00—Solvent extraction
- B01D11/02—Solvent extraction of solids
- B01D11/0288—Applications, solvents
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F5/00—Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
- C02F5/08—Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
- C02F5/10—Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/08—Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/02—Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen
- C07C69/12—Acetic acid esters
- C07C69/16—Acetic acid esters of dihydroxylic compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/02—Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen
- C07C69/22—Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen having three or more carbon atoms in the acid moiety
- C07C69/28—Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen having three or more carbon atoms in the acid moiety esterified with dihydroxylic compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/34—Esters of acyclic saturated polycarboxylic acids having an esterified carboxyl group bound to an acyclic carbon atom
- C07C69/44—Adipic acid esters
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/52—Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
- C07C69/533—Monocarboxylic acid esters having only one carbon-to-carbon double bond
- C07C69/58—Esters of straight chain acids with eighteen carbon atoms in the acid moiety
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/52—Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
- C07C69/593—Dicarboxylic acid esters having only one carbon-to-carbon double bond
- C07C69/60—Maleic acid esters; Fumaric acid esters
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C69/00—Esters of carboxylic acids; Esters of carbonic or haloformic acids
- C07C69/76—Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
- C07C69/78—Benzoic acid esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/05—Alcohols; Metal alcoholates
- C08K5/053—Polyhydroxylic alcohols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/10—Esters; Ether-esters
- C08K5/101—Esters; Ether-esters of monocarboxylic acids
- C08K5/103—Esters; Ether-esters of monocarboxylic acids with polyalcohols
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/02—Printing inks
- C09D11/03—Printing inks characterised by features other than the chemical nature of the binder
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/16—Writing inks
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/30—Inkjet printing inks
- C09D11/38—Inkjet printing inks characterised by non-macromolecular additives other than solvents, pigments or dyes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/63—Additives non-macromolecular organic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09G—POLISHING COMPOSITIONS; SKI WAXES
- C09G1/00—Polishing compositions
- C09G1/06—Other polishing compositions
- C09G1/08—Other polishing compositions based on wax
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/18—Materials not provided for elsewhere for application to surfaces to minimize adherence of ice, mist or water thereto; Thawing or antifreeze materials for application to surfaces
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/18—Materials not provided for elsewhere for application to surfaces to minimize adherence of ice, mist or water thereto; Thawing or antifreeze materials for application to surfaces
- C09K3/185—Thawing materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/08—Materials not undergoing a change of physical state when used
- C09K5/10—Liquid materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K5/00—Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
- C09K5/20—Antifreeze additives therefor, e.g. for radiator liquids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M129/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
- C10M129/02—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
- C10M129/04—Hydroxy compounds
- C10M129/06—Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
- C10M129/08—Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms containing at least 2 hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11C—FATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
- C11C3/00—Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
- C11C3/003—Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fatty acids with alcohols
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
- C11D1/667—Neutral esters, e.g. sorbitan esters
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/2003—Alcohols; Phenols
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/2003—Alcohols; Phenols
- C11D3/2041—Dihydric alcohols
- C11D3/2044—Dihydric alcohols linear
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/2068—Ethers
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/2093—Esters; Carbonates
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/34—Organic compounds containing sulfur
- C11D3/3418—Toluene -, xylene -, cumene -, benzene - or naphthalene sulfonates or sulfates
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/38—Products with no well-defined composition, e.g. natural products
- C11D3/386—Preparations containing enzymes, e.g. protease or amylase
- C11D3/38663—Stabilised liquid enzyme compositions
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D7/00—Compositions of detergents based essentially on non-surface-active compounds
- C11D7/22—Organic compounds
- C11D7/26—Organic compounds containing oxygen
- C11D7/266—Esters or carbonates
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D7/00—Compositions of detergents based essentially on non-surface-active compounds
- C11D7/50—Solvents
- C11D7/5004—Organic solvents
- C11D7/5022—Organic solvents containing oxygen
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/02—Preparation of oxygen-containing organic compounds containing a hydroxy group
- C12P7/04—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
- C12P7/18—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
- C12P7/42—Hydroxy-carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/62—Carboxylic acid esters
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2002/00—Food compositions, function of food ingredients or processes for food or foodstuffs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/10—General cosmetic use
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/40—Chemical, physico-chemical or functional or structural properties of particular ingredients
- A61K2800/42—Colour properties
- A61K2800/43—Pigments; Dyes
- A61K2800/436—Interference pigments, e.g. Iridescent, Pearlescent
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/40—Chemical, physico-chemical or functional or structural properties of particular ingredients
- A61K2800/52—Stabilizers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/40—Chemical, physico-chemical or functional or structural properties of particular ingredients
- A61K2800/52—Stabilizers
- A61K2800/524—Preservatives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/74—Biological properties of particular ingredients
- A61K2800/75—Anti-irritant
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/06—Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/20—Pills, tablets, discs, rods
- A61K9/28—Dragees; Coated pills or tablets, e.g. with film or compression coating
- A61K9/2806—Coating materials
- A61K9/282—Organic compounds, e.g. fats
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
- A61Q19/005—Preparations for sensitive skin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
- A61Q19/04—Preparations for care of the skin for chemically tanning the skin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q5/00—Preparations for care of the hair
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q5/00—Preparations for care of the hair
- A61Q5/10—Preparations for permanently dyeing the hair
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/018—Additives for biodegradable polymeric composition
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/021—Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2207/022—Hydroxy compounds having hydroxy groups bound to acyclic or cycloaliphatic carbon atoms containing at least two hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/04—Ethers; Acetals; Ortho-esters; Ortho-carbonates
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/283—Esters of polyhydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/02—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/08—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
- C10M2209/086—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type polycarboxylic, e.g. maleic acid
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/04—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2215/042—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/22—Heterocyclic nitrogen compounds
- C10M2215/223—Five-membered rings containing nitrogen and carbon only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2229/00—Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
- C10M2229/04—Siloxanes with specific structure
- C10M2229/042—Siloxanes with specific structure containing aromatic substituents
- C10M2229/0425—Siloxanes with specific structure containing aromatic substituents used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/64—Environmental friendly compositions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/08—Hydraulic fluids, e.g. brake-fluids
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D2111/00—Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
- C11D2111/10—Objects to be cleaned
- C11D2111/12—Soft surfaces, e.g. textile
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D2111/00—Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
- C11D2111/10—Objects to be cleaned
- C11D2111/14—Hard surfaces
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/37—Wastewater or sewage treatment systems using renewable energies using solar energy
Definitions
- the invention relates to biodegradable flavoring agent compositions comprising 1,3-propanediol, 1,3-propanediol ester, or combinations thereof.
- Greenhouse gases are gases that allow sunlight to enter the atmosphere freely. When sunlight strikes the Earth's surface, some of it is reflected back towards space as infrared radiation. Greenhouse gases absorb this infrared radiation and trap the heat in the atmosphere. Over time, the amount of energy sent from the sun to the Earth's surface should be about the same as the amount of energy radiated back into space, leaving the temperature of the Earth's surface roughly constant. However, increasing the quantity of greenhouse gases above the quantity that existed before the rise of human industrialization is thought to increase the retained heat on the Earth's surface and produce the global warming observed in the last two centuries.
- Carbon dioxide is singled out as the largest component of the collection of greenhouse gases in the atmosphere.
- the level of atmospheric carbon dioxide has increased 50% in the last two hundred years. Any further addition of carbon dioxide to the atmosphere is thought to further shift the effect of greenhouse gases from stabilization of global temperatures to that of heating.
- Consumers and environmental protection groups alike have identified industrial release of carbon into the atmosphere as the source of carbon causing the greenhouse effect. Only organic products composed of carbon molecules from renewably based sources such as plant sugars and starches and ultimately atmospheric carbon are considered to not further contribute to the greenhouse effect, when compared to the same organic molecules that are petroleum or fossil fuel based.
- Published U.S. Patent Application No. 2005/0069997 discloses a process for purifying 1,3-propanediol from the fermentation broth of a cultured E. coli that has been bioengineered to synthesize 1,3-propanediol from sugar.
- the basic process entails filtration, ion exchange and distillation of the fermentation broth product stream, preferably including chemical reduction of the product during the distillation procedure.
- highly purified compositions of 1,3-propanediol are also provided.
- glycols in the compositions benefit from glycols in the compositions as, for example, surfactants, humectants, solvents, neutralizers, emulsifiers, preservatives and/or fragrance enhancers and fixatives.
- glycol component in personal care applications include propylene glycol, 1,3-butylene glycol, or 2-methyl-1,3-propanediol. Because of production costs and relative low purity, conventional 1,3-propanediol, though exhibiting properties equal to if not better than the aforementioned glycols, generally is not used in such compositions.
- botanical, vegetal, protein/peptide, marine, algae or milk extract, or fragrance concentrate or oil consumers pay attention to the quality and environmental impact of the product.
- botanical, vegetal, protein/peptide, marine, algae and milk extracts, and fragrance concentrates utilize chemical solvents, such as propylene glycol, 2-methyl-1,3-propanediol, butylene glycol, dipropylene glycol, synthetic glycerin, and ethanol, for the extraction process. In many cases these chemical solvents are used in combination with each other.
- Essential oils extracted from plants are widely used cosmetic and personal care formulations. Colors extracted from plants are used in the food and non-food-industry. Medicinal plant extractions are being used for the treatment various disorders. Though several methods can be used for extraction of flavors, fragrances, colors, and active ingredients, solvent extraction is one of widely used method. Selective extraction of required ingredients, stability of the extracted ingredients, and separation of ingredients from unwanted solvents are key factors for extraction. When volatile solvents such as ethanol used for extraction of active ingredients, they need to be removed before using the ingredients in formulations. When solvents are removed some of the active ingredients may not be stable and decompose.
- Detergent compositions comprising 1,3-propanediol are provided, and the 1,3-propanediol in the composition is biologically derived. Also provided are detergent compositions comprising an ester of 1,3-propanediol. In these compositions, the ester can have at least 3% biobased carbon.
- Solvents for diluting and extracting natural extracts are often synthetic, petroleum based organic solvents.
- Botanical, vegetal, protein/peptide, marine, algae, and milk extracts also known as an essential oils, are an attractive component in many compositions. These essential oils impart aromatics, active ingredients, and other functionalities such as hand-feel, softening, emoillency, healing, cooling, refreshing, antimicrobial, astringency, nail-strengthening, promotion of healthy skin tissue and hair, cleansing, stimulating, whitening, delivery of anti-oxidants and skin-soothing attributes to a product.
- Essential oils are the volatile oils of plant/vegetal, protein/peptide, lipid, marine, algae or milk materials that have been removed either by distillation or solvent extraction.
- Bio-derived 1,3-propanediol and its conjugate esters can be used as a solvent to extract essential oils and other extracts from extract sources.
- Bio-derived 1,3-propanediol and its conjugate esters can be used as a solvent system for botanical extracts and fragrance concentrates and oils at a 10% to approaching 100% concentration range.
- biologically-derived 1,3-propanediol and its conjugate esters can be used as a solvent to dilute or solubilize extracts in compositions.
- Biologically-derived 1,3-propanediol and its conjugate esters are unique as solvents in that they are naturally derived, and therefore attractive to consumers who avoid synthetic chemicals.
- Biologically-derived 1,3-propanediol and its conjugate esters provide for non-irritating solvents for the extraction and dilution of botanicals, vegetal, protein/peptide, marine, algae, milk substrates or fragrance concentrates and oils.
- the solvent is composed of all natural components, the term “all natural” as used herein refers to a product that is manufactured from ingredients that are natural occurring.
- biologically derived 1,3-propanediol comprises non-petroleum based carbon.
- conjugate esters of biologically-derived 1,3-propanediol discussed herein include the mono and diesters of biologically derived 1,3-propanediol.
- Biologically-derived 1,3-propanediol or its ester conjugates are employed as chemical solvents for extraction or diluent of a botanical extract or fragrance concentrate or oil.
- the process of extracting an extract from a source comprises: (a) providing 1,3-propanediol, an ester of 1,3-propanediol, or a mixture thereof; (b) mixing the 1,3-propanediol, the ester of 1,3-propanediol, or the mixture thereof with the source, which extracts the extract from the source into the ester; and (c) separating the source from the extract and 1,3-propanediol, the ester of 1,3-propanediol, or the mixture thereof.
- the process of extraction involves use of a dried substrate such as plant material which is macerated with solvent. Maceration is the most common and economically important technique for extracting aromatics in the modern perfume industry. In this method, raw materials are submerged in a solvent that can dissolve the desired aromatic or other extract compounds. Maceration lasts between fractions of an hour to months. Maceration is often used to extract fragrant compounds from woody or fibrous materials, as well as animal sources. This technique is also useful to extract odorants that are too volatile for distillation or easily denatured by heat.
- the solvent can be percolated though the substrate material until sufficient soluble materials have leached from the biomass or substrate.
- the substrate debris is separated from the extract by straining, filtering, or centrifugation.
- Another technique for extracting compounds from a raw material is supercritical fluid extraction. This technique uses low heat to reduce degradation of the extract compounds. Supercritical CO2 can be used in this extraction technique.
- Extraction can be performed in accordance with the invention by other extraction techniques as well, including distillation.
- Biologically-derived 1,3-propanediol and its conjugate esters can be used as solvents in distillation extractions.
- Distillation methods include steam distillation, in which steam is used to drive out volatile fragrant compounds from plant material, leaving a condensate which is called a hydrosol.
- Distillation also includes dry or destructive distillation where the raw material is heated without a carrier solvent.
- biologically-derived 1,3-propanediol and its conjugate esters are used as a solvent to dilute the fragrant compounds after extraction.
- raw material is physically squeezed or compressed and the extruded oils are collected.
- This method is known as extraction and is most commonly performed to extract compounds from the peels of fruits in the citrus family, as these sources contain sufficient oils to make this method feasible.
- Enfleurage is another extraction method appropriate for use with biologically derived 1,3-propanediol, its conjugate esters, or mixtures thereof.
- Biologically derived 1,3-propanediol and its conjugate esters are useful as a solvents for extractions, and as a component in compositions comprising botanical extracts.
- Botanical sources include, but are not limited to all plants, seeds, stems, roots, flowers, leaves, pollen, spices, and oils.
- One type of extract appropriate for extraction or dilution is the herbal extract.
- An herbal extract is a liquid solution of herbs and solvent.
- the dried or fresh herbs are combined with solvent, then the solid matter is removed leaving only the oils of the herbs mixed with the solvent. This process is called extraction, and the process produces an herbal extract.
- Herbal extracts are sold as dietary supplements and alternative medicine and commonly used for flavoring in baking, cooking or in beverages. They are also used in personal care products such as skin and hair products.
- a small amount of the carbon dioxide in the atmosphere is radioactive.
- This 14C carbon dioxide is created when nitrogen is struck by an ultra-violet light produced neutron, causing the nitrogen to lose a proton and form carbon of molecular weight 14 which is immediately oxidized in carbon dioxide.
- This radioactive isotope represents a small but measurable fraction of atmospheric carbon.
- Atmospheric carbon dioxide is cycled by green plants to make organic molecules during the process known as photosynthesis. The cycle is completed when the green plants or other forms of life metabolize the organic molecules producing carbon dioxide which is released back to the atmosphere. Virtually all forms of life on Earth depend on this green plant production of organic molecule to produce the chemical energy that facilitates growth and reproduction. Therefore, the 14C that exists in the atmosphere becomes part of all life forms, and their biological products.
- These renewably based organic molecules that biodegrade to CO2 do not contribute to global warming as there is no net increase of carbon emitted to the atmosphere.
- fossil fuel based carbon does not have the signature radiocarbon ratio of atmospheric carbon dioxide
- the application of ASTM-D6866 to derive a “biobased content” is built on the same concepts as radiocarbon dating, but without use of the age equations.
- the analysis is performed by deriving a ratio of the amount of radiocarbon (14C) in an unknown sample to that of a modem reference standard. The ratio is reported as a percentage with the units “pMC” (percent modern carbon). If the material being analyzed is a mixture of present day radiocarbon and fossil carbon (containing no radiocarbon), then the pMC value obtained correlates directly to the amount of Biomass material present in the sample.
- the modern reference standard used in radiocarbon dating is a NIST (National Institute of Standards and Technology) standard with a known radiocarbon content equivalent approximately to the year AD 1950.
- AD 1950 was chosen since it represented a time prior to thermo-nuclear weapons testing which introduced large amounts of excess radiocarbon into the atmosphere with each explosion (termed “bomb carbon”).
- the AD 1950 reference represents 100 pMC.
- a biomass content result is derived by assigning 100% equal to 107.5 pMC and 0% equal to 0 pMC. In this regard, a sample measuring 99 pMC will give an equivalent biobased content result of 93%.
- a “b*” value is the spectrophotometrically determined “Yellow Blue measurement as defined by the CIE L*a*b* measurement ASTM D6290.
- AMS accelerator mass spectrometry
- IRMS refers to measurements of CO 2 by high precision stable isotope ratio mass spectrometry.
- Bio-produced means organic compounds produced by one or more species or strains of living organisms, including particularly strains of bacteria, yeast, fungus and other microbes. “Bio-produced,” “biologically-derived” and “biologically produced” are used synonymously herein. Such organic compounds are composed of carbon from atmospheric carbon dioxide converted to sugars and starches by green plants.
- Bio-based means that the organic compound is synthesized from biologically produced organic components. It is further contemplated that the synthesis process disclosed herein is capable of effectively synthesizing other monoesters and diesters from bio-produced alcohols other than 1,3-propanediol; particularly including ethylene glycol, diethylene glycol, triethylene glycol, -, dipropylene diol, tripropylene diol, 2-methyl 1,3-propanediol, neopentyl glycol and bisphenol A. “Bio-based”, and “bio-sourced”; “biologically derived”; and “bio-derived” are used synonymously herein.
- Carbon of atmospheric origin refers to carbon atoms from carbon dioxide molecules that have recently, in the last few decades, been free in the earth's atmosphere. Such carbons in mass are identifiable by the present of particular radioisotopes as described herein. “Green carbon”, “atmospheric carbon”, “environmentally friendly carbon”, “life-cycle carbon”, “non-fossil fuel based carbon”, “non-petroleum based carbon”, “carbon of atmospheric origin”, and “biobased carbon” are used synonymously herein.
- “Flavoring agents” are substances added to foods, beverages, cosmetics, pharmaceuticals, or medicines to improve the quality of the taste if such compositions. Oils, such as orange oils are considered flavoring agents.
- An aspect of the invention is use of biologically-derived 1,3-propanediol or its ester conjugate to prepare a flavoring agent, for example by treating a flavoring oil with biologically-derived 1,3-propanediol or its ester conjugate.
- compositions in accordance with the invention include a composition comprising an ester of 1,3-propanediol and an extraction product.
- the esters can be a varying amount of biobased carbon depending on the compound used in the esterification.
- Biologically derived 1,3-propanediol contains biobased carbon. All three carbon atoms in 1,3 propanediol are biobased carbons. If the conjugate esters are formed using carboxylic acids that contain all biobased carbon, then the resulting esters also contain all biobased carbon. If, however, the carboxylic acids contain non-biobased carbons, i.e.
- the resulting ester will contain a percentage of biobased carbon in proportion to the number of carbons contributed from the carboxylic acid compared to the three carbons contributed from the biologically-derived 1,3-propanediol.
- distearate propanediol contains 39 carbon atoms, 18 from each of the stearic acid carbon chains and three from the 1,3-propanediol. Accordingly, if the strearic acid is non-biobased, 36 carbons out of the total 39 in distearate propanediol are non-biobased carbon.
- the predicted biobased content of distearate propanediol made from biologically-derived propanediol, and non-biologically derived strearic acid is 7.7 percent.
- propylene glycol dibenzoate (BENZOFLEX (R) 284, Velsicol Chem. Corp. Rosemont, Ill.) was found to have 0% bio-based carbon content.
- propanediol dibenzoate synthesized using biologically-derived 1,3-propanediol had 19% bio-based carbon content.
- the predicted bio-based carbon content propanediol dibenzoate made from biologically-derived 1,3 propanediol is 17.6%, which is within the standard deviation of the method.
- the conjugate esters of biologically-derived 1,3-propanediol have biobased content values proportional to the biobased content of the acids used to form the esters.
- the esters therefore can have biobased content of at least 3% biobased carbon, at least 6% biobased carbon, at least 10% biobased carbon, at least 25% biobased carbon, at least 50% biobased carbon, at least 75% biobased carbon, and 100% biobased carbon.
- compositions comprising an extract and a conjugate ester of 1,3-propanediol can be between about 0.1% and about 5% ester, between about 0.5% and about 25% ester, between about 25% and about 50% ester, between about 50% and about 75% ester, and between about 75% and about 99% ester, and between 99% and about 100% ester.
- compositions in accordance with the invention also include compositions comprising 1,3-propanediol and an extract.
- the 1,3-propanediol of these compositions has at least 95% biobased carbon, or alternatively, the 1,3-propanediol has 100% biobased carbon.
- the compositions comprising an extract and 1,3-propanediol can be between about 0.1% and about 5% 1,3-propanediol, between about 0.5% and about 25% 1,3-propanediol, between about 25% and about 50% 1,3-propanediol, between about 50% and about 75% 1,3-propanediol, and between about 75% and about 99% 1,3-propanediol.
- compositions in accordance with the invention also include compositions comprising both 1,3-propanediol and a conjugate ester of 1,3-propanediol along with an extract.
- the 1,3-propanediol of these compositions has at least 95% biobased carbon, or alternatively, the 1,3-propanediol has 100% biobased carbon.
- the compositions comprising an extract and a mixture of 1,3-propanediol and a conjugate ester of 1,3-propanediol can be between about 0.1% and about 5% mixture, between about 0.5% and about 25% mixture, between about 25% and about 50% mixture, between about 50% and about 75% mixture, and between about 75% and about 99% mixture.
- a mixture of a glycol and ester can be very effective in extractions, and the mixture can remove more active ingredients than either solvent alone. More actives are extracted from plant material using a solvent mixture because the esters (especially diesters) are non-polar, whereas glycol components are polar. Accordingly, the lipophilic ingredients can easily be removed from the plants using the ester glycol mixture. In some cases the density of an ester can be much higher than the density of the glycol, and after the maceration process the “cake” (the extract of the ester) can easily solidify and separate from the glycol phase. Additionally, the esters can be volatile compounds and in extractions the esters can be easily evaporated to obtain concrete, fragrance oil, absolute, or enfleurage.
- the 1,3-propanediol, the conjugate esters of 1,3-propanediol, and mixtures thereof can be effective as solvents and diluents when combined with other appropriate solvents, including water.
- the present invention relates to compositions comprising a botanical, vegetal, protein/peptide, marine, algae, or milk extract or fragrance concentrate or oil wherein biologically-derived 1,3-propanediol or its ester conjugate is employed as a chemical solvent for extraction or diluent of the botantical, vegetal, protein/peptide, marine, algae, or milk extract or fragrance concentrate or oil.
- biologically-derived means that the 1,3-propanediol is synthesized by one or more species or strains of living organisms, including particularly strains of bacteria, yeast, fungus and other microbes.
- Biologically-derived 1,3-propanediol useful in shampoo or body wash compositions disclosed herein.
- Biologically-derived 1,3-propanediol is collected in a high purity form.
- Such 1,3-propanediol has at least one of the following characteristics: 1) an ultraviolet absorption at 220 nm of less than about 0.200 and at 250 nm of less than about 0.075 and at 275 nm of less than about 0.075; or 2) a composition having L*a*b* “b*” color value of less than about 0.15 and an absorbance at 270 nm of less than about 0.075; or 3) a peroxide composition of less than about 10 ppm; or 4) a concentration of total organic impurities of less than about 400 ppm.
- a “b*” value is the spectrophotometrically determined Yellow Blue measurement as defined by the CIE L*a*b* measurement ASTM D6290.
- the level of 1,3-propanediol purity can be characterized in a number of different ways. For example, measuring the remaining levels of contaminating organic impurities is one useful measure.
- Biologically-derived 1,3-propanediol can have a purity level of less than about 400 ppm total organic contaminants; preferably less than about 300 ppm; and most preferably less than about 150 ppm.
- ppm total organic purity refers to parts per million levels of carbon-containing compounds (other than 1,3-propanediol) as measured by gas chromatography.
- Biologically-derived 1,3-propanediol can also be characterized using a number of other parameters, such as ultraviolet light absorbance at varying wavelengths.
- the wavelengths 220 nm, 240 nm and 270 nm have been found to be useful in determining purity levels of the composition.
- Biologically-derived 1,3-propaediol can have a purity level wherein the UV absorption at 220 nm is less than about 0.200 and at 240 nm is less than about 0.075 and at 270 nm is less than about 0.075.
- Biologically-derived 1,3-propanediol can have a b* color value (CIE L*a*b*) of less than about 0.15.
- the purity of biologically-derived 1,3-propanediol compositions can also be assessed in a meaningful way by measuring levels of peroxide.
- Biologically-derived 1,3-propanediol can have a concentration of peroxide of less than about 10 ppm.
- 1,3-propanediol produced biologically via fermentation is known, including in U.S. Pat. No. 5,686,276, U.S. Pat. No. 6,358,716, and U.S. Pat. No. 6,136,576, which disclose a process using a recombinantly-engineered bacteria that is able to synthesize 1,3-propanediol during fermentation using inexpensive green carbon sources such as glucose or other sugars from plants.
- inexpensive green carbon sources such as glucose or other sugars from plants.
- Biologically-derived 1,3-propanediol can be obtained based upon use of the fermentation broth generated by a genetically-engineered Eschericia coli ( E. coli ), as disclosed in U.S. Pat. No. 5,686,276.
- Fermentation refers to a system that catalyzes a reaction between substrate(s) and other nutrients to product(s) through use of a biocatalyst.
- the biocatalysts can be a whole organism, an isolated enzyme, or any combination or component thereof that is enzymatically active. Fermentation systems useful for producing and purifying biologically-derived 1,3-propanediol are disclosed in, for example, Published U.S. Patent Application No. 2005/0069997 incorporated herein by reference.
- the transformed E. coli DH5 ⁇ containing cosmid pKP1 containing a portion of the Klebsiella genome encoding the glycerol dehydratase enzyme was deposited on 18 Apr. 1995 with the ATCC under the terms of the Budapest Treaty and is identified by the ATCC number ATCC 69789.
- the transformed E. coli DH5 ⁇ containing cosmid pKP4 containing a portion of the Klebsiella genome encoding a diol dehydratase enzyme was deposited on 18 Apr. 1995 with the ATCC under the terms of the Budapest Treaty and is identified by the ATCC number ATCC 69790.
- ATCC refers to the American Type Culture Collection international depository located at 10801 University Boulevard, Manassas, Va., 20110 2209, U.S.A.
- ATCC No.” is the accession number to cultures on deposit with the ATCC.
- bio-PDO biologically derived 1,3-propanediol
- the biologically derived 1,3-propanediol (bio-PDO) for use in the current invention, produced by the process described herein, contains carbon from the atmosphere incorporated by plants, which compose the feedstock for the production of bio-PDO.
- the bio-PDO contains only renewable carbon, and not fossil fuel based, or petroleum based carbon. Therefore the use of bio-PDO and its conjugate esters has less impact on the environment as the propanediol does not deplete diminishing fossil fuels.
- the use of the use of bio-PDO and its conjugate esters also does not make a net addition of carbon dioxide to the atmosphere, and thus does not contribute to greenhouse gas emissions.
- the present invention can be characterized as more natural and having less environmental impact than similar compositions comprising petroleum based glycols.
- a composition comprising 1,3-propanediol and an extraction product is provided, where the 1,3-propanediol is biologically derived.
- the biologically-derived 1,3-propanediol can have at least 85% biobased carbon, at least 95% biobased carbon, or 100% biobased carbon, when assessed by the application of ASTM-D6866 as described above.
- a sample of biologically-derived 1,3-propanediol was analysized using ASTM method D 6866-05. The results received from Iowa State University demonstrated that the above sample was 100% bio-based content.
- ASTM-D6866 method chemical, or petroleum-based 1,3-propanediol (purchased from SHELL) was found to have 0% bio-based content.
- Propylene glycol USP grade from ALDRICH was found to have 0% bio-based content.
- the extractions or extract compositions of the invention may comprise a combination of a biologically-derived 1,3-propanediol and one or more non biologically-derived glycol components, such as, for example, chemically synthesized 1,3-propanediol.
- a biologically-derived 1,3-propanediol and one or more non biologically-derived glycol components, such as, for example, chemically synthesized 1,3-propanediol.
- the 1,3-propanediol used as a solvent, or used to form 1,3 propanediol esters can comprise at least about 1% bio-based carbon content up to 100% bio-based carbon content, and any percentage there between.
- esters of biologically derived 1,3-propanediol can be synthesized by contacting bio-PDO with an organic acid.
- the organic acid can be from any origin, preferably either a biosource or synthesized from a fossil source. Most preferably the organic acid is derived from natural sources or bio-derived having formula R 1 R 2 —COOH. Where in the substituent R 1 can be saturated or unsaturated, substituted or unsubstituted, aliphatic or aromatic, linear or branched hydrocarbon having chain length 1 to 40 or their salts or alkyl esters. Where in the substituent R 2 can be H or COOH.
- the hydrocarbon chain can also have one or more functional groups such as alkene, amide, amine, carbonyl, carboxylic acid, halide, hydroxyl groups.
- Naturally occurring organic acids produced esters containing all biobased carbon. These naturally occurring organic acids, especially those produced by a biological organism, are classified as bio-produced and the resulting ester or diester could thereby also be classified as bio-produced.
- Naturally occurring sources of such fatty acids include coconut oil, various animal tallows, lanolin, fish oil, beeswax, palm oil, peanut oil, olive oil, cottonseed oil, soybean oil, corn oil, rape seed oil. Conventional fractionation and/or hydrolysis techniques can be used if necessary to obtain the fatty acids from such materials.
- Appropriate carboxylic acids for producing esters of biologically-derived 1,3-propanediol generally include: (1) C1-C3 carbon containing mono carboxylic acids, including formic acid and acetic acid; (2) fatty acids, such as those acids containing four or more carbon atoms; (3) saturated fatty acids, such as butyric acid, caproic acid, valeric acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, and behenic acid; (4) unsaturated fatty acids, such as oleic acid, linoleic acid, and euricic acid; (5) polyunsaturated fatty acids, such as alpha-linolenic acid, stearidonic acid (or moroctic acid), eicosatetraenoic acid, omega-6 fatty acids, arachidonic acids, and omega-3 fatty acids, eicosapentaenoic acid (or timno
- acids and their salts or alkyl esters are specifically useful, acetic, butyric, lauric, myristic, palmitic, stearic, arachidic, adipic, benzoic, caprylic, maleic, palmitic, sebacic, archidonic, erucic, palmitoleic, pentadecanoic, heptadecanoic, nondecanoic, octadectetraenoic, eicosatetraenoic, eicosapentaenoic, docasapentaenoic, tetracosapentaenoic, tetrahexaenoic, docosahexenoic, (alpha)-linolenic, docosahexaenoic, eicosapentaenoic, linoleic, arachidonic, oleic, erucic, formic, prop ionic, va
- a more preferred list of suitable organic acids are acetic, adipic, benzoic, maleic, sebacic, and mixtures of such acids.
- suitable “fatty acids” meaning generally acids named containing 8-40 carbon in the carbon useful in the present invention include butyric, valeric, caproic, caprylic, pelargonic, capric, lauric, myristic, palmitic, stearic, arachidic, behenic, cerotic, oleic, linoleic, linolenic, margar ic, montanic, melissic, lacceroic, ceromelissic, geddic, ceroplastic and the mixtures of such acids.
- these acids, and their salts and alkyl esters are most preferred stearic, lauric, palmetic, oleic, 2-ethyl hexanoic, and 12-hydroxystearic and mixtures of such acids.
- esters produced include all the appropriate conjugate mono and diesters of 1,3 propanediol using the described organic acids.
- Some esters in particular that are produced include propanediol distearate and monostearate, propandiol dilaurate and monolaurate, propanediol dioleate and monooleate, propanediol divalerate and monovalerate, propanediol dicaprylate and monocaprylate, propanediol dimyristate and monomyristate, propanediol dipalmitate and monopalmitate, propanediol dibehenate and monobehenate, propanediol adipate, propanediol maleate, propanediol dibenzoate, propanediol diacetate, and all mixtures thereof.
- esters produced include: propanediol distearate and monostearate, propanediol dioleate and monooleate, propanediol dicaprylate and monocaprylate, propanediol dimyristate and monomyristate, and all mixtures thereof.
- 1,3-propanediol can be contacted, preferably in the presence of an inert gas reacted with a fatty acid or mixture of fatty acids or salts of fatty acids in the absence or presence of a catalyst or mixture of two or more catalysts, at temperatures ranging from 25° C. to 400° C.
- the catalyst can be removed preferably by dissolving and removing in deionized water. If catalyst can be removed by treating with deionized water, the reaction mixture is treated with aqueous solutions of acid or base to forms salts and removing the salts either by washing or filtering.
- the catalyst can be an acid for non-limiting examples, sulfuric acid, or p-toluene sulfonic acid.
- the catalyst can also be a base, for non-limiting example, sodium hydroxide.
- the catalyst can also be a salt, for non-limiting example, potassium acetate.
- the catalyst can also be an alkoxide, for non-limiting example, titanium tetraisopropoxide.
- the catalyst can also be a heterogeneous catalyst, for non-limiting examples: zeolite, heteropolyacid, amberlyst, or ion exchange resin.
- the catalyst can also be a metal salt, for non-limiting examples, tin chloride, or copper chloride,
- the catalyst can also be an enzyme, such as those known in the art.
- the catalyst can also be an organic acid, for a non-limiting example, formic acid.
- the catalyst can also be an organometalic compound, for non-limiting example, n-butylstannoic acid.
- This process can be carried out in the presence or absence of a solvent. If a solvent is not necessary to facilitate the production of fatty ester, it is preferred that the process is carried out in the absence of solvent.
- the process can be carried out at atmospheric pressure or under vacuum or under pressurized conditions.
- R 1 and R 2 is a hydrocarbon, preferably with a carbon chain length of about 1 to about 40.
- Such hydrocarbons can be saturated or unsaturated, substituted or unsubstituted, linear or branched
- M is hydrogen, an alkali metal or an alkyl group.
- R 1 is a hydrocarbon, preferably with a carbon chain length of about 1 to about 40.
- Such hydrocarbons can be saturated or unsaturated, substituted or unsubstituted, linear or branched.
- M is hydrogen, an alkali metal or an alkyl group.
- compositions in accordance with the invention comprise esters in which R1 has one or more functional groups selected from the group consisting of alkene, amide, amine, carbonyl, carboxylic acid, halide, hydroxyl groups, ether, alkyl ether, sulfate and ethersulfate.
- the esters can have the formula R1-C( ⁇ O)—O—CH2-CH2-CH2-O—C( ⁇ O)—R2, wherein both R1 and R2 are linear or branched carbon chains of a length between about 1 an about 40 carbons.
- R1 and R2 can have one or more functional groups selected from the group consisting of alkene, amide, amine, carbonyl, carboxylic acid, halide, hydroxyl groups, ether, alkyl ether, sulfate and ethersulfate. Additionally, R1 and R2 can be the same carbon chain in the case of a diester.
- any molar ratio of diol to dicarboxylic acid or its salt or its ester can be used.
- the preferred range of the diol to dicarboxylic acid is from about 1:3 to about 2:1. This ratio can be adjusted to shift the favor of the reaction from monoester production to diester production. Generally, to favor the production of diesters slightly more than about a 1:2 ratio is used; whereas to favor the production of monoesters about a 1:1 ratio is used.
- the ratio of diol to dicarboxylic acid can range from about 1.01:2 to about 1.1:2; however if the monoester is desired a range of ratios from about 1.01:1 to about 2:1 is used.
- the catalyst content for the reaction can be from 1 ppm to 60 wt % of the reaction mixture, preferably from 10 ppm to 10 wt %, more preferably from 50 ppm to 2 wt % of the reaction mixture.
- the product may contain diesters, monoesters or combination diesters and monoesters and small percentage of unreacted acid and diol depending on the reaction conditions. Unreacted diol can be removed by washing with deionized water. Unreacted acid can be removed by washing with deionized water or aqueous solutions having base or during recrystallization.
- Any ester of 1,3-propanediol can be made or used in accordance with the present invention.
- Short, middle and long chain monoesters and diesters of the 1,3-propanediol can be made. Specifically those acids containing between about 1 and about 36 carbons in the alkyl chain can be produced.
- the following monoesters and diesters can be produced: propanediol distearate (monostearate and the mixture), propandiol dilaurate (monolaurate and the mixture), propanediol dioleate (monooleate and the mixture), propanediol divalerate (monovalerate and the mixture), propanediol dicaprylate (monocaprylate and the mixture), propanediol dimyristate (monomyristate and the mixture), propanediol dipalmitate (monopalmitate and the mixture), propanediol dibehenate (monobehenate and the mixture), propanediol adipate, propanediol maleate, propanediol dibenzoate, and propanediol diacetate.
- the extract can be a compound or group of compounds that are extracted from a source material.
- the extract is extracted from a natural source, such as a botanical source.
- suitable natural extracts include botanical extracts, vegetal extracts, protein extracts, lipid extracts, marine extracts, algae extracts, and milk extracts.
- Botanical sources for extracts include the following list of families of plants and trees: Acanthaceae, Aceraceae, Achariaceae, Achatocarpaceae, Acoraceae, Actinidiaceae, Actiniopteridaceae, Adiantaceae, Adoxaceae, Aegicerataceae, Aetoxicaceae, Agavaceae, Agdestidaceae, Aitoniaceae, Aizoaceae, Akaniaceae, Alangiaceae, Alismataceae, Alliaceae, Alseuosmiaceae, Alstroemeriaceae, Altingiaceae, Alzateaceae, Amaranthaceae, Amaryllidaceae, Amborellaceae, Ampelidaceae, Anacardiaceae, Anarthriaceae, Ancistrocladaceae, Androstachydaceae, Anemiaceae, Angiopteridaceae, An
- Preferred families of plants and trees include Anacardiaceae Araceae, Balanopaceae, Balsaminaceae, Begoniaceae, Boraginaceae, Buxaceae, Caricaceae, Cucurbitaceae, Clusiaceae, Daphniphyllaceae, Ericaceae, Euphorbiaceae, Fabaceae, Fagaceae, Hippocastanaceae, Hostaceae, Hydrangeaceae, Labiateae, Lilaeaceae, Magnoliaceae, Moringaceae, Myristicaceae, Myrtaceae, Oleaceae, Orchidaceae, Peperomiaceae, Pinaceae, Primulaceae, and Rutaceae.
- the preferred species of plants and trees for extract sources include Achillea millefolium, Aesculus chinensis, Allium sativum, Artemisia apiacea, Astrocaryum murumuru, Bactris gasipaes, Benincasa hispida, Celastrus paniculatus, Cetraria islandica, Chenopodium quinoa, Cinchona succirubra, Citrus bergamia, Citrus sinensis, Coriandrum sativum, Codium tomentosum, Commiphora molmol, Crataegus cuneata, Cucumis sativus, Eucalyptus globulus, Gleditsia sinensis, Gnetum amazonicum, Hibiscus rosa - sinensis, Jasminum officinale, Lonicera caprifolium, Lonicera japonica, Lycopersicon esculentum, Malus pumila, Matricaria recutita, Maximiliana maripa
- Extract sources also include algae. Families of algae used as extract sources include Acrochaeticaceae, Characeae, Codiaceae, Fucaceae, Laminariaceae, Lemaneaceae, Ulvaceae, and Pamariaceae. Preferred algae species include Lemanea fluviatilis (red algea), (L.), Ascophyllum nodosum (brown alga), Lemanea fluviatilis, Lemanea fucina (red algea), Ulva lactuca (green alga), Laminaria digitata, Laminaria ochroleuca.
- Extract sources also include members of the kingdom of Fungi. For extraction classes of Homobasidiomycetes (or true mushrooms) can be used. Some exemplary mushrooms families include: Meripilaceae, Tricholomataceae, and Ganodermataceae (maitake, shiitake, reishi mushrooms).
- Specific species include: Agaricus bisporus, Agaricus campestris, Flammulina velutipes Hypsizygus tessulatus, Lentinus edodes, Phellinus linteus, Pleurotus cornucopiae, Pleurotus ostreatus, Tremella fuciformis, Sparassis crispa, Tuber magnatum , and Volvariella volvacea.
- Species from the division of Bryophyta, Kingdom of plantae can be used as extract sources, and some species of lichen can also be used for extraction.
- Marine sources such as plants, algae, plankton, and fish, are used to produce extracts.
- Protein and lipid extract sources include plant, animal, fish and human (eg. Placenta) materials. Milk can be used as an extract source to isolate and concentrate proteins, peptides, and lipids.
- compositions and methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of the present disclosure have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit, and scope of the invention. More specifically, it will be apparent that certain agents which are chemically related may be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope, and concept of the invention as defined by the appended claims.
- the personal care compositions of the present invention include any composition that may be applied to the skin, hair, eyelashes, eyebrows, lips, or nails to provide a cosmetic or beneficial effect.
- These personal care compositions include, but are not limited to, skin care compositions, skin cleansing compositions, make-up, facial lotions, cream moisturizers, body washes, body lotions, foot creams, hand creams, lipstick, eyeshadow, foundation, facial powders, deodorant, shaving cream compositions, nail polishes, shaving lotions, cream depilatories, lotion depilatories, facial masks made with clay materials, anti-aging products, shampoos, hair conditioners, hair treatment creams, styling gels, styling foams, hair mousses, hair sprays, set lotions, blow-styling lotions, hair color lotions, and hair relaxing compositions.
- biologically-derived 1,3-propanediol is present in amounts up to about 50% by weight based on the weight of the total composition, preferable up to about 35% by weight, and more preferable up to about 10% by weight of the total composition.
- biologically-derived 1,3-propanediol is present in amounts up to about 12% by weight based on the weight of the total composition, though some compositions, for example hair gels and deodorants, can contain up to about 30% by weight or 40% by weight, respectively, biologically-derived 1,3-propanediol based on the weight of the total composition.
- compositions of the present invention also may one or more conventional cosmetic or dermatological additives or adjuvants, including, but not limited to, fillers, surfactants, thixotropic agents, antioxidants, preserving agents, dyes, pigments, fragrances, thickeners, vitamins, hormones, moisturizers, UV absorbing organic sunscreens, UV scattering inorganic sunscreens, wetting agents, cationic, anionic, nonionic or amphoteric polymers, and hair coloring active substances.
- additives or adjuvants including, but not limited to, fillers, surfactants, thixotropic agents, antioxidants, preserving agents, dyes, pigments, fragrances, thickeners, vitamins, hormones, moisturizers, UV absorbing organic sunscreens, UV scattering inorganic sunscreens, wetting agents, cationic, anionic, nonionic or amphoteric polymers, and hair coloring active substances.
- adjuvants are well known in the field of cosmetics and are described in many publications, for example see Harry's Cosmeticology, 8th
- the fillers are generally present in personal care products in a maximum proportion of about 99.9% by weight relative to the total weight of the composition.
- These fillers in the form of very fine powders, can be of natural or synthetic origin and include, but are not limited to, mineral powders, such as talc, kaolin, mica, silica, silicates, alumina, zeolites, hydroxyapatite, sericite, titanium dioxide, titanium micas, barium sulfate, calcium carbonate, calcium sulfate, bismuth oxychloride, boron nitride and metal powders such as aluminum powder; plant powder, such as corn starch, wheat starch or rice starch powders; organic powders, such as polyamide powder, polyester powder, polytetrafluoroethylene powder, the powder of fluorinated alkanes, polyethylene powder and other inert plastics.
- These various powders can also be coated, for example with metal salts of fatty acids, amino acids, lecit
- the personal care compositions of this invention may also contain surfactants or wetting agents, preferably at about 0.001 to about 18%, more preferably at about 0.005 to about 15% by weight of the total composition.
- surfactants and “wetting agents” as used herein refer to surface-active agents which, when added to water, cause it to penetrate more easily into, or spread on the surface of another material, by reducing the surface tension of the water at the water-air or water-oil interface.
- surface active agent is meant any compound that reduces surface tension when dissolved in water or water solutions.
- Suitable surfactants include, but are not limited to, the following:
- anionic surfactants such as metallic or alkanolamine salts of fatty acids for example sodium laurate and triethanolamine oleate; alkyl benzene sulfones, for example triethanolamine dodecyl benzene sulfonate; alkyl sulfates, for example sodium lauryl sulfate; alkyl ether sulfates, for example sodium lauryl ether sulfate (2 to 8 EO); sulfosuccinates, for example sodium dioctyl sulfonsuccinate; monoglyceride sulfates, for example sodium glyceryl monostearate monosulfate; isothionates, for example sodium isothionate; methyl taurides, for example Igepon T; acylsarcosinates, for example sodium myristyl sarcosinate; acyl peptides, for example Maypons and lamepons; acyl
- cationic surfactants such as amine salts, for example sapamin hydrochloride; quatenary ammonium salts, for example Quaternium 5, Quaternium 31 and Quaternium 18;
- amphoteric surfactants such as imidazol compounds, for example Miranol; N-alkyl amino acids, such as sodium cocaminopropionate and asparagine derivatives; betaines, for example cocamidopropylebetaine;
- nonionic surfactants such as fatty acid alkanolamides, for example oleic ethanolamide; esters or polyalcohols, for example Span; polyglycerol esters, for example that esterified with C12-18 fatty acids and one or several OH groups; polyalkoxylated derivatives, for example polyoxy:polyoxyethylene stearate (available for example from McIntyre Co.); ethers, for example polyoxyethe lauryl ether (available for example from Stepan Co., Northfield, Ill., as Stepanol® ES); ester ethers, for example Tween®; amine oxides, for example coconut and dodecyl dimethyl amine oxides. Mixtures of two or more of the above surfactants can be employed in the compositions according to the invention.
- the personal care compositions of this invention may also contain thixotropic or gelling agents, preferably at about 0.02 to about 20%, more preferably at about 0.05 to about 18% by weight of the total composition.
- Suitable thixotropic or gelling agents include, but are not limited to, stearates of aluminum, calcium, magnesium, potassium, sodium, or zinc; hydroxystearate, isostearate, laurate, linoleate, myristate, oleate, olivate, palmate, palmitate, tallowate, rosinate, and the like, and fatty acid esters of glycol, triglycerides, mixtures of fatty alcohols, cholesterol derivatives and in particular hydroxycholesterol, and clay minerals which swell in the presence of oil, and in particular those belonging to the montmorillonite group.
- the personal care compositions of this invention may also contain antioxidants, preferably at about 0.001 to about 10%, more preferably at about 0.01 to about 8% by weight of the total composition.
- Suitable antioxidants are ingredients, which assist in preventing or retarding spoilage.
- antioxidants suitable for use in the compositions of the invention include, but are not limited to, potassium sulfite, sodium bisulfite, sodium erythrobate, sodium metabisulfite, sodium sulfite, propyl gallate, cysteine hydrochloride, butylated hydroxytoluene, butylated hydroxyanisole, and the like.
- the personal care compositions of this invention may also contain preserving agents, preferably at about 0.001 to about 8%, more preferably at about 0.01 to about 5% by weight of the total composition.
- Suitable preserving agents include, but are not limited to, benzoic acid, benzyl alcohol, benzylhemiformal, benzylparaben, 5-bromo-5-nitro-1,3-dioxane, 2-bromo-2-nitropropane-1,3-diol, butyl paraben, phenoxyethanol, methyl paraben, ethyl paraben, propyl paraben, diazolidinyl urea, calcium benzoate, calcium propionate, captan, chlorhexidine diacetate, chlorhexidine digluconate, chlorhexidine dihydrochloride, chloroacetamide, chlorobutanol, p-chloro-m-cresol, chlorophene, chlorothymol, chloroxylenol,
- the personal care compositions of this invention may also contain dyes, preferably at about 0.1 to about 15%, by weight of the total composition.
- Suitable dyes include, but are not limited to, eosin derivatives such as D&C Red No. 21 and halogenated fluorescein derivatives such as D&C Red No. 27, D&C Red Orange No. 5 in combination with D&C Red No. 21 and D&C Orange No. 10.
- the personal care compositions of this invention may also contain pigments, preferably at about 0.1 to about 15% by weight of the total composition.
- Suitable pigments may be inorganic or organic or alternatively metal lakes and include, but are not limited to, titanium dioxide, zinc oxide, barium oxide, D&C Red No. 36 and D&C Orange No. 17, the calcium lakes of D&C Red Nos. 7, 11, 31 and 34, the barium lake of D&C Red No. 12, the strontium lake D&C Red No. 13, the aluminum lakes of FD&C Yellow No. 5, of FD&C Yellow No. 6, of D&C Red No. 27, of D&C Red No. 21, and of FD&C Blue No. 1, iron oxides, manganese violet, chromium oxide, ultramarine blue, and carbon black particles.
- the personal care compositions of this invention may also contain fragrances, preferably at about 0.01 to about 10%, by weight of the total composition.
- fragrances both natural and synthetic, are well known in the art.
- Secondini “Handbook of Perfumes and Flavors, Chemical Publishing Co., Inc., New York, 1990), incorporated herein by reference, describes many of the natural and synthetic fragrances used in cosmetics.
- Suitable natural fragrances include, but are not limited, to jasmines, narcissus, rose, violet, lavender, mint, spice, vanilla, anise, amber, orange, pine, lemon, wintergreen, rosemary, basil, and spruce.
- Suitable synthetic fragrances include, but are no limited to, acetaldehyde, C7 to C16 alcohols, benzyl acetate, butyric acid, citric acid, isobutyl phenyl acetate, linalyl butyrate, malic acid, menthol, phenyl ethyl cinnamate, phenyl propyl formate, tannic acid, terpineol, vanillin, amyl salicylate, benzaldehyde, diphenyl ketone, indole, and the like.
- the personal care compositions of this invention may also contain thickeners, preferably at about 0.001 to about 25%, more preferably at about 0.1 to about 15%, by weight of the total composition.
- Suitable thickeners include, but are not limited to, starch; gums, such as gum arabic or xanthan gum; carbomer polymers, such as Carbopol® 941, 940, 934 (available from Union Carbide Co., Midland, Mich.), and Ultrez 10; kaolin or other clays, ethylene glycol monostearate, carboxyvinyl polymer, acrylic copolymers, hydroxyethyl cellulose, and hydroxypropyl cellulose.
- the personal care compositions of this invention may also contain vitamins and/or coenzymes, preferably at about 0.001 to about 10%, more preferably at about 0.01% to about 8%, most preferably at about 0.05% to about 5% by weight of the total composition.
- Suitable vitamins include, but are not limited to, ascorbic acid and derivatives thereof; the B vitamins, such as thiamine, riboflavin, pyridoxin, and the like; vitamin A and derivatives thereof; vitamin E and derivatives thereof; vitamin D and vitamin K; as well as coenzymes such as thiamine pyrophosphate, flavin adenine dinucleotide, folic acid, pyridoxal phosphate, tetrahydrofolic acid, and the like.
- the personal care compositions of this invention may also contain hormones, preferably at about 0.0001 to about 0.01% by weight of the total composition.
- hormones include, but are not limited to, estrogen, progesterone, pregnenolone, testosterone, estradiol, hydrocortisone, and cortisone.
- the personal care compositions of this invention may also contain moisturizers, preferably at about 0.1 to about 30%, more preferably at about 0.5 to about 25%, most preferably at about 1 to about 20% by weight of the total composition.
- moisturizers include water-soluble, low molecular weight moisturizers, fat-soluble, low molecular weight moisturizers, water-soluble, high molecular weight moisturizers and fat-soluble, high molecular weight moisturizers.
- the water soluble, low molecular weight moisturizer can also be biologically-derived 1,3-propanediol.
- Suitable fat-soluble, low molecular weight moisturizers include, but are not limited to, cholesterol and cholesterol ester.
- Suitable water-soluble, high molecular weight moisturizers include, but are not limited to, carboxyvinyl polymers, polyaspartate, tragacanth, xanthane gum, methyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, carboxymethyl cellulose, water-soluble chitin, chitosan and dextrin.
- Suitable fat-soluble, high molecular weight moisturizers include, but are not limited to, polyvinylpyrrolidone-eicosene copolymers, polyvinylpyrrolidone-hexadecene copolymers, nitrocellulose, dextrin fatty acid ester and high molecular silicone.
- the personal care compositions of this invention may also contain UV absorbing organic sunscreens, preferably at about 0.001 to about 20%, more preferably at about 0.01 to about 10%, most preferably at about 0.05 to about 8% by weight of the total composition.
- UV absorbing organic sunscreens are herein defined as organic chemicals that absorb ultraviolet light of wavelengths between 290 and 329 nm.
- Suitable UV absorbing organic sunscreens include, but are not limited to, para-aminobenzoic acid, ethyl para-aminobenzoate, amyl para-aminobenzoate, octyl para-aminobenzoate, ethylene glycol salicylate, phenyl salicylate, octyl salicylate, benzyl salicylate, butylphenyl salicylate, homomethyl salicylate, benzyl cinnamate, 2-ethoxyethyl para-methoxycinnamate (such as Parsol® available from Givaudan-Roure Co.), octyl para-methoxycinnamate, glyceryl mono(2-ethylhexanoate)dipara-methoxycinnamate, isopropyl para-methoxycinnamate, diisopropyl-diisopropylcinnamic acid ester mixtures, urocanic
- UV scattering inorganic sunscreen materials such as inorganic pigments and metal oxides, including but not limited to oxides of titanium (such as SunSmart available from Cognis Corp), zinc, and iron, may also be incorporated into the compositions of the instant invention.
- UV scattering inorganic sunscreens are herein defined as inorganic substances that scatter ultraviolet light of wavelengths between 210 and 280 nm. These UV scattering inorganic sunscreens may be used in the personal care compositions of this invention at concentrations of preferably about 0.001 to about 40%, more preferably at about 0.01 to about 10%, most preferably at about 0.05 to about 8% by weight of the total composition.
- the personal care compositions of this invention may also contain other film-forming polymers, preferably at about 0.01 to about 20%, more preferably at about 0.01% to about 10%, by weight of the total composition. These polymers serve as conditioners to coat the skin or hair, or to coat particles that are present in the composition. These polymers may be cationic, anionic, nonionic, or amphoteric. Cationic polymers are herein defined as synthetic or natural polymers that contain, or have been modified to contain, positively charged groups and/or groups that can ionize to positively charged groups.
- Suitable cationic polymers include, but are not limited to, cationized cellulose, cationized guar gum, diallyly quaternary ammonium salt/acrylamide copolymers, quaternized polyvinylpyrrolidone and derivatives thereof, polyquaternium-1, polyquaternium-2, polyquaternium-5, polyquaternium-6, polyquaternium-7, polyquaternium-8, polyquaternium-9, polyquaternium-11, polyquaternium-12, polyquaternium-13, polyquaternium-14, polyquaternium-15, polyquaternium-16, polyquaternium-17, polyquaternium-18, polyquaternium-19, polyquaternium-20, polyquaternium-22, polyquaternium-27, polyquaternium-28, polyquaternium-29, polyquaternium-30, and mixtures thereof, wherein the compound designation is the name adopted for the compound by the CTFA, and found in the CTFA International Cosmetic Ingredient Dictionary, J. Nikitakis, ed., Cosmetic, Toiletry and Fra
- Anionic polymers are herein defined as synthetic or natural polymers that contain, or have been modified to contain, negatively charged groups and/or groups that can ionize to negatively charged groups.
- Suitable anionic polymers include, but are not limited to, polyacrylic acid, polymethacrylic acid, carboxymethylcellulose, hydroxymethylcellulose, and starch.
- Nonionic polymers are herein defined as synthetic or natural polymers that do not contain any charged groups. Suitable nonionic polymers, include, but are not limited to, polyvinylpyrrolidone, polyvinyl alcohol, polyethylene glycol, polyvinylacetate, polysiloxanes, and copolymers of vinylpyrrolidone and vinyl acetate.
- Amphoteric polymers are herein defined as synthetic or natural polymers that contain both negatively and positively charged groups and/or groups that can ionize to give positively and negatively charged groups. Suitable amphoteric polymers are described by Marchi et al. in U.S. Pat. No. 5,643,672, incorporated herein by reference.
- Examples include, but are not limited to, polymers resulting from the copolymerization of a monomer derived from a vinyl compound carrying a carboxyl group, such as acrylic acid, methacrylic acid, maleic acid and alpha-chloroacrylic acid, and a basic monomer derived from a substituted vinyl compound containing at least one basic nitrogen atom, such as dialkylaminoalkyl (meth)acrylates and dialkylaminoalkyl (meth)acrylamides, products sold by the company National Starch under the name Amphomer®, methyl methacrylate/ethyldimethylcarboxymethylammonium methacrylate copolymers, such as the products sold by Chimex under the name Mexomer PX (CTFA name: “polyquaternium-30”), methacryloylethylbetaine/methacrylate copolymer sold by Sandoz under the name Diaformer, the methacryloylethylbetaine/methacrylate copolymer
- the compositions are anhydrous and comprise a fatty phase in a proportion generally of from about 10 to about 90% by weight relative to the total weight of the composition, wherein the fatty phase contains at least one liquid, solid or semi-solid fatty substance.
- the fatty substances include, but are not limited to oils, fats, waxes, gums, and so-called pasty fatty substances.
- the oils in the fatty phase may be of mineral, animal, plant or synthetic origin, and may or may not be volatile at room temperature.
- Oils of mineral origin include, but are not limited to, liquid paraffin and liquid petroleum jelly.
- Oils of animal origin include, but are not limited to, squalene and squalane.
- Oils of plant origin include, but are not limited to, sweet aim and oil, beauty-leaf oil, palm oil, avocado oil, jojoba oil, sesame oil, olive oil, castor oil and cereal germ oils such as, for example, wheatgerm oil.
- Synthetic oils include, but are not limited to:
- R1 represents a higher fatty acid residue containing from 7 to 20 carbon atoms
- R2 represents a hydrocarbon-based radical containing from 3 to 30 carbon atoms.
- esters include, but are not limited to: purcellin oil, butyl myristate, isopropyl myristate, cetyl myristate, isopropyl palmitate, butyl stearate, hexadecyl stearate, isopropyl stearate, octyl stearate, isocetyl stearate, decyl oleate, hexyl laurate, isononyl isononanoate and esters derived from lanolic acid, such as isopropyl
- synthetic oils include, but are not limited to, isododecane (available for example from Exxon-Mobil Chemical Co., Houston, Tex., under the trade name of Isopar®), isohexadecane, polyisobutenes and hydrogenated polyisobutene, as well as acetylglycerides, octanoates and decanoates of polyalcohols such as those of glycol and of glycerol, ricinoleates of alcohols or of polyalcohols, such as cetyl ricinoleate, propylene glycol dicaprylate and diisopropyl adipate;
- fatty alcohols including, but not limited to, oleyl alcohol, linoleyl alcohol, linolenyl alcohol, isostearyl alcohol and octyldodecanol;
- ethoxylated oils and fats including but not limited to, triglycerides with a polyethylene glycol chain inserted, ethoxylated mono- and di-glycerides, polyethoxylated lanolins, ethoxylated butter derivatives,
- silicone oils including, but not limited to, optionally functionalized linear polydiorganosiloxanes, cyclic polydiorganosiloxanes and in particular cyclotetra- and cyclopenta-dimethicones and organopolysiloxanes such as alkyl, alkoxy or phenyl dimethicones, and in particular phenyltrimethicone (available from Dow Corning, Midland, Mich., as Simethicone and DC 200 Fluids);
- fluoro oils including, but not limited to, fluoroalkanes and fluoropolyethers, partially fluorinated hydrocarbon-based oils, and fluoropolymers represented by the monomer unit: X1X2C ⁇ CX3F wherein X1, X2, and X3 are independently H or F.
- the waxes in the fatty phase may be of mineral, fossil, animal, plant or synthetic origin or alternatively can be hydrogenated oils or fatty esters, which are solid at 25° C.
- the mineral waxes include, but are not limited to, microcrystalline waxes, paraffin, petroleum jelly and ceresine.
- the fossil waxes include, but are not limited to, ozocerite and montan wax.
- the waxes of animal origin include, but are not limited to beeswax, spermaceti, lanolin wax and derivatives obtained from lanolin such as lanolin alcohols, hydrogenated lanolin, hydroxylated lanolin, acetylated lanolin, lanolin fatty acids and acetylated lanolin alcohol.
- the waxes of plant origin include, but are not limited to, candelilla wax, carnauba wax, Japan wax and cocoa butter.
- the alkyl radical of 1 to 30 carbon atoms is preferably a methyl, ethyl, propyl, isopropyl, butyl, decyl, dodecyl or octadecyl radical.
- Waxes obtained by Fisher-Tropsch synthesis and silicone waxes may also be used.
- the hydrogenated oils which are solid at 25° C., include, but are not limited to, hydrogenated castor oil, hydrogenated palm oil, hydrogenated tallow and hydrogenated coconut oil.
- the fatty esters which are solid at 25° C., include, but are not limited to, propylene glycol monomyristate and myristyl myristate.
- Waxes which can be used in the compositions according to the invention include, but are not limited to, cetyl alcohol, stearyl alcohol, mono-, di- and triglycerides which are solid at 25° C., stearic monoethanolamide, colophony and its derivatives such as glycol abietate and glyceryl abietate, sucroglycerides and calcium, magnesium, zinc and aluminum oleates, myristates, lanolates, stearates and dihydroxystearates.
- the pasty-type fatty substances can be of mineral, animal, plant or synthetic origin.
- the pasty fatty substances include, but are not limited to, synthetic esters such as arachidyl propionate, polyvinyl laurate, polyethylene waxes and organopolysiloxanes such as alkyldimethicones, alkoxydimethicones or dimethicone esters.
- compositions can be in various forms including, but not limited to, an oily gel, solid products, such as compacted or cast powders, or alternatively sticks such as, for example lipsticks.
- compositions according to the present invention are in the form of an oily gel, they generally contain a thixotropic or gelling agent, examples of which are given supra.
- the thixotropic agents can be present in various proportions depending on the desired texture of the compositions. However, in most cases, they are present in a proportion of from about 1 to about 20% by weight relative to the total weight of the composition.
- the anhydrous compositions of the present invention may be used in particular as skin care, skin cleansing, or make-up products.
- they can be foundations, mascaras, eyeliners, lipsticks, eyeshadows or blushers.
- These compositions are generally colored and contain dyes and/or pigments as cosmetic adjuvants, which are described supra.
- the compositions can be used to form stable dispersions in the form of a water-in-oil (W/O) or oil-in-water (O/W) emulsion, which comprise: a fatty phase, as described supra, in a proportion of from about 0.1 to about 50% by weight relative to the total weight of the emulsion; an aqueous phase in a proportion of from about 50 to about 98.9% by weight relative to the total weight of the emulsion, said aqueous phase containing biologically-derived 1,3-propanediol, in a proportion of from about 1% to about 5% by weight relative to the total weight of the emulsion; and at least one emulsifier in a proportion of from about 1 to about 10% by weight relative to the total weight of the emulsion.
- W/O water-in-oil
- O/W oil-in-water
- Suitable emulsifiers are well known in the field of cosmetic products.
- water-in-oil emulsifiers include, but are not limited to, sterols such as cholesterol and its associated esters and alcohols, lanolin, calcium oleate and other fatty acid soaps of divalent metals, beeswax, and polyhydric alcoholics of fatty acids such as glyceryl monostearate and sorbitan sesquioleate.
- Suitable oil-in-water emulsifiers include, but are not limited to, ordinary soaps, partially sulfated fatty alcohols, Cetomacrogol B.P., polyethoxylated esters known as Spans, cetydimethylbenzyl ammonium chloride, and gums and gum substitutes
- emulsions which are in the form of creams, have good film-forming properties and give a very satisfactory sensation after they have been applied.
- Such emulsions can be used as skin care, skin cleansing, or make-up products.
- these compositions can be anti-wrinkle products for improving the appearance of the skin.
- these compositions are make-up products, they may be foundations or mascaras, containing a certain proportion of the pigments and/or dyes described supra.
- the personal care compositions are hair care compositions.
- Hair care compositions are herein defined as compositions for the treatment of hair, including but not limited to shampoos, conditioners, hair treatment creams, aerosols, gels, hair sprays, set lotions, blow styling lotions, hair relaxing compositions, and mousses.
- the hair care compositions of the present invention comprise an effective amount of biologically-derived 1,3-propanediol in a cosmetically acceptable medium.
- An effective amount of biologically-derived 1,3-propanediol for use in a hair care composition is herein defined as a proportion of from about 1% to about 30% by weight relative to the total weight of the composition.
- these hair care compositions can be aqueous, alcoholic or aqueous-alcoholic solutions, the alcohol preferably being a monohydric alcohol such as ethanol or isopropanol, in a proportion of from about 1 to about 75% by weight relative to the total weight for the aqueous-alcoholic solutions.
- the hair care compositions may also contain other polyhydric alcohols including, but not limited to, ethylene glycol, propylene glycol, 1,3-butylene glycol, glycerine, sorbitol, 2-methyl-1,3-propanediol, and polyethylene glycol. Additionally, the hair care compositions may contain one or more conventional cosmetic or dermatological additives or adjuvants, as described supra.
- the viscosity of the various personal care compositions depends on the nature of the composition. For example, emulsions typically have a viscosity up to about 250,000 cps. Other cosmetic compositions have viscosity up to about 600,000, cps, but preferably up to 300,000 cps and more preferable, up to 250,000 cps. Water thin compositions, for example sprays or some conditioners, have a viscosity of less than about 100 cps.
- the present invention also comprises a method for forming a protective film on skin or hair by applying one of the compositions described above comprising biologically-derived 1,3-propanediol to the skin or hair and allowing the formation of the protective film.
- the compositions of the present invention may be applied to the skin or hair by various means, including, but not limited to, spraying, brushing, and applying by hand.
- the composition is left in contact with the skin or hair for a period of time sufficient to form the protective film, preferably for at least about 0.1 to 60 min.
- compositions typically have human application
- personal care compositions for other animals particularly mammals, more particularly canine, feline, or equine, are also within the scope of the present disclosure.
- esters from bio-derived 1,3-propanediol in personal care products
- the monoesters and diesters of bio-derived 1,3-propanediol are useful in a variety of applications.
- Esters as described herein are suitable, in a non-limiting way, for use in the composition of liquid hand soaps, shampoos and liquid detergents as emulisifers, pearlizing agents, surfactants, gelling agents, structurants, thickeners, or opacifiers.
- the esters containing about 1 to about 24 carbons in the alkyl chain are particularly useful in liquid soap, shampoo and detergent applications.
- esters of the present invention are also useful as an active ingredient in cosmetics as emollients. In other cosmetic applications such esters are useful in the deliver, application or effectiveness of the cosmetic. In this use the esters act as an additive or adjuvant. Specifically, in a non-limiting way, such esters can be uses as a humectant, opacifier, pearlizing agent, gelling agent, emulsifier, surfactant, structurant, thickener, compatibilizer or solvent for cosmetics and personal care products.
- the fatty acid esters of the present invention, containing about 8 to about 24 carbons in the alkyl chain are particularly useful in cosmetic applications.
- esters are also useful as a solvent for botanical products.
- botanical products include, but are not limited to, all plants, their seeds, stems, roots, flowers, leaves, pollen, spices and oils.
- Esters as described herein can also be used in inks as an emulsifier in cosmetic inks like tattoos or henna dyes.
- esters are useful in preparation of solid or near solid personal care products such as stick deodorants and bronzing sticks.
- esters of the present invention are also useful in personal care compositions as an emulsifier, humectant, gelling agent, surfactant, structurant, thickener, compatibilizer or solvent.
- Such personal care applications can be directs to any animal, especially avians, reptiles and mammals.
- the preferred applications are directed to humans, canine, feline and equine species.
- the most preferred applications are directed to human species.
- 1,3-propanediol can be incorporated into numerous compositions as a glycol component.
- 1,3-propanediol can be part of or the sole glycol component of detergent compositions.
- the glycol component typically is an emulsifier and/or phase stabilizer or a solvent.
- Exemplary liquid detergents include, but are not limited to, hand or machine dish washing detergent, laundry detergent, clothing softener, and car wash detergent.
- Glycols are present in the aforementioned detergent compositions in amounts well known to those of ordinary skill in the appropriate art, typically up to about 20% by weight based on the weight of the total composition.
- a typical formulation may include, but is not limited to, the following components by weight percent: 0.0-20.0% glycol, 5.0-40.0% fatty acid ester, and 1.0 to 50.0% surfactant or surfactant blend. Additionally, up to 5.0% by weight of the following components may be included: suds stabilizer, pH buffer, and enzymes.
- Esters as describe herein are also suitable, in a non-limiting way, for use in the composition of liquid soaps and liquid detergents as emulisifers, pearlizing agents, surfactants, gelling agents, structurant, thickener, or opacifier.
- the esters containing about 1 to about 24 carbons in the alkyl chain are particularly useful in liquid detergent applications.
- Such liquid soaps and liquid detergents can be directs to any animal, especially avians, reptiles and mammals.
- the preferred applications are directed to humans, canine, feline and equine species.
- the most preferred applications are directed to human species.
- esters of the instant application may be used for powder detergents, such as powder dishwasher detergent, and textiles detergents.
- esters are also useful as a solvent for botanical products in detergents.
- Such detergent compositions comprising botanical products include botanicals directed to plants, their seeds, stems, roots, flowers, leaves, pollen, spices and oils.
- esters in the detergent compositions described herein may also function as an antimicrobial agent.
- Light-duty liquid detergents are for dishwashing (by hand) and liquid detergents for textile, delicate garments—usually the exposure times are relatively short, about 20 minutes and the use concentrations are low, about 0.15%. Esters in these compositions provide benefit as non-ionic surfactants.
- Heavy-duty liquid detergents are for textile applications (for washing machines).
- the fatty acid esters are mostly the non-ionic surfactants.
- the non-ionic surfactants (beside the anionic surfactants) are primarily responsible for wetting the surfaces of fabrics as well as the soil (reducing surface and interfacial tension), helping to lift the stains off the fabric surface, and stabilizing dirt particles and/or emulsifying grease droplets.
- Esters in these compositions provide additional benefits as aesthetic ingredients and help to create a microemulsion.
- the fatty acid esters of the instant invention may also function as non-ionic cosofteners.
- glycol fatty acid esters deliver good softness and static control without any drawback.
- cream cleaners Other type of detergents within the instant invention include cream cleaners, as it has been found that fatty acid esters provide for microemulsion characteristics that benefit cream cleaners or detergents.
- Gel cleaners maybe formulated within the instant invention for the same reasons.
- % wt.” means percent by weight; “qs” means as much as suffices; “EDTA” means ethylenediamine tetraacetate; “° C.” means degrees Centigrade; “° F.” is degrees Fahrenheit, “Bio-PDO” means biologically-derived 1,3-propanediol; “ppm” is parts per million; “AU” is absorbance unit; “nm” is nanometer(s); “GC” is gas chromatograph; “APHA” is American Public Health Association; “cps” is centipoise; “f/t” is freeze/thaw; “mPa ⁇ s” is milliPascal seconds; “D.I.” is deionized.
- Glycerol used in the production of 1,3-propanediol was obtained from J. T. Baker Glycerin USP grade, Lot 325608 and G19657.
- DSC thermograms were recorded using Universal V3 1A TA instrument under constant stream of nitrogen with a heating and cooling rate of 10° C./min.
- NMR 1H NMR spectra were recorded on Bruker DRX 500 using XWINNMR version 3.5 software. Data was acquired using a 90 degree pulse (p1) and a 30 second recycle delay (d1). Samples were dissolved in deuterated chloroform and nondeuterated chloroform was used as internal standard.
- glycerol The conversion of glycerol to bio-PDO was monitored by HPLC. Analyses were performed using standard techniques and materials available to one of skill in the art of chromatography. One suitable method utilized a Waters Maxima 820 HPLC system using UV (210 nm) and RI detection. Samples were injected onto a Shodex SH-1011 column (8 mm ⁇ 300 mm, purchased from Waters, Milford, Mass.) equipped with a Shodex SH-1011P precolumn (6 mm ⁇ 50 mm), temperature controlled at 50° C., using 0.01 NH2SO4 as mobile phase at a flow rate of 0.5 mL/min. When quantitative analysis was desired, samples were prepared with a known amount of trimethylacetic acid as external standard. Typically, the retention times of glycerol (RI detection), 1,3-propanediol (RI detection), and trimethylacetic acid (UV and RI detection) were 20.67 min, 26.08 min, and 35.03 min, respectively.
- Monoesters and diester of bio-produced 1,3-propandiol may be produced by combining bioPDO with organic acid.
- the combination is to be preformed in dry conditions under heat and prolong agitation with a selected catalyst.
- the ratio of monoester to diester produced will vary according to the molar ratio of acid to bioPDO and the selection of catalyst.
- esters was confirmed using 1 H nuclear magnetic resonance. Analyses were performed using standard techniques and materials available to one of skill in the art of 1 H NMR.
- Proton Nuclear Magnetic Resonance ( 1 H NMR) Spectroscopy is a powerful method used in the determination of the structure of unknown organic compounds. It provides information concerning: the number of different types of hydrogens present in the molecule, the electronic environment of the different types of hydrogens and the number of hydrogen “neighbor” a hydrogen has.
- the hydrogens bound to carbons attached to electron withdrawing groups tend to resonate at higher frequencies from TMS, tetramethylsilane, a common NMR standard.
- the position of where a particular hydrogen atom resonates relative to TMS is called its chemical shift ( ⁇ ).
- Typical chemicals shifts of fatty ester are as follows.
- % ⁇ ⁇ Esterification Combined ⁇ ⁇ areas ⁇ ⁇ of ⁇ ⁇ peaks ⁇ ⁇ at ⁇ ⁇ 4.15 ⁇ ⁇ and ⁇ ⁇ 4.24 ⁇ X ⁇ ⁇ 100 Combined ⁇ ⁇ areas ⁇ ⁇ of ⁇ ⁇ peaks ⁇ ⁇ at ⁇ ⁇ 3.70 , 41.5 ⁇ ⁇ and ⁇ ⁇ 4.24
- E. coli strain ECL707 containing the K. pneumoniae dha regulon cosmids pKP1 or pKP2, the K. pneumoniae pdu operon pKP4, or the Supercos vector alone, is grown in a 5 L Applikon fermenter for the production of 1,3-propanediol from glucose.
- the medium used contains 50-100 mM potassium phosphate buffer, pH 7.5, 40 mM (NH4)2SO4, 0.1% (w/v) yeast extract, 10 ⁇ M CoCl2, 6.5 ⁇ M CuCl2, 100 ⁇ M FeCl3, 18 ⁇ ⁇ M FeSO4, 5 ⁇ M H3BO3, 50 ⁇ M MnCl2, 0.1 ⁇ M Na2MoO4, 25 ⁇ M ZnCl2, 0.82 mM MgSO4, 0.9 mM CaCl2, and 10-20 g/L glucose. Additional glucose is fed, with residual glucose maintained in excess. Temperature is controlled at 37° C. and pH controlled at 7.5 with 5N KOH or NaOH. Appropriate antibiotics are included for plasmid maintenance. For anaerobic fermentations, 0.1 vvm nitrogen is sparged through the reactor; when the dO setpoint was 5%, 1 vvm air is sparged through the reactor and the medium is supplemented with vitamin B12.
- Titers of 1,3-propanediol range from 8.1 to 10.9. Yields of bio-PDO (g/g) range from 4% to 17%.
- Published U.S. Patent Application No. 2005/0069997 discloses a process for purifying 1,3-propanediol from the fermentation broth of a cultured E. coli that has been bioengineered to synthesize 1,3-propanediol from sugar.
- the basic process entails filtration, ion exchange and distillation of the fermentation broth product stream, preferably including chemical reduction of the product during the distillation procedure.
- 1,3-Propanediol produced as recited in Example 1, was purified, by a multistep process including broth clarification, rotary evaporation, anion exchange and multiple distillation of the supernatant.
- the broth was clarified using a combination of centrifugation and membrane filtration for cell separation, followed by ultrafiltration through a 1000 MW membrane.
- the clarified broth processed in a large rotary evaporator. Approximately 46 pounds of feed material (21,000 grams) were processed to a concentrated syrup. A 60 ml portion of syrup was placed in the still pot of a 1′′ diameter distillation column. Distillation was conducted at a vacuum of 25 inches of mercury. A reflux ratio of approximately 1 was used throughout the distillation. Several distillate cuts were taken, the central of which received further processing.
- the material was diluted with an equal volume of water, the material was loaded onto an anion exchange column (mixed bed, 80 grams of NM-60 resin), which had been water-washed.
- biosource 1,3-propanediol was purified using methods as in examples 1 and 2.
- 2.58 g (0.033 moles) of biosource 1,3-propanediol, 19.45 g (0.065 moles) of stearic acid (Aldrich, 95%), and 0.2125 g (0.001 moles) of p-toluenesulfonic acid (Aldrich 98.5%) were charged into glass reactor fitted with mechanical stirrer and the reactor was flushed with dry nitrogen gas to remove air and moisture for 15 min. Then reaction temperature was raised to 100° C. while thoroughly stirring the reaction mixture under nitrogen flow and continued for 210 min.
- reaction mixture was cooled to about 35° C. and the product was transferred into a beaker.
- the product was purified by adding 100 mL of water and thoroughly stirring at 45-60° C., to form an emulsion for 15 min. The mixture was cooled and the solid propanediol distearate was separated by filtration.
- Bio-PDO biologically-derived 1,3-propanediol (produced and purified as described in Published U.S. Patent Application No. 2005/0069997) (“Bio-PDO”) is compared, in several purity aspects, to two separate commercially-obtained preparations of chemically-produced 1,3-propanediol (Source A and B).
- the unit ppm of total organic impurities means parts per million of total organic compounds in the final preparation, other than 1,3-propanediol, as measured by a gas chromatograph with a flame ionization detector. Results are reported by peak area. A flame ionization detector is insensitive to water, so the total impurity is the sum of all non 1,3-propanediol organic peaks (area %) ratioed to the sum of all area % (1,3-propanediol included).
- the term “organic materials” refers to the contaminants containing carbon.
- Examples 6-8 are prophetic and are based on a descriptions from: D'Amelio, Frank S Sr.; Botanicals: A Phytocosmetic Desk Reference ; CRC Press 1999, pg. 299-304.
- Bio-PDO is defined as 5 parts biologically derived 1,3-propanediol with 1 part dehydrated botanical. (20% of a 1:1 extract) 5 Lipo Chemicals, Inc. 6 Roche Vitamins and Fine Chemicals
- Esters based on biologically-derived 1,3-propanediol were synthesized, purified and characterized as it is described in U.S. Provisional Patent application 60/772,112, filed Feb. 10, 2006, incorporated herein by reference.
- Biologically-derived 1,3-propanediol and 1,3-propanediol conjugate ester were used for the extraction of Chamomile flower powder (Martricaria recutita from Egypt, distributor—Mountain Rose Herbs, Oreg.).
- the Chamomile powder was mixed with the ester and macerated for 2, 4, 6 hours on a shaking table.
- the material was filtered through a 0.2 ⁇ m GHP membrane and the filtrate was analyzed by UV/VIS (UV/Vis Spectrophotometer, Varian (Australia), Model: Cary 5000) and the spectra demonstrated that the efficacy of the extracted compounds was proportional with the time used for the maceration.
- the biologically-derived 1,3-propanediol conjugate ester was synthesized as it is written in Example 9 and the ester (Bio-PDO bis-ethylhexanoate) was used for the extraction of dried Red Roses (Rosa centifolia, Mountain Rose Herbs, Oreg.).
- the dried roses was mixed with the ester and macerated for 2, 4, 6 hours on a shaking table.
- the material was filtered through a 0.2 ⁇ m GHP membrane and the filtrate was analyzed by UV/VIS.
- the biologically-derived 1,3-propanediol conjugate ester was synthesized as it is written in Example 9 and the ester (Bio-PDO bis-ethylhexanoate) was used for the extraction of dried seaweed (local farmers' market).
- the dried seaweed was mixed with the ester and macerated for 2, 4, 6 hours on a shaking table.
- the material was filtered through a 0.2 ⁇ m GHP membrane and the filtrate was analyzed by UV/VIS.
- Bio-1,3-propanediol and propylene glycol were used to extract ingredients from Jasmine flower, Chamomile flower powder (Matricaria recutita) myrrh gum cut benzoin gum powder, and bees wax.
- LC-MS and GC-MS were used to analyze the extracted ingredients.
- Qualitative analysis confirmed that ingredients extracted using 1,3-propanediol are same as those extracted using propylene glycol.
- ingredients extracted using bio-1,3-propanediol and mixtures of bio-1,3-propanediol and methanol were the same.
- the table shows the GC-MS/LC-MS peak areas of the extracted ingredients using 1,3-propanediol and propylene glycol.
- Bio-1,3-propanediol the extraction process extracted 29.4 wt % higher en-in-cycloethers, 11.2 wt % higher apigenin glucoside, and 5.2 wt % higher bisabolol oxide as compared to the extraction using propylene glycol.
- Chamomile flower powder (5 g) was mixed with 50 g of solvent mixture (Bio-PDO/Deionized Water, ratio 1:1, and also the mixture of 1,2-Propanediol (Propylene glycol, Aldrich)/Deionized Water, ratio 1:1). The mixture was kept for agitation for 24 h. The extract was filtered and analyzed.
- solvent mixture Bio-PDO/Deionized Water, ratio 1:1, and also the mixture of 1,2-Propanediol (Propylene glycol, Aldrich)/Deionized Water, ratio 1:1.
- the mixture was kept for agitation for 24 h.
- the extract was filtered and analyzed.
- Hamomile flower powder (Mountain Rose Herb, Oreg.) (5 g) was mixed with 50 g of Bio-PDO also 5 g of Chamomile flower powder was mixed with Deionized Water. The mixture was macerated for 24 h. The extract was filtered and analyzed by LC/MS.
- Phase A was combined at 75° C.
- Phase B was combined at 75° C.
- Phase B was added to Phase A.
- Phase C was then added to the Phase A/B.
- Phase A/B/C was cooled to 40° C. and then Phase D was added. pH was adjusted to 7.0-7.5 with Phase C.
- the formulation produced was a smooth white and apparently stable emulsion.
- cosmetic emulsions containing other polyols were also produced as described in Example 17, except that the biologically-derived 1,3-propanediol was substituted with propylene glycol, 1,3-butylene glycol, or 2-methyl-1,3-propanediol.
- the cosmetic emulsions containing propylene glycol, 1,3-butylene glycol, or 2-methyl-1,3-propanediol were stable.
- the viscosity of the cosmetic emulsion containing biologically-derived 1,3-propanediol was on par with that of propylene glycol (12600 cps) and higher than that of 1,3-butylene glycol (6000 cps) or 2-methyl-1,3-propanediol (9600 cps).
- Test Panel The test involved the application of the test article to the upper arms of a group of 112 volunteer panelists. The panelists ranged from 16 to 71 years of age. One hundred and five panelists completed the study. Prior to the initiation of the study, all panelists were in good general health and free of any visible skin disease or anomaly in the area to be patched. Each panelist was required to read, understand and sign an informed consent statement.
- test articles biologically-derived 1,3-propanediol diluted with D.I. water to a concentration of 5%, diluted with D.I. water to a concentration of 25%, and diluted with D.I. water to a concentration of 50%
- test articles were applied (0.1 mL) to a one-inch Lintine® Disk (Filter Fabrics, Goshen, MD) and placed onto a strip of 2 inch Dermicel® hypoallergenic cloth tape (Johnson & Johnson, New Brunswick, N.J.).
- each portion of test material was secured in place with a gloved finger to insure proper application. This tape strip was then pressed into place on the upper left arm of each panelist at its designated test site.
- Induction Phase These patches were applied to their designated contact sites and remained in place for 24 hours. At the end of this period, the patches were removed and the sites were examined for any dermal response. The panelists were then rested for a 24-hour period after which the skin sites were again examined. New patches were then applied to the same sites as previously used. The second applications were identical to the first and remained in place 24 hours. This procedure was repeated on Mondays, Wednesdays and Fridays until a series of nine applications had been made. Patch applications made on Friday were removed by the panelists on Saturday. The panelists examined the sites (with assistance if necessary) for any dermal response at the time of removal and again at 48 hours and reported their observations prior to the next application. The same sites were used throughout the study. In the event when one induction application was missed, the panelist was allowed to make it up at the end of the induction patch period. These patches were applied on Monday following the last scheduled (ninth) induction application on Friday.
- biologically-derived 1,3-propanediol diluted to concentrations of 5%, 25%, and 50%, is considered not to be a skin irritant, fatiguing agent, or sensitizing agent under the conditions that prevailed in this study.
- Phase C Luvigel EM (caprylic/capric triglycerides and 1.0 sodium acrylates copolymer) Phase D Vitamin E Acetate (BASF) 0.5 Perfume q.s.
- Procedure Add ingredients in above order at 80° C. and mix until uniform. Assure each is dissolved prior to next addition. Heat phase B to 80° C. and combine with phase A. Cool to 50° C. Add fragrance and preservative. Pour into containers while liquid and allow to set at room temperature.
- Stepan ® IPM (Stepan) (isopropyl myristate) 3.25 Bio-PDO TM (DuPont) 4.00 Phase C Sensomer ® CI-50 (Ondeo Nalco) (starch 3.00 hydroxypropyltrimonium chloride) AA040513 Cucumber (Arylessence) (fragrance) 0.25 Preservative q.s. Sodium hydroxide q.s. to pH 6
- Viscosity 17,600 cps, pH 6.44
- Viscosity at 25° C. 2000-5000 cps; pH 7.8-8.0
- Phase 1 Add Carbopol 940 to D.I. water with good mixing until solution is free of lumps. Add PPG-20 methyl glucose ether and Bio-PDOTM. Mix until completely dissolved. Heat to 165° F. In a separate container, prepare Phase 2. Heat to 165-170° F. Add Phase 2 to Phase 1 (both at 165-170° F.) with good agitation. Emulsify for 20 minutes and then begin to cool with slow agitation. At 110° F. add ingredients from Phase 3. At 90° F. stop cooling and agitation.
- Viscosity at 25° C.: 2200-3700 cps
- Procedure Into a vessel equipped with agitation, add first four ingredients. Mix well. Premix fragrance and Tween® 20 in a separate container. Add to the batch. Mix well. Adjust pH with citric acid, if necessary. Add dye and preservative as desired.
- Viscosity 20 cps
- Sequence A was dispersed and when the gums were completely hydrated and the phase was uniform, pre-ground Sequence B (pigment phase) was added to it and mixed until both phases were completely uniform and homogeneous.
- Sequence C was weighed in a separate vessel and heated to 75°-80° C. until all the solids were melted and the phase was uniform. Sequence A was then heated to 75°-80° C. When all the phases were all at the proper temperatures, Sequence C (oil phase) was slowly added to Sequences A & B (water phase). The emulsion was allowed to mix at 75° C. for 15 minutes and then cooled to 25° C.
- Samples for testing were then poured off and placed at their respective stability stations in preparation for the 4 week study.
- the color and powder fill loading in these formulations was kept constant at 11.30% dry pigment.
- Conventional powder fill ingredients were chosen for these formulations as to eliminate any potential variability in test results.
- Viscosity readings throughout the 4 week test period showed that there was no unusual build or decrease in viscosity.
- Oven stability consisted of R/T, 45° C., and 2 Freeze/Thaw cycles. After 4 weeks, samples showed no signs of separation, sweating, severe loss of viscosity, change in consistency, loss of structure, odor problems, or color change at any temperature.
- Sequence A was dispersed and when the gums were completely hydrated and the phase was uniform, pre-ground sequence B (pigment phase) was added to it and mixed until both phases were completely uniform and homogeneous.
- Sequence C was weighed in a separate vessel and heated to 80°-85° C. until all the solids were melted and the phase was uniform. Sequence A was then heated to 75°-80° C. When all the phases were all at the proper temperatures, Sequence C (oil phase) was slowly added to Sequences A & B (water phase). The emulsion was allowed to mix at 75° C. for 15 minutes.
- Viscosity readings throughout the 4 week test period showed that there was no unusual build or decrease in viscosity. The variations seen are very typical for a product of this type and fall within an acceptable range for a mascara type product.
- Oven stability consisted of R/T, 45° C., and 2 Freeze/Thaw cycles. After 4 weeks, samples showed no signs of separation, sweating, severe loss of viscosity, change in consistency, loss of structure, odor problems, or color change at any temperature.
- Phase A Disperse Carbomer in water with high speed agitation, allowing particles to wet completely. Add 1,3-propanediol. Heat to 70° C.
- Phase B Combine Myristyl Myristate, glyceryl stearate, Oleic Acid, Polysorbate 61, C12-15 Alkyl Benzoate, Dimethicone, Isopropyl Palmitate, Sorbitan Stearate, Cetyl Alcohol, Synthetic Beeswax, Stearyl; Alcohol, Benzyl Alcohol, Methylparaben, Propylparaben, Butylparaben, and BHT, heat to 70° C.
- Phase A Combine Phase A ingredients into water and heat with mixing to 75° C. Slowly add remaining Phase A ingredients. Hold temperature at 75° C. and mix slowly.
- Phase B Combine phase B ingredients and heat to 75° C. with slow mixing. Add Phase B to Phase A and mix until uniform.
- Phase C Add Phase C one at a time
- Phase D Use Phase D to adjust the pH of batch to 6.0-6.5
- liquid powder can be prepared using bio-based propanediol caprylate.
- phase A add inulin lauryl carbamate to water and disperse CARBOPOL ULTREZ 10 (B.F. Goodrich Company, New York, N.Y.). Blend the mixture of phase A ingredients for about 10 minutes, until the carbomer is completely dispersed and hydrated. Under light agitation raise the temperature of the mixture to about 70° C.
- phase B in the amount stipulated by the table, including bio-based propanediol caprylate, and heat to about 75° C.
- phase B mixture in the amount stipulated by the table, including bio-based propanediol caprylate, and heat to about 75° C.
- the present invention can be used to prepare a pearlized milk bath using bio-based propanediol distearate. Following the percentages in Table 2, combine UCARE polymer LR-400 with a sufficient amount water to hydrate. Then following the percentage listed in Table 2, blend in PLANTOPON 611 L (Fitz Chem Corporation, Itasca, Ill.) and LAMESOFT PO 65 (Fitz Chem Corporation, Itasca, IL) until the mixture reaches uniform consistency.
- the present invention can be use in the preparation of a gentle baby shampoo using bio-based propanediol oleate.
- the present application can be used in the preparation of a moisturizing body wash using bio-based propanediol stearate.
- a moisturizing body wash start by obtaining the list of ingredients in the proportional amounts listing in Table 4.
- JORDAPON CI BASF Corporation, Mount Olive, N.J.
- AVANEL S150 CGN BASF Corporation, Mount Olive, N.J.
- PEG-150 distearate PEG-150 distearate
- Cocamidopropyl betaine Cocamidopropyl betaine
- Cocamide MEA Cocamide MEA
- bio-based propanediol stearate in approximately half of the total water required for the desired volume.
- the present invention can be used in the preparation of a deep penetrating hair reconstructor using bio-based propanediol dicaprylate.
- a hair reconstructor To prepare such a hair reconstructor obtain the ingredients as listed in and in the relative quantities as depicted in Table 5. Then, mix the DEHYQUART L 80 (Cognis GMBH, Dusseldorf, Del.) CETIOL CC (Cognis GMBH, Dusseldorf, DE), DC 949 (Dow Corning, Midland Mich.), GLUADIN WLM (Cognis GMBH, Dusseldorf, DE), perfume, and preservative, i.e. all the components of table 5, phase A. Agitate the component of phase A until completely homogeneous.
- phase C mix the bio-based propanediol dicaprylate in deionized water in a quantity of water as shown in Table 5, phase C until a homogeneous cream is obtained. Then, add phase A and B to phase C and agitate until a desire consistency is achieved. If necessary adjust pH to between about 6.5 and about 7.5 using either citric acid or sodium hydroxide.
- Phase B LAMESOFT PW 45 (Cetyl palmitate and beheneth-10 and 4.00 hydrogenated castor oil and glyceryl stearate) Water 37.75 Phase C Bio-based propanediol dicaprylate 2.25 Water 50.00
- the present invention can be used to prepare a bronzing stick using both bio-based propandiol myristate and bio-based propanediol diprylate.
- To prepare such a bronzing stick obtain all the ingredients in the proportions indicated in Table 6.
- phase B mix together the Colorona bronze cosmetic pigment (Rona Cosmetics GmBH, Darmstadt DE), Timiron MP-10 cosmetic pigment (Rona Cosmetics GmBH, Darmstadt DE), Colorona copper cosmetic pigment (Rona Cosmetics GmBH, Darmstadt DE), and Biron LF-2000 cosmetic pigment (Rona Cosmetics GmBH, Darmstadt DE), i.e. all the components of Table 6, phase B.
- the phase B components have been thoroughly mixed, blend them into the already combined phase A and phase C mixture, while continuing to heat at 85° C.
- the phase B mixture has been thoroughly combined with phase A and phase C and homogeny has reached, allow the mixture to cool to between about 70° C. and about 80° C. While the mixture is between about 70° C. and about 80° C., pour the mixture into molds to create sticks. Allow the mixture to fully cool to room temperature before removing the formed sticks from the molds.
- Poly(diallyldimethylammonium chloride), 20 wt % in water was blended with PLANTOPON 611 L, polyglucoside, Bio-PDOTM oleate and cocamide DMA in the proportional amounts listed in Table until the mixture reaches uniform consistency. Then glycerin, milk protein, Bio-PDOTM oleate, Bio-PDOTM distearate were added and mixed well until the mixture is again of uniform consistency. Measure the pH and if necessary adjust with citric acid to reach a final pH of between about 6 to about 7. Finally add preservative, dye, fragrance and enough water to reach the desired volume. The final viscosity of the mixture should be between about 5,000 cPs to about 10,000 cPs.
- Phase A Mix the ingredients of Phase A. Heat the mixture to about 70° C. under continuous agitation. Maintain 70° C. until the mixture has reached homogeneous.
- phase A mixture In a separate container, mix together the TiO2, and pigment(s) and blend them into the phase A mixture, while continuing to heat at 70° C. After the phase B mixture has been thoroughly combined with phase A and homogeny has reached, allow the mixture to cool to about 50° C., pour the mixture into molds to create sticks. Allow the mixture to fully cool to room temperature before removing the formed sticks from the molds.
- % WT Ammonium Lauryl Sulfate (ALS) (28%) 26.0 Cocamide DEA 2 6.0 Sodium Lauryl Sulfate (SLS) (25%) 18.0 Bio-PDO TM 1 1.0 Water 44.5 Bio-PDO TM stearate 0.5 Irgasan 6 0.2 Tetrasodium EDTA (5 wt %) 2.0 Citric acid (50 wt %) QS Fragrance 0.2 1 DuPont Tate & Lyle Bio Products 2 The Chemistry Store.com, Cayce, SC 3 Somerset Cosmetic Co. LLC, Renton, WA 4 Stephan Co. Northfield, IL 5 Noveon, Cleveland, OH 6 Sigma-Aldrich, Milwaukee, WI
- phase A Combine components of phase A mix and heat to 75° C.
- phase B Combine phase B with phase A. Cool it to 45° C.
- Add components of phase C Mix it thoroughly.
- Add components of phase D and E. Mix it until viscosity developed.
- the resulting liquid dishwashing detergent displays very good stability, enhanced rheology effects and less environmental inpact.
- the resulting liquid laundry detergent exhibits very good stability, exclellent cloud point and enhanced rheology effects.
- the resulting hand dishwashing liquid exhibits very good stability, improved foaming, excellent cloud point and requires less salt to adjust viscosity.
- Fatty acid glycol ester e.g., Monoethylene glycol distearate
- Fatty acid alkanolamide e.g., coconut oil acid monoethanolamide
- Surfactant e.g., Sodium lauryl triglycol ether-sulfosuccinate or Coconut-alkyldimethylamine oxide
- Sodium salt e.g., Mono- or Di-valent 0.1-3.0%
- water up to 100% e.g., Monoethylene glycol distearate
- Fatty acid alkanolamide e.g., coconut oil acid monoethanolamide
- Surfactant e.g., Sodium lauryl triglycol ether-sulfosuccinate or Coconut-alkyldimethylamine oxide
- Sodium salt e.g., Mono- or Di-valent
- Liquid Detergent Comprising Esters Formed from Biologically Derived 1,3-Propanediol
- Fatty acid glycol ester e.g., Monoethylene glycol distearate
- Fatty acid alkanolamide e.g., Cocomonoethanolamide
- Nonionic surfactant e.g., C 10 -C 12 -Fatty polyol alkyl ester
- Liquid Detergent Comprising Esters Formed from Biologically Derived 1,3-Propanediol
- Fatty acid glycol ester e.g., Ethylene glycol distearate
- Nonionic surfactant e.g., Laureth-7) 3.0-30.0%
- Amphoteric surfactant e.g., Cocoamidopropyl betaine and Cocoamphoacetate
- Glycol e.g., Propylene glycol (1,2 and 1,3) 0.0-15.0%; water up to 100%.
- fatty acid glycol ester pearlizing agent
- nonionic surfactant emulsifier and stabilizer
- amphoteric surfactant co-emulsifier to enhance pearlizing effect
- glycol emulsifier
- Liquid Detergent Comprising Esters Formed from Biologically Derived 1,3-Propanediol
- Fatty acid glycol ester sulfate (e.g., Lauric acid (ethylene glycol) sulfate sodium salt) 10.0-60.0%; Additional surfactant (B) (anionic, nonionic, cationic, amphoteric, and/or zwitterionic) (e.g., Sodium laureth sulfate) 90.0-40.0%; water up to 100.0%.
- A e.g., Lauric acid (ethylene glycol) sulfate sodium salt
- B anionic, nonionic, cationic, amphoteric, and/or zwitterionic
- Foaming behavior may be tested by, preparing a 10% by weight aqueous surfactant solution (21° dH+1% by weight sebum) and determining the foam volume by Standard DIN 53902, Part 1. Test solutions can be made using weight ratios of A (10.0-60.0%) and B (90.0-40.0%).
- the fatty acid glycol ester sulfates may exhibit advantageous properties: 1) foam booster for other surfactants, 2) foam stability in the presence of hard water and/or oil, 3) improve formulation of surfactants with poor solubility in cold water, 4) contribute to cleaning performance, 5) dermatologically safe, 6) readily biodegradable, and 7) free of nitosamines.
- Liquid Detergent Comprising Esters Formed from Biologically Derived 1,3-Propanediol
- Surfactant anionic, nonionic, or amphoteric
- anionic, nonionic, or amphoteric e.g., Sodium POE (3) lauryl ether sulfate, Lauryl amidopropylbetaine, Coconut oil fatty acid monothanol amide, and POE (12) lauryl ether
- Fatty acid glycol ester e.g., Ethylene glycol distearate
- Glyceryl ether e.g., N-Octyl glyceryl ether
- Compositions will have 1) a pearly luster, and 2) are excellent in the dispersion stability of a pearlent.
- Procedure Combine all ingredients together, heating the mixture to 80° C. and allowing the ingredients to melt, and then cooling the melt to 30° C. with stirring.
- Liquid Detergent Comprising Esters Formed from Biologically Derived 1,3-Propanediol
- Diamine (pKa1 & pKa2 range 8.0-11.5 and molecular weight less-than or equal-to 400 g/mol) (e.g., 1,3-bis(methylamine)-cyclohexane) 0.1-15.0%; Anionic Surfactant (e.g., C 12 -C 13 alkyl ethoxy sulfonate) 0.5-90.0%; Amphoteric Surfactant (e.g., C 12 -C 14 amine oxide) 0.10-20.0%; Glycol (e.g., Propylene Glycol) 0.75-25.0%; Optional Ingredients include Polymeric Suds Stabilizer (e.g., (N,N,-dimethylamino)ethyl methacrylate) 0.01-15.0%; Builder (e.g., Citric Acid) 0.50-50.0%; Enzyme(s) (e.g., Alcalase® (Novo Industri A/S) and TERMAMYL® (No
- Diamines Improve cleaning performance
- Surfactants Cleaning performance
- Glycols 1) Enhanced physical and enzymatic stability, 2) Act as a hydrotrope (phase stabilizer); Suds Stabilizer—Extend suds volume and duration
- Builder Support detergent action
- Enzyme Cleaning performance
- Buffer pH adjustment
- Alkali Inorganic Salt Support detergent action
- Perfume Help remove iron and manganese.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Wood Science & Technology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Polymers & Plastics (AREA)
- Epidemiology (AREA)
- Natural Medicines & Medicinal Plants (AREA)
- Dermatology (AREA)
- General Chemical & Material Sciences (AREA)
- Zoology (AREA)
- Food Science & Technology (AREA)
- Emergency Medicine (AREA)
- Medicinal Chemistry (AREA)
- Microbiology (AREA)
- Pharmacology & Pharmacy (AREA)
- Nutrition Science (AREA)
- Biotechnology (AREA)
- Materials Engineering (AREA)
- Mycology (AREA)
- Birds (AREA)
- Combustion & Propulsion (AREA)
- Alternative & Traditional Medicine (AREA)
- Botany (AREA)
- Medical Informatics (AREA)
- Genetics & Genomics (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Environmental Sciences (AREA)
- Dentistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
Abstract
Description
- This application is a Continuation of U.S. patent application Ser. No. 13/238,776, filed Sep. 21, 2011, which is a Continuation of U.S. patent application Ser. No. 12/786,506, filed on May 25, 2010, which is a Continuation of U.S. patent application Ser. No. 11/705,198, filed on Feb. 12, 2007, now U.S. Pat. No. 7,759,393, which claims the benefit of U.S. Provisional Application Ser. No. 60/772,471, filed Feb. 10, 2006; U.S. Provisional Application No. 60/772,194, filed Feb. 10, 2006, U.S. Provisional Application No. 60/772,193, filed Feb. 10, 2006, U.S. Provisional Application No. 60/772,111, filed Feb. 10, 2006, U.S. Provisional Application No. 60/772,120, filed Feb. 10, 2006, U.S. Provisional Application No. 60/772,110, filed Feb. 10, 2006, U.S. Provisional Application No. 60/772,112, filed Feb. 10, 2006, U.S. Provisional Application No. 60/846,948, filed Sep. 25, 2006, U.S. Provisional Application No. 60/853,920, filed Oct. 24, 2006, U.S. Provisional Application No. 60/859,264, filed Nov. 15, 2006, U.S. Provisional Application No. 60/872,705, filed Dec. 4, 2006 and U.S. Provisional Application No. 60/880,824, filed Jan. 17, 2007, the disclosures of which are expressly incorporated herein by reference in their entireties.
- The invention relates to biodegradable flavoring agent compositions comprising 1,3-propanediol, 1,3-propanediol ester, or combinations thereof.
- Consumers and manufacturers are increasingly concerned with the environmental impact of all products. The effort towards environmental impact awareness is a universal concern, recognized by government agencies. The Kyoto Protocol amendment to the United Nations Framework Convention on Climate Change (UNFCCC) currently signed by 156 nations is one example of a global effort to favor safer environmental manufacturing over cost and efficiency. Especially when applied to goods like, personal care, cosmetics, therapeutics and cosmeceuticals, consumers are increasingly selective about the origins of the products they purchase. The 2004 Co-operative Bank's annual Ethical Consumerism Report (www.co-operativebank.co.uk) disclosed a 30.3% increase in consumer spending on ethical retail products (a general classification for environmental safe, organic and fair trade goods) between 2003 and 2004, while total consumer spending during the same period rose only 3.7%.
- One of the single greatest environmental concerns to consumers is the global warming effect and greenhouse gases that contribute to the effect. Greenhouse gases are gases that allow sunlight to enter the atmosphere freely. When sunlight strikes the Earth's surface, some of it is reflected back towards space as infrared radiation. Greenhouse gases absorb this infrared radiation and trap the heat in the atmosphere. Over time, the amount of energy sent from the sun to the Earth's surface should be about the same as the amount of energy radiated back into space, leaving the temperature of the Earth's surface roughly constant. However, increasing the quantity of greenhouse gases above the quantity that existed before the rise of human industrialization is thought to increase the retained heat on the Earth's surface and produce the global warming observed in the last two centuries.
- Carbon dioxide is singled out as the largest component of the collection of greenhouse gases in the atmosphere. The level of atmospheric carbon dioxide has increased 50% in the last two hundred years. Any further addition of carbon dioxide to the atmosphere is thought to further shift the effect of greenhouse gases from stabilization of global temperatures to that of heating. Consumers and environmental protection groups alike have identified industrial release of carbon into the atmosphere as the source of carbon causing the greenhouse effect. Only organic products composed of carbon molecules from renewably based sources such as plant sugars and starches and ultimately atmospheric carbon are considered to not further contribute to the greenhouse effect, when compared to the same organic molecules that are petroleum or fossil fuel based.
- In addition to adding carbon dioxide to the atmosphere, current methods of industrial production of propanediols produce contaminants and waste products that include among them sulfuric acid, hydrochloric acid, hydrofluoric acid, phosphoric acid, tartaric acid, acetic acids, Alkali metals, alkaline earth metals, transitional metals and heavy metals, including Iron, cobalt, nickel, copper, silver, molybdenum, tungsten, vanadium, chromium, rhodium, palladium, osmium, iridium, rubidium, and platinum (U.S. Pat. Nos. 2,434,110, 5,034,134, 5,334,778, and 5,10,036).
- There is a need for all manufactures to provide products reduced environmental impacts, and to especially consider the carbon load on the atmosphere. There is also an environmental advantage for manufacturers to provide products of renewably based sources. Further, there is a need for a proven solvent which is produced with no or little increase to the present carbon-dioxide level in the environment.
- Published U.S. Patent Application No. 2005/0069997 discloses a process for purifying 1,3-propanediol from the fermentation broth of a cultured E. coli that has been bioengineered to synthesize 1,3-propanediol from sugar. The basic process entails filtration, ion exchange and distillation of the fermentation broth product stream, preferably including chemical reduction of the product during the distillation procedure. Also provided are highly purified compositions of 1,3-propanediol.
- Personal care, animal care, cosmetic, therapeutic, pharmaceutic, nutraceutic, aromatherapy, fragrance and cosmeceutic formulations benefit from glycols in the compositions as, for example, surfactants, humectants, solvents, neutralizers, emulsifiers, preservatives and/or fragrance enhancers and fixatives. Typically the glycol component in personal care applications include propylene glycol, 1,3-butylene glycol, or 2-methyl-1,3-propanediol. Because of production costs and relative low purity, conventional 1,3-propanediol, though exhibiting properties equal to if not better than the aforementioned glycols, generally is not used in such compositions.
- Moreover, in the context of personal care, animal care, cosmetic, therapeutic, pharmaceutic, nutraceutic, aromatherapy, fragrance and cosmeceutic formulations incorporating a botanical, vegetal, protein/peptide, marine, algae or milk extract, or fragrance concentrate or oil, consumers pay attention to the quality and environmental impact of the product. Currently, botanical, vegetal, protein/peptide, marine, algae and milk extracts, and fragrance concentrates utilize chemical solvents, such as propylene glycol, 2-methyl-1,3-propanediol, butylene glycol, dipropylene glycol, synthetic glycerin, and ethanol, for the extraction process. In many cases these chemical solvents are used in combination with each other. Despite the fact these chemicals are suitable solvents, they have an intrinsic disadvantage because they represent a petroleum-based component of an otherwise “all natural” product. Additionally, safety assessments of these solvents provide evidence that they can cause skin irritation. (Cosmetic Ingredient Review Expert Panel (1994) Final Report on the Safety Assessment of Propylene Glycol and Polypropylene Glycols. J. Am. College Toxicol., 13(6):437-491).
- Essential oils extracted from plants are widely used cosmetic and personal care formulations. Colors extracted from plants are used in the food and non-food-industry. Medicinal plant extractions are being used for the treatment various disorders. Though several methods can be used for extraction of flavors, fragrances, colors, and active ingredients, solvent extraction is one of widely used method. Selective extraction of required ingredients, stability of the extracted ingredients, and separation of ingredients from unwanted solvents are key factors for extraction. When volatile solvents such as ethanol used for extraction of active ingredients, they need to be removed before using the ingredients in formulations. When solvents are removed some of the active ingredients may not be stable and decompose.
- Detergent compositions comprising 1,3-propanediol are provided, and the 1,3-propanediol in the composition is biologically derived. Also provided are detergent compositions comprising an ester of 1,3-propanediol. In these compositions, the ester can have at least 3% biobased carbon.
- Applicants specifically incorporate the entire content of all cited references in this disclosure. Further, when an amount, concentration, or other value or parameter is given as either a range, preferred range, or a list of upper preferable values and lower preferable values, this is to be understood as specifically disclosing all ranges formed from any pair of any upper range limit or preferred value and any lower range limit or preferred value, regardless of whether ranges are separately disclosed. Where a range of numerical values is recited herein, unless otherwise stated, the range is intended to include the endpoints thereof, and all integers and fractions within the range. It is not intended that the scope of the invention be limited to the specific values recited when defining a range.
- Solvents for diluting and extracting natural extracts are often synthetic, petroleum based organic solvents. Botanical, vegetal, protein/peptide, marine, algae, and milk extracts, also known as an essential oils, are an attractive component in many compositions. These essential oils impart aromatics, active ingredients, and other functionalities such as hand-feel, softening, emoillency, healing, cooling, refreshing, antimicrobial, astringency, nail-strengthening, promotion of healthy skin tissue and hair, cleansing, stimulating, whitening, delivery of anti-oxidants and skin-soothing attributes to a product. Essential oils are the volatile oils of plant/vegetal, protein/peptide, lipid, marine, algae or milk materials that have been removed either by distillation or solvent extraction.
- Biologically-derived 1,3-propanediol and its conjugate esters can be used as a solvent to extract essential oils and other extracts from extract sources. Bio-derived 1,3-propanediol and its conjugate esters can be used as a solvent system for botanical extracts and fragrance concentrates and oils at a 10% to approaching 100% concentration range.
- Additionally, biologically-derived 1,3-propanediol and its conjugate esters can be used as a solvent to dilute or solubilize extracts in compositions. Biologically-derived 1,3-propanediol and its conjugate esters are unique as solvents in that they are naturally derived, and therefore attractive to consumers who avoid synthetic chemicals.
- Biologically-derived 1,3-propanediol and its conjugate esters provide for non-irritating solvents for the extraction and dilution of botanicals, vegetal, protein/peptide, marine, algae, milk substrates or fragrance concentrates and oils. In an aspect of the invention the solvent is composed of all natural components, the term “all natural” as used herein refers to a product that is manufactured from ingredients that are natural occurring. Specifically, biologically derived 1,3-propanediol comprises non-petroleum based carbon.
- The conjugate esters of biologically-derived 1,3-propanediol discussed herein include the mono and diesters of biologically derived 1,3-propanediol.
- Biologically-derived 1,3-propanediol or its ester conjugates are employed as chemical solvents for extraction or diluent of a botanical extract or fragrance concentrate or oil. The process of extracting an extract from a source comprises: (a) providing 1,3-propanediol, an ester of 1,3-propanediol, or a mixture thereof; (b) mixing the 1,3-propanediol, the ester of 1,3-propanediol, or the mixture thereof with the source, which extracts the extract from the source into the ester; and (c) separating the source from the extract and 1,3-propanediol, the ester of 1,3-propanediol, or the mixture thereof.
- The process of extraction involves use of a dried substrate such as plant material which is macerated with solvent. Maceration is the most common and economically important technique for extracting aromatics in the modern perfume industry. In this method, raw materials are submerged in a solvent that can dissolve the desired aromatic or other extract compounds. Maceration lasts between fractions of an hour to months. Maceration is often used to extract fragrant compounds from woody or fibrous materials, as well as animal sources. This technique is also useful to extract odorants that are too volatile for distillation or easily denatured by heat.
- Alternatively the solvent can be percolated though the substrate material until sufficient soluble materials have leached from the biomass or substrate. The substrate debris is separated from the extract by straining, filtering, or centrifugation.
- Another technique for extracting compounds from a raw material is supercritical fluid extraction. This technique uses low heat to reduce degradation of the extract compounds. Supercritical CO2 can be used in this extraction technique.
- Extraction can be performed in accordance with the invention by other extraction techniques as well, including distillation. Biologically-derived 1,3-propanediol and its conjugate esters can be used as solvents in distillation extractions. In this technique, commonly used to obtain aromatic compounds from plants, such as orange blossoms and roses, the raw material is heated and the fragrant compounds are recollected through condensation of the distilled vapor. Distillation methods include steam distillation, in which steam is used to drive out volatile fragrant compounds from plant material, leaving a condensate which is called a hydrosol. Distillation also includes dry or destructive distillation where the raw material is heated without a carrier solvent. In this case, biologically-derived 1,3-propanediol and its conjugate esters are used as a solvent to dilute the fragrant compounds after extraction.
- In yet another method of extraction, known as expression, raw material is physically squeezed or compressed and the extruded oils are collected. This method is known as extraction and is most commonly performed to extract compounds from the peels of fruits in the citrus family, as these sources contain sufficient oils to make this method feasible. Enfleurage is another extraction method appropriate for use with biologically derived 1,3-propanediol, its conjugate esters, or mixtures thereof.
- Biologically derived 1,3-propanediol and its conjugate esters are useful as a solvents for extractions, and as a component in compositions comprising botanical extracts. Botanical sources include, but are not limited to all plants, seeds, stems, roots, flowers, leaves, pollen, spices, and oils. One type of extract appropriate for extraction or dilution is the herbal extract.
- An herbal extract is a liquid solution of herbs and solvent. The dried or fresh herbs are combined with solvent, then the solid matter is removed leaving only the oils of the herbs mixed with the solvent. This process is called extraction, and the process produces an herbal extract.
- Herbal extracts are sold as dietary supplements and alternative medicine and commonly used for flavoring in baking, cooking or in beverages. They are also used in personal care products such as skin and hair products.
- A small amount of the carbon dioxide in the atmosphere is radioactive. This 14C carbon dioxide is created when nitrogen is struck by an ultra-violet light produced neutron, causing the nitrogen to lose a proton and form carbon of molecular weight 14 which is immediately oxidized in carbon dioxide. This radioactive isotope represents a small but measurable fraction of atmospheric carbon. Atmospheric carbon dioxide is cycled by green plants to make organic molecules during the process known as photosynthesis. The cycle is completed when the green plants or other forms of life metabolize the organic molecules producing carbon dioxide which is released back to the atmosphere. Virtually all forms of life on Earth depend on this green plant production of organic molecule to produce the chemical energy that facilitates growth and reproduction. Therefore, the 14C that exists in the atmosphere becomes part of all life forms, and their biological products. These renewably based organic molecules that biodegrade to CO2 do not contribute to global warming as there is no net increase of carbon emitted to the atmosphere. In contrast, fossil fuel based carbon does not have the signature radiocarbon ratio of atmospheric carbon dioxide.
- Assessment of the renewably based carbon in a material can be performed through standard test methods. Using radiocarbon and isotope ratio mass spectrometry analysis, the biobased content of materials can be determined. ASTM International, formally known as the American Society for Testing and Materials, has established a standard method for assessing the biobased content of materials. The ASTM method is designated ASTM-D6866.
- The application of ASTM-D6866 to derive a “biobased content” is built on the same concepts as radiocarbon dating, but without use of the age equations. The analysis is performed by deriving a ratio of the amount of radiocarbon (14C) in an unknown sample to that of a modem reference standard. The ratio is reported as a percentage with the units “pMC” (percent modern carbon). If the material being analyzed is a mixture of present day radiocarbon and fossil carbon (containing no radiocarbon), then the pMC value obtained correlates directly to the amount of Biomass material present in the sample.
- The modern reference standard used in radiocarbon dating is a NIST (National Institute of Standards and Technology) standard with a known radiocarbon content equivalent approximately to the year AD 1950. AD 1950 was chosen since it represented a time prior to thermo-nuclear weapons testing which introduced large amounts of excess radiocarbon into the atmosphere with each explosion (termed “bomb carbon”). The AD 1950 reference represents 100 pMC.
- “Bomb carbon” in the atmosphere reached almost twice normal levels in 1963 at the peak of testing and prior to the treaty halting the testing. Its distribution within the atmosphere has been approximated since its appearance, showing values that are greater than 100 pMC for plants and animals living since AD 1950. It's gradually decreased over time with today's value being near 107.5 pMC. This means that a fresh biomass material such as corn could give a radiocarbon signature near 107.5 pMC.
- Combining fossil carbon with present day carbon into a material will result in a dilution of the present day pMC content. By presuming 107.5 pMC represents present day biomass materials and 0 pMC represents petroleum derivatives, the measured pMC value for that material will reflect the proportions of the two component types. A material derived 100% from present day soybeans would give a radiocarbon signature near 107.5 pMC. If that material was diluted with 50% petroleum derivatives, it would give a radiocarbon signature near 54 pMC.
- A biomass content result is derived by assigning 100% equal to 107.5 pMC and 0% equal to 0 pMC. In this regard, a sample measuring 99 pMC will give an equivalent biobased content result of 93%.
- Assessment of the materials described herein were done in accordance with ASTM-D6866. The mean values quoted in this report encompasses an absolute range of 6% (plus and minus 3% on either side of the biobased content value) to account for variations in end-component radiocarbon signatures. It is presumed that all materials are present day or fossil in origin and that the desired result is the amount of biobased component “present” in the material, not the amount of biobased material “used” in the manufacturing process.
- “Substantially purified,” as used by applicants to describe the biologically-produced 1,3-propanediol produced by the process of the invention, denotes a composition comprising 1,3-propanediol having at least one of the following characteristics: 1) an ultraviolet absorption at 220 nm of less than about 0.200 and at 250 nm of less than about 0.075 and at 275 nm of less than about 0.075; or 2) a composition having L*a*b* “b*” color value of less than about 0.15 and an absorbance at 270 nm of less than about 0.075; or 3) a peroxide composition of less than about 10 ppm; or 4) a concentration of total organic impurities of less than about 400 ppm.
- A “b*” value is the spectrophotometrically determined “Yellow Blue measurement as defined by the CIE L*a*b* measurement ASTM D6290.
- The abbreviation “AMS” refers to accelerator mass spectrometry.
- The abbreviation “IRMS” refers to measurements of CO2 by high precision stable isotope ratio mass spectrometry.
- “Biologically produced” means organic compounds produced by one or more species or strains of living organisms, including particularly strains of bacteria, yeast, fungus and other microbes. “Bio-produced,” “biologically-derived” and “biologically produced” are used synonymously herein. Such organic compounds are composed of carbon from atmospheric carbon dioxide converted to sugars and starches by green plants.
- “Biologically-based” means that the organic compound is synthesized from biologically produced organic components. It is further contemplated that the synthesis process disclosed herein is capable of effectively synthesizing other monoesters and diesters from bio-produced alcohols other than 1,3-propanediol; particularly including ethylene glycol, diethylene glycol, triethylene glycol, -, dipropylene diol, tripropylene diol, 2-methyl 1,3-propanediol, neopentyl glycol and bisphenol A. “Bio-based”, and “bio-sourced”; “biologically derived”; and “bio-derived” are used synonymously herein.
- “Carbon of atmospheric origin” as used herein refers to carbon atoms from carbon dioxide molecules that have recently, in the last few decades, been free in the earth's atmosphere. Such carbons in mass are identifiable by the present of particular radioisotopes as described herein. “Green carbon”, “atmospheric carbon”, “environmentally friendly carbon”, “life-cycle carbon”, “non-fossil fuel based carbon”, “non-petroleum based carbon”, “carbon of atmospheric origin”, and “biobased carbon” are used synonymously herein.
- “Flavoring agents” are substances added to foods, beverages, cosmetics, pharmaceuticals, or medicines to improve the quality of the taste if such compositions. Oils, such as orange oils are considered flavoring agents.
- An aspect of the invention is use of biologically-derived 1,3-propanediol or its ester conjugate to prepare a flavoring agent, for example by treating a flavoring oil with biologically-derived 1,3-propanediol or its ester conjugate.
- Compositions in accordance with the invention include a composition comprising an ester of 1,3-propanediol and an extraction product. The esters can be a varying amount of biobased carbon depending on the compound used in the esterification. Biologically derived 1,3-propanediol contains biobased carbon. All three carbon atoms in 1,3 propanediol are biobased carbons. If the conjugate esters are formed using carboxylic acids that contain all biobased carbon, then the resulting esters also contain all biobased carbon. If, however, the carboxylic acids contain non-biobased carbons, i.e. carbons from a fossil fuel source, then the resulting ester will contain a percentage of biobased carbon in proportion to the number of carbons contributed from the carboxylic acid compared to the three carbons contributed from the biologically-derived 1,3-propanediol.
- For example, distearate propanediol contains 39 carbon atoms, 18 from each of the stearic acid carbon chains and three from the 1,3-propanediol. Accordingly, if the strearic acid is non-biobased, 36 carbons out of the total 39 in distearate propanediol are non-biobased carbon. The predicted biobased content of distearate propanediol made from biologically-derived propanediol, and non-biologically derived strearic acid is 7.7 percent.
- In an analysis performed using the ASTM-D6866 method, propylene glycol dibenzoate (BENZOFLEX (R) 284, Velsicol Chem. Corp. Rosemont, Ill.) was found to have 0% bio-based carbon content. The same analysis of propanediol dibenzoate, synthesized using biologically-derived 1,3-propanediol had 19% bio-based carbon content. The predicted bio-based carbon content propanediol dibenzoate made from biologically-derived 1,3 propanediol is 17.6%, which is within the standard deviation of the method.
- If the stearic acid in the above example is biobased, the resulting distearate propanediol would have a biobased content of 100%. Accordingly, the conjugate esters of biologically-derived 1,3-propanediol have biobased content values proportional to the biobased content of the acids used to form the esters. The esters therefore can have biobased content of at least 3% biobased carbon, at least 6% biobased carbon, at least 10% biobased carbon, at least 25% biobased carbon, at least 50% biobased carbon, at least 75% biobased carbon, and 100% biobased carbon.
- The compositions comprising an extract and a conjugate ester of 1,3-propanediol can be between about 0.1% and about 5% ester, between about 0.5% and about 25% ester, between about 25% and about 50% ester, between about 50% and about 75% ester, and between about 75% and about 99% ester, and between 99% and about 100% ester.
- Compositions in accordance with the invention also include compositions comprising 1,3-propanediol and an extract. The 1,3-propanediol of these compositions has at least 95% biobased carbon, or alternatively, the 1,3-propanediol has 100% biobased carbon. The compositions comprising an extract and 1,3-propanediol can be between about 0.1% and about 5% 1,3-propanediol, between about 0.5% and about 25% 1,3-propanediol, between about 25% and about 50% 1,3-propanediol, between about 50% and about 75% 1,3-propanediol, and between about 75% and about 99% 1,3-propanediol.
- Compositions in accordance with the invention also include compositions comprising both 1,3-propanediol and a conjugate ester of 1,3-propanediol along with an extract. The 1,3-propanediol of these compositions has at least 95% biobased carbon, or alternatively, the 1,3-propanediol has 100% biobased carbon. The compositions comprising an extract and a mixture of 1,3-propanediol and a conjugate ester of 1,3-propanediol can be between about 0.1% and about 5% mixture, between about 0.5% and about 25% mixture, between about 25% and about 50% mixture, between about 50% and about 75% mixture, and between about 75% and about 99% mixture.
- A mixture of a glycol and ester can be very effective in extractions, and the mixture can remove more active ingredients than either solvent alone. More actives are extracted from plant material using a solvent mixture because the esters (especially diesters) are non-polar, whereas glycol components are polar. Accordingly, the lipophilic ingredients can easily be removed from the plants using the ester glycol mixture. In some cases the density of an ester can be much higher than the density of the glycol, and after the maceration process the “cake” (the extract of the ester) can easily solidify and separate from the glycol phase. Additionally, the esters can be volatile compounds and in extractions the esters can be easily evaporated to obtain concrete, fragrance oil, absolute, or enfleurage.
- The 1,3-propanediol, the conjugate esters of 1,3-propanediol, and mixtures thereof can be effective as solvents and diluents when combined with other appropriate solvents, including water.
- Biologically-Derived 1,3-propanediol
- The present invention relates to compositions comprising a botanical, vegetal, protein/peptide, marine, algae, or milk extract or fragrance concentrate or oil wherein biologically-derived 1,3-propanediol or its ester conjugate is employed as a chemical solvent for extraction or diluent of the botantical, vegetal, protein/peptide, marine, algae, or milk extract or fragrance concentrate or oil. “Biologically-derived” means that the 1,3-propanediol is synthesized by one or more species or strains of living organisms, including particularly strains of bacteria, yeast, fungus and other microbes. Biologically-derived 1,3-propanediol useful in shampoo or body wash compositions disclosed herein.
- Biologically-derived 1,3-propanediol is collected in a high purity form. Such 1,3-propanediol has at least one of the following characteristics: 1) an ultraviolet absorption at 220 nm of less than about 0.200 and at 250 nm of less than about 0.075 and at 275 nm of less than about 0.075; or 2) a composition having L*a*b* “b*” color value of less than about 0.15 and an absorbance at 270 nm of less than about 0.075; or 3) a peroxide composition of less than about 10 ppm; or 4) a concentration of total organic impurities of less than about 400 ppm. A “b*” value is the spectrophotometrically determined Yellow Blue measurement as defined by the CIE L*a*b* measurement ASTM D6290.
- The level of 1,3-propanediol purity can be characterized in a number of different ways. For example, measuring the remaining levels of contaminating organic impurities is one useful measure. Biologically-derived 1,3-propanediol can have a purity level of less than about 400 ppm total organic contaminants; preferably less than about 300 ppm; and most preferably less than about 150 ppm. The term ppm total organic purity refers to parts per million levels of carbon-containing compounds (other than 1,3-propanediol) as measured by gas chromatography.
- Biologically-derived 1,3-propanediol can also be characterized using a number of other parameters, such as ultraviolet light absorbance at varying wavelengths. The wavelengths 220 nm, 240 nm and 270 nm have been found to be useful in determining purity levels of the composition. Biologically-derived 1,3-propaediol can have a purity level wherein the UV absorption at 220 nm is less than about 0.200 and at 240 nm is less than about 0.075 and at 270 nm is less than about 0.075.
- Biologically-derived 1,3-propanediol can have a b* color value (CIE L*a*b*) of less than about 0.15.
- The purity of biologically-derived 1,3-propanediol compositions can also be assessed in a meaningful way by measuring levels of peroxide. Biologically-derived 1,3-propanediol can have a concentration of peroxide of less than about 10 ppm.
- It is believed that the aforementioned purity level parameters for biologically-derived and purified 1,3-propanediol (using methods similar or comparable to those disclosed in U.S. Patent Application No. 2005/0069997) distinguishes such compositions from 1,3-propanediol compositions prepared from chemically purified 1,3-propanediol derived from petroleum sources.
- 1,3-propanediol produced biologically via fermentation is known, including in U.S. Pat. No. 5,686,276, U.S. Pat. No. 6,358,716, and U.S. Pat. No. 6,136,576, which disclose a process using a recombinantly-engineered bacteria that is able to synthesize 1,3-propanediol during fermentation using inexpensive green carbon sources such as glucose or other sugars from plants. These patents are specifically incorporated herein by reference. Biologically-derived 1,3-propanediol can be obtained based upon use of the fermentation broth generated by a genetically-engineered Eschericia coli (E. coli), as disclosed in U.S. Pat. No. 5,686,276. Other single organisms, or combinations of organisms, may also be used to biologically produce 1,3-propanediol, using organisms that have been genetically-engineered according to methods known in the art. “Fermentation” refers to a system that catalyzes a reaction between substrate(s) and other nutrients to product(s) through use of a biocatalyst. The biocatalysts can be a whole organism, an isolated enzyme, or any combination or component thereof that is enzymatically active. Fermentation systems useful for producing and purifying biologically-derived 1,3-propanediol are disclosed in, for example, Published U.S. Patent Application No. 2005/0069997 incorporated herein by reference.
- The transformed E. coli DH5α containing cosmid pKP1 containing a portion of the Klebsiella genome encoding the glycerol dehydratase enzyme was deposited on 18 Apr. 1995 with the ATCC under the terms of the Budapest Treaty and is identified by the ATCC number ATCC 69789. The transformed E. coli DH5α containing cosmid pKP4 containing a portion of the Klebsiella genome encoding a diol dehydratase enzyme was deposited on 18 Apr. 1995 with the ATCC under the terms of the Budapest Treaty and is identified by the ATCC number ATCC 69790. As used herein, “ATCC” refers to the American Type Culture Collection international depository located at 10801 University Boulevard, Manassas, Va., 20110 2209, U.S.A. The “ATCC No.” is the accession number to cultures on deposit with the ATCC.
- The biologically derived 1,3-propanediol (bio-PDO) for use in the current invention, produced by the process described herein, contains carbon from the atmosphere incorporated by plants, which compose the feedstock for the production of bio-PDO. In this way, the bio-PDO contains only renewable carbon, and not fossil fuel based, or petroleum based carbon. Therefore the use of bio-PDO and its conjugate esters has less impact on the environment as the propanediol does not deplete diminishing fossil fuels. The use of the use of bio-PDO and its conjugate esters also does not make a net addition of carbon dioxide to the atmosphere, and thus does not contribute to greenhouse gas emissions. Thus, the present invention can be characterized as more natural and having less environmental impact than similar compositions comprising petroleum based glycols.
- Moreover, as the purity of the bio-PDO utilized in the compositions of the invention is higher than chemically synthesized PDO and other glycols, risk of introducing impurities that may cause irritation is reduced by its use over commonly used glycols, such as propylene glycol.
- In one embodiment of the invention, a composition comprising 1,3-propanediol and an extraction product is provided, where the 1,3-propanediol is biologically derived. The biologically-derived 1,3-propanediol can have at least 85% biobased carbon, at least 95% biobased carbon, or 100% biobased carbon, when assessed by the application of ASTM-D6866 as described above.
- A sample of biologically-derived 1,3-propanediol was analysized using ASTM method D 6866-05. The results received from Iowa State University demonstrated that the above sample was 100% bio-based content. In a separate analysis, also performed using a ASTM-D6866 method, chemical, or petroleum-based 1,3-propanediol (purchased from SHELL) was found to have 0% bio-based content. Propylene glycol (USP grade from ALDRICH) was found to have 0% bio-based content.
- It is contemplated herein that other renewably-based or biologically-derived glycols, such as ethylene glycol or 1,2 propylene glycol, diethylene glycol, triethylene glycol among others, can be used in the extractions or compositions of the present invention.
- There may be certain instances wherein the extractions or extract compositions of the invention may comprise a combination of a biologically-derived 1,3-propanediol and one or more non biologically-derived glycol components, such as, for example, chemically synthesized 1,3-propanediol. In such occasions, it may be difficult, if not impossible to determine which percentage of the glycol composition is biologically-derived, other than by calculating the bio-based carbon content of the glycol component. In this regard, in the extraction solvents and extract compositions of the invention, the 1,3-propanediol used as a solvent, or used to form 1,3 propanediol esters, can comprise at least about 1% bio-based carbon content up to 100% bio-based carbon content, and any percentage there between.
- Esters of biologically derived 1,3-propanediol, “bio-PDO” can be synthesized by contacting bio-PDO with an organic acid. The organic acid can be from any origin, preferably either a biosource or synthesized from a fossil source. Most preferably the organic acid is derived from natural sources or bio-derived having formula R1R2—COOH. Where in the substituent R1 can be saturated or unsaturated, substituted or unsubstituted, aliphatic or aromatic, linear or branched hydrocarbon having chain length 1 to 40 or their salts or alkyl esters. Where in the substituent R2 can be H or COOH. The hydrocarbon chain can also have one or more functional groups such as alkene, amide, amine, carbonyl, carboxylic acid, halide, hydroxyl groups. Naturally occurring organic acids produced esters containing all biobased carbon. These naturally occurring organic acids, especially those produced by a biological organism, are classified as bio-produced and the resulting ester or diester could thereby also be classified as bio-produced. Naturally occurring sources of such fatty acids include coconut oil, various animal tallows, lanolin, fish oil, beeswax, palm oil, peanut oil, olive oil, cottonseed oil, soybean oil, corn oil, rape seed oil. Conventional fractionation and/or hydrolysis techniques can be used if necessary to obtain the fatty acids from such materials.
- Appropriate carboxylic acids for producing esters of biologically-derived 1,3-propanediol generally include: (1) C1-C3 carbon containing mono carboxylic acids, including formic acid and acetic acid; (2) fatty acids, such as those acids containing four or more carbon atoms; (3) saturated fatty acids, such as butyric acid, caproic acid, valeric acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, and behenic acid; (4) unsaturated fatty acids, such as oleic acid, linoleic acid, and euricic acid; (5) polyunsaturated fatty acids, such as alpha-linolenic acid, stearidonic acid (or moroctic acid), eicosatetraenoic acid, omega-6 fatty acids, arachidonic acids, and omega-3 fatty acids, eicosapentaenoic acid (or timnodonic acid), dosocapentaenoic acid (or clupanodonic acid), and docosahexaenoic acid (or cervonic acid); (6) hydroxy fatty acids, such as 2-hydroxy linoleic acid, and recinoleic acid; phenylalkanoic fatty acids, such as 11-phenyl undecanoic acid, 13-phenyl tridecanoid acid, and 15-phenyl tridecanoid acid; and (7) cyclohexyl fatty acids, such as 11-cyclohexyl undecanoic acid, and 13-cyclohexyl tridecanoic acid.
- The following acids and their salts or alkyl esters are specifically useful, acetic, butyric, lauric, myristic, palmitic, stearic, arachidic, adipic, benzoic, caprylic, maleic, palmitic, sebacic, archidonic, erucic, palmitoleic, pentadecanoic, heptadecanoic, nondecanoic, octadectetraenoic, eicosatetraenoic, eicosapentaenoic, docasapentaenoic, tetracosapentaenoic, tetrahexaenoic, docosahexenoic, (alpha)-linolenic, docosahexaenoic, eicosapentaenoic, linoleic, arachidonic, oleic, erucic, formic, prop ionic, valeric, caproic, capric, malonic, succinic, glutaric, adipic, pimelic, suberic, azelaic, tartaric, citri c, salicylic, acetyl-salicylic, pelargonic, behenic, cerotic, margaric, montanic, melissic, lacceroic, ceromelissic, geddic, ceroplastic undecylenic, ricinoleic, and elaeostearic acid as well as mixtures of such acids. A more preferred list of suitable organic acids are acetic, adipic, benzoic, maleic, sebacic, and mixtures of such acids. A more preferred list of suitable “fatty acids” meaning generally acids named containing 8-40 carbon in the carbon useful in the present invention include butyric, valeric, caproic, caprylic, pelargonic, capric, lauric, myristic, palmitic, stearic, arachidic, behenic, cerotic, oleic, linoleic, linolenic, margar ic, montanic, melissic, lacceroic, ceromelissic, geddic, ceroplastic and the mixtures of such acids. Among those acids, these acids, and their salts and alkyl esters are most preferred stearic, lauric, palmetic, oleic, 2-ethyl hexanoic, and 12-hydroxystearic and mixtures of such acids.
- The esters produced include all the appropriate conjugate mono and diesters of 1,3 propanediol using the described organic acids. Some esters in particular that are produced include propanediol distearate and monostearate, propandiol dilaurate and monolaurate, propanediol dioleate and monooleate, propanediol divalerate and monovalerate, propanediol dicaprylate and monocaprylate, propanediol dimyristate and monomyristate, propanediol dipalmitate and monopalmitate, propanediol dibehenate and monobehenate, propanediol adipate, propanediol maleate, propanediol dibenzoate, propanediol diacetate, and all mixtures thereof.
- In particular, the esters produced include: propanediol distearate and monostearate, propanediol dioleate and monooleate, propanediol dicaprylate and monocaprylate, propanediol dimyristate and monomyristate, and all mixtures thereof.
- Generally 1,3-propanediol can be contacted, preferably in the presence of an inert gas reacted with a fatty acid or mixture of fatty acids or salts of fatty acids in the absence or presence of a catalyst or mixture of two or more catalysts, at temperatures ranging from 25° C. to 400° C.
- During the contacting, water is formed and can be removed in the inert gas stream or under vacuum to drive the reaction complete. Any volatile byproducts can be removed similarly. When the reaction is complete, the heating can be stopped and cooled.
- The catalyst can be removed preferably by dissolving and removing in deionized water. If catalyst can be removed by treating with deionized water, the reaction mixture is treated with aqueous solutions of acid or base to forms salts and removing the salts either by washing or filtering.
- Further purification to obtain high purity fatty esters, preferably for pharmaceutical application can be carried out by dissolving in a solvent that dissolves fatty ester easily at higher temperatures and least at lower temperatures and recrystallyzing with or without addition of additional solvent at low temperatures.
- The catalyst can be an acid for non-limiting examples, sulfuric acid, or p-toluene sulfonic acid. The catalyst can also be a base, for non-limiting example, sodium hydroxide. The catalyst can also be a salt, for non-limiting example, potassium acetate. The catalyst can also be an alkoxide, for non-limiting example, titanium tetraisopropoxide. The catalyst can also be a heterogeneous catalyst, for non-limiting examples: zeolite, heteropolyacid, amberlyst, or ion exchange resin. The catalyst can also be a metal salt, for non-limiting examples, tin chloride, or copper chloride, The catalyst can also be an enzyme, such as those known in the art. The catalyst can also be an organic acid, for a non-limiting example, formic acid. Finally the catalyst can also be an organometalic compound, for non-limiting example, n-butylstannoic acid.
- This process can be carried out in the presence or absence of a solvent. If a solvent is not necessary to facilitate the production of fatty ester, it is preferred that the process is carried out in the absence of solvent.
- The process can be carried out at atmospheric pressure or under vacuum or under pressurized conditions.
- Where R1 and R2 is a hydrocarbon, preferably with a carbon chain length of about 1 to about 40. Such hydrocarbons can be saturated or unsaturated, substituted or unsubstituted, linear or branched
- M is hydrogen, an alkali metal or an alkyl group.
- Where R1 is a hydrocarbon, preferably with a carbon chain length of about 1 to about 40. Such hydrocarbons can be saturated or unsaturated, substituted or unsubstituted, linear or branched. M is hydrogen, an alkali metal or an alkyl group.
- Compositions in accordance with the invention comprise esters in which R1 has one or more functional groups selected from the group consisting of alkene, amide, amine, carbonyl, carboxylic acid, halide, hydroxyl groups, ether, alkyl ether, sulfate and ethersulfate. The esters can have the formula R1-C(═O)—O—CH2-CH2-CH2-O—C(═O)—R2, wherein both R1 and R2 are linear or branched carbon chains of a length between about 1 an about 40 carbons. R1 and R2 can have one or more functional groups selected from the group consisting of alkene, amide, amine, carbonyl, carboxylic acid, halide, hydroxyl groups, ether, alkyl ether, sulfate and ethersulfate. Additionally, R1 and R2 can be the same carbon chain in the case of a diester.
- Any molar ratio of diol to dicarboxylic acid or its salt or its ester can be used. The preferred range of the diol to dicarboxylic acid is from about 1:3 to about 2:1. This ratio can be adjusted to shift the favor of the reaction from monoester production to diester production. Generally, to favor the production of diesters slightly more than about a 1:2 ratio is used; whereas to favor the production of monoesters about a 1:1 ratio is used. In general, if the diester product is desired over the monoester the ratio of diol to dicarboxylic acid can range from about 1.01:2 to about 1.1:2; however if the monoester is desired a range of ratios from about 1.01:1 to about 2:1 is used.
- The catalyst content for the reaction can be from 1 ppm to 60 wt % of the reaction mixture, preferably from 10 ppm to 10 wt %, more preferably from 50 ppm to 2 wt % of the reaction mixture.
- The product may contain diesters, monoesters or combination diesters and monoesters and small percentage of unreacted acid and diol depending on the reaction conditions. Unreacted diol can be removed by washing with deionized water. Unreacted acid can be removed by washing with deionized water or aqueous solutions having base or during recrystallization.
- Any ester of 1,3-propanediol can be made or used in accordance with the present invention. Short, middle and long chain monoesters and diesters of the 1,3-propanediol can be made. Specifically those acids containing between about 1 and about 36 carbons in the alkyl chain can be produced. More specifically, the following monoesters and diesters can be produced: propanediol distearate (monostearate and the mixture), propandiol dilaurate (monolaurate and the mixture), propanediol dioleate (monooleate and the mixture), propanediol divalerate (monovalerate and the mixture), propanediol dicaprylate (monocaprylate and the mixture), propanediol dimyristate (monomyristate and the mixture), propanediol dipalmitate (monopalmitate and the mixture), propanediol dibehenate (monobehenate and the mixture), propanediol adipate, propanediol maleate, propanediol dibenzoate, and propanediol diacetate.
- For compositions comprising an extract and 1,3-propanediol, the conjugate esters of 1,3-propanediol, or mixtures thereof, the extract can be a compound or group of compounds that are extracted from a source material. In some applications, the extract is extracted from a natural source, such as a botanical source. Examples of appropriate natural extracts include botanical extracts, vegetal extracts, protein extracts, lipid extracts, marine extracts, algae extracts, and milk extracts.
- Botanical sources for extracts include the following list of families of plants and trees: Acanthaceae, Aceraceae, Achariaceae, Achatocarpaceae, Acoraceae, Actinidiaceae, Actiniopteridaceae, Adiantaceae, Adoxaceae, Aegicerataceae, Aetoxicaceae, Agavaceae, Agdestidaceae, Aitoniaceae, Aizoaceae, Akaniaceae, Alangiaceae, Alismataceae, Alliaceae, Alseuosmiaceae, Alstroemeriaceae, Altingiaceae, Alzateaceae, Amaranthaceae, Amaryllidaceae, Amborellaceae, Ampelidaceae, Anacardiaceae, Anarthriaceae, Ancistrocladaceae, Androstachydaceae, Anemiaceae, Angiopteridaceae, Anisophylleaceae, Annonaceae, Anthericaceae, Antoniaceae, Aphyllanthaceae, Apiaceae, Apocynaceae, Aponogetonaceae, Apostasiaceae, Aquifoliaceae, Araceae, Araliaceae, Araucariaceae, Arecaceae, Aristolochiaceae, Asclepiadaceae, Asparagaceae, Asphodelaceae, Aspidiaceae, Aspleniaceae, Asteliaceae, Asteraceae, Asteranthaceae, Asteranthaceae, Asteranthaceae, Asteranthaceae, Aucubaceae, Austrobaileyaceae, Avicenniaceae, Azollaceae, Balanopaceae, Balanophoraceae, Balsaminaceae, Bambuseae, Barringtoniaceae, Basellaceae, Bataceae, Begoniaceae, Berberidaceae, Betulaceae, Bignoniaceae, Bischofiaceae, Bixaceae, Blechnaceae, Bombacaceae, Bonnetiaceae, Boraginaceae, Botrychiaceae, Brassicaceae, Bruniaceae, Brunoniaceae, Buddlejaceae, Burmanniaceae, Burseraceae, Butomaceae, Buxaceae, Byblidaceae, Byttneriaceae, Cabombaceae, Cactaceae, Caesalpiniaceae, Callitrichaceae, Calycanthaceae, Calyceraceae, Campanulaceae, Canellaceae, Cannabidaceae, Cannaceae, Canotiaceae, Capparidaceae, Caprifoliaceae, Cardiopteridaceae, Caricaceae, Carlemanniaceae, Caryocaraceae, Caryophyllaceae, Casuarinaceae, Cayceraceae, Cecropiaceae, Celastraceae, Centrolepidaceae, Cephalotaceae, Cephalotaxaceae, Ceratophyllaceae, Cercidiphyllaceae, Chemopleuriaceae, Chenopodiaceae, Chloanthaceae, Chloranthaceae, Christenseniaceae, Chrysobalanaceae, Cistaceae, Clethraceae, Clusiaceae, Cneoraceae, Cochlospermaceae, Columelliaceae, Combretaceae, Commelinaceae, Compositae, Connaraceae, Conocephalaceae, Convolvulaceae, Coriariaceae, Cornaceae, Corynocarpaceae, Costaceae, Crassulaceae, Crossosomataceae, Crypteroniaceae, Cryptogrammaceae, Cucurbitaceae, Culcitaceae, Cunoniaceae, Cupressaceae, Cyanastraceae, Cyatheaceae, Cycadaceae, Cyclanthaceae, Cyclocheilaceae, Cymodoceaceae, Cynomoriaceae, Cyperaceae, Cypripediaceae, Cyrillaceae, Danaeaceae, Daphniphyllaceae, Datiscaceae, Davalliaceae, Davidsoniaceae, Degeneriaceae, Dennstaedtiaceae, Dialypetalanthaceae, Diapensiaceae, Dichapetalaceae, Dicksoniaceae, Dicrastylidaceae, Didiereaceae, Didymelaceae, Diegodendraceae, Dilleniaceae, Dioscoreaceae, Dipsacaceae, Dipteridaceae, Dipterocarpaceae, Dracaenaceae, Droseraceae, Dryopteridaceae, Dysphaniaceae, Dysphaniaceae, Ebenaceae, Ecdeiocoleaceae, Elaeagnaceae, Elaeocarpaceae, Elaphoglossaceae, Elatinaceae, Empetraceae, Epacridaceae, Ephedraceae, Equisetaceae, Ericaceae, Eriocaulaceae, Erythropalaceae, Erythroxylaceae, Escalloniaceae, Eucommiaceae, Eucryphiaceae, Euphorbiaceae, Eupomatiaceae, Eupteleaceae, Fabaceae, Fagaceae, Flacourtiaceae, Flagellariaceae, Fouquieriaceae, Frankeniaceae, Fumariaceae, Garryaceae, Geissolomataceae, Gentianaceae, Geosiridaceae, Geraniaceae, Gesneriaceae, Ginkgoaceae, Gleicheniaceae, Globulariaceae, Gnetaceae, Goetzeaceae, Gomortegaceae, Goodeniaceae, Goupiaceae, Gramineae, Grammitaceae, Grammitidaceae, Grubbiaceae, Gunneraceae, Guttiferae, Gyrostemonaceae, Haemodoraceae, Haloragaceae, Haloragidaceae, Hamamelidaceae, Heliconiaceae, Helminthostachyaceae, Hemionitidaceae, Hernandiaceae, Heteropyxidaceae, Himantandraceae, Hippocastanaceae, Hippocrateaceae, Hippuridaceae, Hoplestigmataceae, Hostaceae, Humiriaceae, Hydnoraceae, Hydrangeaceae, Hydrocharitaceae, Hydrocotylaceae, Hydrophyllaceae, Hydrostachyaceae, Hymenophyllaceae, Hymenophyllopsidaceae, Hypericaceae, Hypolepidaceae, Hypoxidaceae, Icacinaceae, Idiospermaceae, Illiciaceae, Iridaceae, Isoetaceae, Ixonanthaceae, Juglandaceae, Julianiaceae, Juncaceae, Juncaginaceae, Koeberliniaceae, Krameriaceae, Labiatae, Lacistemataceae, Lactoridaceae, Lamiaceae, Lardizabalaceae, Lauraceae, Lecythidaceae, Leeaceae, Leguminosae, Leitneriaceae, Lemnaceae, Lennoaceae, Lentibulariaceae, Lilaeaceae, Liliaceae, Limnanthaceae, Limnocharitaceae, Linaceae, Lindsaeaceae, Lissocarpaceae, Loasaceae, Lobeliaceae, Loganiaceae, Lomariopsidaceae, Lophosoriaceae, Loranthaceae, Lowiaceae, Loxogrammaceae, Loxsomaceae, Lunulariaceae, Luzuriagaceae, Lycopodiaceae, Lygodiaceae, Lythraceae, Magnoliaceae, Malesherbiaceae, Malpighiaceae, Malvaceae, Marantaceae, Marattiaceae, Marcgraviaceae, Marchantiaceae, Marsileaceae, Martyniaceae, Matoniaceae, Mayacaceae, Medusagynaceae, Medusandraceae, Melastomataceae, Meliaceae, Melianthaceae, Menispermaceae, Menyanthaceae, Metaxyaceae, Mimosaceae, Misodendraceae, Monimiaceae, Moraceae, Moraceae, Moringaceae, Musaceae, Myoporaceae, Myricaceae, Myristicaceae, Myrothamnaceae, Myrsinaceae, Myrtaceae, Najadaceae, Negripteridaceae, Nelumbonaceae, Nepenthaceae, Nephrolepidaceae, Nolanaceae, Nyctaginaceae, Nymphaeaceae, Nyssaceae, Ochnaceae, Octoknemaceae, Olacaceae, Oleaceae, Oleandraceae, Oliniaceae, Onagraceae, Oncothecaceae, Onocleaceae, Ophioglossaceae, Opiliaceae, Orchidaceae, Orobanchaceae, Osmundaceae, Oxalidaceae, Paeoniaceae, Pandaceae, Pandanaceae, Papaveraceae, Parkeriaceae, Passifloraceae, Pedaliaceae, Penaeaceae, Pentaphragmataceae, Pentaphylacaceae, Peperomiaceae, Peraceae, Peranemaceae, Periplocaceae, Petrosaviaceae, Philesiaceae, Philydraceae, Phormiaceae, Phrymaceae, Phytolaccaceae, Pinaceae, Piperaceae, Pittosporaceae, Plagiogyriaceae, Plantaginaceae, Platanaceae, Platyzomataceae, Plumbaginaceae, Poaceae, Podocarpaceae, Podophyllaceae, Podostemaceae, Polemoniaceae, Polygalaceae, Polygonaceae, Polypodiaceae, Pontederiaceae, Portulacaceae, Potaliaceae, Potamogetonaceae, Primulaceae, Proteaceae, Psilotaceae, Pteridaceae, Punicaceae, Pyrolaceae, Quiinaceae, Rafflesiaceae, Ranunculaceae, Rapateaceae, Rebouliaceae, Resedaceae, Restionaceae, Rhamnaceae, Rhizophoraceae, Rhoipteleaceae, Rhoipteleaceae, Rhopalocarpaceae, Roridulaceae, Rosaceae, Rubiaceae, Ruscaceae, Rutaceae, Sabiaceae, Saccifoliaceae, Salicaceae, Salvadoraceae, Salviniaceae, Santalaceae, Sapindaceae, Sapotaceae, Sarcolaenaceae, Sarcospermataceae, Sarraceniaceae, Saururaceae, Saxifragaceae, Scheuchzeriaceae, Schisandraceae, Schizaeaceae, Scrophulariaceae, Scyphostegiaceae, Scytopetalaceae, Selaginaceae, Selaginellaceae, Simaroubaceae, Sinopteridaceae, Smilacaceae, Solanaceae, Sonneratiaceae, Sparganiaceae, Sphaerosepalaceae, Sphenostemonaceae, Stachyuraceae, Stackhousiaceae, Staphyleaceae, Stemonaceae, Sterculiaceae, Strasburgeriaceae, Strelitziaceae, Stromatopteridaceae, Strychnaceae, Styracaceae, Symplocaceae, Taccaceae, Taenitidaceae, Tamaricaceae, Taxaceae, Taxodiaceae, Tecophilaeaceae, Tepuianthaceae, Tetracentraceae, Tetragoniaceae, Tetrameristaceae, Theaceae, Theligonaceae, Thelypteridaceae, Theophrastaceae, Thunbergiaceae, Thurniaceae, Thymelaeaceae, Thyrsopteridaceae, Tichodendraceae, Tiliaceae, Tmesipteridaceae, Tovariaceae, Trapaceae, Tremandraceae, Trigoniaceae, Trilliaceae, Triuridaceae, Trochodendraceae, Tropaeolaceae, Turneraceae, Typhaceae, Uapacaceae, Ulmaceae, Urticaceae, Vacciniaceae, Vahliaceae, Valerianaceae, Velloziaceae, Verbenaceae, Violaceae, Vitaceae, Vittariaceae, Vivianiaceae, Vochysiaceae, Welwitschiaceae, Winteraceae, Xanthorrhoeaceae, Xyridaceae, Zamiaceae, Zingiberaceae, Zosteraceae, Zygophyllaceae.
- Preferred families of plants and trees include Anacardiaceae Araceae, Balanopaceae, Balsaminaceae, Begoniaceae, Boraginaceae, Buxaceae, Caricaceae, Cucurbitaceae, Clusiaceae, Daphniphyllaceae, Ericaceae, Euphorbiaceae, Fabaceae, Fagaceae, Hippocastanaceae, Hostaceae, Hydrangeaceae, Labiateae, Lilaeaceae, Magnoliaceae, Moringaceae, Myristicaceae, Myrtaceae, Oleaceae, Orchidaceae, Peperomiaceae, Pinaceae, Primulaceae, and Rutaceae.
- The preferred species of plants and trees for extract sources include Achillea millefolium, Aesculus chinensis, Allium sativum, Artemisia apiacea, Astrocaryum murumuru, Bactris gasipaes, Benincasa hispida, Celastrus paniculatus, Cetraria islandica, Chenopodium quinoa, Cinchona succirubra, Citrus bergamia, Citrus sinensis, Coriandrum sativum, Codium tomentosum, Commiphora molmol, Crataegus cuneata, Cucumis sativus, Eucalyptus globulus, Gleditsia sinensis, Gnetum amazonicum, Hibiscus rosa-sinensis, Jasminum officinale, Lonicera caprifolium, Lonicera japonica, Lycopersicon esculentum, Malus pumila, Matricaria recutita, Maximiliana maripa, Melaleuca hypericifolia, Melaphis chinensis, Mentha piperita, Mouriri apiranga, Nasturtium officinale, Nelumbo nucifera, Oenothera biennis, Ophiopogon japonicus, Persea americana, Paffia paniculata, Phellodendron amurense, Phyllanthus emblica, Pisum sativum, Potentilla erecta, Pterocarpus santalinus, Rehmannia chinensis, Reseda luteola, Ribes nigrum, Rosa centifolia, Rubus thunbergii, Spondias amara, Styrax benzoin, and Thymus vulgaris.
- Extract sources also include algae. Families of algae used as extract sources include Acrochaeticaceae, Characeae, Codiaceae, Fucaceae, Laminariaceae, Lemaneaceae, Ulvaceae, and Pamariaceae. Preferred algae species include Lemanea fluviatilis (red algea), (L.), Ascophyllum nodosum (brown alga), Lemanea fluviatilis, Lemanea fucina (red algea), Ulva lactuca (green alga), Laminaria digitata, Laminaria ochroleuca.
- Extract sources also include members of the kingdom of Fungi. For extraction classes of Homobasidiomycetes (or true mushrooms) can be used. Some exemplary mushrooms families include: Meripilaceae, Tricholomataceae, and Ganodermataceae (maitake, shiitake, reishi mushrooms). Specific species include: Agaricus bisporus, Agaricus campestris, Flammulina velutipes Hypsizygus tessulatus, Lentinus edodes, Phellinus linteus, Pleurotus cornucopiae, Pleurotus ostreatus, Tremella fuciformis, Sparassis crispa, Tuber magnatum, and Volvariella volvacea.
- Species from the division of Bryophyta, Kingdom of plantae (which includes mosses) can be used as extract sources, and some species of lichen can also be used for extraction.
- Marine sources, such as plants, algae, plankton, and fish, are used to produce extracts. Protein and lipid extract sources include plant, animal, fish and human (eg. Placenta) materials. Milk can be used as an extract source to isolate and concentrate proteins, peptides, and lipids.
- All of the compositions and methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of the present disclosure have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit, and scope of the invention. More specifically, it will be apparent that certain agents which are chemically related may be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope, and concept of the invention as defined by the appended claims.
- Personal Care Compositions
- The personal care compositions of the present invention include any composition that may be applied to the skin, hair, eyelashes, eyebrows, lips, or nails to provide a cosmetic or beneficial effect. These personal care compositions include, but are not limited to, skin care compositions, skin cleansing compositions, make-up, facial lotions, cream moisturizers, body washes, body lotions, foot creams, hand creams, lipstick, eyeshadow, foundation, facial powders, deodorant, shaving cream compositions, nail polishes, shaving lotions, cream depilatories, lotion depilatories, facial masks made with clay materials, anti-aging products, shampoos, hair conditioners, hair treatment creams, styling gels, styling foams, hair mousses, hair sprays, set lotions, blow-styling lotions, hair color lotions, and hair relaxing compositions.
- In cosmetic compositions, biologically-derived 1,3-propanediol is present in amounts up to about 50% by weight based on the weight of the total composition, preferable up to about 35% by weight, and more preferable up to about 10% by weight of the total composition.
- In other personal care compositions, biologically-derived 1,3-propanediol is present in amounts up to about 12% by weight based on the weight of the total composition, though some compositions, for example hair gels and deodorants, can contain up to about 30% by weight or 40% by weight, respectively, biologically-derived 1,3-propanediol based on the weight of the total composition.
- The personal care compositions of the present invention also may one or more conventional cosmetic or dermatological additives or adjuvants, including, but not limited to, fillers, surfactants, thixotropic agents, antioxidants, preserving agents, dyes, pigments, fragrances, thickeners, vitamins, hormones, moisturizers, UV absorbing organic sunscreens, UV scattering inorganic sunscreens, wetting agents, cationic, anionic, nonionic or amphoteric polymers, and hair coloring active substances. These adjuvants are well known in the field of cosmetics and are described in many publications, for example see Harry's Cosmeticology, 8th edition, Martin Rieger, ed., Chemical Publishing, New York (2000).
- Among these adjuvants, the fillers are generally present in personal care products in a maximum proportion of about 99.9% by weight relative to the total weight of the composition. These fillers, in the form of very fine powders, can be of natural or synthetic origin and include, but are not limited to, mineral powders, such as talc, kaolin, mica, silica, silicates, alumina, zeolites, hydroxyapatite, sericite, titanium dioxide, titanium micas, barium sulfate, calcium carbonate, calcium sulfate, bismuth oxychloride, boron nitride and metal powders such as aluminum powder; plant powder, such as corn starch, wheat starch or rice starch powders; organic powders, such as polyamide powder, polyester powder, polytetrafluoroethylene powder, the powder of fluorinated alkanes, polyethylene powder and other inert plastics. These various powders can also be coated, for example with metal salts of fatty acids, amino acids, lecithin, collagen, silicone corn pounds, fluoro compounds or with any common coating agent.
- The personal care compositions of this invention may also contain surfactants or wetting agents, preferably at about 0.001 to about 18%, more preferably at about 0.005 to about 15% by weight of the total composition. The terms “surfactants” and “wetting agents” as used herein refer to surface-active agents which, when added to water, cause it to penetrate more easily into, or spread on the surface of another material, by reducing the surface tension of the water at the water-air or water-oil interface. By “surface active agent” is meant any compound that reduces surface tension when dissolved in water or water solutions. The selection of a surfactant for this purpose presents a wide range of possibilities known in the art. Suitable surfactants include, but are not limited to, the following:
- (1) anionic surfactants, such as metallic or alkanolamine salts of fatty acids for example sodium laurate and triethanolamine oleate; alkyl benzene sulfones, for example triethanolamine dodecyl benzene sulfonate; alkyl sulfates, for example sodium lauryl sulfate; alkyl ether sulfates, for example sodium lauryl ether sulfate (2 to 8 EO); sulfosuccinates, for example sodium dioctyl sulfonsuccinate; monoglyceride sulfates, for example sodium glyceryl monostearate monosulfate; isothionates, for example sodium isothionate; methyl taurides, for example Igepon T; acylsarcosinates, for example sodium myristyl sarcosinate; acyl peptides, for example Maypons and lamepons; acyl lactylates, polyalkoxylated ether glycollates, for example trideceth-7 carboxylic acid; phosphates, for example sodium dilauryl phosphate.
- (2) cationic surfactants, such as amine salts, for example sapamin hydrochloride; quatenary ammonium salts, for example Quaternium 5, Quaternium 31 and Quaternium 18;
- (3) amphoteric surfactants, such as imidazol compounds, for example Miranol; N-alkyl amino acids, such as sodium cocaminopropionate and asparagine derivatives; betaines, for example cocamidopropylebetaine;
- (4) nonionic surfactants, such as fatty acid alkanolamides, for example oleic ethanolamide; esters or polyalcohols, for example Span; polyglycerol esters, for example that esterified with C12-18 fatty acids and one or several OH groups; polyalkoxylated derivatives, for example polyoxy:polyoxyethylene stearate (available for example from McIntyre Co.); ethers, for example polyoxyethe lauryl ether (available for example from Stepan Co., Northfield, Ill., as Stepanol® ES); ester ethers, for example Tween®; amine oxides, for example coconut and dodecyl dimethyl amine oxides. Mixtures of two or more of the above surfactants can be employed in the compositions according to the invention.
- The personal care compositions of this invention may also contain thixotropic or gelling agents, preferably at about 0.02 to about 20%, more preferably at about 0.05 to about 18% by weight of the total composition. Suitable thixotropic or gelling agents include, but are not limited to, stearates of aluminum, calcium, magnesium, potassium, sodium, or zinc; hydroxystearate, isostearate, laurate, linoleate, myristate, oleate, olivate, palmate, palmitate, tallowate, rosinate, and the like, and fatty acid esters of glycol, triglycerides, mixtures of fatty alcohols, cholesterol derivatives and in particular hydroxycholesterol, and clay minerals which swell in the presence of oil, and in particular those belonging to the montmorillonite group.
- The personal care compositions of this invention may also contain antioxidants, preferably at about 0.001 to about 10%, more preferably at about 0.01 to about 8% by weight of the total composition. Suitable antioxidants are ingredients, which assist in preventing or retarding spoilage. Examples of antioxidants suitable for use in the compositions of the invention include, but are not limited to, potassium sulfite, sodium bisulfite, sodium erythrobate, sodium metabisulfite, sodium sulfite, propyl gallate, cysteine hydrochloride, butylated hydroxytoluene, butylated hydroxyanisole, and the like.
- The personal care compositions of this invention may also contain preserving agents, preferably at about 0.001 to about 8%, more preferably at about 0.01 to about 5% by weight of the total composition. Suitable preserving agents include, but are not limited to, benzoic acid, benzyl alcohol, benzylhemiformal, benzylparaben, 5-bromo-5-nitro-1,3-dioxane, 2-bromo-2-nitropropane-1,3-diol, butyl paraben, phenoxyethanol, methyl paraben, ethyl paraben, propyl paraben, diazolidinyl urea, calcium benzoate, calcium propionate, captan, chlorhexidine diacetate, chlorhexidine digluconate, chlorhexidine dihydrochloride, chloroacetamide, chlorobutanol, p-chloro-m-cresol, chlorophene, chlorothymol, chloroxylenol, m-cresol, o-cresol, DEDM Hydantoin, DEDM Hydantoin dilaurate, dehydroacetic acid, diazolidinyl urea, dibromopropamidine diisethionate, DMDM Hydantoin, Phenonip®, Kathon® and all of those disclosed on pages 570 to 571 of the Cosmetic, Toiletry and Fragrance Association (CTFA) Cosmetic Ingredient Handbook, Second Edition, 1992, which is herein incorporated by reference.
- The personal care compositions of this invention may also contain dyes, preferably at about 0.1 to about 15%, by weight of the total composition. Suitable dyes include, but are not limited to, eosin derivatives such as D&C Red No. 21 and halogenated fluorescein derivatives such as D&C Red No. 27, D&C Red Orange No. 5 in combination with D&C Red No. 21 and D&C Orange No. 10.
- The personal care compositions of this invention may also contain pigments, preferably at about 0.1 to about 15% by weight of the total composition. Suitable pigments may be inorganic or organic or alternatively metal lakes and include, but are not limited to, titanium dioxide, zinc oxide, barium oxide, D&C Red No. 36 and D&C Orange No. 17, the calcium lakes of D&C Red Nos. 7, 11, 31 and 34, the barium lake of D&C Red No. 12, the strontium lake D&C Red No. 13, the aluminum lakes of FD&C Yellow No. 5, of FD&C Yellow No. 6, of D&C Red No. 27, of D&C Red No. 21, and of FD&C Blue No. 1, iron oxides, manganese violet, chromium oxide, ultramarine blue, and carbon black particles.
- The personal care compositions of this invention may also contain fragrances, preferably at about 0.01 to about 10%, by weight of the total composition. Numerous fragrances, both natural and synthetic, are well known in the art. For example, Secondini (Handbook of Perfumes and Flavors, Chemical Publishing Co., Inc., New York, 1990), incorporated herein by reference, describes many of the natural and synthetic fragrances used in cosmetics. Suitable natural fragrances include, but are not limited, to jasmines, narcissus, rose, violet, lavender, mint, spice, vanilla, anise, amber, orange, pine, lemon, wintergreen, rosemary, basil, and spruce. Suitable synthetic fragrances include, but are no limited to, acetaldehyde, C7 to C16 alcohols, benzyl acetate, butyric acid, citric acid, isobutyl phenyl acetate, linalyl butyrate, malic acid, menthol, phenyl ethyl cinnamate, phenyl propyl formate, tannic acid, terpineol, vanillin, amyl salicylate, benzaldehyde, diphenyl ketone, indole, and the like.
- The personal care compositions of this invention may also contain thickeners, preferably at about 0.001 to about 25%, more preferably at about 0.1 to about 15%, by weight of the total composition. Suitable thickeners include, but are not limited to, starch; gums, such as gum arabic or xanthan gum; carbomer polymers, such as Carbopol® 941, 940, 934 (available from Union Carbide Co., Midland, Mich.), and Ultrez 10; kaolin or other clays, ethylene glycol monostearate, carboxyvinyl polymer, acrylic copolymers, hydroxyethyl cellulose, and hydroxypropyl cellulose.
- The personal care compositions of this invention may also contain vitamins and/or coenzymes, preferably at about 0.001 to about 10%, more preferably at about 0.01% to about 8%, most preferably at about 0.05% to about 5% by weight of the total composition. Suitable vitamins include, but are not limited to, ascorbic acid and derivatives thereof; the B vitamins, such as thiamine, riboflavin, pyridoxin, and the like; vitamin A and derivatives thereof; vitamin E and derivatives thereof; vitamin D and vitamin K; as well as coenzymes such as thiamine pyrophosphate, flavin adenine dinucleotide, folic acid, pyridoxal phosphate, tetrahydrofolic acid, and the like.
- The personal care compositions of this invention may also contain hormones, preferably at about 0.0001 to about 0.01% by weight of the total composition. Suitable hormones include, but are not limited to, estrogen, progesterone, pregnenolone, testosterone, estradiol, hydrocortisone, and cortisone.
- The personal care compositions of this invention may also contain moisturizers, preferably at about 0.1 to about 30%, more preferably at about 0.5 to about 25%, most preferably at about 1 to about 20% by weight of the total composition. These moisturizers include water-soluble, low molecular weight moisturizers, fat-soluble, low molecular weight moisturizers, water-soluble, high molecular weight moisturizers and fat-soluble, high molecular weight moisturizers. Suitable water-soluble, low molecular weight moisturizers include, but are not limited to, serine, glutamine, sorbitol, mannitol, pyrrolidone-sodium carboxylate, glycerin, propylene glycol, 1,3-butylene glycol, ethylene glycol, polyethylene glycol (polymerization degree n=2 or more), polypropylene glycol (polymerization degree n=2 or more), polyglycerin (polymerization degree n=2 or more), lactic acid and lactate. The water soluble, low molecular weight moisturizer can also be biologically-derived 1,3-propanediol. Suitable fat-soluble, low molecular weight moisturizers include, but are not limited to, cholesterol and cholesterol ester. Suitable water-soluble, high molecular weight moisturizers include, but are not limited to, carboxyvinyl polymers, polyaspartate, tragacanth, xanthane gum, methyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, carboxymethyl cellulose, water-soluble chitin, chitosan and dextrin. Suitable fat-soluble, high molecular weight moisturizers include, but are not limited to, polyvinylpyrrolidone-eicosene copolymers, polyvinylpyrrolidone-hexadecene copolymers, nitrocellulose, dextrin fatty acid ester and high molecular silicone.
- The personal care compositions of this invention may also contain UV absorbing organic sunscreens, preferably at about 0.001 to about 20%, more preferably at about 0.01 to about 10%, most preferably at about 0.05 to about 8% by weight of the total composition. UV absorbing organic sunscreens are herein defined as organic chemicals that absorb ultraviolet light of wavelengths between 290 and 329 nm. Suitable UV absorbing organic sunscreens include, but are not limited to, para-aminobenzoic acid, ethyl para-aminobenzoate, amyl para-aminobenzoate, octyl para-aminobenzoate, ethylene glycol salicylate, phenyl salicylate, octyl salicylate, benzyl salicylate, butylphenyl salicylate, homomethyl salicylate, benzyl cinnamate, 2-ethoxyethyl para-methoxycinnamate (such as Parsol® available from Givaudan-Roure Co.), octyl para-methoxycinnamate, glyceryl mono(2-ethylhexanoate)dipara-methoxycinnamate, isopropyl para-methoxycinnamate, diisopropyl-diisopropylcinnamic acid ester mixtures, urocanic acid, ethyl urocanate, hydroxymethoxybenzophenone, hydroxymethoxybenzophenonesulfonic acid and salts thereof, dihydroxymethoxybenzophenone, sodium dihydroxymethoxybenzophenonedisulfonate, dihydroxybenzophenone, tetrahydroxybenzophenone, 4-tert-butyl-4′-methoxydibenzoylmethane, 2,4,6-trianilino-p-(carbo-2′-ethylhexyl-1′-oxy)-1,3,5-triazine, and 2-(2-hydroxy-5-methylphenyl)benzotriazole. UV scattering inorganic sunscreen materials, such as inorganic pigments and metal oxides, including but not limited to oxides of titanium (such as SunSmart available from Cognis Corp), zinc, and iron, may also be incorporated into the compositions of the instant invention. UV scattering inorganic sunscreens are herein defined as inorganic substances that scatter ultraviolet light of wavelengths between 210 and 280 nm. These UV scattering inorganic sunscreens may be used in the personal care compositions of this invention at concentrations of preferably about 0.001 to about 40%, more preferably at about 0.01 to about 10%, most preferably at about 0.05 to about 8% by weight of the total composition.
- The personal care compositions of this invention may also contain other film-forming polymers, preferably at about 0.01 to about 20%, more preferably at about 0.01% to about 10%, by weight of the total composition. These polymers serve as conditioners to coat the skin or hair, or to coat particles that are present in the composition. These polymers may be cationic, anionic, nonionic, or amphoteric. Cationic polymers are herein defined as synthetic or natural polymers that contain, or have been modified to contain, positively charged groups and/or groups that can ionize to positively charged groups. Suitable cationic polymers, include, but are not limited to, cationized cellulose, cationized guar gum, diallyly quaternary ammonium salt/acrylamide copolymers, quaternized polyvinylpyrrolidone and derivatives thereof, polyquaternium-1, polyquaternium-2, polyquaternium-5, polyquaternium-6, polyquaternium-7, polyquaternium-8, polyquaternium-9, polyquaternium-11, polyquaternium-12, polyquaternium-13, polyquaternium-14, polyquaternium-15, polyquaternium-16, polyquaternium-17, polyquaternium-18, polyquaternium-19, polyquaternium-20, polyquaternium-22, polyquaternium-27, polyquaternium-28, polyquaternium-29, polyquaternium-30, and mixtures thereof, wherein the compound designation is the name adopted for the compound by the CTFA, and found in the CTFA International Cosmetic Ingredient Dictionary, J. Nikitakis, ed., Cosmetic, Toiletry and Fragrance Association, Inc., Washington, D.C. (1991), incorporated herein by reference.
- Anionic polymers are herein defined as synthetic or natural polymers that contain, or have been modified to contain, negatively charged groups and/or groups that can ionize to negatively charged groups. Suitable anionic polymers, include, but are not limited to, polyacrylic acid, polymethacrylic acid, carboxymethylcellulose, hydroxymethylcellulose, and starch.
- Nonionic polymers are herein defined as synthetic or natural polymers that do not contain any charged groups. Suitable nonionic polymers, include, but are not limited to, polyvinylpyrrolidone, polyvinyl alcohol, polyethylene glycol, polyvinylacetate, polysiloxanes, and copolymers of vinylpyrrolidone and vinyl acetate.
- Amphoteric polymers are herein defined as synthetic or natural polymers that contain both negatively and positively charged groups and/or groups that can ionize to give positively and negatively charged groups. Suitable amphoteric polymers are described by Marchi et al. in U.S. Pat. No. 5,643,672, incorporated herein by reference. Examples include, but are not limited to, polymers resulting from the copolymerization of a monomer derived from a vinyl compound carrying a carboxyl group, such as acrylic acid, methacrylic acid, maleic acid and alpha-chloroacrylic acid, and a basic monomer derived from a substituted vinyl compound containing at least one basic nitrogen atom, such as dialkylaminoalkyl (meth)acrylates and dialkylaminoalkyl (meth)acrylamides, products sold by the company National Starch under the name Amphomer®, methyl methacrylate/ethyldimethylcarboxymethylammonium methacrylate copolymers, such as the products sold by Chimex under the name Mexomer PX (CTFA name: “polyquaternium-30”), methacryloylethylbetaine/methacrylate copolymer sold by Sandoz under the name Diaformer, the methacryloylethylbetaine/methacrylate copolymer sold by Amerchol under the name Amersette, polysiloxane polyorganobetaine copolymers sold by Goldschmidt under the name Abil® B 9950 (CTFA Name: “Dimethicone PropylPG-Betaine”), the polydimethylsiloxane containing alkylphosphobetaine groups sold by Siltech under the name Pecosil® SPB-1240, and the oxyethyleneoxypropylene organobetaine/siloxane copolymer sold by Goldschmidt under the name BC 1610.
- According to one embodiment of the present invention, the compositions are anhydrous and comprise a fatty phase in a proportion generally of from about 10 to about 90% by weight relative to the total weight of the composition, wherein the fatty phase contains at least one liquid, solid or semi-solid fatty substance. The fatty substances include, but are not limited to oils, fats, waxes, gums, and so-called pasty fatty substances. The oils in the fatty phase may be of mineral, animal, plant or synthetic origin, and may or may not be volatile at room temperature.
- Oils of mineral origin include, but are not limited to, liquid paraffin and liquid petroleum jelly. Oils of animal origin include, but are not limited to, squalene and squalane. Oils of plant origin include, but are not limited to, sweet aim and oil, beauty-leaf oil, palm oil, avocado oil, jojoba oil, sesame oil, olive oil, castor oil and cereal germ oils such as, for example, wheatgerm oil. Synthetic oils include, but are not limited to:
- (1) esters of the following formula: R1-COOR2 in which: R1 represents a higher fatty acid residue containing from 7 to 20 carbon atoms, and R2 represents a hydrocarbon-based radical containing from 3 to 30 carbon atoms. These esters, include, but are not limited to: purcellin oil, butyl myristate, isopropyl myristate, cetyl myristate, isopropyl palmitate, butyl stearate, hexadecyl stearate, isopropyl stearate, octyl stearate, isocetyl stearate, decyl oleate, hexyl laurate, isononyl isononanoate and esters derived from lanolic acid, such as isopropyl lanolate and isocetyl lanolate. Other synthetic oils include, but are not limited to, isododecane (available for example from Exxon-Mobil Chemical Co., Houston, Tex., under the trade name of Isopar®), isohexadecane, polyisobutenes and hydrogenated polyisobutene, as well as acetylglycerides, octanoates and decanoates of polyalcohols such as those of glycol and of glycerol, ricinoleates of alcohols or of polyalcohols, such as cetyl ricinoleate, propylene glycol dicaprylate and diisopropyl adipate;
- (2) fatty alcohols including, but not limited to, oleyl alcohol, linoleyl alcohol, linolenyl alcohol, isostearyl alcohol and octyldodecanol;
- (3) ethoxylated oils and fats, including but not limited to, triglycerides with a polyethylene glycol chain inserted, ethoxylated mono- and di-glycerides, polyethoxylated lanolins, ethoxylated butter derivatives,
- polyethylene glycol derivatives of glyceryl cocoate, glyceryl caproate, glyceryl caprylate, glyceryl tallowate, glyceryl palmate, glyceryl stearate, glyceryl laurate, glyceryl oleate, glyceryl ricinoleate, and glyceryl fatty esters derived from triglycerides, such as palm oil, almond oil, and corn oil, glyceryl tallowate, glyceryl cocoate, and polyethylene glycol based polyethoxylated fatty alcohols such as PEG 40 hydrogenated castor oil (commercially available under the tradename Cremophor® from BASF), PEG 7 glyceryl cocoate and PEG 20 glyceryl laurate (commercially available from Henkel under the tradenames Cetiol® HE and Lamacit® GML 20 respectively), and polyethylene glycol ethers of ceteryl alcohol such as Ceteareth 25 (available from BASF under the trade name Cremophor® A25).
- (4) silicone oils including, but not limited to, optionally functionalized linear polydiorganosiloxanes, cyclic polydiorganosiloxanes and in particular cyclotetra- and cyclopenta-dimethicones and organopolysiloxanes such as alkyl, alkoxy or phenyl dimethicones, and in particular phenyltrimethicone (available from Dow Corning, Midland, Mich., as Simethicone and DC 200 Fluids);
- (5) fluoro oils including, but not limited to, fluoroalkanes and fluoropolyethers, partially fluorinated hydrocarbon-based oils, and fluoropolymers represented by the monomer unit: X1X2C═CX3F wherein X1, X2, and X3 are independently H or F.
- The waxes in the fatty phase may be of mineral, fossil, animal, plant or synthetic origin or alternatively can be hydrogenated oils or fatty esters, which are solid at 25° C. The mineral waxes, include, but are not limited to, microcrystalline waxes, paraffin, petroleum jelly and ceresine. The fossil waxes, include, but are not limited to, ozocerite and montan wax. The waxes of animal origin, include, but are not limited to beeswax, spermaceti, lanolin wax and derivatives obtained from lanolin such as lanolin alcohols, hydrogenated lanolin, hydroxylated lanolin, acetylated lanolin, lanolin fatty acids and acetylated lanolin alcohol. The waxes of plant origin, include, but are not limited to, candelilla wax, carnauba wax, Japan wax and cocoa butter. The synthetic waxes, include, but are not limited to, ethylene homopolymers, seracite, shea butter, and copolymers of ethylene and of a monomer corresponding to the formula: CH2=CH—R3 in which: R3 represents an alkyl radical containing from 1 to 30 carbon atoms or an aryl or aralkyl radical. The alkyl radical of 1 to 30 carbon atoms is preferably a methyl, ethyl, propyl, isopropyl, butyl, decyl, dodecyl or octadecyl radical. Waxes obtained by Fisher-Tropsch synthesis and silicone waxes may also be used.
- The hydrogenated oils, which are solid at 25° C., include, but are not limited to, hydrogenated castor oil, hydrogenated palm oil, hydrogenated tallow and hydrogenated coconut oil. The fatty esters, which are solid at 25° C., include, but are not limited to, propylene glycol monomyristate and myristyl myristate. Waxes which can be used in the compositions according to the invention include, but are not limited to, cetyl alcohol, stearyl alcohol, mono-, di- and triglycerides which are solid at 25° C., stearic monoethanolamide, colophony and its derivatives such as glycol abietate and glyceryl abietate, sucroglycerides and calcium, magnesium, zinc and aluminum oleates, myristates, lanolates, stearates and dihydroxystearates.
- The pasty-type fatty substances can be of mineral, animal, plant or synthetic origin. The pasty fatty substances include, but are not limited to, synthetic esters such as arachidyl propionate, polyvinyl laurate, polyethylene waxes and organopolysiloxanes such as alkyldimethicones, alkoxydimethicones or dimethicone esters.
- These anhydrous compositions can be in various forms including, but not limited to, an oily gel, solid products, such as compacted or cast powders, or alternatively sticks such as, for example lipsticks. When the compositions according to the present invention are in the form of an oily gel, they generally contain a thixotropic or gelling agent, examples of which are given supra. The thixotropic agents can be present in various proportions depending on the desired texture of the compositions. However, in most cases, they are present in a proportion of from about 1 to about 20% by weight relative to the total weight of the composition.
- The anhydrous compositions of the present invention may be used in particular as skin care, skin cleansing, or make-up products. When they are present in the form of make-up products, they can be foundations, mascaras, eyeliners, lipsticks, eyeshadows or blushers. These compositions are generally colored and contain dyes and/or pigments as cosmetic adjuvants, which are described supra.
- According to a another embodiment of the present invention, the compositions can be used to form stable dispersions in the form of a water-in-oil (W/O) or oil-in-water (O/W) emulsion, which comprise: a fatty phase, as described supra, in a proportion of from about 0.1 to about 50% by weight relative to the total weight of the emulsion; an aqueous phase in a proportion of from about 50 to about 98.9% by weight relative to the total weight of the emulsion, said aqueous phase containing biologically-derived 1,3-propanediol, in a proportion of from about 1% to about 5% by weight relative to the total weight of the emulsion; and at least one emulsifier in a proportion of from about 1 to about 10% by weight relative to the total weight of the emulsion. Suitable emulsifiers are well known in the field of cosmetic products. For example, water-in-oil emulsifiers include, but are not limited to, sterols such as cholesterol and its associated esters and alcohols, lanolin, calcium oleate and other fatty acid soaps of divalent metals, beeswax, and polyhydric alcoholics of fatty acids such as glyceryl monostearate and sorbitan sesquioleate. Suitable oil-in-water emulsifiers include, but are not limited to, ordinary soaps, partially sulfated fatty alcohols, Cetomacrogol B.P., polyethoxylated esters known as Spans, cetydimethylbenzyl ammonium chloride, and gums and gum substitutes
- These emulsions, which are in the form of creams, have good film-forming properties and give a very satisfactory sensation after they have been applied. Such emulsions can be used as skin care, skin cleansing, or make-up products. When these compositions are skin care products, they can be anti-wrinkle products for improving the appearance of the skin. When these compositions are make-up products, they may be foundations or mascaras, containing a certain proportion of the pigments and/or dyes described supra.
- In another embodiment of the present invention, the personal care compositions are hair care compositions. Hair care compositions are herein defined as compositions for the treatment of hair, including but not limited to shampoos, conditioners, hair treatment creams, aerosols, gels, hair sprays, set lotions, blow styling lotions, hair relaxing compositions, and mousses. The hair care compositions of the present invention comprise an effective amount of biologically-derived 1,3-propanediol in a cosmetically acceptable medium. An effective amount of biologically-derived 1,3-propanediol for use in a hair care composition is herein defined as a proportion of from about 1% to about 30% by weight relative to the total weight of the composition. Components of a cosmetically acceptable medium for hair care compositions are described by Omura et al. in U.S. Pat. No. 6,139,851 and Cannell et al. in U.S. Pat. No. 6,013,250, both of which are incorporated herein by reference. For example, these hair care compositions can be aqueous, alcoholic or aqueous-alcoholic solutions, the alcohol preferably being a monohydric alcohol such as ethanol or isopropanol, in a proportion of from about 1 to about 75% by weight relative to the total weight for the aqueous-alcoholic solutions. The hair care compositions may also contain other polyhydric alcohols including, but not limited to, ethylene glycol, propylene glycol, 1,3-butylene glycol, glycerine, sorbitol, 2-methyl-1,3-propanediol, and polyethylene glycol. Additionally, the hair care compositions may contain one or more conventional cosmetic or dermatological additives or adjuvants, as described supra.
- The viscosity of the various personal care compositions depends on the nature of the composition. For example, emulsions typically have a viscosity up to about 250,000 cps. Other cosmetic compositions have viscosity up to about 600,000, cps, but preferably up to 300,000 cps and more preferable, up to 250,000 cps. Water thin compositions, for example sprays or some conditioners, have a viscosity of less than about 100 cps.
- The present invention also comprises a method for forming a protective film on skin or hair by applying one of the compositions described above comprising biologically-derived 1,3-propanediol to the skin or hair and allowing the formation of the protective film. The compositions of the present invention may be applied to the skin or hair by various means, including, but not limited to, spraying, brushing, and applying by hand. The composition is left in contact with the skin or hair for a period of time sufficient to form the protective film, preferably for at least about 0.1 to 60 min.
- Though the presently disclosed personal care compositions typically have human application, personal care compositions for other animals, particularly mammals, more particularly canine, feline, or equine, are also within the scope of the present disclosure.
- Uses of esters from bio-derived 1,3-propanediol in personal care products
- The monoesters and diesters of bio-derived 1,3-propanediol are useful in a variety of applications.
- Esters as described herein are suitable, in a non-limiting way, for use in the composition of liquid hand soaps, shampoos and liquid detergents as emulisifers, pearlizing agents, surfactants, gelling agents, structurants, thickeners, or opacifiers. The esters containing about 1 to about 24 carbons in the alkyl chain are particularly useful in liquid soap, shampoo and detergent applications.
- The esters of the present invention are also useful as an active ingredient in cosmetics as emollients. In other cosmetic applications such esters are useful in the deliver, application or effectiveness of the cosmetic. In this use the esters act as an additive or adjuvant. Specifically, in a non-limiting way, such esters can be uses as a humectant, opacifier, pearlizing agent, gelling agent, emulsifier, surfactant, structurant, thickener, compatibilizer or solvent for cosmetics and personal care products. The fatty acid esters of the present invention, containing about 8 to about 24 carbons in the alkyl chain are particularly useful in cosmetic applications.
- Such esters are also useful as a solvent for botanical products. Such botanical products include, but are not limited to, all plants, their seeds, stems, roots, flowers, leaves, pollen, spices and oils.
- Esters as described herein can also be used in inks as an emulsifier in cosmetic inks like tattoos or henna dyes.
- Such esters are useful in preparation of solid or near solid personal care products such as stick deodorants and bronzing sticks.
- The esters of the present invention are also useful in personal care compositions as an emulsifier, humectant, gelling agent, surfactant, structurant, thickener, compatibilizer or solvent.
- Such personal care applications can be directs to any animal, especially avians, reptiles and mammals. The preferred applications are directed to humans, canine, feline and equine species. The most preferred applications are directed to human species.
- Detergent Compositions
- As mentioned above, 1,3-propanediol can be incorporated into numerous compositions as a glycol component. For example, 1,3-propanediol can be part of or the sole glycol component of detergent compositions.
- In liquid detergent compositions, the glycol component typically is an emulsifier and/or phase stabilizer or a solvent. Exemplary liquid detergents include, but are not limited to, hand or machine dish washing detergent, laundry detergent, clothing softener, and car wash detergent. Glycols are present in the aforementioned detergent compositions in amounts well known to those of ordinary skill in the appropriate art, typically up to about 20% by weight based on the weight of the total composition. A typical formulation may include, but is not limited to, the following components by weight percent: 0.0-20.0% glycol, 5.0-40.0% fatty acid ester, and 1.0 to 50.0% surfactant or surfactant blend. Additionally, up to 5.0% by weight of the following components may be included: suds stabilizer, pH buffer, and enzymes.
- Detergent Compositions Comprising 1,3-propanediol Esters
- Esters as describe herein are also suitable, in a non-limiting way, for use in the composition of liquid soaps and liquid detergents as emulisifers, pearlizing agents, surfactants, gelling agents, structurant, thickener, or opacifier. The esters containing about 1 to about 24 carbons in the alkyl chain are particularly useful in liquid detergent applications.
- Such liquid soaps and liquid detergents can be directs to any animal, especially avians, reptiles and mammals. The preferred applications are directed to humans, canine, feline and equine species. The most preferred applications are directed to human species.
- In addition, the esters of the instant application may used for powder detergents, such as powder dishwasher detergent, and textiles detergents.
- Such esters are also useful as a solvent for botanical products in detergents. Such detergent compositions comprising botanical products include botanicals directed to plants, their seeds, stems, roots, flowers, leaves, pollen, spices and oils.
- The esters in the detergent compositions described herein may also function as an antimicrobial agent.
- A further description of types of detergent formulations comprising fatty acid esters can be found in “Liquid Detergents” (Surfactant Science Series Volume 129, Taylor & Francis Group, Boca Raton, Fla., 2005). Additional description follows, including reference to light-duty and heavy-duty detergents, both of which are the subject of the detergents compositions provided herein.
- Light-duty liquid detergents are for dishwashing (by hand) and liquid detergents for textile, delicate garments—usually the exposure times are relatively short, about 20 minutes and the use concentrations are low, about 0.15%. Esters in these compositions provide benefit as non-ionic surfactants.
- Heavy-duty liquid detergents (HDLD) are for textile applications (for washing machines). In this context the fatty acid esters are mostly the non-ionic surfactants. The non-ionic surfactants (beside the anionic surfactants) are primarily responsible for wetting the surfaces of fabrics as well as the soil (reducing surface and interfacial tension), helping to lift the stains off the fabric surface, and stabilizing dirt particles and/or emulsifying grease droplets. Esters in these compositions provide additional benefits as aesthetic ingredients and help to create a microemulsion.
-
TABLE 1 General formulation of a Structured HDLD: Ingredient Function % Sodium Linear Alkylbenzene Anionic surfactant 0-30 Sulfonate Sodium Alkyl Ether Sulfate Anionic surfactant 0-10 Alcohol Ethoxylate Nonionic surfactant 0-10 Sodium Carbonate Builder 0-25 Zeolite Builder 0-25 Sodium Perborate Bleach 0.0-10.0 Polymer Stabilizer 0.0-1.0 Protease Enzyme 0.0-1.5 Fluorescent Whitening Agent Brightener 0.0-0.5 Boric Acid 0.0-5.0 Preservative 0.05-0.2 Fragrance 0.0-0.6 Colorant 0.00-0.2 -
TABLE 2 General formulation of an Unstructured HDLD: Ingredient Function % Sodium Linear Alkylbenzene Anionic surfactant 0-15 Sulfonate Sodioum Alkyl Ether Sulfate Anionic surfactant 0-15 Alcohol Ethoxylate Nonionic surfactant 0-15 Sodium Citrate Builder 0-10 Monoethanolamine Buffer 0-5 Soap Defoamer 0-5 Protease Enzyme 0-1.5 Fluorescent Whitening Agent Brightener 0-0.5 Boric Acid Enzyme stabilizer 0-5.0 Ethanol Solvent 0.0-5 Sodium Xylene Sulfonate Hydrotrope 0-10.0 Preservative 0.05-0.2 Fragrance 0-0.6 Colorant 0-0.2 - The fatty acid esters of the instant invention may also function as non-ionic cosofteners. Generally glycol fatty acid esters deliver good softness and static control without any drawback.
- Other type of detergents within the instant invention include cream cleaners, as it has been found that fatty acid esters provide for microemulsion characteristics that benefit cream cleaners or detergents. Gel cleaners maybe formulated within the instant invention for the same reasons.
- The present invention is further defined in the following Examples. It should be understood that these Examples, while indicating preferred embodiments of the invention, are given by way of illustration only. From the above discussion and these Examples, one skilled in the art can ascertain the essential characteristics of this invention, and without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various uses and conditions.
- All ingredients used in the preparation of the personal care compositions described in the following Examples are available commercially unless otherwise noted.
- The meaning of abbreviations used is as follows “% wt.” means percent by weight; “qs” means as much as suffices; “EDTA” means ethylenediamine tetraacetate; “° C.” means degrees Centigrade; “° F.” is degrees Fahrenheit, “Bio-PDO” means biologically-derived 1,3-propanediol; “ppm” is parts per million; “AU” is absorbance unit; “nm” is nanometer(s); “GC” is gas chromatograph; “APHA” is American Public Health Association; “cps” is centipoise; “f/t” is freeze/thaw; “mPa·s” is milliPascal seconds; “D.I.” is deionized.
- Standard recombinant DNA and molecular cloning techniques used in the Examples are well known in the art and are described by Sambrook, J., Fritsch, E. F. and Maniatis, T., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989, by T. J. Silhavy, M. L. Bennan, and L. W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1984, and by Ausubel, F. M. et al., Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley-Interscience, N.Y., 1987.
- Materials and methods suitable for the maintenance and growth of bacterial cultures are also well known in the art. Techniques suitable for use in the following Examples may be found in Manual of Methods for General Bacteriology, Phillipp Gerhardt, R. G. E. Murray, Ralph N. Costilow, Eugene W. Nester, Willis A. Wood, Noel R. Krieg and G. Briggs Phillips, eds., American Society for Microbiology, Washington, D.C., 1994, or by Thomas D. Brock in Biotechnology: A Textbook of Industrial Microbiology, Second Edition, Sinauer Associates, Inc., Sunderland, Mass., 1989.
- All reagents, restriction enzymes and materials used for the growth and maintenance of bacterial cells were obtained from Aldrich Chemicals (Milwaukee, Wis.), BD Diagnostic Systems (Sparks, Md.), Life Technologies (Rockville, Md.), or Sigma Chemical Company (St. Louis, Mo.), unless otherwise specified.
- Glycerol used in the production of 1,3-propanediol was obtained from J. T. Baker Glycerin USP grade, Lot 325608 and G19657.
- Differential Scanning calorimetry: DSC thermograms were recorded using Universal V3 1A TA instrument under constant stream of nitrogen with a heating and cooling rate of 10° C./min.
- NMR: 1H NMR spectra were recorded on Bruker DRX 500 using XWINNMR version 3.5 software. Data was acquired using a 90 degree pulse (p1) and a 30 second recycle delay (d1). Samples were dissolved in deuterated chloroform and nondeuterated chloroform was used as internal standard.
- The conversion of glycerol to bio-PDO was monitored by HPLC. Analyses were performed using standard techniques and materials available to one of skill in the art of chromatography. One suitable method utilized a Waters Maxima 820 HPLC system using UV (210 nm) and RI detection. Samples were injected onto a Shodex SH-1011 column (8 mm×300 mm, purchased from Waters, Milford, Mass.) equipped with a Shodex SH-1011P precolumn (6 mm×50 mm), temperature controlled at 50° C., using 0.01 NH2SO4 as mobile phase at a flow rate of 0.5 mL/min. When quantitative analysis was desired, samples were prepared with a known amount of trimethylacetic acid as external standard. Typically, the retention times of glycerol (RI detection), 1,3-propanediol (RI detection), and trimethylacetic acid (UV and RI detection) were 20.67 min, 26.08 min, and 35.03 min, respectively.
- Production of bio-PDO was confirmed by GC/MS. Analyses were performed using standard techniques and materials available to one of skill in the art of GC/MS. One suitable method utilized a Hewlett Packard 5890 Series II gas chromatograph coupled to a Hewlett Packard 5971 Series mass selective detector (EI) and a HP-INNOWax column (30 m length, 0.25 mm i.d., 0.25 micron film thickness). The retention time and mass spectrum of 1,3-propanediol generated from glycerol were compared to that of authentic 1,3-propanediol (m/e: 57, 58).
- Production of Bio-Based Monoesters and Diesters from Bio-Produced 1,3-propanediol.
- Monoesters and diester of bio-produced 1,3-propandiol may be produced by combining bioPDO with organic acid. The combination is to be preformed in dry conditions under heat and prolong agitation with a selected catalyst. The ratio of monoester to diester produced will vary according to the molar ratio of acid to bioPDO and the selection of catalyst.
- The production of esters was confirmed using 1H nuclear magnetic resonance. Analyses were performed using standard techniques and materials available to one of skill in the art of 1H NMR.
- Proton Nuclear Magnetic Resonance (1H NMR) Spectroscopy is a powerful method used in the determination of the structure of unknown organic compounds. It provides information concerning: the number of different types of hydrogens present in the molecule, the electronic environment of the different types of hydrogens and the number of hydrogen “neighbor” a hydrogen has.
- The hydrogens bound to carbons attached to electron withdrawing groups tend to resonate at higher frequencies from TMS, tetramethylsilane, a common NMR standard. The position of where a particular hydrogen atom resonates relative to TMS is called its chemical shift (δ). Typical chemicals shifts of fatty ester are as follows.
- δ=0.88 for terminal CH3
- δ=1.26, 1.61 and 1.97 for methylene groups of (—CH2—CH 2—CH2), (CH 2—CH2—C═O) and (O—CH2—CH 2—CH2—O) respectively,
- δ=2.28 for methylene group adjustcent to ester (CH 2—C═O)
- δ=4.15 for ester (C(═O)—O—CH 2—).
- Proton NMR can distinguish the protons corresponding to the end groups (CH 2—OH) (δ=3.7) from that of the middle ester groups (CH 2—O—C(═O)—) (δ=4.15 and 4.24 for diester and monoester, respectively) and thus it is possible to identify ester and can monitor the reaction by comparing the integral areas of these two peaks.
-
- E. coli strain ECL707, containing the K. pneumoniae dha regulon cosmids pKP1 or pKP2, the K. pneumoniae pdu operon pKP4, or the Supercos vector alone, is grown in a 5 L Applikon fermenter for the production of 1,3-propanediol from glucose.
- The medium used contains 50-100 mM potassium phosphate buffer, pH 7.5, 40 mM (NH4)2SO4, 0.1% (w/v) yeast extract, 10 μM CoCl2, 6.5 μM CuCl2, 100 μM FeCl3, 18μ □M FeSO4, 5 μM H3BO3, 50 μM MnCl2, 0.1 μM Na2MoO4, 25 μM ZnCl2, 0.82 mM MgSO4, 0.9 mM CaCl2, and 10-20 g/L glucose. Additional glucose is fed, with residual glucose maintained in excess. Temperature is controlled at 37° C. and pH controlled at 7.5 with 5N KOH or NaOH. Appropriate antibiotics are included for plasmid maintenance. For anaerobic fermentations, 0.1 vvm nitrogen is sparged through the reactor; when the dO setpoint was 5%, 1 vvm air is sparged through the reactor and the medium is supplemented with vitamin B12.
- Titers of 1,3-propanediol (g/L) range from 8.1 to 10.9. Yields of bio-PDO (g/g) range from 4% to 17%.
- Published U.S. Patent Application No. 2005/0069997 discloses a process for purifying 1,3-propanediol from the fermentation broth of a cultured E. coli that has been bioengineered to synthesize 1,3-propanediol from sugar. The basic process entails filtration, ion exchange and distillation of the fermentation broth product stream, preferably including chemical reduction of the product during the distillation procedure.
- 1,3-Propanediol, produced as recited in Example 1, was purified, by a multistep process including broth clarification, rotary evaporation, anion exchange and multiple distillation of the supernatant.
- At the end of the fermentation, the broth was clarified using a combination of centrifugation and membrane filtration for cell separation, followed by ultrafiltration through a 1000 MW membrane. The clarified broth processed in a large rotary evaporator. Approximately 46 pounds of feed material (21,000 grams) were processed to a concentrated syrup. A 60 ml portion of syrup was placed in the still pot of a 1″ diameter distillation column. Distillation was conducted at a vacuum of 25 inches of mercury. A reflux ratio of approximately 1 was used throughout the distillation. Several distillate cuts were taken, the central of which received further processing. The material was diluted with an equal volume of water, the material was loaded onto an anion exchange column (mixed bed, 80 grams of NM-60 resin), which had been water-washed. Water was pumped at a rate of 2 ml/min, with fractions being collected every 9 minutes. Odd number fractions were analyzed, and fractions 3 through 9 contained 3G. The fractions containing 3G were collected and subjected to microdistillation to recover several grams of pure 1,3-propanediol monomer (which was polymerized to mono and diesters according the methods described in Example 2-8).
- To prepare propanediol distearate from biosource 1,3-propanediol and stearic acid, biosource 1,3-propanediol was purified using methods as in examples 1 and 2. 2.58 g (0.033 moles) of biosource 1,3-propanediol, 19.45 g (0.065 moles) of stearic acid (Aldrich, 95%), and 0.2125 g (0.001 moles) of p-toluenesulfonic acid (Aldrich 98.5%) were charged into glass reactor fitted with mechanical stirrer and the reactor was flushed with dry nitrogen gas to remove air and moisture for 15 min. Then reaction temperature was raised to 100° C. while thoroughly stirring the reaction mixture under nitrogen flow and continued for 210 min.
- After completion of the reaction, reaction mixture was cooled to about 35° C. and the product was transferred into a beaker. The product was purified by adding 100 mL of water and thoroughly stirring at 45-60° C., to form an emulsion for 15 min. The mixture was cooled and the solid propanediol distearate was separated by filtration.
- The product was characterized by 1H NMR (Nuclear Magnetic Resonance) spectra (CDCl3 (deuterated chloroform)): δ=0.88 (t, CH 3—CH2, 6H), 1.26 (t, CH2—CH 2—CH2, 28H), 1.61 (t, CH 2—CH2—C═O, 4H), 1.97 (t, —O—CH2—CH 2—CH2—O, 2H), 2.28 (t, CH 2—C═O, 4H), 4.15 (t, C(═O)—O—CH 2— 4H) and DSC (Tm=66.4° C. and Tc=54.7° C.).
- In Table 1 below, biologically-derived 1,3-propanediol (produced and purified as described in Published U.S. Patent Application No. 2005/0069997) (“Bio-PDO”) is compared, in several purity aspects, to two separate commercially-obtained preparations of chemically-produced 1,3-propanediol (Source A and B).
-
TABLE 1 Units Source A Source B Bio-PDO Total Org Impurities ppm 570 695 80 UV Abs 220 nm, AU 0.25 1.15 0.12 UV Abs 250 nm, AU 0.123 0.427 0.017 UV Abs 275 nm AU 0.068 0.151 0.036 UV Abs 350 nm AU 0.013 0.007 0.001 Peroxides ppm 67 43 2 CIE L*a*b* ASTM D6290 b* 0.411 0.03 0.1 Carbonyls ppm 147 175 1 - A typical profile of purity aspects are provided in Table 2 below, on a sample of biologically-produced 1,3-propanediol purified by a process disclosed in Published U.S. Patent Application No. 2005/0069997.
-
TABLE 2 Units 1,3-Propanediol GC area % 99.992 pH, neat pH 8.22 UV Abs. @ 270 nm, 1:5 dilution AU 0.01 Color APHA 3 Color (Process Measurement) L*a*b* b* 0.10 Water ppm 115 UV abs 220 nm neat AU 0.144 UV abs 250 nm neat AU 0.017 UV abs 275 nm neat AU 0.036 UV abs 350 nm neat AU 0.001 Peroxide ppm 2 Metals ppm <1 Sulfur ppm <1 Carbonyl ppm 1 - The unit ppm of total organic impurities means parts per million of total organic compounds in the final preparation, other than 1,3-propanediol, as measured by a gas chromatograph with a flame ionization detector. Results are reported by peak area. A flame ionization detector is insensitive to water, so the total impurity is the sum of all non 1,3-propanediol organic peaks (area %) ratioed to the sum of all area % (1,3-propanediol included). The term “organic materials” refers to the contaminants containing carbon.
- The tables show that the disclosed method of purification provides for highly pure biologically derived 1,3-propanediol, as compared to commercially-obtained preparations of chemically-produced 1,3-propanediol.
- In a human skin patch test with approximately 100 subjects, 5, 25, and 50% PDO did not cause any skin reactions indicative of irritation or sensitization. A second human skin patch test did not produce any clinically significant dermal irritation or sensitization reactions with concentrations of 25, 50, and 75% PDO at pH 7, or 75% PDO at pH 4 and 9. Based on these studies PDO is not expected to be a skin irritant or sensitizer in humans. In the second human skin patch test, propylene glycol (1,2-propanediol or PG) was also tested at 25, 50, and 75% (pH 7) and all three concentrations of PG were patch test irritants and cumulative irritants for human skin.
- Examples 6-8 are prophetic and are based on a descriptions from: D'Amelio, Frank S Sr.; Botanicals: A Phytocosmetic Desk Reference; CRC Press 1999, pg. 299-304.
-
-
Percent Sequence Raw Material INCI Name 1.00 1 Deionized Water Water 0.00 1 Saponins Saponins 0.00 1 Cocamidopropyl Betaine Cocamidopropyl Betaine .00 1 Cocamide DEA 1:1 Cocamide DEA .10 1 Horsetail Extract, Horsetail Extract 5:1 BIO-PDO .10 1 Comfrey Leaf Extract, Comfrey Leaf 5:1 BIO-PDO Extract .10 1 Rosemary Extract, Rosemary Extract 5:1 BIO-PDO .10 1 Chamomile Extract, Matricaria Extract 5:1 BIO-PDO .s. 2 50% Aq. Sodium Sodium Hydroxide Hydroxide .50 3 Aculyn 22 Thickener1 Acrylates/Steareth-20 Methacrylate Copolymer 5.00 4 Plantaren 20002 Decyl Polyglucose .10 Lipovol A3 Avacado Oil .s. 5 25% Aqueous Citric Acid Citric Acid 0.00 6 UCARE Polymer LR 30M Polyquaternium-10 (1.3%)4 .00 7 Lipamide MEAA4 Acetamide MEA Note: 5:1 Bio-PDO is defined as 5 parts biologically derived 1,3-propanediol with 1 part dehydrated botanical. (20% of a 1:1 extract) 1Rohm & Haas 2Henkel 3Lipo Chemicals, Inc. 4Amerchol - Procedure:
-
- 1. Combine Sequence 1 ingredients at room temperature using a slow to moderate mixing to prevent aeration until homogeneous.
- 2. Adjust pH to 9.2 with Sequence 2 ingredient.
- 3. Slowly add Sequence 3 and continue mixing until polymer is completely dispersed.
- 4. Add Sequence 4 ingredients slowly and mix until homogeneous.
- 5. Adjust pH to 5.5 with Sequence 5 ingredient.
- 6. Add Sequence 6 slowly and mix until homogeneous.
- 7. Add Sequence 7 slowly and mix until homogeneous.
-
-
Percent Sequence Raw Material INCI Name 15.96 1 Lipovol ALM5 Sweet Almond Oil 63.54 1 Lipovol SES1 Sesame Oil 5.00 1 Lipolan R1 Lanolin Oil 5.00 1 Lipopeg 2-DL PEG-4 Dilaurate 10.00 1 Lipocol 0-21 Oleth-2 0.10 1 Propylparaben Propylparaben 0.10 1 Vitamin E USP-FCC6 Vitamin E 0.10 2 Arnica 5:1 BIO-PDO Arnica Extract 0.10 2 Chamomile 5:1 BIO-PDO Chamomile Extract 0.10 2 Comfrey 5:1 BIO-PDO Comfrey Extract q.s. 3 D & C Green #6 (0.5% Sol'n D & C Green #6 in BIO-PDO) Note: 5:1 Bio-PDO is defined as 5 parts biologically derived 1,3-propanediol with 1 part dehydrated botanical. (20% of a 1:1 extract) 5Lipo Chemicals, Inc. 6Roche Vitamins and Fine Chemicals - Procedure:
-
- 1. Combine Sequence 1 ingredients under vigorous mixing and heat to 557° C. until propylparaben is completely dissolved. Cool to 30° C.
- 2. At 30° C., add Sequence 2 ingredients to batch and cool to 25° C. At 25° C., add Sequence 3 until desired shade is obtained.
-
-
Percent Sequence Raw Material INCI Name 92.70 1 Deionized Water Water 2.00 1 Lipocare HA/EC7 Echinacin 5.00 1 Liponic EG-11 Glycereth-26 0.10 1 Slippery Elm Bark 5:1 BIO- Slippery Elm PDO8 Extract 0.10 1 Chamomile Extract 5:1 BIO- Matricaria Extract PDO2 0.10 1 Wild Alum Extract 5:1 BIO- Cranesbill Extract PDO2 Note: 5:1 Bio-PDO is defined as 5 parts biologically derived 1,3-propanediol with 1 part dehydrated botanical. (20% of a 1:1 extract) 7Lipo Chemicals, Inc. 8BioBotanica/Lipo Chemicals, Inc. - Procedure:
- Combine ingredients under vigorous mixing at room temperature until batch is clear and uniform.
- Esters based on biologically-derived 1,3-propanediol were synthesized, purified and characterized as it is described in U.S. Provisional Patent application 60/772,112, filed Feb. 10, 2006, incorporated herein by reference.
- Biologically-derived 1,3-propanediol and 1,3-propanediol conjugate ester were used for the extraction of Chamomile flower powder (Martricaria recutita from Egypt, distributor—Mountain Rose Herbs, Oreg.).
- The Chamomile powder was mixed with 1,3-propanediol and macerated for 30 minutes on a shaking table, then 1,3-propanediol ester was added to the mixture and the temperature was raised to 90° C. and the maceration was continued for additional 2 hours. The material was filtered through a 0.2 μm GHP membrane and the filtrate was analyzed by LC/MS and shown to contain extracted compounds.
- The biologically-derived 1,3-propanediol conjugate ester was synthesized as it is written in Example 9 and the ester (Bio-PDO bis-ethylhexanoate) was used for the extraction of Chamomile flower powder (Mountain Rose Herbs, Oreg.).
- The Chamomile powder was mixed with the ester and macerated for 2, 4, 6 hours on a shaking table. The material was filtered through a 0.2 μm GHP membrane and the filtrate was analyzed by UV/VIS (UV/Vis Spectrophotometer, Varian (Australia), Model: Cary 5000) and the spectra demonstrated that the efficacy of the extracted compounds was proportional with the time used for the maceration.
- The biologically-derived 1,3-propanediol conjugate ester was synthesized as it is written in Example 9 and the ester (Bio-PDO bis-ethylhexanoate) was used for the extraction of dried Red Roses (Rosa centifolia, Mountain Rose Herbs, Oreg.).
- The dried roses was mixed with the ester and macerated for 2, 4, 6 hours on a shaking table. The material was filtered through a 0.2 μm GHP membrane and the filtrate was analyzed by UV/VIS.
- The biologically-derived 1,3-propanediol conjugate ester was synthesized as it is written in Example 9 and the ester (Bio-PDO bis-ethylhexanoate) was used for the extraction of dried seaweed (local farmers' market).
- The dried seaweed was mixed with the ester and macerated for 2, 4, 6 hours on a shaking table. The material was filtered through a 0.2 μm GHP membrane and the filtrate was analyzed by UV/VIS.
- Procedure: 5 g of dried Jasmine flower (Jasminum officinale, Mountain Rose Herbs, Oreg.) was immersed in the mixture of Bio-PDO/methanol (70%:30%) and macerated for 24 h. The material was filtered through a 0.2 μm GHP membrane and the filtrate was analyzed by LC/MS. The LC/MS spectra demonstrated the effective extraction of the active ingredients.
- Procedure: 5 g of dried Honeysuckle flower (Lonicera japonica, origin China, distributor Mountain Rose Herbs, Oreg.) was immersed in the mixture of Bio-PDO/d.water (50%:50%) and macerated for 24 h. The material was filtered through a 0.2 μm GHP membrane and the filtrate was analyzed by LC/MS. The LC/MS spectra demonstrated the effective extraction of the active ingredients.
- Procedure: 5 g of dried Eucalyptus leaf (Eucalyptus globulus, origin France, distributor Mountain Rose Herbs, Oreg.) was immersed in the mixture of Bio-PDO/d.water (50%:50%) and macerated for 24 h. The material was filtered through a 0.2 μm GHP membrane and the filtrate was analyzed by LC/MS. The LC/MS spectra demonstrated the effective extraction of the active ingredients.
- Procedure: 5 g of dried Sandalwood Red Powder (Pterocarpus santalinus, origin Africa, distributor Mountain Rose Herbs, Oreg.) was immersed in the mixture of Bio-PDO/d.water (50%:50%) and macerated for 24 h. The material was filtered through a 0.2 μm GHP membrane and the filtrate was analyzed by LC/MS. The LC/MS spectra demonstrated the effective extraction of the active ingredients.
- Bio-1,3-propanediol and propylene glycol were used to extract ingredients from Jasmine flower, Chamomile flower powder (Matricaria recutita) myrrh gum cut benzoin gum powder, and bees wax. LC-MS and GC-MS were used to analyze the extracted ingredients. Qualitative analysis confirmed that ingredients extracted using 1,3-propanediol are same as those extracted using propylene glycol. Additionally, ingredients extracted using bio-1,3-propanediol and mixtures of bio-1,3-propanediol and methanol were the same.
- The major ingredients of chamomile extraction are bisabolol oxide, en-in-dicyclo ether, and Apigenin glucoside. Comparitive yields of these active ingredients using 1,3-propanediol and propylene glycol (1,2-Propanediol, Aldrich) are shown below in Table 1:
-
TABLE 1 Bio-1,3-propanediol Propylene Extract Product Area Glycol Area % difference Bisabolol oxide 9217821a 8760424a 5.2 Apigenin glucoside 3972525b 3549734b 11.2 en-in-dicyclo ethers 9394370b 7261956b 29.2 aGC-MS analysis, bLC-MS analysis - The table shows the GC-MS/LC-MS peak areas of the extracted ingredients using 1,3-propanediol and propylene glycol. Using Bio-1,3-propanediol the extraction process extracted 29.4 wt % higher en-in-cycloethers, 11.2 wt % higher apigenin glucoside, and 5.2 wt % higher bisabolol oxide as compared to the extraction using propylene glycol.
- Chamomile flower powder (5 g) was mixed with 50 g of solvent mixture (Bio-PDO/Deionized Water, ratio 1:1, and also the mixture of 1,2-Propanediol (Propylene glycol, Aldrich)/Deionized Water, ratio 1:1). The mixture was kept for agitation for 24 h. The extract was filtered and analyzed.
-
TABLE 2 Comparison of extraction of Chamomile using Bio-PDO and Propylene glycol Bio-PDO/ Propylene glycol/ Product Water Area Water Area % Difference Bisabolol oxide 25176422 14409166 75 Apigenin 2374215 556691 326 Apigenin glucoside 658824 420412 57 en-in-dicyclo ethers 1842764 866635 113 - The data in Table 2. show the GC-MS/LC-MS peak areas of the extracted ingredients using Bio-PDO/water and propylene glycol/water mixtures. Using Bio-PDO/water mixture 75 wt % higher Bisabolol oxide, 326 wt % higher Apigenin, 113 wt % higher en-in-cycloethers, 57 wt % higher apigenin glucoside were extracted than those extracted using propylene glycol.
- Hamomile flower powder (Mountain Rose Herb, Oreg.) (5 g) was mixed with 50 g of Bio-PDO also 5 g of Chamomile flower powder was mixed with Deionized Water. The mixture was macerated for 24 h. The extract was filtered and analyzed by LC/MS.
-
TABLE 3 Comparison of extraction of Chamomile using Bio-PDO and Water Product Bio-PDO/Area H2O/Area % Difference Apigenin 63.32 125.53 −50.4 Apigenin glucoside 134.58 0 en-in-dicyclo ethers 1340.74 0 - Using deionized water apigenin glucoside and en-in-dicyclo ethers were not extracted though apigenin extraction was higher compared to that using Bio-PDO.
-
-
Ingredients: % Wt. Phase A Water, deionized 61.34 Tetrasodium EDTA 0.10 Bio-PDO ™ (E.I. du Pont de Nemours 5.00 and Company (“DuPont”), Wilmington, Del.) Carbopol 980 (2% solution) 10.00 Phase B Puresyn ® 25.00 Lipomulse ® 165 2.50 Stearic Acid XXX 2.50 Cetearyl Alcohol 0.50 Dimethicone DC 200-100 1.00 Phase C NaOH (20% solution) qs to pH 7.0-7.5 1.06 Phase D Germaben II 1.00 - Phase A was combined at 75° C. Phase B was combined at 75° C. Phase B was added to Phase A. Phase C was then added to the Phase A/B. Phase A/B/C was cooled to 40° C. and then Phase D was added. pH was adjusted to 7.0-7.5 with Phase C. The formulation produced was a smooth white and apparently stable emulsion.
- RESULTS—pH 7.38, viscosity 12000 cps at 20 RPM. Oven stability was examined. Results were deemed acceptable. Freeze/thaw stability was also examined. Freeze/thaw stability was deemed acceptable.
- For comparative purposes, cosmetic emulsions containing other polyols were also produced as described in Example 17, except that the biologically-derived 1,3-propanediol was substituted with propylene glycol, 1,3-butylene glycol, or 2-methyl-1,3-propanediol. The cosmetic emulsions containing propylene glycol, 1,3-butylene glycol, or 2-methyl-1,3-propanediol were stable.
- The viscosity of the cosmetic emulsion containing biologically-derived 1,3-propanediol was on par with that of propylene glycol (12600 cps) and higher than that of 1,3-butylene glycol (6000 cps) or 2-methyl-1,3-propanediol (9600 cps).
- The purpose of this study was to determine the potential of biologically-derived 1,3-propanediol, diluted to concentrations of 5%, 25%, and 50%, to cause irritation or delayed contact hypersensitivity in humans. The method employed in carrying out this test, described below, was similar to that described in “Appraisal of the Safety of Chemicals in Foods, Drugs and Cosmetics” by J. H. Drake and published by the Association of Food and Drug Officials of the United States, incorporated herein by reference.
- Test Panel: The test involved the application of the test article to the upper arms of a group of 112 volunteer panelists. The panelists ranged from 16 to 71 years of age. One hundred and five panelists completed the study. Prior to the initiation of the study, all panelists were in good general health and free of any visible skin disease or anomaly in the area to be patched. Each panelist was required to read, understand and sign an informed consent statement.
- Patch Preparation: The test articles (biologically-derived 1,3-propanediol diluted with D.I. water to a concentration of 5%, diluted with D.I. water to a concentration of 25%, and diluted with D.I. water to a concentration of 50%) were applied (0.1 mL) to a one-inch Lintine® Disk (Filter Fabrics, Goshen, MD) and placed onto a strip of 2 inch Dermicel® hypoallergenic cloth tape (Johnson & Johnson, New Brunswick, N.J.). Before applying this strip, each portion of test material was secured in place with a gloved finger to insure proper application. This tape strip was then pressed into place on the upper left arm of each panelist at its designated test site.
- Induction Phase: These patches were applied to their designated contact sites and remained in place for 24 hours. At the end of this period, the patches were removed and the sites were examined for any dermal response. The panelists were then rested for a 24-hour period after which the skin sites were again examined. New patches were then applied to the same sites as previously used. The second applications were identical to the first and remained in place 24 hours. This procedure was repeated on Mondays, Wednesdays and Fridays until a series of nine applications had been made. Patch applications made on Friday were removed by the panelists on Saturday. The panelists examined the sites (with assistance if necessary) for any dermal response at the time of removal and again at 48 hours and reported their observations prior to the next application. The same sites were used throughout the study. In the event when one induction application was missed, the panelist was allowed to make it up at the end of the induction patch period. These patches were applied on Monday following the last scheduled (ninth) induction application on Friday.
- Challenge Phase: After the 9th application, a rest period of approximately 2 weeks elapsed after which a challenge application was applied in the same manner and to the same sites described above.
- Based upon the effects observed with the test materials placed repeatedly on the skin during both the induction and challenge phases, biologically-derived 1,3-propanediol, diluted to concentrations of 5%, 25%, and 50%, is considered not to be a skin irritant, fatiguing agent, or sensitizing agent under the conditions that prevailed in this study.
-
-
Ingredients: % Wt. Deionized water 66.20 Bio-PDO ™ (DuPont) 16.00 Ritasail 190 (RITA) (dimethicone copolyol) 2.00 Pationic ® 122A (RITA) (sodium caproyl lactylate 3.80 21.1% aqueous) Rhodapex ® ESY (Rhodia) (sodium laureth sulfate 4.00 26% aqueous) Germaben II (ISP/Sutton) (propylene glycol, diazolidinyl urea, 1.00 methylparaben and propylparaben) Tetrasodium EDTA 5% aqueous 1.00 Aculyn ® 22 (ISP/Rohm & Haas) (acrylates/steareth-20 5.00 methacrylate copolymer 25% aqueous) Triethanolamine 1.00 Fragrance q.s. - Procedure: Ingredients are combined in order as listed. Properties: pH: 7.0, viscosity: 6,780 cps
-
-
Ingredients: % Wt. Deionized water 75.49 Cellosize ® PCG 10 (Amerchol) 0.20 Trisodium EDTA (Universal Preserv-A-Chem) 0.10 Bio-PDO ™ (DuPont) 6.50 Shebu ® Refined (RITA) (shea butter) 2.00 Arlacel ® 60 (Uniqema) 4.00 MYRJ ® 52S (Uniqema) 0.50 Glycol stearate (Stepan) 2.00 DC SF 200/350 (Dow Corning) 4.00 Isopropyl palmitate (Stepan) 3.00 Vitamin A palmitate (Roche) 0.01 Aloe vera gel (Bio-Botanica) 0.50 Cucumber extract (Bio-Botanica) 0.50 Ginkgo biloba extract (Bio-Botanica) 0.50 Red clover extract (Bio-Botanica) 0.50 Biopein ® (Bio-Botanica) 0.20 - Procedure: Disperse Cellosize® PCG 10 into deionized water with mixing. Add trisodium EDTA and Bio-PDO™ with mixing and heat to 80° C. Add the next seven items and continue mixing until uniform. Remove heat and allow to cool. At 30° C., add aloe vera gel, cucumber extract, ginkgo biloba extract and red clover extract. Add Biopein® and mix until homogenous.
-
-
Ingredients: % Wt. Phase A Cremophor ® A6 (BASF) (ceteareth-6) 2.0 Cremophor ® A25 (BASF) (ceteareth-25) 2.0 Vitis vinifera (grape) seed oil 6.0 Glyceryl Stearate SE 3.0 Cetearyl alcohol 2.0 Dimethicone 0.5 Luvitol EHO (BASF) (cetearyl octanoate) 8.0 Oxynex ® 2004 (Merck KgaA) (1,3-Propanediol, BHT, 0.1 ascorbyl palmitate, glyceryl stearate and citric acid) Phase B Bio-PDO ™ (DuPont) 5.0 Edeta BD (BASF) (disodium EDTA) 0.1 D-Panthenol USP (BASF) 1.0 Preservative q.s. Water q.s. to 100 Phase C Luvigel EM (BASF) (caprylic/capric triglycerides and 1.0 sodium acrylates copolymer) Phase D Vitamin E Acetate (BASF) 0.5 Perfume q.s. - Procedure: Heat phase A and phase B to about 80° C. Stir phase B into phase A while homogenizing. Add phase C to phase A/B and homogenize again. Cool to about 40° C., add phase D and homogenize shortly. Properties: Viscosity: approx. 25,000 mPa·s (Brookfield); pH value: 6.5
-
-
Ingredients: % Wt. Phase A Cremophor ® GC 7 (BASF) (PEG 7-glyceryl-cocoate) 8.0 Cremophor ® A-25 (BASF) (ceteareth-25) 22.0 Cremophor ® WO 7 (BASF) (hydrogenated castor oil) 1.0 Bio-PDO ™ (DuPont) 3.0 Masil ® SF19 (BASF) (PEG 8 methicone) 1.0 Phase B Water 65.0 Phase C Preservative q.s. Fragrance q.s. - Procedure: Add ingredients in above order at 80° C. and mix until uniform. Assure each is dissolved prior to next addition. Heat phase B to 80° C. and combine with phase A. Cool to 50° C. Add fragrance and preservative. Pour into containers while liquid and allow to set at room temperature.
-
-
Ingredients: % Wt. Phase A Varisoft ® TA-100 (Goldschmidt) 4.75 (distearyldimonium chloride) Crodacol C-70 (Croda) (cetyl alcohol) 2.00 Penreco Snow White Petrolatum (Penreco) (petrolatum) 4.00 DC Fluid 200, 1,000 cst (Dow Corning) (dimethicone) 0.25 Phase B Deionized water q.s. Stepan ® IPM (Stepan) (isopropyl myristate) 3.25 Bio-PDO ™ (DuPont) 4.00 Phase C Sensomer ® CI-50 (Ondeo Nalco) (starch 3.00 hydroxypropyltrimonium chloride) AA040513 Cucumber (Arylessence) (fragrance) 0.25 Preservative q.s. Sodium hydroxide q.s. to pH 6 - Procedure: In separate containers, thoroughly mix the ingredients of phase A and phase B to 75° C. Pour phase A into phase B; mix well at temperature for 10 minutes. Remove heat and continue mixing until temperature is under 40° C. Add phase C ingredients in the order listed, mixing well between additions. Adjust pH to 6.
-
-
Ingredients: % Wt. Phase A Stearyl alcohol 2.00 Estol ® 1543 (Uniqema) (ethylhexyl palmitate) 5.00 Estol ® 3609 (Uniqema) (triethylhexanoin) 5.00 Tween ® 60 (polysorbate 60) 2.00 Isohexadecane 7.50 Solaveil ® CT100 (Uniqema) (C12-C15 alkyl benzoate (and) 15.00 titanium dioxide (and) polyhydroxystearic acid (and) aluminum stearate (and) alumina) Phase B Distilled water 54.40 Arlatone ® 2121 (Uniqema) (sorbitan stearate (and) sucrose 2.50 cocoate) Monomate RMEA-40 (aqua (and) disodium ricinoleamido 0.200 MEA-sulfosuccinate) Phase C Veegum ® Ultra (RT Vanderbilt) (magnesium aluminum 0.80 silicate) Keltrol ® RD (Nutrosweet Kelco) (xanthan gum) 0.20 Sodium lactate 50% 0.40 Germaben ® II (ISP) (propylene glycol (and) diazolidinyl urea 1.00 (and) methylparaben (and) propylparaben) Bio-PDO ™ (DuPont) 4.00 - Procedure: Heat phase B to 80° C. with moderate stirring, until Arlatone® 2121 is fully dispersed. Add Keltrol® and Veegum®; stir until homogeneous. Add remaining water phase ingredients, maintaining temperature at 80° C. Heat phase A to 80° C. Add phase A to B/C with vigorous mixing. Homogenize for two minutes. Cool with moderate stirring to room temperature.
-
-
Ingredients: % Wt. Phase A Deionized water 61.7 Keltrol ® CG (Kelco) (xanthan gum) 0.2 Bio-PDO ™ (DuPont) 5.0 Multifruit ® BSC (Arch Personal Care) 3.0 Jeescreen Benzophenone-4 (Jeen) (benzophenone-4) 0.1 Jeechem GMS-165 (Jeen) (glyceryl stearate (and) PEG-100 3.0 stearate) Phase B Jeesilc IDD (Jeen) (dimethicone crosspolymer-3 (and) 4.0 isododecane) Jeesilc 245 (Jeen) (cyclomethicone) 8.0 Jeesilc 200 MV (100 cst) (dimethicone) 2.0 Simulgel ® NS (Seppic) 4.0 Phase C Jeesilc 6056 (Jeen) (dimethylpolysiloxane gum) 3.0 Jeecide G-II (Jeen) (propylene glycol (and) diazolidinyl urea 1.0 (and) methylparaben (and) propylparaben) Arnica Extract (Botanicals Plus) (arnica montana) 2.0 Flamingo Super Red 1.0 Phase D Jeesorb L-20 (Jeen) (polysorbate 20) 1.0 Vitamin E Acetate (Jeen) (tocopheryl acetate) 0.5 Fragrance 0.5 - Procedure: Heat water to 65° C. Pre-mix Keltrol® and Bio-PDO™ and add to the water phase. Mix until dissolved. Add the other ingredients of phase A one at a time and mix well. Cool to 50° C. In the oil phase tank, add the Jeesilc IDD, Jeesilc 245 and Jeesilc 200 MV (100 cst) and mix until uniform. Add the Simulgel® and mix to 50° C. Using a homogenizer, add phase B to phase A and mix for 10 minutes. Cool to 40° C. Switch to prop agitation. Add the ingredients of phase C one at a time into the main tank and mix well after each addition. Pre-mix phase D in a side vessel and add to the main tank. Mix well.
-
-
Ingredients: % Wt. Phase A Deionized water 57.85 Carbopol 980 (Noveon) (carbomer) 0.30 Disodium EDTA (Dow Chemical) 0.10 Bio-PDO ™ (DuPont) 4.00 Phase B Escalol 557 (ISP) (octinoxate) 7.50 Escalol 567 (ISP) (oxybenzone) 6.00 Escalol 517 (ISP) (avobenzone) 2.00 X-Tend 226 (ISP) (2-phenylethyl benzoate) 10.00 Prolipid ® 141 (ISP) (glyceryl stearate, behenyl 4.00 alcohol, palmitic acid, stearic acid, lecithin, lauryl alcohol, myristyl alcohol and cetyl alcohol) Phase C Deionized water 5.00 Triethanolamine 99% 0.40 Phase D Liquapar Optima (ISP) (phenoxyethanol, methylparaben, 1.25 isopropylparaben, isobutylparaben and butylparaben) Liquapar Oil (ISP) (isopropylparaben, isobutylparaben 0.40 and butylparaben) Lexguard O (Inolex) (caprylyl glycol) 1.00 Phase E Glycacil ®-L (Lonza) (iodopropynyl butylcarbamate) 0.20 - Procedure: Combine ingredients in phase A; mix until uniform and heat to 75° C. Combine ingredients in phase B; heat to 75° C. Combine phase B with phase A with homogenization. Combine phase C with phase A/B with homogenization. Cool to 45° C. (heat Lexguard O and add to LiquaPar Optima) and add phase D. Add phase E. Cool to room temperature. Qs for water loss.
- Properties: Viscosity: 17,600 cps, pH 6.44
-
-
Ingredients: % Wt. Phase A Deionized water 63.10 Versene ® NA (Dow) (disodium EDTA) 0.05 Carbopol Ultrez 10 Polymer (Noveon) (carbomer) 0.25 Pemulen ® TR-2 Polymeric Emulsifier (Noveon) 0.15 (acrylates/C10-30 alkyl acrylate crosspolymer) Bio-PDO ™ (DuPont) 3.00 Phase B NeoHeliopan, Type AV (Haarmann & Reimer) 5.00 (octyl methoxycinnamate) Octyl salicylate 3.00 HallBrite ® BHB (C.P. Hall) (butyloctyl salicylate) 5.00 Parsol ® 1789 (Roche) (avobenzone) 3.00 Procol CS-20-D (Protameen) (cetearyl alcohol and ceteareth-20) 1.50 Crodamol CAP (Croda) (cetearyl octanoate) 2.00 Vitamin E acetate (BASF) 0.50 Phase C Crovol A-70 (Croda) (PEG-60 almond glycerides) 0.50 DC 1401 Fluid (Dow Corning) (dimethiconol and 1.50 cyclomethicone) Ultrasil Copolyol-1 Silicone (Noveon) (PEG-8 dimethicone) 1.50 Phenonip ® (Clariant) (phenoxyethanol, methylparaben, 1.00 ethylparaben, propylparaben, butylparaben and isobutylparaben) Tapioca Pure (National Starch) (tapioca starch) 4.00 Sodium hydroxide 18% 1.00 Avalure ® UR 450 Polymer (Noveon) 3.95 (PPG-17/IPDI/DMPA copolymer 38% solids) - Procedure: Dissolve disodium EDTA in warm water (−50° C.). Add Carbopol Ultrez 10 polymer and allow to wet out for approximately five minutes. Disperse Pemulen® Polymeric emulsifier and allow to mix in for about 15 minutes. Add Bio-PDO™. Bring phase A to ˜70° C. Add approximately 15% of the total neutralizing agent necessary to phase A. Blend phase B ingredients and bring to ˜80° C., making sure solid ingredients are dissolved. Add phase B to phase A with vigorous agitation. Add PEG-60 almond glycerides. Add dimethiconol and cyclomethicone. Add Ultrasil Copolyol-1 silicone. Add Phenonip® after the emulsion cools to <60° C. Add tapioca starch. Add the remainder of the neutralizing agent. Add Avalure® UR 450 polymer.
- Properties: Appearance: white, creamy emulsion
- pH: 7.0-7.5
- Viscosity (mPa·s)*: 15,000-21,000
- SPF (waterproof)**: 21 (in-vitro method, 80 min. immersion)
-
-
Ingredients: % Wt. Phase A Simusol 165 (Seppic) (glyceryl stearate and PEG-100 stearate) 3.20 Montanov ® S (Seppic) (coco-glucoside and 1.30 coconut alcohol) Isodecyl neopentanoate 10.00 PVP hexadecene copolymer 5.00 Bio-PDO ™ (DuPont) 5.00 Ethyl hexyl methoxycinnamate 7.50 Benzophenone-3 2.50 Ethyl hexyl salicylate 5.00 Zinc oxide 7.10 Phase B Sepicalm VG (Seppic) (sodium palmitoyl proline and 3.00 Nymphea alba flower extract) Cyclomethicone 5.00 Phase C Simulgel ® EG (Seppic) (sodium acrylate/ 1.00 acryloyldimethyltaurate copolymer, isohexadecane and polysorbate 80) Phase D Tromethamine q.s. Tetrasodium EDTA 0.20 Xanthan gum 0.15 Magnesium aluminum silicate 1.00 Water q.s. to 100 Phase E Sepicide HB (Seppic) (phenoxyethanol (and) methylparaben 0.30 (and) ethylparaben (and) propylparaben (and) butylparaben) Sepicide CI (Seppic) (imidazolidinyl urea) 0.20 DL-alpha tocopherol 0.05 Fragrance 0.30 - Procedure: Melt phase A ingredients at 75-80° C. and disperse zinc oxide in the warm fatty phase. Disperse silicate and xanthan gum in water until homogeneous, then introduce EDTA and tromethamine. Add Simulgel® EG to this blend with vigorous stirring to obtain swelling of the polymer, then heat to 80° C. Add fatty phase A to the water phase and begin homogenizing for five minutes. Start cooling while continuously homogenizing. Introduce Sepicalm VG and cyclomethicone at 60° C. and homogenize for five minutes. Cool with moderate stirring and add phase E ingredients at 30° C.
-
-
Ingredients: % Wt. Phase 1 D.I. Water q.s. to 100.0 Bio-PDO ™ (DuPont) 4.00 Ammonyx ® GA-70PG* 2.86 Phase 2 Petrolatum 4.00 Stepan ® IPP 3.00 Stepan ® Cetyl Alcohol, NF 2.00 TiO2Sperse 40% solution in Octyldodecyl Neopentanoate 10.00 (Collaborative Labs) Phase 3 KCl 0.40 Citric Acid q.s. Preservatives q.s. Total 100.00 - Procedure: Prepare water phase by adding water, Bio-PDO™ and Ammonyx® GA-70PG*. Mix well. Start heating to 160° F. Prepare oil phase by adding Petrolatum, Stepan® IPP, Stepan® Cetyl Alcohol and TiO2Sperse. Heat to 160-165° F. Add oil phase to the water phase. Emulsify for 20-25 minutes. Cool to room temperature. Premix KCl with water and add to batch. Add preservatives. Adjust pH to 4.0 if necessary.
- Physical Properties 4.0-5.0; 2,000-3,000 cps
-
-
Ingredients: % Wt. Phase 1 D.I. Water q.s. to 100.0 Carbopol 934 (BF Goodrich) Carbomer 0.15 Bio-PDO ™ (DuPont) 3.00 Phase 2 Stepan ® Octyl Isononanoate 5.00 Dow Corning 200 Fluid (Dow Corning) Dimethicone 0.10 Wecobee ® S 0.50 Stepan ® Cetyl Alcohol, NF 0.50 Kartacid 1890 (Akzo Nobel BV) Stearic Acid 3.00 Phase 3 Versene ® 200 (Dow Corning) Tetrasodium EDTA 0.10 Triethanolamine 1.80 Preservative q.s. Total 100.0 - Procedure: Prepare Phase 1 by adding D.I. water to a suitable mixing vessel and begin agitation. Add Carbopol 934 with good agitation and mix at high speed until the solution is free of lumps. Add Bio-PDO™ and mix. Heat to 165-170° F. In a separate container prepare Phase 2 and heat to 170-175° F. Add Phase 2 to Phase 1 with good agitation and mix for 30 minutes. Start cooling to 90° F. At 110° F. add Phase 3 ingredients. Stop cooling and agitation at 90° F.
- Properties: Viscosity at 25° C.: 2000-5000 cps; pH 7.8-8.0
-
-
Ingredients: % Wt. Phase 1 D.I. Water q.s. to 100.0 Carbopol 940 (B.F. Goodrich) Carbomer 0.20 Glucam ® P-20 (Amerchol) PPG-20 Methyl Glucose Ether 0.14 Bio-PDO ™ (DuPont) 2.25 Phase 2 Neobee ® M-20 4.50 Wecobee ® S 0.75 Stepan ® 653 0.50 Stepan ® Cetyl Alcohol, NF 0.50 Kartacid 1890 (Akzo Nobel BV) Stearic Acid 2.95 Phase 3 Preservative 0.10 Versene ® 220 (Dow) Tetrasodium EDTA 0.10 Triethanolamine 0.25 Total 100.0 - Procedure: Prepare Phase 1. Add Carbopol 940 to D.I. water with good mixing until solution is free of lumps. Add PPG-20 methyl glucose ether and Bio-PDO™. Mix until completely dissolved. Heat to 165° F. In a separate container, prepare Phase 2. Heat to 165-170° F. Add Phase 2 to Phase 1 (both at 165-170° F.) with good agitation. Emulsify for 20 minutes and then begin to cool with slow agitation. At 110° F. add ingredients from Phase 3. At 90° F. stop cooling and agitation.
- Properties: Viscosity: at 25° C.: 2200-3700 cps
-
-
Ingredients: % Wt. Aloe Vera Gel q.s. to 100.0 Bio-PDO ™ (DuPont) 3.50 Methyl Paraben 0.15 Carbopol 934 0.50 Alcohol 190 Proof 20.00 Stepan ® PEG 600 ML 1.00 Tween ® 2.00 Fragrance q.s. TEA 88% 0.8 Glydant q.s. Total 100.0 - Procedure: Combine Aloe Vera Gel and Bio-PDO™. Start mixing. Add methyl paraben. Mix until solution is clear. Add Carbopol 934. Mix until solution does not have lumps. Add alcohol. Mix well. Premix PEG 600 Monolaurate, Tween 20 and perfume. Add to batch. Mix well. Add Glydant. Add TEA. Solution should be clear.
- Physical Properties: pH 6.0-6.5
-
-
Ingredients: % Wt. Phase 1 D.I. Water q.s. to 100.0 Bio-PDO ™ (DuPont) 4.00 Ammonyx ® GA-70PG 18.4 Phase 2 Petrolatum 4.0 Stepan ® IPP 3.0 Silicone DC-200 (350 cps) 1.0 Stepan ® Cetyl Alcohol, NF 2.0 Phase 3 KCl 0.4 Citric Acid q.s. Glydant q.s. Total 100.0 - Procedure: Prepare water phase by adding water, Bio-PDO™, and Ammonyx® GA-70PG. Mix well. Start heating to 160° F. Prepare oil phase by adding petrolatum, Stepan® IPP, silicone, Stepan® Cetyl Alcohol. Heat to 160-165° F. Add oil phase to water phase. Emulsify for 20-25 minutes. Start cooling. Premix KCl with water and add into the batch at 100-110° F. Add Glydant at 100° F. Adjust pH if necessary. Homogenize if necessary.
- Physical Properties: pH 4.0-4.5; viscosity: 3,000-4,000 cps
-
-
Ingredients: % Wt. Ammonyx ® 4 5.00 Bio-PDO ™ (DuPont) 1.50 Panthenol 0.50 Citric Acid q.s. D.I. Water q.s. to 100 Stepan ® Cetyl Alcohol, NF 2.50 PPG-Ceteth 20 1.25 Stepan ® Stearyl Alcohol 97 0.75 Fragrance, Dye & Preservative q.s. Total 100.0 - Procedure: Add ingredients and mix while heating to 75° C. Mix until well blended. Cool with mixing to 30° C. and add fragrance, preservative, and dye if desired. Adjust pH with citric acid to 3-5.
- Physical Properties: Opaque, white liquid; 2000 cps
-
-
Ingredients: % Wt. Ammonyx ® KP 3.00 Ammonyx ® CETAC 1.50 Bio-PDO ™ (DuPont) 1.50 Hydroxyethylcellulose 0.90 Polyquaternium 10 0.25 Fragrance, Dye & Preservative q.s. Citric Acid q.s. D.I. Water q.s. to 100 Total 100.0 - Procedure: Disperse hydroxyethylcellulose in D.I. water with mixing until clear. Add Ammonyx® KP and mix until homogeneous. Slowly add Ammonyx® CETAC and mix until homogeneous. Disperse Polyquaternium-10 in Bio-PDO™ and add to above solution with mixing until clear. Adjust pH to 5.5, if necessary, with citric acid. Add fragrance, dye and preservative, if desired.
- Physical Properties: pH 5.5; viscosity: 750 cps
-
-
Ingredients: % Wt. D.I. Water q.s. to 100.0 Bio-PDO ™ (DuPont) 1.50 Ammonyx ® KP 1.00 Surfactant 193 (Dow Corning) 1.00 Dimethicone Copolyol Tween ® 20 (ICI) Polysorbate-20 0.30 Citric Acid (50%) q.s. Fragrance, Dye & Preservative q.s. Total 100.0 - Procedure: Into a vessel equipped with agitation, add first four ingredients. Mix well. Premix fragrance and Tween® 20 in a separate container. Add to the batch. Mix well. Adjust pH with citric acid, if necessary. Add dye and preservative as desired.
- Physical Properties: pH 4.0-4.4; Viscosity at 25° C.: water thin
-
-
Ingredients: % Wt. Water 70.8 Preservative 0.2 Bio-PDO ™ (DuPont) 28.0 Ammonyx ® GA-70PG 0.9 Hydrolyzed Silk 0.1 Fragrance 0.1 Total 100.0 - Procedure: Charge water. Add Bio-PDO™. Heat to 50° C. and blend in Ammonyx® GA-70PG. Mix well until homogeneous. Cool with mixing. At 30° C., add propyl paraben and hydrolyzed silk. Cool to 25° C., add fragrance. Adjust pH to 5.5-6.5 with citric acid or sodium hydroxide.
- Physical Properties: Viscosity: 20 cps
-
-
Ingredients: % Wt. Phase 1 Stepan ® PEG 400 MO 12.7 Stepan ® IPM 11.0 Stepan ® PEG 400 ML 7.0 Bio-PDO ™ (DuPont) 3.5 Stepan ® GMO 3.0 DC 556 Silicone Fluid (Dow Corning) 1.0 Phase 2 Ethanol 25.0 Triethanolamine q.s. Fragrance, dye, preservative q.s. D.I. Water q.s. to 100 Total 100.0 - Procedure: Heat D.I. water to 95° C. Mix the components of Phase (1) and heat to 95° C. Add Phase (1) to D.I. water with mixing. Cool to 30° C., and add ethanol. Adjust pH to 7.0-8.0 with triethanolamine. Add fragrance, dye, and preservative, if desired. This formula will create a clear microemulsion.
- Physical Properties: pH 7.0-8.0; viscosity: 40 cps
-
-
# SEQ. INGREDIENT NMN2-43-1 NMN2-43-2 NMN2-43-3 1 A Deionized Water 63.00 63.00 63.00 2 A CMC 7H3SF 0.30 0.30 0.30 3 A Veegum Ultra Granules 0.35 0.35 0.35 4 A Alcolec S (Lecithin) 0.40 0.40 0.40 5 A Triethanolamine 99% 1.25 1.25 1.25 6 A Propylene Glycol 6.00 — — 7 A Butylene Glycol — 6.00 — 8 A Bio-PDO ™ (1,3-Propanediol) — — 6.00 9 B Titanium Dioxide (water 8.00 8.00 8.00 dispersible) 10 B Red Iron Oxide 0.40 0.40 0.40 11 B Yellow Iron Oxide 0.80 0.80 0.80 12 B Black Iron Oxide 0.10 0.10 0.10 13 B Colloidal Kaolin 2.00 2.00 2.00 14 B Methyl Paraben 0.20 0.20 0.20 15 C Permethyl ® 102A (Isoeicosane) 10.00 10.00 10.00 16 C Isostearic Acid 1.00 1.00 1.00 17 C Stearic Acid Triple Pressed 2.50 2.50 2.50 18 C LIPO GMS 450 (Glyceryl 1.50 1.50 1.50 Monostearate) 19 C Liponate TDTM (Tridecyl 1.00 1.00 1.00 Trimelitate) 20 C LIPO GMS 470 (Glyceryl 1.00 1.00 1.00 Monostearate) 21 C Propyl Paraben 0.20 0.20 0.20 FORMULA TOTALS 100.00 100.00 100.00 - The manufacturing procedure for this emulsion was typical for all oil-in-water type products. Sequence A was dispersed and when the gums were completely hydrated and the phase was uniform, pre-ground Sequence B (pigment phase) was added to it and mixed until both phases were completely uniform and homogeneous. Sequence C was weighed in a separate vessel and heated to 75°-80° C. until all the solids were melted and the phase was uniform. Sequence A was then heated to 75°-80° C. When all the phases were all at the proper temperatures, Sequence C (oil phase) was slowly added to Sequences A & B (water phase). The emulsion was allowed to mix at 75° C. for 15 minutes and then cooled to 25° C. Samples for testing were then poured off and placed at their respective stability stations in preparation for the 4 week study. The color and powder fill loading in these formulations was kept constant at 11.30% dry pigment. Conventional powder fill ingredients were chosen for these formulations as to eliminate any potential variability in test results.
- Physical Testing:
-
Brookfield Model RV - Spindle 5 at 20 rpm for 1 minute (factor × 200) Initial Initial 1 Week 2 Week 2 Week 3 Week 4 Week 4 Week pH Viscosity Viscosity pH Viscosity Viscosity pH Viscosity NMN2- 7.95 2900 3100 8.02 3100 3100 7.99 3100 43-1 NMN2- 8.03 2900 3100 8.00 3200 3300 8.04 3200 43-2 NMN2- 8.03 2400 2900 7.94 2900 2900 8.02 2900 43-3 - Viscosity readings throughout the 4 week test period showed that there was no unusual build or decrease in viscosity. Oven stability consisted of R/T, 45° C., and 2 Freeze/Thaw cycles. After 4 weeks, samples showed no signs of separation, sweating, severe loss of viscosity, change in consistency, loss of structure, odor problems, or color change at any temperature.
- Aesthetic Properties:
- All samples were evaluated for potential differences in odor, color, appearance, application, texture, feel, wearability, or any other differences, if any. All foundation samples were evaluated side-by side. In no cases were there any perceivable differences in any of the aesthetic properties associated with these types of cosmetic properties. Any differences noticed were insignificant and were not a result of the ingredient changes. These were all fragrance free formulations, and there were no apparent odor differences in any of the samples.
-
-
# SEQ. INGREDIENT NMN2-44-1 NMN2-44-2 NMN2-44-3 1 A Deionized Water 49.00 49.00 49.00 2 A Xanthan Gum 0.15 0.15 0.15 3 A Veegum HV Granules 0.55 0.55 0.55 4 A Disodium EDTA 0.05 0.05 0.05 5 A Triethanolamine 99% 0.50 0.50 0.50 6 A Alcolec S (Lecithin) 0.20 0.20 0.20 7 A Methyl Paraben 0.30 0.30 0.30 8 A Propylene Glycol 10.00 — — 9 A Butylene Glycol — 10.00 — 10 A Bio-PDO ™ (1,3-Propanediol) — — 10.00 11 B Black Iron Oxide 9.00 9.00 9.00 12 C DC 345 Fluid (D5 4.50 4.50 4.50 Cyclomethicone) 13 C DC5225C Formulation Aid 0.90 0.90 0.90 14 C White Beeswax 7.25 7.25 7.25 15 C Carnauba Wax #1 3.50 3.50 3.50 16 C Stearic Acid Triple Pressed 1.80 1.80 1.80 17 C Lipomulse 165 (Glyceryl 1.80 1.80 1.80 Monostearate) 18 C Indopol H100 (Polybutene) 3.50 3.50 3.50 19 C Phenoxyethanol 1.00 1.00 1.00 20 C Propyl Paraben 0.20 0.20 0.20 21 C PVP/Eicosene Colpolymer 4.00 4.00 4.00 22 C Lipocol S (Stearyl Alcohol) 1.80 1.80 1.80 FORMULA TOTALS 100.00 100.00 100.00 - The manufacturing procedure for this formula was similar to that of the foundation in Example 24. Higher temperatures were required for the oil phase due to the high level of hard waxes employed in this product. Sequence A was dispersed and when the gums were completely hydrated and the phase was uniform, pre-ground sequence B (pigment phase) was added to it and mixed until both phases were completely uniform and homogeneous. Sequence C was weighed in a separate vessel and heated to 80°-85° C. until all the solids were melted and the phase was uniform. Sequence A was then heated to 75°-80° C. When all the phases were all at the proper temperatures, Sequence C (oil phase) was slowly added to Sequences A & B (water phase). The emulsion was allowed to mix at 75° C. for 15 minutes. When the batch began to thicken at around 45° C., a paddle mixer was used to adequately turn over and mix the batch. The batch was mixed and cooled to 35° C. Samples for testing were then poured off and placed at their respective stability stations in preparation for the 4 week study. The color loading in these formulations was kept constant at 9.00% dry pigment. No other powder fill, except for the black iron oxide pigment, was employed in these formulations. Additional powder fills will lend to a whitening and ashyness, which, in mascaras, is unacceptable.
- Physical Testing:
-
Brookfield Model RV - Spindle T at 5 rpm for 1 minute (factor × 10,000) Initial Initial 1 Week 2 Week 2 Week 3 Week 4 Week 4 Week pH Viscosity Viscosity pH Viscosity Viscosity pH Viscosity NMN2- 8.78 140,000 300,000 8.76 340,000 360,000 8.75 380,000 44-1 NMN2- 8.48 190,000 370,000 8.43 420,000 450,000 8.45 420,000 44-2 NMN2- 8.58 180,000 320,000 8.55 380,000 430,000 8.55 420,000 44-3 - Viscosity readings throughout the 4 week test period showed that there was no unusual build or decrease in viscosity. The variations seen are very typical for a product of this type and fall within an acceptable range for a mascara type product. Oven stability consisted of R/T, 45° C., and 2 Freeze/Thaw cycles. After 4 weeks, samples showed no signs of separation, sweating, severe loss of viscosity, change in consistency, loss of structure, odor problems, or color change at any temperature.
- Aesthetic Properties:
- All samples were evaluated for potential differences in odor, color, appearance, application, texture, feel, wearability, or any other differences, if any. All mascara samples were evaluated side-by side. In no cases were there any perceivable differences in any of the aesthetic properties associated with these types of cosmetic properties. Any differences noticed were insignificant and were not a result of the ingredient changes. Additionally, the mascara samples showed no differences in water resistance. Even though the mascara was not specifically designed to be water resistant, side by side, the products performed equally. These were all fragrance free formulations, and there were no apparent odor differences in any of the samples.
-
-
Ingredients: % Wt. Water 45.0 Ammonium Lauryl Sulfate, 25% 21.0 Ammonium Laureth Sulfate, 28% 21.0 Cocamidopropyl Betaine, 35% 4.0 Acrylates Copolymer, Structure 3001 (30%) 5.0 1,3-Propanediol 1.0 Glycerin 1.0 PEG 10 Sunflower Glycerides 0.5 Soybean Oil 0.2 Fragrance (0.2) Cocamide MEA 0.2 PEG 5 Cocamide 0.2 Guar Hydroxypropyl trimonium Chloride 0.2 Diisopropanolamine 0.1 Methylcellulose 0.05 Carbomer 0.05 Tetrasodium EDTA 0.05 Methylchloroisothiazolinone, 0.05 Methylisothiazolinone Etidronic Acid 0.05 Guanine (CI 75170) 0.05 Mica (CI 77019) 0.05 Titanium Dioxide (CI 77891) 0.05 TOTAL 100 - Ingredients were combined in the following order, with propeller mixer agitation, allowing each ingredient to dissolve, disperse completely before adding the next. Batch was processed at 60° C.: Water, Acrylates polymer, ALS, ALES, GAB, Guar Hydroxypropyl trimonium Chloride, EDTA, PEG 10 Sunflower glycerides, soybean oil, cocamide MEA, PEG 5 cocamide, diisopropanolamine/methylcellulose/carbomer/guanine, mica/titanium oxide, glycerin.
-
-
Ingredients: % Wt. Water 85.2 1,3-Propanediol 3.0 Myristyl Myristate 2.5 Glyceryl Stearate 1.5 Oleic Acid 1.2 Stearic Acid 1.2 Polysorbate 61 0.6 C12-15 Alkyl Benzoate 0.5 Dimethicone 0.5 Isopropyl Palmitate 0.5 Sorbitan Stearate 0.5 Cetyl Alcohol 0.5 Synthetic Beeswax 0.5 Stearyl Alcohol 0.5 Benzyl Alcohol 0.4 Carbomer 934 0.4 Fragrance 0.1 Methylparaben 0.2 Propylparaben 0.05 Butylparaben 0.05 BHT 0.05 D&C Red 3 trace TOTAL 100 - Ingredients were combined in the following order, allowing each to dissolve/disperse completely before adding the next:
- Phase A: Disperse Carbomer in water with high speed agitation, allowing particles to wet completely. Add 1,3-propanediol. Heat to 70° C.
- Phase B: Combine Myristyl Myristate, glyceryl stearate, Oleic Acid, Polysorbate 61, C12-15 Alkyl Benzoate, Dimethicone, Isopropyl Palmitate, Sorbitan Stearate, Cetyl Alcohol, Synthetic Beeswax, Stearyl; Alcohol, Benzyl Alcohol, Methylparaben, Propylparaben, Butylparaben, and BHT, heat to 70° C.
- With continuous high speed agitation, slowly add Phase B to Phase A to form emulsion. Remove from heat and begin cooling with continued agitation. After several minutes of mixing, add NaOH, dissolved in a small amount of water. Batch will thicken. When Batch reaches room temperature, add color, fragrance, and replace water lost to evaporation. Batch is complete.
-
-
Phase Ingredients: % Wt. A Water 33.82 A NA2EDTA 0.05 A BIOTERGE AS 40 45.00 A GLUCAMATE DOE 120 1.50 A 1,3-PROPANEDIOL 4.75 B MONAMID CMA 3.00 B VELVETEX BK 35 10.00 C KATHON CG 0.06 C MACKPEARL 140V 1.50 D CITRIC ACID, 20% SOLN 0.32 TO PH 6.0-6.5 TOTAL 100.00 - Manufacturing Process:
- Phase A: Combine Phase A ingredients into water and heat with mixing to 75° C. Slowly add remaining Phase A ingredients. Hold temperature at 75° C. and mix slowly.
- Phase B: Combine phase B ingredients and heat to 75° C. with slow mixing. Add Phase B to Phase A and mix until uniform.
- Phase C: Add Phase C one at a time
- Phase D: Use Phase D to adjust the pH of batch to 6.0-6.5
- Using the present invention liquid powder can be prepared using bio-based propanediol caprylate. Obtain the ingredients in the proportionate amounts listing in Table 1. Starting with the ingredients in Table 1, phase A, add inulin lauryl carbamate to water and disperse CARBOPOL ULTREZ 10 (B.F. Goodrich Company, New York, N.Y.). Blend the mixture of phase A ingredients for about 10 minutes, until the carbomer is completely dispersed and hydrated. Under light agitation raise the temperature of the mixture to about 70° C.
- In a separate clean container, combine the components listed in Table 1, phase B in the amount stipulated by the table, including bio-based propanediol caprylate, and heat to about 75° C. After the components have been fully combined and are at the target temperature, slowly add phase B mixture to the phase A mixture. Apply rapid agitation and hold temperature between about 70° C. and about 75° C. for 30 minutes. After 30 minutes allow the combined mixtures to cool to 55° C. and with continuous agitation slowly add corn starch of phase C in the amount stipulated by Table 1. When the corn starch has been thoroughly mixed into the combined ingredients of phases A and B, add fragrance and preservative of phase C. Adjust the fragrance and preservative as desired. Measure the pH and then if necessary adjust the pH to between about 5.5 to about 6.0 with triethanolamine. When the pH has been adjusted, cool to room temperature.
-
TABLE 1 Ingredients: % WT. Phase A Water 55.7 Inulin lauryl carbamate 0.5 Carbopol Ultrez 10 (Carbomer) 0.3 Phase B Neopentyl glycol diheptanoate and isodecane 5.0 Stearamidopropyl morpholine lactate (25%) 2.0 Stearyl benzoate 3.0 Sorbitan oleate 0.5 Bio-based propanediol caprylate 0.5 Phase C Topical Starch (Corn Products corn starch 037570) 30.0 Fragrance q.s. Phenoxyethanol and DMDM hydantoin q.s. Paragon III (Methylparaben and propylparaben q.s. Triethanolamine (99%) q.s. to pH 5.5-6.0 - The present invention can be used to prepare a pearlized milk bath using bio-based propanediol distearate. Following the percentages in Table 2, combine UCARE polymer LR-400 with a sufficient amount water to hydrate. Then following the percentage listed in Table 2, blend in PLANTOPON 611 L (Fitz Chem Corporation, Itasca, Ill.) and LAMESOFT PO 65 (Fitz Chem Corporation, Itasca, IL) until the mixture reaches uniform consistency.
- At this point add polymer solution in the amount listed in Table 2 to the mixture and agitate until uniform consistency is restored. Next following the percentage listed in Table X, add glycerin, STANDAMOX CAW (Fitz Chem Corporation, Itasca, IL), NUTRILAN MILK (Fitz Chem Corporation, Itasca, IL), bio-based propanediol distearate and mix well until the mixture is again of uniform consistency. Measure the pH and if necessary adjust with citric acid to reach a final pH of between about 6 to about 7. Finally add preservative, dye, fragrance and enough water to reach the desired volume. The final viscosity of the mixture should be between about 5,000 cPs to about 10,000 cPs.
-
TABLE 2 Ingredients: % WT. Plantopon 611 L (Sodium laureth sulfate and lauryl 22.00 glucosidee and cocamidopropyl betaine) Lamesoft PO 65 (Coco glucoside and glyceryl oleate) 3.00 Standamox CAW (Cocamidopropylamine oxide) 3.00 Bio-based propanediol distearate 2.00 Nutrilan Milk (Hydrolyzed milk protein) 1.50 Emery 917 (Glycerin) 0.50 Ucare polymer LR-400 (Amerchol) (polyquaterium-10) 0.10 Water, preservative, fragrance, dye q.s. - The present invention can be use in the preparation of a gentle baby shampoo using bio-based propanediol oleate. Obtain the ingredients in the proportionate amounts listed in Table 3. Heat an amount water of slight less than required volume according to Table 3, to about 40° C. Add ingredients in the amount and order listed in Table 3. Mix the ingredients together with gentle agitation, do not exceed 100 rpm. When the mixture has reached uniform consistency, add water to bring the mixture to the desired final volume. The let the mixture cool to room temperature. The resulting shampoo is prepared correctly should appear clear and colorless.
-
TABLE 3 Ingredients: % WT. Deionized water q.s. to 100 Tego Betaine L-7 (cocamidopropyl betaine) 18.5 Neosorb 70/20 (sorbitol) 16.9 Plantaren 1200 UP (lauryl glucoside) 15.9 Plantaren 818 UP (coco glucoside) 12.5 Amisoft LS-11 (sodium lauroyl glutamate) 5.0 Bio-based propanediol oleate 2.2 D-panthenol USP (D-panthenol) 1.0 Sensomer CI-50 (Ondeo Nalco 0.5 (hydroxypropyltrimonium chloride) Crotein HKP Powder (keratin amino acid) 0.4 Fragrance 0.1 Preservative q.s. - The present application can be used in the preparation of a moisturizing body wash using bio-based propanediol stearate. To prepare such a moisturizing body wash, start by obtaining the list of ingredients in the proportional amounts listing in Table 4. Mix the together the sodium laureth sulfate, JORDAPON CI (BASF Corporation, Mount Olive, N.J.), AVANEL S150 CGN (BASF Corporation, Mount Olive, N.J.), PEG-150 distearate, Cocamidopropyl betaine, Cocamide MEA, and bio-based propanediol stearate in approximately half of the total water required for the desired volume. After these ingredients thoroughly combined, apply heat to raise the temperature of the mixture to about 65° C. Maintain a temperature of about 65° C. until all components have dissolved and a uniform mixture is obtained. While allowing the mixture to cool, add LUVIQUAT PQ 11 (BASF Corporation, Mount Olive, N.J.) and gently agitate.
- In a separate container, mix the CREMOPHOR PS20 (BASF Corporation, Mount Olive, N.J.), vitamin E acetate and fragrance together until fully blended. When the temperature of the first mixture has dropped to below 40° C., add the mixed the CREMOPHOR PS20 (BASF Corporation, Mount Olive, N.J.), vitamin E acetate and fragrance to the mixture. Next added the D,L-PANTHENOL 50 W (BASF Corporation, Mount Olive, N.J.) to the mixture and gently agitate until thoroughly blended. Next add the D,L-Panthenol 50 W to the mixture and gently agitate until thoroughly blended. Next add the disodium EDTA to the mixture and gently agitate until thoroughly blended. Next, add to the mixture a preservative, selected to be adequate for the expected conditions and shelf-life. Finally, add water to bring the mixture to the desired volume, and agitate until an even consistency is achieved.
-
TABLE 4 Ingredients: % WT. Deionized water 59.1 Sodium laureth sulfate 10.0 JORDAPON CI (sodium cocoyl isethionate) 10.0 AVANEL S150 CGN (sodium C12-15 pareth sulphonate) 3.0 PEG-150 distearate 0.5 Cocamidopropyl betaine 8.0 Cocamide MEA 3.0 Bio-based propanediol stearate 2.0 LUVIQUAT PQ11 (polyquaternium-11) 1.0 CREMOPHOR PS20 (polysorbate-20) 2.0 D,L-PANTHENOL 50 W (panthenol) 0.5 Vitamin E acetate 0.1 Fragrance 0.2 Disodium EDTA 0.5 Preservative 0.5 - The present invention can be used in the preparation of a deep penetrating hair reconstructor using bio-based propanediol dicaprylate. To prepare such a hair reconstructor obtain the ingredients as listed in and in the relative quantities as depicted in Table 5. Then, mix the DEHYQUART L 80 (Cognis GMBH, Dusseldorf, Del.) CETIOL CC (Cognis GMBH, Dusseldorf, DE), DC 949 (Dow Corning, Midland Mich.), GLUADIN WLM (Cognis GMBH, Dusseldorf, DE), perfume, and preservative, i.e. all the components of table 5, phase A. Agitate the component of phase A until completely homogeneous.
- In a separate container, disperse the LAMESOFT PW 45 (Grunau Illertissen GmbH, Illertissen, DE) in a quantity of water as shown in Table 5, phase B. When LAMESOFT PW 45 has been fully dispersed add it to the phase A mixture.
- In a separate container, mix the bio-based propanediol dicaprylate in deionized water in a quantity of water as shown in Table 5, phase C until a homogeneous cream is obtained. Then, add phase A and B to phase C and agitate until a desire consistency is achieved. If necessary adjust pH to between about 6.5 and about 7.5 using either citric acid or sodium hydroxide.
-
Ingredients: % WT. Phase A DEHYQUART L 80 (Dicocoylethyl hydroxyethylmonium 2.00 methosulfate and Propylene glycol) CETIOL CC (Dicaprylyl carbonate) 1.00 DC 949 (Dow Corning) (Amodimethicone and cetrimonium 1.00 chloride and trideceth-12) GLUADIN WLM (Hydrolized wheat protein) 2.00 Perfume q.s. Preservative q.s. Phase B LAMESOFT PW 45 (Cetyl palmitate and beheneth-10 and 4.00 hydrogenated castor oil and glyceryl stearate) Water 37.75 Phase C Bio-based propanediol dicaprylate 2.25 Water 50.00 - The present invention can be used to prepare a bronzing stick using both bio-based propandiol myristate and bio-based propanediol diprylate. To prepare such a bronzing stick, obtain all the ingredients in the proportions indicated in Table 6. Combine PEG-8, tocopherol, ascorbyl palmitate, ascorbic acid and citric acid, i.e. all the ingredients of Table 6, Phase C and mix together until homogenized. Combine the ingredients of Phase C, with the microcrystalline wax SP-1028 (Strahl & Pitsch, Inc., West Babylon, N.Y.), lauryl laurate (Strahl & Pitsch, Inc., West Babylon, N.Y.), microcrystalline wax SP-89 (Strahl & Pitsch Inc., West Babylon, N.Y.), microcrystalline wax SP-19 (Strahl & Pitsch Inc., West Babylon, N.Y.), caprylic/capric triglycerides (Cognis GMBH, Dusseldorf, DE), bio-based propandiol myristate, bio-based propanediol diprylate, Trioctyldodecyl citrate (Phoenix, Merseyside, UK), and Propylparaben (Spectrum Chemical Manufacturing Corporation, Gardena, Calif.). Mix the combination while heating. Bring the combination to about 85° C. under continuous agitate. Maintain 85° C. until the mixture has reached homogeny.
- In a separate container, mix together the Colorona bronze cosmetic pigment (Rona Cosmetics GmBH, Darmstadt DE), Timiron MP-10 cosmetic pigment (Rona Cosmetics GmBH, Darmstadt DE), Colorona copper cosmetic pigment (Rona Cosmetics GmBH, Darmstadt DE), and Biron LF-2000 cosmetic pigment (Rona Cosmetics GmBH, Darmstadt DE), i.e. all the components of Table 6, phase B. When the phase B components have been thoroughly mixed, blend them into the already combined phase A and phase C mixture, while continuing to heat at 85° C. After the phase B mixture has been thoroughly combined with phase A and phase C and homogeny has reached, allow the mixture to cool to between about 70° C. and about 80° C. While the mixture is between about 70° C. and about 80° C., pour the mixture into molds to create sticks. Allow the mixture to fully cool to room temperature before removing the formed sticks from the molds.
-
TABLE 6 Ingredients: % WT. Phase A Microcrystalline wax SP-1028 (Strahl & Pitsch) 11.70 Lauryl laurate (Strahl & Pitsch) 3.00 Microcrystalline wax SP-89 (Strahl & Pitsch) 2.80 Microcrystalline wax SP-19 (Strahl & Pitsch) 2.80 Caprylic/capric triglycerides (Cognis) 14.00 Bio-based propanediol myristate 15.00 Bio-based propanediol diprylate 19.40 Trioctyldodecyl citrate (Phoenix) 3.00 Propylparaben (Spectrum Chemical) 0.20 Phase B Colorona bronze cosmetic pigment (Mica and iron oxides) 13.00 Timiron MP-10 cosmetic pigment (Mica and titanium oxides) 3.00 Colorona copper cosmetic pigment (Mica and iron oxides) 3.00 Biron LF-2000 cosmetic pigment (Bismuth oxychloride) 3.00 Phase C PEG-8 0.02 tocopherols 0.02 ascorbyl palmitate 0.02 ascorbic acid 0.02 citric acid 0.02 - Mix caster oil, Bio-PDO™ distearate, cetyl alcohol and heat the mixture to 75° C. until a uniform solution is formed. Add color pigment and heat the mixture while stirring till no lumps are remained. Add TiO2 and heat to 85° C. with stirring until a uniform product is formed. Add fragrance while cooling and transfer into containers.
-
Ingredients: % WT. Phase A Caster oil 55.0 Bio-PDO ™ distearate 16.0 Cetyl alcohol 1 1.6 Pigment (iron oxide) 2 1.5 TiO2 25.4 Fragrance QS 1 The Chemistry Store.com, Cayce, SC 2 Somerset Cosmetic Co. LLC, Renton, WA - Poly(diallyldimethylammonium chloride), 20 wt % in water was blended with PLANTOPON 611 L, polyglucoside, Bio-PDO™ oleate and cocamide DMA in the proportional amounts listed in Table until the mixture reaches uniform consistency. Then glycerin, milk protein, Bio-PDO™ oleate, Bio-PDO™ distearate were added and mixed well until the mixture is again of uniform consistency. Measure the pH and if necessary adjust with citric acid to reach a final pH of between about 6 to about 7. Finally add preservative, dye, fragrance and enough water to reach the desired volume. The final viscosity of the mixture should be between about 5,000 cPs to about 10,000 cPs.
-
Ingredients: % WT. Plantopon 611 L3 22.00 Polyglucose (decyl glucoside) 2 3.00 Cocamide DMA1 3.00 Bio-PDO ™ oleate 0.50 Bio-PDO ™ distearate 2.00 Milk protein 1.50 Glycerin 0.50 Poly (diallyldimethylammonium 1.00 chloride), (20 wt % in water)4 Water, preservative, fragrance, dye q.s. 1The Chemistry Store.com, Cayce, SC 2 Somerset Cosmetic Co. LLC, Renton, WA 3Fitz Chem Corporation, Itasca, IL 4Sigma-Aldrich, Milwaukee, WI - Mix the together the blend 213 (Chemistry Store), Cocamidopropyl betaine, Cocamide DEA, and Bio-PDO™ distearate. After these ingredients thoroughly combined, apply heat to raise the temperature of the mixture to about 70° C. Maintain a temperature of about 70° C. until all components have dissolved and a uniform mixture is obtained. While allowing the mixture to cool, add poly(diallyldimethylammonium chloride) solution and gently agitate.
- When the temperature of the first mixture has dropped to below 40° C., add the polysorbate-60, vitamin E acetate to the mixture. Next added the Panthenol to the mixture and gently agitate until thoroughly blended. Next add the disodium EDTA to the mixture and gently agitate until thoroughly blended. Next, add to the mixture a preservative, fragrance and water to bring the mixture to the desired volume, and agitate until an even consistency is achieved.
-
Ingredients: % WT. Blend 213 1 47.0 Sodium Laureth Sulfate Cocamidopropyl Betaine Cocamide DEA PEG-150 Distearate Cocamidopropyl Betaine 1 4.0 Cocamide DEA 1 3.0 Bio-PDO ™ distearate 2.0 Poly (diallyldimethylammonium 5.0 chloride), (20 wt % in water) 4 Polysorbate-602 2.0 Panthenol 0.5 Vitamin E acetate 0.1 Disodium EDTA 0.5 Preservative 0.5 D.I Water, Fragrance q.s. 1 The Chemistry Store.com, Cayce, SC 2Somerset Cosmetic Co. LLC, Renton, WA 3 Fitz Chem Corporation, Itasca, IL 4 Sigma-Aldrich, Milwaukee, WI - Mix the ingredients of Phase A. Heat the mixture to about 70° C. under continuous agitation. Maintain 70° C. until the mixture has reached homogeneous.
- In a separate container, mix together the TiO2, and pigment(s) and blend them into the phase A mixture, while continuing to heat at 70° C. After the phase B mixture has been thoroughly combined with phase A and homogeny has reached, allow the mixture to cool to about 50° C., pour the mixture into molds to create sticks. Allow the mixture to fully cool to room temperature before removing the formed sticks from the molds.
-
Ingredients: % WT. Phase A Emulsifyin Wax NF 1 17.42 Bio-PDO ™ distearate 18.13 Bio-PDO ™ dilaurate 14.10 Bio-PDO ™ dicaprylate 19.54 Cetyl alcohol 1 2.27 Germaben II 1 0.20 PEG-8 0.02 Citric acid 0.12 Phase B TiO2 25.18 Pigment (Iron oxide) 2 3.02 1 The Chemistry Store.com, Cayce, SC 2 Somerset Cosmetic Co. LLC, Renton, WA - Blend ammonium laury sulfate, cocamide DEA, sodium lauryl sulfate solution and BioPDO™ at room temperature. Add BioPDO™ stearate and Irgsan. Heat to 60° C. while stirring until solids are dissolved. Cool to 30° C., add EDTA. Stir until a homogeneous solution is formed. Adjust to pH 6 with citric acid. Add fragrance.
-
Ingredients: % WT. Ammonium Lauryl Sulfate (ALS) (28%) 26.0 Cocamide DEA 2 6.0 Sodium Lauryl Sulfate (SLS) (25%) 18.0 Bio-PDO ™ 1 1.0 Water 44.5 Bio-PDO ™ stearate 0.5 Irgasan 6 0.2 Tetrasodium EDTA (5 wt %) 2.0 Citric acid (50 wt %) QS Fragrance 0.2 1 DuPont Tate & Lyle Bio Products 2 The Chemistry Store.com, Cayce, SC 3 Somerset Cosmetic Co. LLC, Renton, WA 4 Stephan Co. Northfield, IL 5 Noveon, Cleveland, OH 6 Sigma-Aldrich, Milwaukee, WI - Combine components of phase A mix and heat to 75° C. In a separate container mix the components of phase B and heat to 75° C. Combine phase B with phase A. Cool it to 45° C. Add components of phase C. Mix it thoroughly. Add components of phase D and E. Mix it until viscosity developed.
-
Ingredients: % WT. Phase A Deionized water 58.01 Carbopol 934 (Noveon, Cleveland, OH) 0.40 Disodium EDTA 0.125 Bio-PDO ™ 4.00 Phase B Oxybenzone 3 15.50 Phenylethyl benzoate 10.00 Bio-PDO ™ stearate 2.00 Ceteareth 3 2.00 Phase C Deionized water 5.00 TEA 0.50 Phase D Germaben II 2 1.65 Bio-PDO ™ 1 0.50 Phase E Idopropynyl butylcarbamate 0.20 pH: 7 Viscosity: 12700 @ 30 rpm 1 DuPont Tate & Lyle Bio Products 2 The Chemistry Store.com, Cayce, SC 3 Somerset Cosmetic Co. LLC, Renton, WA 4 Stephan Co. Northfield, IL 5 Noveon, Cleveland, OH 6 Sigma-Aldrich, Milwaukee, WI -
-
Ingredients Wt. % Water 54.30 Citric Acid 5.93 Bio-PDO ™ (DuPont) 6.92 Carbopol ™ 934 2.18 NaOH (50%) 5.74 Sodium Bo rate 0.99 Sodium Citrate 3.96 Sodium Formate 1.98 CaCl 0.10 Sodium Xylene Sulfanate (40%) 4.95 EO/PO Block Copolymer 1.98 Sodium Polyacrylate Mn1200 (45%) 9.89 Protease 0.69 Amylase 0.20 Lemon Essential Oil 0.20 Total 100.0 - Procedure: Combine and stir H2O, citric acid and Bio-PDO™. Add Carbopol™ to mixture and stir until dissolved. Slowly add NaOH, and thereafter add remaining ingredients.
- Benefits: The resulting liquid dishwashing detergent displays very good stability, enhanced rheology effects and less environmental inpact.
-
-
Ingredients Wt. % Linear Dodecyl Benzene Sulfonate 6.93 Coconut Fatty Acid (C12-C18) 7.52 Tergitol 15-S-7 16.83 Triethanolamine 7.52 Bio-PDO ™ (DuPont) 10.89 Citric Acid (50%) 6.33 KOH (45%) 9.30 Water 33.65 Protease 0.69 Amylase 0.20 Lavendar Essential Oil 0.10 FD&C Blue 1 0.03 FD&C Red 40 0.01 Total 100.0 - Procedure: Combine Linear Dodecyl Benzene Sulfonate, H2O, Triethanolamine and Bio-PDO™, and stir mixture at 70° C. Add Tergitol. Melt the fatty acids and add to the mix. Slowly add KOH, then slowly add the citric acid. Cool mixture below 30° C. Add the enzymes, fragrance and dye.
- Benefits: The resulting liquid laundry detergent exhibits very good stability, exclellent cloud point and enhanced rheology effects.
-
-
Ingredients Wt. % C12-C13 Linear Alcohol EO-7 4.0 Linear Dodecyl Benzene Sulfonate (60%) 14.0 Sodium Laureth Sulfate (60%) 5.0 Sodium Citrate 4.0 Sodium Borate 4.0 Bio-PDO ™ (DuPont) 3.0 Tinopal CBS-X 0.1 Protease 0.7 Amylase 0.2 Monethanolamine 0.5 Coconut Fatty Acid (C12-C18) 2.0 Water 62.5 Total 100.0 - Physical Properties
-
pH, as is 8.5 Soluble Solids, 5 by refractometer 29.3 Residue on Drying, % by weight 28 Viscosity, cPs @ 25° C. 194 Visual Viscosity Water Thin Freeze/Thaw Stability −15°/25° C. Heat Stability (50° C.) 30 days -
-
Ingredients Wt. % Bio-PDO ™ (DuPont) 15.35 Linear Dodecyl Benzene Sulfonate 19.95 Triethanolamine 6.14 Cocamide DEA 10.74 Tergitol 15-S-7 4.60 Sodium Laureth-3EO Sulfate (28%) 4.60 Coco Amido Propyl Betaine 7.67 Polyquaternium-6 (20%) 3.07 NaCl (25%) 1.53 Sodium Xylene Sulfanate (40%) 6.55 Water 19.19 Lemon Essential Oil 0.58 FD&C Yellow 5 0.03 FD&C Red 40 0.01 Total 100.0 - Procedure: Combine all liquid ingredients and stir mixture at 70° C. Gradually add Linear Dodecyl Benzene Sulfonate and stir until dissolved in mixture and mixture is clear. Cool mixture below 30° C. and add fragrance and coloring.
- Benefits: The resulting hand dishwashing liquid exhibits very good stability, improved foaming, excellent cloud point and requires less salt to adjust viscosity.
-
-
Ingredients Wt. % Bio-PDO ™ (DuPont) 15.56 Linear Dodecyl Benzene Sulfonate 20.23 Triethanolamine 6.22 Cocamide DEA 10.89 Tergitol 15-S-7 4.67 Sodium Lauryl Sulfate 4.67 Coco Amido Propyl Betaine 7.78 Polyquaternium-6 (20%) 3.11 NaCl (25%) 3.11 Sodium Xylene Sulfanate (40%) 3.50 Water 19.45 Lemon Essential Oil 0.78 FD&C Yellow 5 0.04 Total 100.0 - Procedure: Combine all liquid ingredients and stir mixture at 70° C. Gradually add Sodium Lauryl Sulfate and stir until dissolved and liquid mixture is clear. Gradually add Linear Dodecyl Benzene Sulfonate and stir until dissolved and liquid mixture is clear. Cool mixture below 30° C. and add fragrance and coloring.
- Fatty acid glycol ester (e.g., Monoethylene glycol distearate) 5.0-30.0%; Fatty acid alkanolamide (e.g., Coconut oil acid monoethanolamide) 2.0-20.0%; Surfactant (e.g., Sodium lauryl triglycol ether-sulfosuccinate or Coconut-alkyldimethylamine oxide) 0.1-10.0%; Sodium salt (e.g., Mono- or Di-valent) 0.1-3.0%; and water up to 100%.
- Addition of a fatty acid glycol ester with a fatty acid alkanolamide and an ether-sulfate-free surfactant will yield a pearlescent dispersion having 1) excellent pearlescent effect, 2) good storage ability, and 3) low viscosity. This composition will form a pearlescent dispersion with good flow properties and low surfactant content.
- Fatty acid glycol ester (e.g., Monoethylene glycol distearate) 5.0-30.0%; Fatty acid alkanolamide (e.g., Cocomonoethanolamide) 2.0-20.0%; Nonionic surfactant (e.g., C10-C12-Fatty polyol alkyl ester) 0.1-10.0%; water up to 100%.
- Addition of a fatty acid glycol ester with a fatty acid alkanolamide and a nonionic surfactant will yield a pearlescent dispersion having 1) excellent pearl luster effect, 2) long shelf life, 3) compatibility with cationic surfactants, 4) resistance to hydrolysis, 5) low viscosity, and 6) reduced foaming.
- Fatty acid glycol ester (e.g., Ethylene glycol distearate) 5.0-40.0%; Nonionic surfactant (e.g., Laureth-7) 3.0-30.0%; Amphoteric surfactant (e.g., Cocoamidopropyl betaine and Cocoamphoacetate) 0.0-10.0%; Glycol (e.g., Propylene glycol (1,2 and 1,3) 0.0-15.0%; water up to 100%.
- Uses: 1) fatty acid glycol ester=pearlizing agent, 2) nonionic surfactant=emulsifier and stabilizer, 3) amphoteric surfactant=co-emulsifier to enhance pearlizing effect, and 4) glycol=emulsifier.
- Fatty acid glycol ester sulfate (A) (e.g., Lauric acid (ethylene glycol) sulfate sodium salt) 10.0-60.0%; Additional surfactant (B) (anionic, nonionic, cationic, amphoteric, and/or zwitterionic) (e.g., Sodium laureth sulfate) 90.0-40.0%; water up to 100.0%.
- Foaming behavior may be tested by, preparing a 10% by weight aqueous surfactant solution (21° dH+1% by weight sebum) and determining the foam volume by Standard DIN 53902, Part 1. Test solutions can be made using weight ratios of A (10.0-60.0%) and B (90.0-40.0%). The fatty acid glycol ester sulfates may exhibit advantageous properties: 1) foam booster for other surfactants, 2) foam stability in the presence of hard water and/or oil, 3) improve formulation of surfactants with poor solubility in cold water, 4) contribute to cleaning performance, 5) dermatologically safe, 6) readily biodegradable, and 7) free of nitosamines.
- Surfactant (anionic, nonionic, or amphoteric) (e.g., Sodium POE (3) lauryl ether sulfate, Lauryl amidopropylbetaine, Coconut oil fatty acid monothanol amide, and POE (12) lauryl ether) 1.0-50.0%; Fatty acid glycol ester (e.g., Ethylene glycol distearate) 0.3-5.0%; Glyceryl ether (e.g., N-Octyl glyceryl ether) 0.1-10.0%; water up to 100%.
- Compositions will have 1) a pearly luster, and 2) are excellent in the dispersion stability of a pearlent.
- Procedure—combine all ingredients together, heating the mixture to 80° C. and allowing the ingredients to melt, and then cooling the melt to 30° C. with stirring.
- Diamine (pKa1 & pKa2 range 8.0-11.5 and molecular weight less-than or equal-to 400 g/mol) (e.g., 1,3-bis(methylamine)-cyclohexane) 0.1-15.0%; Anionic Surfactant (e.g., C12-C13 alkyl ethoxy sulfonate) 0.5-90.0%; Amphoteric Surfactant (e.g., C12-C14 amine oxide) 0.10-20.0%; Glycol (e.g., Propylene Glycol) 0.75-25.0%; Optional Ingredients include Polymeric Suds Stabilizer (e.g., (N,N,-dimethylamino)ethyl methacrylate) 0.01-15.0%; Builder (e.g., Citric Acid) 0.50-50.0%; Enzyme(s) (e.g., Alcalase® (Novo Industri A/S) and TERMAMYL® (Novo Industri A/S)) 0.0001-5.0%; Buffer (e.g., Sodium Carbonate) 0.10-10.0%; Alkali Inorganic Salt (e.g., NaCl) 0.01-1.0%: Perfume (e.g., Orange Oil) 0.01-2.0%; Chelating Agents (e.g., Ethylenediaminetetrace-tates) 0.01-15.0%.
- Diamines—Improve cleaning performance; Surfactants—Cleaning performance; Glycols—1) Enhanced physical and enzymatic stability, 2) Act as a hydrotrope (phase stabilizer); Suds Stabilizer—Extend suds volume and duration; Builder—Support detergent action; Enzyme—Cleaning performance; Buffer—pH adjustment; Alkali Inorganic Salt—Support detergent action; Perfume—Help remove iron and manganese.
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/834,000 US8598231B2 (en) | 2006-02-10 | 2013-03-15 | Flavoring agents containing bio-derived 1,3-propanediol and its conjugate esters |
Applications Claiming Priority (16)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US77212006P | 2006-02-10 | 2006-02-10 | |
US77211106P | 2006-02-10 | 2006-02-10 | |
US77219406P | 2006-02-10 | 2006-02-10 | |
US77219306P | 2006-02-10 | 2006-02-10 | |
US77211006P | 2006-02-10 | 2006-02-10 | |
US77211206P | 2006-02-10 | 2006-02-10 | |
US77247106P | 2006-02-10 | 2006-02-10 | |
US84694806P | 2006-09-25 | 2006-09-25 | |
US85392006P | 2006-10-24 | 2006-10-24 | |
US85926406P | 2006-11-15 | 2006-11-15 | |
US87270506P | 2006-12-04 | 2006-12-04 | |
US88082407P | 2007-01-17 | 2007-01-17 | |
US11/705,198 US7759393B2 (en) | 2006-02-10 | 2007-02-12 | Bio-derived 1,3-propanediol and its conjugate esters as natural and non irritating solvents for biomass-derived extracts, fragrance concentrates, and oils |
US12/786,506 US8048920B2 (en) | 2006-02-10 | 2010-05-25 | Personal care composition containing bio-derived 1,3-propanediol and its conjugate esters |
US13/238,776 US8436046B2 (en) | 2006-02-10 | 2011-09-21 | Detergent composition containing bio-derived 1,3-propanediol and its conjugate esters |
US13/834,000 US8598231B2 (en) | 2006-02-10 | 2013-03-15 | Flavoring agents containing bio-derived 1,3-propanediol and its conjugate esters |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/238,776 Continuation US8436046B2 (en) | 2006-02-10 | 2011-09-21 | Detergent composition containing bio-derived 1,3-propanediol and its conjugate esters |
Publications (2)
Publication Number | Publication Date |
---|---|
US20130210934A1 true US20130210934A1 (en) | 2013-08-15 |
US8598231B2 US8598231B2 (en) | 2013-12-03 |
Family
ID=38372098
Family Applications (26)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/705,346 Abandoned US20070207113A1 (en) | 2006-02-10 | 2007-02-12 | Personal care and cosmetic compositions comprising renewably-based, biodegradable 1,3-propanediol |
US11/705,276 Abandoned US20070207940A1 (en) | 2006-02-10 | 2007-02-12 | Detergent compositions comprising renewably-based, biodegradable 1,3-propanediol |
US11/705,245 Active 2029-09-04 US7960575B2 (en) | 2006-02-10 | 2007-02-12 | Synthesis of mono and di esters from biologically-produced 1,3-propanediol |
US11/705,262 Abandoned US20070202062A1 (en) | 2006-02-10 | 2007-02-12 | Natural deodorant compositions comprising renewably-based, biodegradable 1,3-propanediol |
US11/705,198 Active 2027-05-01 US7759393B2 (en) | 2006-02-10 | 2007-02-12 | Bio-derived 1,3-propanediol and its conjugate esters as natural and non irritating solvents for biomass-derived extracts, fragrance concentrates, and oils |
US11/705,212 Active 2029-08-26 US7988883B2 (en) | 2006-02-10 | 2007-02-12 | Heat transfer compositions comprising renewably-based biodegradable 1,3-propanediol |
US11/705,312 Abandoned US20070213247A1 (en) | 2006-02-10 | 2007-02-12 | Detergent and liquid soap compositions comprising biologically-based mono and di esters |
US11/705,257 Abandoned US20070207939A1 (en) | 2006-02-10 | 2007-02-12 | Compositions comprising mono and di esters of biologically-based 1,3-propanediol |
US11/705,342 Abandoned US20070203323A1 (en) | 2006-02-10 | 2007-02-12 | Food compositions comprising biologically-based biodegradable 1,3-propanediol esters |
US11/705,227 Abandoned US20070202073A1 (en) | 2006-02-10 | 2007-02-12 | Personal care and cosmetics compositions comprising biologically-based mono and di esters |
US11/705,275 Abandoned US20070200087A1 (en) | 2006-02-10 | 2007-02-12 | Deicing and anti-icing compositions comprising renewably-based, biodegradable 1,3-propanediol |
US11/705,254 Abandoned US20070241306A1 (en) | 2006-02-10 | 2007-02-12 | Biodegradable compositions comprising renewably-based, biodegradable 1,3-propanediol |
US11/705,327 Abandoned US20070203276A1 (en) | 2006-02-10 | 2007-02-12 | Plasticizers comprising biologically-based mono and di esters |
US12/427,232 Active US7972530B2 (en) | 2006-02-10 | 2009-04-21 | Deicing and anti-icing compositions comprising renewably-based, biodegradable 1,3-propanediol |
US12/554,056 Abandoned US20090325853A1 (en) | 2006-02-10 | 2009-09-04 | Detergent and liquid soap compositions comprising biologically-based mono and di esters |
US12/579,538 Active 2028-11-26 US8309116B2 (en) | 2006-02-10 | 2009-10-15 | Personal care and cosmetics compositions comprising biologically-based mono and di esters |
US12/786,506 Active US8048920B2 (en) | 2006-02-10 | 2010-05-25 | Personal care composition containing bio-derived 1,3-propanediol and its conjugate esters |
US13/238,776 Active US8436046B2 (en) | 2006-02-10 | 2011-09-21 | Detergent composition containing bio-derived 1,3-propanediol and its conjugate esters |
US13/413,844 Abandoned US20130071535A1 (en) | 2006-02-10 | 2012-03-07 | Food and flavorant compositions comprising renewably-based, biodegradable 1,3-propanediol |
US13/834,000 Active US8598231B2 (en) | 2006-02-10 | 2013-03-15 | Flavoring agents containing bio-derived 1,3-propanediol and its conjugate esters |
US13/833,539 Active US8802729B2 (en) | 2006-02-10 | 2013-03-15 | Enzyme stabilized detergent compositions |
US14/330,624 Active 2028-04-07 US9668951B2 (en) | 2006-02-10 | 2014-07-14 | Pharmaceutical compositions comprising renewably-based biodegradable 1,3-propanediol |
US14/330,640 Active 2027-05-15 US9375390B2 (en) | 2006-02-10 | 2014-07-14 | Agricultural compositions comprising renewably-based biodegradable 1,3-propanediol |
US14/589,193 Abandoned US20150125403A1 (en) | 2006-02-10 | 2015-01-05 | Personal care and cosmetic compositions comprising renewably-based, biodegradable 1,3-propanediol |
US15/494,183 Abandoned US20170216171A1 (en) | 2006-02-10 | 2017-04-21 | Biodegradable compositions comprising renewably-based, biodegradable 1,3-propanediol |
US16/013,180 Abandoned US20180303732A1 (en) | 2006-02-10 | 2018-06-20 | Biodegradable coatings and paints |
Family Applications Before (19)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/705,346 Abandoned US20070207113A1 (en) | 2006-02-10 | 2007-02-12 | Personal care and cosmetic compositions comprising renewably-based, biodegradable 1,3-propanediol |
US11/705,276 Abandoned US20070207940A1 (en) | 2006-02-10 | 2007-02-12 | Detergent compositions comprising renewably-based, biodegradable 1,3-propanediol |
US11/705,245 Active 2029-09-04 US7960575B2 (en) | 2006-02-10 | 2007-02-12 | Synthesis of mono and di esters from biologically-produced 1,3-propanediol |
US11/705,262 Abandoned US20070202062A1 (en) | 2006-02-10 | 2007-02-12 | Natural deodorant compositions comprising renewably-based, biodegradable 1,3-propanediol |
US11/705,198 Active 2027-05-01 US7759393B2 (en) | 2006-02-10 | 2007-02-12 | Bio-derived 1,3-propanediol and its conjugate esters as natural and non irritating solvents for biomass-derived extracts, fragrance concentrates, and oils |
US11/705,212 Active 2029-08-26 US7988883B2 (en) | 2006-02-10 | 2007-02-12 | Heat transfer compositions comprising renewably-based biodegradable 1,3-propanediol |
US11/705,312 Abandoned US20070213247A1 (en) | 2006-02-10 | 2007-02-12 | Detergent and liquid soap compositions comprising biologically-based mono and di esters |
US11/705,257 Abandoned US20070207939A1 (en) | 2006-02-10 | 2007-02-12 | Compositions comprising mono and di esters of biologically-based 1,3-propanediol |
US11/705,342 Abandoned US20070203323A1 (en) | 2006-02-10 | 2007-02-12 | Food compositions comprising biologically-based biodegradable 1,3-propanediol esters |
US11/705,227 Abandoned US20070202073A1 (en) | 2006-02-10 | 2007-02-12 | Personal care and cosmetics compositions comprising biologically-based mono and di esters |
US11/705,275 Abandoned US20070200087A1 (en) | 2006-02-10 | 2007-02-12 | Deicing and anti-icing compositions comprising renewably-based, biodegradable 1,3-propanediol |
US11/705,254 Abandoned US20070241306A1 (en) | 2006-02-10 | 2007-02-12 | Biodegradable compositions comprising renewably-based, biodegradable 1,3-propanediol |
US11/705,327 Abandoned US20070203276A1 (en) | 2006-02-10 | 2007-02-12 | Plasticizers comprising biologically-based mono and di esters |
US12/427,232 Active US7972530B2 (en) | 2006-02-10 | 2009-04-21 | Deicing and anti-icing compositions comprising renewably-based, biodegradable 1,3-propanediol |
US12/554,056 Abandoned US20090325853A1 (en) | 2006-02-10 | 2009-09-04 | Detergent and liquid soap compositions comprising biologically-based mono and di esters |
US12/579,538 Active 2028-11-26 US8309116B2 (en) | 2006-02-10 | 2009-10-15 | Personal care and cosmetics compositions comprising biologically-based mono and di esters |
US12/786,506 Active US8048920B2 (en) | 2006-02-10 | 2010-05-25 | Personal care composition containing bio-derived 1,3-propanediol and its conjugate esters |
US13/238,776 Active US8436046B2 (en) | 2006-02-10 | 2011-09-21 | Detergent composition containing bio-derived 1,3-propanediol and its conjugate esters |
US13/413,844 Abandoned US20130071535A1 (en) | 2006-02-10 | 2012-03-07 | Food and flavorant compositions comprising renewably-based, biodegradable 1,3-propanediol |
Family Applications After (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/833,539 Active US8802729B2 (en) | 2006-02-10 | 2013-03-15 | Enzyme stabilized detergent compositions |
US14/330,624 Active 2028-04-07 US9668951B2 (en) | 2006-02-10 | 2014-07-14 | Pharmaceutical compositions comprising renewably-based biodegradable 1,3-propanediol |
US14/330,640 Active 2027-05-15 US9375390B2 (en) | 2006-02-10 | 2014-07-14 | Agricultural compositions comprising renewably-based biodegradable 1,3-propanediol |
US14/589,193 Abandoned US20150125403A1 (en) | 2006-02-10 | 2015-01-05 | Personal care and cosmetic compositions comprising renewably-based, biodegradable 1,3-propanediol |
US15/494,183 Abandoned US20170216171A1 (en) | 2006-02-10 | 2017-04-21 | Biodegradable compositions comprising renewably-based, biodegradable 1,3-propanediol |
US16/013,180 Abandoned US20180303732A1 (en) | 2006-02-10 | 2018-06-20 | Biodegradable coatings and paints |
Country Status (6)
Country | Link |
---|---|
US (26) | US20070207113A1 (en) |
EP (3) | EP1991515A4 (en) |
JP (5) | JP5622359B2 (en) |
CN (2) | CN105175257A (en) |
ES (1) | ES2797782T3 (en) |
WO (2) | WO2008123845A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220387272A1 (en) * | 2021-05-27 | 2022-12-08 | Hani Hajomar | Clay mask for treating skin |
Families Citing this family (272)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5183068B2 (en) * | 2003-12-22 | 2013-04-17 | フィンレイ,ウォーレン,エイチ | Powder formation by atmospheric spray freeze drying |
US7749529B2 (en) | 2005-02-08 | 2010-07-06 | Ash Access Technology, Inc. | Catheter lock solution comprising citrate and a paraben |
US20130101703A9 (en) * | 2005-03-03 | 2013-04-25 | Green Rabbit, Llc | Non-dairy, non-soy whippable food product and method of making |
US7678752B2 (en) * | 2005-10-24 | 2010-03-16 | The Procter & Gamble Company | Fabric care composition comprising organosilicone microemulsion and anionic/nitrogen-containing surfactant system |
JP2009511700A (en) * | 2005-10-24 | 2009-03-19 | ザ プロクター アンド ギャンブル カンパニー | Fabric care compositions and systems containing organosilicone microemulsions and methods of use thereof |
BRPI0706661A2 (en) | 2006-01-19 | 2011-04-05 | Mary Kay Inc | compositions comprising kakadu plum extract or açai pulp extract |
US20070207113A1 (en) | 2006-02-10 | 2007-09-06 | Melissa Joerger | Personal care and cosmetic compositions comprising renewably-based, biodegradable 1,3-propanediol |
US20070219521A1 (en) | 2006-03-17 | 2007-09-20 | The Procter & Gamble Company | Absorbent article comprising a synthetic polymer derived from a renewable resource and methods of producing said article |
CA2664326C (en) * | 2006-09-29 | 2016-01-19 | Union Carbide Chemicals & Plastics Technology Corporation | Quaternized cellulose ethers for personal care products |
WO2008051540A2 (en) * | 2006-10-23 | 2008-05-02 | Archer-Daniels-Midland Company | Hydrogenolysis of glycerol and products produced therefrom |
US7517842B2 (en) * | 2006-11-10 | 2009-04-14 | Gojo Industries, Inc. | Antimicrobial wash formulations including amidoamine-based cationic surfactants |
WO2008071965A1 (en) * | 2006-12-14 | 2008-06-19 | Chartered Brands Limited | Aqueous mica suspension |
US7754096B2 (en) * | 2007-02-01 | 2010-07-13 | E.I. Du Pont De Nemours And Company | Liquefied-gas aerosol dusting composition containing denatonium benzoate |
US20080203329A1 (en) * | 2007-02-28 | 2008-08-28 | Charles Albert Cody | Method and devices to control global warming |
US8420584B2 (en) * | 2007-03-30 | 2013-04-16 | Melton Sherwood Thoele | Enzymatic detergent |
US8257607B1 (en) | 2007-04-17 | 2012-09-04 | Paige Johnson | Fluorocarbon-free, environmentally friendly, natural product-based, and safe fire extinguishing agent |
EP2152816B1 (en) * | 2007-04-30 | 2016-03-16 | Peel Away Limited | Paint remover |
US7709436B2 (en) * | 2007-05-09 | 2010-05-04 | The Dial Corporation | Low carbon footprint compositions for use in laundry applications |
KR101553415B1 (en) * | 2007-06-19 | 2015-09-15 | 코그니스 아이피 매니지먼트 게엠베하 | Hydrocarbon mixtures and use thereof |
DE102007039954A1 (en) * | 2007-08-23 | 2009-02-26 | Henkel Ag & Co. Kgaa | Reductive discoloration of keratinous fibers |
WO2009033020A2 (en) * | 2007-09-06 | 2009-03-12 | Mars, Incorporated | Sustainability systems and methods directed to food compositions |
EP2200572A2 (en) * | 2007-09-18 | 2010-06-30 | Schering-Plough Healthcare Products, Inc. | Sunscreen compositions with low eye-sting and high spf |
US20090082472A1 (en) * | 2007-09-25 | 2009-03-26 | Peters Marlin W | Hand sanitizer and method of preparation |
PL2211602T3 (en) * | 2007-11-08 | 2021-12-06 | University Of Maine System Board Of Trustees | Lightweight composite article with controlled biodegradation |
US8193402B2 (en) * | 2007-12-03 | 2012-06-05 | Gevo, Inc. | Renewable compositions |
KR20100095004A (en) | 2007-12-03 | 2010-08-27 | 게보 인코포레이티드 | Renewble compositions |
DE102007063507A1 (en) * | 2007-12-28 | 2009-07-02 | Biorefinery.De Gmbh | Process for the preparation of carboxylic acid esters |
US8343904B2 (en) * | 2008-01-22 | 2013-01-01 | Access Business Group International Llc | Phosphate and phosphonate-free automatic gel dishwashing detergent providing improved spotting and filming performance |
US8821024B2 (en) * | 2008-02-22 | 2014-09-02 | Ntn Corporation | Member for rolling bearing and rolling bearing |
ITPD20080084A1 (en) * | 2008-03-14 | 2009-09-15 | Stefano Sala | COMPOSITION INCLUDING ALOE PURE AND ITS USE AS A COSMETIC BASE |
US8389583B2 (en) | 2008-05-23 | 2013-03-05 | Zurex Pharma, Inc. | Antimicrobial compositions and methods of use |
FR2932807B1 (en) * | 2008-06-20 | 2011-12-30 | Arkema France | POLYAMIDE, COMPOSITION COMPRISING SUCH POLYAMIDE AND USES THEREOF |
WO2010011997A2 (en) | 2008-07-25 | 2010-01-28 | Mary Kay Inc. | Compositions comprising docynia delavajy extract and/or elaeagnus lancelotus extract |
US8927475B2 (en) * | 2008-08-08 | 2015-01-06 | The Dial Corporation | Consumer products comprising algae derived ingredients |
FR2935264B1 (en) * | 2008-09-02 | 2015-03-27 | Oreal | CLEANSING COMPOSITION COMPRISING A VOLATILE FATTY PHASE. |
US20100112022A1 (en) * | 2008-09-17 | 2010-05-06 | Jody Lynn Hoying | Antiperspirant Products and Methods of Merchandising the Same |
US20110229565A1 (en) | 2008-09-17 | 2011-09-22 | Karp Jeffrey M | Drug Delivery Composition Comprising a Self-Assembled Gelator |
EP2172103B1 (en) * | 2008-10-04 | 2016-02-17 | Cognis IP Management GmbH | Agricultural compositions |
FR2937326B1 (en) * | 2008-10-17 | 2010-12-10 | Rocher Yves Biolog Vegetale | VEGETABLE GELIFYING COMPOSITION WITH NON-COLLAR TOUCH |
EP2358339A4 (en) * | 2008-11-17 | 2012-07-04 | Univ Columbia | Detergent compositions utilizing hydrophobically modified polymer |
ES2950993T3 (en) * | 2008-11-17 | 2023-10-17 | Oreal | Cosmetic procedure for treating human perspiration using particles of an expanded amorphous mineral material; compositions |
US8535729B2 (en) * | 2008-12-05 | 2013-09-17 | The Clorox Company | Natural silver disinfectant compositions |
DE102009004269A1 (en) | 2009-01-07 | 2010-07-08 | Beiersdorf Ag | Diols as an antiperspirant active agent |
DE102009004270A1 (en) | 2009-01-07 | 2010-07-08 | Beiersdorf Ag | Cosmetic or dermatological preparation, useful as an antitranspirant preparation, comprises aromatic diol compound |
WO2010086717A2 (en) * | 2009-01-30 | 2010-08-05 | Himalaya Global Holdings Limited | Herbal cleanser compositions and methods thereof |
EP3023483A1 (en) | 2009-02-02 | 2016-05-25 | The Procter and Gamble Company | Liquid hand diswashing detergent composition |
EP2216391A1 (en) * | 2009-02-02 | 2010-08-11 | The Procter & Gamble Company | Liquid hand dishwashing detergent composition |
CA2751171A1 (en) * | 2009-02-02 | 2010-08-05 | The Procter & Gamble Company | Liquid hand dishwashing detergent composition |
EP2216390B1 (en) * | 2009-02-02 | 2013-11-27 | The Procter and Gamble Company | Hand dishwashing method |
PL2213713T3 (en) * | 2009-02-02 | 2014-07-31 | Procter & Gamble | Liquid hand dishwashing detergent composition |
EP2216392B1 (en) * | 2009-02-02 | 2013-11-13 | The Procter and Gamble Company | Liquid hand dishwashing detergent composition |
ES2488117T3 (en) * | 2009-02-02 | 2014-08-26 | The Procter & Gamble Company | Liquid detergent composition for dishwashing by hand |
EP2396380B1 (en) * | 2009-02-13 | 2015-04-15 | Alpha Fry Limited | Heat transfer fluid |
EP2221039B1 (en) * | 2009-02-18 | 2017-11-22 | Unilever Plc, A Company Registered In England And Wales under company no. 41424 of Unilever House | Antiperspirant compositions |
EP2404591A4 (en) * | 2009-03-03 | 2015-04-22 | Nisshin Oillio Group Ltd | Cosmetic preparation, method for producing same, composition for cosmetic preparations, cosmetic preparation containing the composition for cosmetic preparations and method for producing same, and cleanser for industrial use |
TWI381018B (en) * | 2009-03-16 | 2013-01-01 | Wei Mon Ind Co Ltd | Poly (lactic acid) foam composition |
DE102009013914B4 (en) * | 2009-03-19 | 2011-05-05 | Bruker Daltonik Gmbh | Calibration substances for atmospheric pressure ion sources |
US8030226B2 (en) * | 2009-04-10 | 2011-10-04 | Kimberly-Clark Worldwide, Inc. | Wet wipes having a liquid wipe composition with anti-adhesion component |
US9714471B2 (en) * | 2009-04-22 | 2017-07-25 | Arteco Nv | Hot test fluid containing vapor phase inhibition |
US20100272499A1 (en) * | 2009-04-23 | 2010-10-28 | Erik Wysocan | Environmentally friendly disposable pen |
WO2010129316A2 (en) * | 2009-05-04 | 2010-11-11 | Elc Management Llc | Cosmetic compositions comprising cyanodiphenylacrylates and film forming polymers |
US9095543B2 (en) | 2009-05-04 | 2015-08-04 | Elc Management Llc | Cosmetic compositions comprising cyanodiphenylacrylates |
US8765156B2 (en) * | 2009-05-04 | 2014-07-01 | Elc Management Llc | Topical compositions comprising inorganic particulates and an alkoxylated diphenylacrylate compound |
US20100311179A1 (en) * | 2009-06-03 | 2010-12-09 | Sarah Coulter | Method of Using 14C Measurements to Determine the Percent Natural of Cleaning Compositions |
US8105430B2 (en) * | 2009-06-30 | 2012-01-31 | Alberta Research Council Inc. | Aircraft anti-icing fluids formulated with nanocrystalline cellulose |
CA2675184C (en) | 2009-08-10 | 2015-12-22 | Knowlton Development Corporation Inc. | Stable solid deodorant product and method for manufacturing same |
DE102009038065A1 (en) * | 2009-08-19 | 2011-02-24 | Li-Tec Battery Gmbh | Method and device for cooling an electrochemical energy store |
MX2012002424A (en) | 2009-08-28 | 2012-06-27 | Mary Kay Inc | Skin care formulations. |
BR112012006107A2 (en) * | 2009-09-17 | 2016-06-07 | Eugene B Guthery | nasal, wound and skin formulations and methods for controlling staphylococci and other antibiotic resistant gram-positive bacteria |
WO2011056826A2 (en) * | 2009-11-04 | 2011-05-12 | E. I. Du Pont De Nemours And Company | Methods and compositions for extracting flavor and fragrance compounds and solubilizing essential oils |
US8153578B2 (en) * | 2009-11-09 | 2012-04-10 | Clean the World Foundation, Inc. | Soap recycling system and method |
US8419948B2 (en) * | 2009-11-22 | 2013-04-16 | United Laboratories International, Llc | Wastewater treatment |
US8518171B2 (en) * | 2009-12-10 | 2013-08-27 | Apex Materials Corporation | Modeling compounds |
US9109191B2 (en) * | 2009-12-15 | 2015-08-18 | Invista North America S.A.R.L. | Emulsion compositions and a method for selecting surfactants |
US8357509B2 (en) * | 2009-12-17 | 2013-01-22 | Auburn University | Microbial expression of tobacco osmotin for biocidal and medical applications |
US20110150812A1 (en) * | 2009-12-22 | 2011-06-23 | L'oreal S.A. | Natural conditioning cosmetic compositions |
US11071878B2 (en) * | 2009-12-31 | 2021-07-27 | Sol-Gel Technologies Ltd. | Core stabilized microcapsules, method of their preparation and uses thereof |
EP2521705A4 (en) | 2010-01-08 | 2014-06-18 | Gevo Inc | Integrated methods of preparing renewable chemicals |
US8574406B2 (en) | 2010-02-09 | 2013-11-05 | Butamax Advanced Biofuels Llc | Process to remove product alcohol from a fermentation by vaporization under vacuum |
US9080092B2 (en) | 2010-02-17 | 2015-07-14 | Battelle Memorial Institute | Compositions for deicing/anti-icing |
US9243176B2 (en) | 2010-02-17 | 2016-01-26 | Battelle Memorial Institute | Compositions for deicing/anti-icing |
US8562854B2 (en) * | 2010-02-17 | 2013-10-22 | Battelle Memorial Institute | Compositions for deicing/anti-icing |
GB201003313D0 (en) * | 2010-02-27 | 2010-04-14 | Enviroways Technologies Ltd | Method of removing chewing gum residues from substrates |
WO2011116122A1 (en) * | 2010-03-16 | 2011-09-22 | Andersen Corporation | Sustainable compositions, related methods, and members formed therefrom |
WO2011140560A1 (en) | 2010-05-07 | 2011-11-10 | Gevo, Inc. | Renewable jet fuel blendstock from isobutanol |
WO2011140496A1 (en) * | 2010-05-07 | 2011-11-10 | Toray Plastics (America), Inc. | Biaxially oriented bio-based polyolefin films and laminates |
US8119584B2 (en) * | 2010-07-19 | 2012-02-21 | Rovcal, Inc. | Universal aqueous cleaning solution for electric shavers |
EP2412792A1 (en) | 2010-07-29 | 2012-02-01 | The Procter & Gamble Company | Liquid detergent composition |
US8628643B2 (en) | 2010-09-02 | 2014-01-14 | Butamax Advanced Biofuels Llc | Process to remove product alcohol from a fermentation by vaporization under vacuum |
BR112013004935A2 (en) * | 2010-09-07 | 2016-08-02 | Myriant Corp | "catalytic dehydration of lactic acid and lactic acid esters". |
EP2618821A4 (en) | 2010-09-24 | 2014-08-13 | Brigham & Womens Hospital | Nanostructured gels capable of controlled release of encapsulated agents |
US8445088B2 (en) | 2010-09-29 | 2013-05-21 | H.J. Heinz Company | Green packaging |
FR2965818B1 (en) * | 2010-10-12 | 2013-04-26 | Champagel | PROCESS FOR FREEZING BOTTLE COLLARS FOR THE DEGREASING OF EFFERVESCENT WINES |
US8389461B1 (en) * | 2010-10-13 | 2013-03-05 | EarthCare USA, Inc. | Natural cleaning emulsion |
DK2648742T3 (en) | 2010-12-09 | 2019-07-15 | Y&B Mothers Choice Ltd | FORMULATIONS CONTAINING SAPONIES AND ITS APPLICATIONS |
US10064881B2 (en) * | 2010-12-09 | 2018-09-04 | Y&B Mother's Choice Ltd. | Natural formulations |
US10434058B2 (en) * | 2010-12-09 | 2019-10-08 | Y&B Mother's Choice Ltd. | Natural formulations |
US20130309185A1 (en) * | 2010-12-10 | 2013-11-21 | Hani M. Fares | Compositions comprising stabilized keto- enol uv absorbers |
US8083064B2 (en) * | 2011-01-25 | 2011-12-27 | The Procter & Gamble Company | Sustainable packaging for consumer products |
MY163268A (en) | 2011-02-22 | 2017-08-30 | Toray Industries | Diol composition and polyester |
RU2561274C2 (en) * | 2011-03-03 | 2015-08-27 | Дзе Проктер Энд Гэмбл Компани | Method of dishwashing |
MX339101B (en) | 2011-03-11 | 2016-05-11 | Jose Arturo Castañeda Miranda | Herbal polypharmaceutical for preventing and treating atherosclerosis. |
EP2686379B1 (en) * | 2011-03-18 | 2017-08-16 | Metabolic Explorer | Method for producing plasticized starch by using 1,3-propanediol and resulting composition |
KR20190089098A (en) * | 2011-04-06 | 2019-07-29 | 마리 케이 인코포레이티드 | Topical skin care formulations comprising plant extracts |
EP2697351A4 (en) * | 2011-04-13 | 2014-12-10 | Elc Man Llc | Conditioning agents for personal care compositions |
US9242930B2 (en) | 2011-04-13 | 2016-01-26 | Elc Management Llc | Mild anionic surfactants suitable for personal care compositions |
US8444093B1 (en) | 2011-04-18 | 2013-05-21 | Eran Epstein | Airplane leading edge de-icing apparatus |
EP2699618A4 (en) | 2011-04-19 | 2014-12-17 | Gevo Inc | Variations on prins-like chemistry to produce 2,5-dimethylhexadiene from isobutanol |
KR102121704B1 (en) * | 2011-04-21 | 2020-06-29 | 마리 케이 인코포레이티드 | Topical skin care formulations comprising plant extracts |
DE102011018924A1 (en) | 2011-04-28 | 2012-10-31 | Tunap Industrie Chemie Gmbh & Co. Produktions Kg | OW emulsion concentrate, process for its preparation and skin cosmetic containing it |
CN102764197A (en) * | 2011-05-06 | 2012-11-07 | 强生消费者公司 | Solid composition containing glycol ether and water |
US20140107380A1 (en) * | 2011-05-11 | 2014-04-17 | Archer Daniels Midland Company | Method for producing bioderived dipropylene and tripropylene glycols without propylene oxide |
WO2012164561A1 (en) * | 2011-05-30 | 2012-12-06 | Pimi Agro Cleantech Ltd. | Methods for improving the appearance of edible plant matter |
ES2786103T3 (en) | 2011-06-29 | 2020-10-08 | Sol Gel Tech Ltd | Stabilized topical formulations containing core-shell microcapsules |
JP5784829B2 (en) * | 2011-06-30 | 2015-09-24 | ザ プロクター アンド ギャンブルカンパニー | Absorbent structure containing oil scavenger component |
CN103917636A (en) * | 2011-07-13 | 2014-07-09 | 全技术公司 | Algal lipid compositions and methods of preparing and utilizing the same |
US9150818B2 (en) * | 2011-07-29 | 2015-10-06 | Purecap Laundry, Llc | Laundry cleaning product |
US8790669B2 (en) * | 2011-09-30 | 2014-07-29 | L'oreal | Cosmetic compositions comprising latex film formers |
EP2760962A1 (en) * | 2011-09-30 | 2014-08-06 | Boepa Holding ApS | Icing inhibitor composition |
KR20140094563A (en) * | 2011-10-25 | 2014-07-30 | 아치 퍼스널 케어 프로덕츠, 엘.피. | Composition containing an extract of a sequential or simultaneous fermentation |
US8492323B2 (en) * | 2011-11-23 | 2013-07-23 | Conoppo, Inc. | Toilet soap with improved lather |
KR101268651B1 (en) | 2011-11-24 | 2013-05-29 | 유성태 | Natural soap cleanser comprising biological propanediol and manufacturing method of the same |
US20150182437A1 (en) * | 2011-12-20 | 2015-07-02 | L'oreal | Cosmetic composition comprising an anionic surfactant, a solid fatty alcohol and a solid fatty ester, and cosmetic treatment process |
FR2984735B1 (en) * | 2011-12-23 | 2014-01-24 | Oreal | MOISTURIZING COMPOSITION |
CA2863100C (en) | 2012-02-17 | 2020-07-07 | Andersen Corporation | Polylactic acid containing building component |
US20130251695A1 (en) * | 2012-02-28 | 2013-09-26 | Ganeden Biotech, Inc. | Cosmetic Compositions |
JP6240621B2 (en) | 2012-03-09 | 2017-11-29 | クラフト・フーズ・グループ・ブランズ・エルエルシー | Control of oxidized odors in foods |
ES2565100T3 (en) | 2012-03-09 | 2016-03-31 | Kraft Foods Group Brands Llc | Food and beverage products containing 1,3-propanediol and methods to suppress bitterness and improve sweetness in food and beverage products using 1,3-propanediol |
US9751781B2 (en) | 2012-03-20 | 2017-09-05 | The Research Foundation For The State University Of New York | Method to separate lignin-rich solid phase from acidic biomass suspension at an acidic pH |
MY174488A (en) * | 2012-04-20 | 2020-04-22 | Bci Sabah Int Petroleum Sdn Bhd | A method of removing oil sludge and recovering oil from oil sludge with nanoemulsion surfactant system |
US9458418B2 (en) * | 2012-05-31 | 2016-10-04 | George A. Gorra | All natural dishwashing composition comprising lemon powder, vinegar powder, and salt |
US9453186B2 (en) * | 2012-05-31 | 2016-09-27 | George A. Gorra | All natural dishwashing composition comprising lemon powder and vinegar powder |
ITMI20120997A1 (en) * | 2012-06-08 | 2013-12-09 | Ernesto Attilio Bozzi | BIODEGRADABLE AND NATURAL CLEANING SOLUTION. |
US10973228B2 (en) * | 2012-08-06 | 2021-04-13 | Isp Investments Llc | Eco-friendly non-aqueous antimicrobial composition comprising hinokitiol with 1,3-propanediol and/or sorbitan caprylate |
EP2879499B1 (en) * | 2012-08-06 | 2018-09-26 | Isp Investments Inc. | Eco-friendly non-aqueous antimicrobial composition comprising tropolone with 1,3-propanediol or sorbitan caprylate |
LT6060B (en) | 2012-08-27 | 2014-08-25 | Uab "Baltic Ground Services" | Corosion inhibitor for deicing fluids |
US9545366B2 (en) * | 2012-08-30 | 2017-01-17 | L'oreal | Hydrating composition |
RU2015118222A (en) * | 2012-10-30 | 2016-12-20 | Гидромкс Интернешнл Кимиа Санайи Ве Тисарет Аноним Сиркети | ENERGY-SAVING FLUID |
US10674747B2 (en) | 2012-12-14 | 2020-06-09 | Hill's Pet Nutrition, Inc. | Anti-aging foods for companion animals |
JP6227248B2 (en) * | 2012-12-27 | 2017-11-08 | 出光興産株式会社 | Water-based coolant |
US20170283675A1 (en) * | 2013-01-28 | 2017-10-05 | Supercooler Technologies, Inc. | Ice Accelerator Composition, Formula and Method of Making |
US20140216974A1 (en) * | 2013-02-04 | 2014-08-07 | Specialty Lubricants Corp. | Rotor wipe |
US9302127B2 (en) | 2013-03-07 | 2016-04-05 | Knowlton Development Corporation Inc. | Deodorant with improved endurance and stability |
US9314412B2 (en) * | 2013-03-14 | 2016-04-19 | Robin Phinney | Deodorant formulation |
US10918589B2 (en) | 2013-03-15 | 2021-02-16 | John Robert Goepfert | Personal-lubricating material and method for lubricant manufacture |
US9850512B2 (en) | 2013-03-15 | 2017-12-26 | The Research Foundation For The State University Of New York | Hydrolysis of cellulosic fines in primary clarified sludge of paper mills and the addition of a surfactant to increase the yield |
ITMI20130619A1 (en) * | 2013-04-16 | 2014-10-17 | Variati S R L | NEW COSMETIC ASSOCIATION |
US20140352961A1 (en) * | 2013-06-03 | 2014-12-04 | Tucc Technology, Llc | Concentrated Borate Crosslinking Solutions For Use In Hydraulic Fracturing Operations |
CN103446005A (en) * | 2013-08-08 | 2013-12-18 | 刘万顺 | Folium mori and aloe hair-washing and hair-caring body-building bath foam |
WO2015031790A1 (en) * | 2013-08-30 | 2015-03-05 | Giovanniello Joseph | Formula and process for crosslinking antimicrobials to surfaces and polymers |
WO2015038849A1 (en) * | 2013-09-12 | 2015-03-19 | Battelle Memorial Institute | Compositions for deicing/anti-icing |
DE102013015289A1 (en) | 2013-09-14 | 2015-03-19 | Oxea Gmbh | Process for the post-treatment of polyol esters |
US11590069B1 (en) | 2013-11-04 | 2023-02-28 | Jeffrey Alan Deane | Pet cleansing composition |
JP6220652B2 (en) * | 2013-11-26 | 2017-10-25 | 日華化学株式会社 | Cleaning composition for medical equipment |
IL229836A0 (en) | 2013-12-08 | 2014-03-31 | Y & B Mother S Choice Ltd | Preparations for suppressing or attenuating ocular irritancy |
US9783458B2 (en) * | 2014-01-31 | 2017-10-10 | Innophos, Inc. | Hydrogen sulfide scavenger |
US9951363B2 (en) | 2014-03-14 | 2018-04-24 | The Research Foundation for the State University of New York College of Environmental Science and Forestry | Enzymatic hydrolysis of old corrugated cardboard (OCC) fines from recycled linerboard mill waste rejects |
CA2944414A1 (en) * | 2014-03-31 | 2015-10-08 | Apache Corporation | Thermal extraction geochemical method for measurement of oil in place and movable oil in liquid rich fine grain rocks |
US9629795B2 (en) | 2014-04-01 | 2017-04-25 | Symrise Ag | Substance mixtures |
EP2926673B1 (en) * | 2014-04-01 | 2019-10-30 | Symrise AG | Compound mixtures |
CA2981702A1 (en) | 2014-04-23 | 2015-10-29 | Gregory Van Buskirk | Cleaning formulations for chemically sensitive individuals: compositions and methods |
US8899318B1 (en) | 2014-04-24 | 2014-12-02 | Ronald C. Parsons | Applying an aggregate to expandable tubular |
US9868924B1 (en) * | 2014-06-02 | 2018-01-16 | International Technologies And Services, Inc. | Composition and method |
US10610512B2 (en) | 2014-06-26 | 2020-04-07 | Island Breeze Systems Ca, Llc | MDI related products and methods of use |
FR3022782B1 (en) * | 2014-06-30 | 2017-10-20 | Oreal | COMPOSITIONS COMPRISING A SOAP BASE AND 1,3-PROPANEDIOL |
CN104130751B (en) * | 2014-07-18 | 2016-08-17 | 中国民用航空总局第二研究所 | Bio-based alcohol aircraft deicing anti-freeze fluid and preparation method thereof |
KR101671577B1 (en) * | 2014-08-08 | 2016-11-01 | 장진영 | Production method of Antibacterial livestock deodorant composition |
KR101671576B1 (en) * | 2014-08-08 | 2016-11-01 | 장진영 | Antibacterial livestock deodorant composition |
CN104434731B (en) * | 2014-11-18 | 2017-02-01 | 皖南医学院 | Nutritional nourishing hand cream and preparation method thereof |
ES2914899T3 (en) | 2015-03-02 | 2022-06-17 | Medlab Clinical U S Inc | Transmucosal and transdermal delivery systems |
US9518167B2 (en) | 2015-03-03 | 2016-12-13 | International Business Machines Corporation | Bioderived based plasticizers |
US10561698B2 (en) | 2015-04-01 | 2020-02-18 | Roger Wilson | Hand sanitizer composition and method of manufacture |
US9775346B1 (en) | 2016-04-01 | 2017-10-03 | Roger Wilson | Hand sanitizer composition and method of manufacture |
US10278915B1 (en) * | 2015-04-10 | 2019-05-07 | Uno Beauty, Inc. | Anti-aging hair treatment composition and method |
RU2591259C1 (en) * | 2015-04-14 | 2016-07-20 | Общество с ограниченной ответственностью Научно-производственное предприятие "Арктон" | Anti-icing fluid |
JP6826730B2 (en) * | 2015-04-16 | 2021-02-10 | 学校法人 関西大学 | Anti-ice nucleus activator |
FR3035788B1 (en) * | 2015-05-04 | 2019-11-22 | Total Marketing Services | COSMETIC NANO-EMULSION |
US10111823B2 (en) * | 2015-05-06 | 2018-10-30 | Getco Llc | Shave cream formulation |
GB201509179D0 (en) * | 2015-05-28 | 2015-07-15 | Dupont Nutrition Biosci Aps | Phase change material |
GB201512303D0 (en) * | 2015-07-14 | 2015-08-19 | Kilfrost Group Plc | Heat transfer fluid composition and use |
US9968531B2 (en) * | 2015-08-05 | 2018-05-15 | Dupont Tate & Lyle Bio Products Company, Llc | Deodorants containing 1,3-propanediol |
US10266708B2 (en) | 2015-09-16 | 2019-04-23 | Apeel Technology, Inc. | Precursor compounds for molecular coatings |
WO2017061971A1 (en) * | 2015-10-06 | 2017-04-13 | Assos Ilaç Kimya Gida Ürünleri Üretim Ve Tic. A. Ş. | Topical minoxidil composition |
JP6558202B2 (en) * | 2015-10-20 | 2019-08-14 | 日油株式会社 | Cleaning composition |
US20180334775A1 (en) * | 2015-11-03 | 2018-11-22 | E I Du Pont De Nemours And Company | Cables made of phase change material |
EP3374444A4 (en) * | 2015-11-12 | 2019-11-13 | Zach, Afik | Inkjet ink compositions |
CA2913906C (en) | 2015-12-03 | 2023-08-01 | Dustin Falconer | De-icing lubricant composition |
CA3008758C (en) * | 2015-12-17 | 2023-05-23 | Proklean Technologies Pvt. Ltd | Biodegradable detergent composition |
US10808155B2 (en) * | 2016-01-08 | 2020-10-20 | Kenneth J. Mello | Ice melt apparatus |
US9796948B2 (en) | 2016-01-13 | 2017-10-24 | The Procter & Gamble Company | Laundry detergent compositions comprising renewable components |
WO2017126345A1 (en) * | 2016-01-22 | 2017-07-27 | 株式会社リコー | Ink, set of ink and substrate, ink-jet printing method, ink-jet printer, and print |
SG11201806831UA (en) * | 2016-02-18 | 2018-09-27 | Ecolab Usa Inc | Solvent application in bottle wash using amidine based formulas |
US10392580B1 (en) * | 2016-03-14 | 2019-08-27 | Rust-Oleum Corporation | Seed oil based reactive diluent |
EP3439676B1 (en) | 2016-04-04 | 2021-06-09 | Omeza LLC | Fish oil topical composition |
WO2017197396A1 (en) * | 2016-05-13 | 2017-11-16 | Sanjeevita By Audubon, Llc | Saponin-containing compositions for use in textile wipes and related dispensers |
KR102638807B1 (en) | 2016-06-07 | 2024-02-21 | 더 제이. 데이비드 글래드스톤 인스티튜트, 어 테스터멘터리 트러스트 이스타빌리쉬드 언더 더 윌 오브 제이. 데이비드 글래드스톤 | Medium chain fatty acid esters of beta-hydroxybutyrate and butanediol and compositions and methods for using same |
CN109563400B (en) | 2016-06-09 | 2021-09-03 | 杜邦聚合物公司 | Thermal storage cable comprising a closure system |
US20200078275A1 (en) * | 2016-06-10 | 2020-03-12 | NFuse, LLC | Magnesium delivery system |
JP6430999B2 (en) * | 2016-06-24 | 2018-11-28 | トヨタ自動車株式会社 | Automotive engine coolant composition, automotive engine concentrated coolant composition, and internal combustion engine operating method |
JP6487382B2 (en) * | 2016-06-24 | 2019-03-20 | トヨタ自動車株式会社 | Automotive engine coolant composition, automotive engine concentrated coolant composition, and internal combustion engine operating method |
EP3284805B1 (en) * | 2016-08-17 | 2020-02-19 | The Procter & Gamble Company | Cleaning composition comprising enzymes |
EP3298897A1 (en) * | 2016-09-21 | 2018-03-28 | Gyogynövenykutato Kft | Plant-based plant conditioner and protection product, method of producing such product, and use of such product |
FR3060321B1 (en) * | 2016-12-16 | 2020-01-03 | Societe D'exploitation De Produits Pour Les Industries Chimiques Seppic | METHOD FOR IMPROVING SENSORY PROPERTIES OF OIL-IN-WATER EMULSIONS TO REDUCE THE STICKING EFFECT OF SAID GLYCERIN OIL-IN-WATER EMULSIONS |
FR3060322B1 (en) * | 2016-12-16 | 2020-01-03 | Societe D'exploitation De Produits Pour Les Industries Chimiques Seppic | PROCESS FOR IMPROVING SENSORY PROPERTIES OF OIL-IN-WATER EMULSIONS |
US11020410B2 (en) | 2017-02-03 | 2021-06-01 | The Brigham And Women's Hospital, Inc. | Self-assembled gels formed with anti-retroviral drugs, prodrugs thereof, and pharmaceutical uses thereof |
US20180228716A1 (en) * | 2017-02-14 | 2018-08-16 | Mcleanics Technology Corporation | Essence of alayah - hair seen |
WO2018162621A1 (en) * | 2017-03-08 | 2018-09-13 | Rhodia Operations | Low volatility herbicidal compositions |
US20180280287A1 (en) * | 2017-04-04 | 2018-10-04 | TRI-K Industries, Inc. | Method and composition for a sacha inchi perennial plant extract based health and beauty aid |
WO2018208822A1 (en) * | 2017-05-08 | 2018-11-15 | Alivio Therapeutics, Inc. | Formulation of nanostructured gels for increased agent loading and adhesion |
US20180333349A1 (en) | 2017-05-17 | 2018-11-22 | Colgate-Palmolive Company | Oral Care Compositions and Methods of Use |
WO2018218012A1 (en) * | 2017-05-24 | 2018-11-29 | Follea International | Synephrine compositions |
KR20200029547A (en) | 2017-07-21 | 2020-03-18 | 버크 인스티튜트 포 리서치 온 에이징 | S-enantiomers of beta-hydroxybutyrate and butanediol and methods of use thereof |
JP6364149B1 (en) * | 2017-08-03 | 2018-07-25 | 加藤 行平 | Automotive coolant base material, coolant additive, coolant and coolant testing equipment |
US20200345592A1 (en) * | 2017-08-31 | 2020-11-05 | Shiseido Company, Ltd. | Multilayer type powder-containing cosmetic preparation |
AU2018352330B2 (en) * | 2017-10-20 | 2021-11-18 | Safeguard Medical Technologies Limited | Composition |
FR3073412B1 (en) * | 2017-11-16 | 2019-11-29 | L'oreal | MICELLAR CLEANSING MILK |
EP3728439A4 (en) | 2017-12-22 | 2021-08-18 | Fine Organic Industries Ltd. | Applications of an ester additive from bioderived raw materials |
US20190211285A1 (en) * | 2018-01-08 | 2019-07-11 | Douglas Alexie | Exterior cleaning composition for a vehicle |
WO2019147503A1 (en) | 2018-01-25 | 2019-08-01 | Buck Institute For Research On Aging | Synthesis of 3-hydroxybutyryl 3-hydroxybutyrate and related compounds |
FR3080038B1 (en) * | 2018-04-16 | 2020-10-09 | Oreal | COSMETIC COMPOSITION FOR KERATINIC FIBERS |
WO2019226570A1 (en) * | 2018-05-22 | 2019-11-28 | Novomer, Inc. | Processes for producing bio-based aromatic compounds and derivatives |
CA3099916A1 (en) * | 2018-05-28 | 2019-12-05 | Anellotech, Inc. | Bio-based medicines and methods of increasing patient compliance |
US10780044B2 (en) * | 2018-05-30 | 2020-09-22 | Jo Ann Feltman | Natural and organic deodorant and method of making the deodorant |
CN112334205B (en) | 2018-06-21 | 2022-09-06 | Gs 加德士 | Solvent composition for extracting natural substance |
US11583487B2 (en) | 2018-08-09 | 2023-02-21 | Kao Corporation | Method for producing coating |
WO2020032271A1 (en) * | 2018-08-10 | 2020-02-13 | 国立大学法人東北大学 | Production method for polyvalent alcohol ester compounds |
US11492573B2 (en) * | 2018-08-29 | 2022-11-08 | Rockline Industries, Inc. | Rapid dispersing wet wipe |
JP7179534B2 (en) * | 2018-08-30 | 2022-11-29 | ロレアル | Effervescent composition containing oil |
CN108996641B (en) * | 2018-08-30 | 2021-08-24 | 贺州市骏鑫矿产品有限责任公司 | Method for treating acid leaching and iron removing waste liquid of potassium feldspar by utilizing red mud |
EP3852718A1 (en) * | 2018-09-17 | 2021-07-28 | Agetis Supplements | New compositions comprising oregano extract and uses thereof |
CN109106643B (en) * | 2018-09-25 | 2021-08-20 | 钟小龙 | Skin care composition with acne removing and anti-aging effects and preparation method of mask |
WO2020076453A1 (en) | 2018-10-11 | 2020-04-16 | Alivio Therapeutics, Inc. | Non-injectable hydrogel formulations for smart release |
JP2022505583A (en) * | 2018-10-23 | 2022-01-14 | アンパサンド バイオファーマシューティカルズ インコーポレイテッド | Methods and formulations for transdermal administration of dermis orthodontic agents |
US20200140784A1 (en) | 2018-11-07 | 2020-05-07 | The Procter & Gamble Company | Low ph detergent composition |
JP2022505301A (en) | 2018-11-16 | 2022-01-14 | ザ プロクター アンド ギャンブル カンパニー | Compositions and methods for removing stains from fabrics |
JP6836210B2 (en) | 2018-12-26 | 2021-02-24 | 株式会社デンソー | How to cool vehicle heat management systems, heat transport media, and batteries for vehicle travel |
US11672742B2 (en) * | 2019-01-03 | 2023-06-13 | Surface Deep LLC | Deodorant including at least one fruit acid and methods of using the same |
US20220096347A1 (en) * | 2019-02-04 | 2022-03-31 | Symrise Ag | Active agents for skin and hair care with sensory modifying properties |
US20220117867A1 (en) * | 2019-02-04 | 2022-04-21 | Symrise Ag | Antimicrobial activity of fatty acid esters and combinations thereof |
US20220142885A1 (en) * | 2019-02-04 | 2022-05-12 | Symrise Ag | Fatty acid esters as anti-malassezia agents |
WO2020160743A1 (en) | 2019-02-04 | 2020-08-13 | Symrise Ag | Active agents for skin and hair care with physicochemical modifying properties |
US10800996B2 (en) | 2019-02-11 | 2020-10-13 | American Sterilizer Company | High foaming liquid alkaline cleaner concentrate composition |
CN109970556B (en) * | 2019-02-21 | 2022-02-22 | 南京林业大学 | Vegetable oil-based polyacid alcohol ether ester and preparation method and application thereof |
KR20210133233A (en) | 2019-02-27 | 2021-11-05 | 바스프 에스이 | Bio-based pearlescent wax |
DE102019105037A1 (en) * | 2019-02-27 | 2020-08-27 | Schwan-Stabilo Cosmetics Gmbh & Co. Kg | Aqueous pigmented ink |
US11576920B2 (en) | 2019-03-18 | 2023-02-14 | The Menopause Method, Inc. | Composition and method to aid in hormone replacement therapy |
EP3813776A1 (en) * | 2019-05-09 | 2021-05-05 | Codex Beauty LLC | Preservative systems |
US10657445B1 (en) * | 2019-05-16 | 2020-05-19 | Capital One Services, Llc | Systems and methods for training and executing a neural network for collaborative monitoring of resource usage |
US11332884B2 (en) | 2019-05-20 | 2022-05-17 | NW Straw Pulp, LLC | Deicer composition and method of making |
WO2021008696A1 (en) * | 2019-07-16 | 2021-01-21 | Symrise Ag | Fragrance mixture containing 1,3-propanediol |
US20210093539A1 (en) * | 2019-09-30 | 2021-04-01 | Concept Matrix Solutions | Topical cosmetic |
US11879110B2 (en) * | 2019-11-27 | 2024-01-23 | The Procter & Gamble Company | Alkylbenzenesulfonate surfactants |
JP7401089B2 (en) * | 2019-12-19 | 2023-12-19 | 日東化工株式会社 | Purge additives and purging agents |
US11407883B2 (en) * | 2020-02-03 | 2022-08-09 | Illinois Tool Works Inc. | High performing low viscosity tire sealant |
EP4114181A1 (en) | 2020-03-04 | 2023-01-11 | Apeel Technology, Inc. | Coated agricultural products and corresponding methods |
US11452896B1 (en) * | 2020-04-01 | 2022-09-27 | Fire Suppression Innovations | Fire fighting agent compositions |
BR112022021837A2 (en) * | 2020-05-22 | 2022-12-13 | Inolex Investment Corp | BIOLOGICALLY BASED ALKYL GLYCERYL ETHERS AND METHODS OF PREPARATION AND USE THEREOF |
CN111925856B (en) * | 2020-07-15 | 2023-01-10 | 珠海凌达压缩机有限公司 | Refrigerating oil composition and application thereof and compressor |
US11607372B2 (en) | 2020-08-06 | 2023-03-21 | Mermaid Brand Holdings, LLC | Depilatory wax additive and process |
JP2023548012A (en) | 2020-10-30 | 2023-11-15 | アピール テクノロジー,インコーポレイテッド | Composition and method for its preparation |
CN112920873A (en) * | 2021-01-26 | 2021-06-08 | 宝鸡文理学院 | Synthetic ester lubricating oil base oil based on natural products |
IT202100001790A1 (en) * | 2021-01-28 | 2022-07-28 | Cleanby Srl | CLEANER COMPOSITION FOR BOWLING BOWLS |
AR125687A1 (en) * | 2021-04-15 | 2023-08-09 | Unilever Global Ip Ltd | A HAND DISHWASHER COMPOSITION |
CN113383770B (en) * | 2021-07-20 | 2022-04-15 | 柒久园艺科技(北京)有限公司 | Fresh-keeping method for fresh rose flowers |
WO2023015037A1 (en) * | 2021-08-06 | 2023-02-09 | University Of Delaware | Production of lignin derived renewable lubricants |
US20230167348A1 (en) * | 2021-12-01 | 2023-06-01 | Valvoline Licensing andIntellectual Property LLC | Low current heat transfer fluid for safer electrical applications |
IT202200002684A1 (en) * | 2022-02-14 | 2023-08-14 | Silk Medical S R L | DERMATOLOGICAL COMPOSITION AND ITS USES IN THE COSMETIC FIELD AND IN THE TREATMENT OF DERMATOLOGICAL DISEASES |
WO2023187044A1 (en) | 2022-03-30 | 2023-10-05 | Basf Se | Process for the production of a surfactant |
WO2023187051A1 (en) | 2022-03-30 | 2023-10-05 | Basf Se | Process for the production of a tertiary amine surfactant |
WO2024030568A1 (en) * | 2022-08-04 | 2024-02-08 | Clarity Cosmetics Inc. | Skin and hair care formulations |
FR3138819A1 (en) | 2022-08-13 | 2024-02-16 | Biosynthis | COMPOSITION comprising an alkane and an oxo-ester |
WO2024111522A1 (en) * | 2022-11-25 | 2024-05-30 | 株式会社トクヤマ | Composition for cooling and heating medium liquid and production method therefor |
Family Cites Families (155)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US69997A (en) | 1867-10-22 | Arthur huston | ||
US568276A (en) * | 1896-09-22 | Match-safe | ||
US510036A (en) | 1893-12-05 | Pump attachment for velocipedes | ||
US2434110A (en) | 1942-08-24 | 1948-01-06 | Shell Dev | Process for hydrating olefinic aldehydes |
US2933397A (en) * | 1959-11-03 | 1960-04-19 | Standard Brands Inc | Egg white composition |
US3392135A (en) * | 1965-06-24 | 1968-07-09 | Gen Electric | Heat stable plasticized vinyl halide resins |
US3904774A (en) * | 1971-08-23 | 1975-09-09 | Regents For Education Of The S | Food preserving process |
US3870647A (en) * | 1972-06-05 | 1975-03-11 | Seneca Chemicals Inc | Liquid cleaning agent |
JPS5325202A (en) | 1976-08-20 | 1978-03-08 | Takeo Furukawa | Process for chlorination refining of pyrites |
US4102703A (en) * | 1976-11-08 | 1978-07-25 | Tulco, Inc. | Water-repellent coating compositions and method for their preparation |
JPS5550859A (en) | 1978-10-09 | 1980-04-14 | Sugiyama Sangyo Kagaku Kenkyusho | Purification of lecithin |
JPS5615694A (en) * | 1979-07-16 | 1981-02-14 | Mitsui Petrochem Ind Ltd | Purification of dicarboxylic acid |
JPS57129663A (en) | 1981-02-03 | 1982-08-11 | Ougontou:Kk | Method for drying and pulverization of saccharified reducing starch |
JPS57165308A (en) * | 1981-04-03 | 1982-10-12 | Lion Corp | Production of pearlescent dispersion |
US4404184A (en) | 1981-11-05 | 1983-09-13 | International Flavors & Fragrances Inc. | Flavoring with methyl-thio-2-methyl-2-pentenoate |
FR2526805A1 (en) * | 1982-05-14 | 1983-11-18 | Exsymol Sa | IMPROVEMENT IN OBTAINING UNSAPPLIANT COMPOUNDS FROM NATURAL SUBSTANCES AND RESULTING PRODUCTS |
US4617185A (en) * | 1984-07-13 | 1986-10-14 | The Procter & Gamble Company | Improved deodorant stick |
DE3716543A1 (en) * | 1987-05-16 | 1988-11-24 | Basf Ag | USE OF WATER-SOLUBLE COPOLYMERS, WHICH CONTAIN MONOMERS WITH AT LEAST TWO ETHYLENICALLY UNSATURATED DOUBLE BINDINGS IN DETERGENT AND CLEANING AGENTS |
US4816261A (en) * | 1987-11-20 | 1989-03-28 | The Procter & Gamble Company | Deodorant gel stick |
CA2015946A1 (en) * | 1989-06-27 | 1990-12-27 | Lawrence P. Klemann | Diol lipid analogues as edible fat replacements |
US5034134A (en) | 1989-12-27 | 1991-07-23 | Union Carbide Chemicals And Plastics Technology Corporation | Treatment of impurity-containing liquid streams in ethylene oxide/glycol processes with semi-permeable membranes |
US5194159A (en) * | 1989-12-27 | 1993-03-16 | Union Carbide Chemicals & Plastics Technology Corporation | Treatment of lower glycol-containing operative fluids |
US5102549A (en) * | 1989-12-27 | 1992-04-07 | Union Carbide Chemicals & Plastics Technology Corporation | Treatment of lower glycol-containing operative fluids |
US5088487A (en) | 1990-09-06 | 1992-02-18 | Cecil R. Jackson | Body wrap with pocket for pliable frozen composition |
EP0550690B1 (en) * | 1990-09-28 | 1998-03-25 | The Procter & Gamble Company | Polyhydroxy fatty acid amide surfactants in bleach-containing detergent compositions |
DE4114491A1 (en) * | 1991-05-03 | 1992-11-05 | Henkel Kgaa | LIQUID DETERGENT |
JPH05221821A (en) * | 1992-02-12 | 1993-08-31 | Sakamoto Yakuhin Kogyo Kk | Skin-care cosmetic |
WO1993016737A1 (en) * | 1992-02-24 | 1993-09-02 | Simmons Paul L | Biodegradable germicide |
US5531927A (en) * | 1992-03-20 | 1996-07-02 | Bio-Safe Specialty Products, Inc. | Stain removing compositions and methods of using the same |
GB9206263D0 (en) | 1992-03-23 | 1992-05-06 | Fernox Mfg Co Ltd | De-icer/anti-icer |
ES2081657T3 (en) * | 1992-05-13 | 1996-03-16 | Hoechst Ag | NON-ION MOTHER-OF-PEARL DISPERSIONS, OF GOOD FLUIDITY. |
DE4218282A1 (en) | 1992-06-03 | 1993-12-09 | Degussa | Process for the preparation of 1,3-propanediol |
US5968407A (en) | 1992-09-09 | 1999-10-19 | Union Carbide Chemicals & Plastics Technology Corporation | Aircraft deicing fluid with improved anti-icing and ice adhesion control properties |
US5382376A (en) * | 1992-10-02 | 1995-01-17 | The Procter & Gamble Company | Hard surface detergent compositions |
US5747582A (en) * | 1992-10-29 | 1998-05-05 | Bayer Aktiengesellschaft | Aqueous coating compositions and their use for the preparation of coatings that are permeable to water vapor |
JPH06234935A (en) * | 1993-02-09 | 1994-08-23 | Sanei Gen F F I Inc | Method for stabilizing coloring matter |
DE4313093C2 (en) | 1993-04-22 | 1996-01-11 | Stefes Pflanzenschutz Gmbh | Suspension concentrates containing metamitron based on water as the only carrier |
JP3239194B2 (en) * | 1993-05-07 | 2001-12-17 | 東亜ディーケーケー株式会社 | Method for analyzing anions by ion chromatography and method for washing anion separation column |
US5500216A (en) * | 1993-06-18 | 1996-03-19 | Julian; Jorge V. | Topical hydrophobic composition and method |
EP0863932A1 (en) * | 1993-08-20 | 1998-09-16 | Dynagen, Inc. | Biodegradable polymers and apparatus and methods for making such polymers |
JPH09503799A (en) * | 1993-09-13 | 1997-04-15 | ディヴァーシィ コーポレーション | Tablet-like detergent, its manufacturing and use |
JPH0790294A (en) * | 1993-09-20 | 1995-04-04 | Lion Corp | Essential oil having high spilanthol content, production thereof and composition for oral cavity blended with essential oil having high spilanthol content |
JPH0788303A (en) | 1993-09-20 | 1995-04-04 | Lion Corp | Production of valuable matter extract |
US5932532A (en) * | 1993-10-14 | 1999-08-03 | Procter & Gamble Company | Bleach compositions comprising protease enzyme |
JPH08183721A (en) | 1994-12-28 | 1996-07-16 | Kao Corp | Skin cosmetic |
AU717151B2 (en) * | 1995-01-25 | 2000-03-16 | National Aeronautics And Space Administration - Nasa | Anti-icing fluid or deicing fluid |
MY118354A (en) * | 1995-05-01 | 2004-10-30 | Scarista Ltd | 1,3-propane diol derivatives as bioactive compounds |
US6428767B1 (en) | 1995-05-12 | 2002-08-06 | E. I. Du Pont De Nemours And Company | Method for identifying the source of carbon in 1,3-propanediol |
US5633362A (en) * | 1995-05-12 | 1997-05-27 | E. I. Du Pont De Nemours And Company | Production of 1,3-propanediol from glycerol by recombinant bacteria expressing recombinant diol dehydratase |
US5686276A (en) * | 1995-05-12 | 1997-11-11 | E. I. Du Pont De Nemours And Company | Bioconversion of a fermentable carbon source to 1,3-propanediol by a single microorganism |
TW453881B (en) * | 1995-10-16 | 2001-09-11 | Kao Corp | Cosmetic composition comprising amide derivatives |
US5716604A (en) * | 1995-10-17 | 1998-02-10 | The Gillette Company | Clear cosmetic stick composition with 2-methyl-1,3-propanediol |
FR2743297B1 (en) * | 1996-01-05 | 1998-03-13 | Oreal | COSMETIC COMPOSITION BASED ON MULTISEQUENCE IONIZABLE POLYCONDENSATES POLYSILOXANE / POLYURETHANE AND / OR POLYUREE IN SOLUTION AND USE |
JP3411146B2 (en) * | 1996-01-12 | 2003-05-26 | ポーラ化成工業株式会社 | Body odor generation inhibitor |
JPH09268266A (en) | 1996-04-01 | 1997-10-14 | Toyo Ink Mfg Co Ltd | Ink jet recording liquid |
JP3486327B2 (en) * | 1996-08-16 | 2004-01-13 | 花王株式会社 | Composition for treating hair and scalp |
WO1998021340A1 (en) * | 1996-11-13 | 1998-05-22 | E.I. Du Pont De Nemours And Company | Method for the production of glycerol by recombinant organisms |
ID21487A (en) | 1996-11-13 | 1999-06-17 | Du Pont | METHOD OF MAKING 1,3 - PROPANDIOL WITH RECOMBINANT ORGANISM |
US6174521B1 (en) * | 1998-05-01 | 2001-01-16 | The Procter & Gamble Company | Gel deodorant compositions having reduced skin irritation |
TW426707B (en) | 1997-07-24 | 2001-03-21 | Akzo Nobel Nv | Emulsions of peroxyesters |
CN1210851A (en) | 1997-09-08 | 1999-03-17 | 中国科学院成都有机化学研究所 | Process for purifying ethyl acetate |
US5876621A (en) | 1997-09-30 | 1999-03-02 | Sapienza; Richard | Environmentally benign anti-icing or deicing fluids |
US6079765A (en) | 1997-10-27 | 2000-06-27 | Lear Automotive Dearborn, Inc. | Wire holding clip for trim panel |
US5935918A (en) * | 1998-03-06 | 1999-08-10 | Pomp; Paul R. | Firearm cleaning agent for cleaning a firearm bore |
CN1230399A (en) * | 1998-03-26 | 1999-10-06 | 郭光旭 | Chinese medicine shampoo |
EP1082006B1 (en) | 1998-05-26 | 2006-02-01 | Lifecell Corporation | Cryopreservation of human red blood cells |
DE69901703T2 (en) * | 1998-06-02 | 2003-01-30 | The Procter & Gamble Company, Cincinnati | DISHWASHER COMPOSITIONS CONTAINING ORGANIC DIAMINES |
WO2000000568A1 (en) | 1998-06-29 | 2000-01-06 | Haslim Leonard A | Environmentally friendly compositions having anti-icing, deicing or graffiti prevention properties |
US5965512A (en) * | 1998-07-01 | 1999-10-12 | Smyth; Teresa A. | Biodegradable liquid degreaser and parts cleaner composition |
GB9827288D0 (en) | 1998-12-12 | 1999-02-03 | Zeneca Ltd | Composition and process for the extraction of metals |
FR2787322B1 (en) * | 1998-12-18 | 2002-10-18 | Galderma Res & Dev | OIL-IN-WATER EMULSION COMPRISING A MICRONIZED ACTIVE AGENT AND AN APPROPRIATE EMULSION SYSTEM |
US6245879B1 (en) | 1999-01-29 | 2001-06-12 | Shell Oil Company | Purification of 1,3-propanediol in carbonyl-containing stream |
RU2146478C1 (en) | 1999-05-18 | 2000-03-20 | Щеткина Наталья Иосифовна | Method for preparing aromatizing food additive |
US6123932A (en) * | 1999-06-14 | 2000-09-26 | The Procter & Gamble Company | Deodorant compositions containing cyclodextrin odor controlling agents |
BR0013315B1 (en) | 1999-08-18 | 2013-06-25 | Isolated nucleic acid fragment, polypeptide, chimeric gene, microorganism, recombinant microorganism, and recombinant coli, klp23 strain of e.g. recombinant coli, strain rj8 of e.g. recombinant coli, vector pdt29, vector pkp32 and 1,3-propanediol bioproduction processes | |
TR200200530T2 (en) * | 1999-09-02 | 2002-07-22 | Colgate-Palmolive Company | A laundry care composition comprising a polycarboxylate polymer and a compound derived from urea. |
US6773622B1 (en) | 1999-09-18 | 2004-08-10 | Greg R. Andrews | Anti-icing formulations |
US6538164B1 (en) | 1999-09-30 | 2003-03-25 | E. I. Du Pont De Nemours And Company | Recovery process for volatile compounds from solids in aqueous solution |
US6361983B1 (en) * | 1999-09-30 | 2002-03-26 | E. I. Du Pont De Nemours And Company | Process for the isolation of 1,3-propanediol from fermentation broth |
FR2800751B1 (en) * | 1999-11-09 | 2003-08-29 | Roquette Freres | PROCESS FOR THE PRODUCTION OF 1.3 PROPANEDIOL BY FERMENTATION |
US6576340B1 (en) * | 1999-11-12 | 2003-06-10 | E. I. Du Pont De Nemours And Company | Acid dyeable polyester compositions |
US6255442B1 (en) | 2000-02-08 | 2001-07-03 | E. I. Du Pont De Nemours And Company | Esterification process |
US6358499B2 (en) * | 2000-02-18 | 2002-03-19 | Colgate-Palmolive Company | Deodorant with small particle zinc oxide |
US6479716B2 (en) | 2000-03-29 | 2002-11-12 | Archer-Daniels-Midland Company | Method of recovering 1,3-propanediol from fermentation broth |
US6783580B2 (en) * | 2000-03-30 | 2004-08-31 | Hewlett-Packard Development Company, L.P. | Environmentally friendly, reliable, fast drying ink for point-of-sale thermal ink jet application |
WO2001095717A2 (en) | 2000-06-09 | 2001-12-20 | Organ Recovery Systems | Cryopreservation method using cryoprotective composition of propanediol and a vehicle solution |
US6551640B1 (en) * | 2000-08-15 | 2003-04-22 | General Mills, Inc. | Dough especially for baked goods and method for making |
DE10041478A1 (en) | 2000-08-24 | 2002-03-14 | Sanol Arznei Schwarz Gmbh | New pharmaceutical composition |
US6660302B1 (en) * | 2000-09-06 | 2003-12-09 | Chr. Hansen, Inc. | Dry-powder film coating composition and method of preparation |
FR2815847B1 (en) * | 2000-10-27 | 2002-12-13 | Oreal | COSMETIC COMPOSITION COMPRISING FIBERS AND WAX |
JP3572354B2 (en) | 2000-10-31 | 2004-09-29 | 独立行政法人産業技術総合研究所 | 1,3-propanediol pyrenyl acetylacetone ester compound |
AU2002212501A1 (en) * | 2000-11-06 | 2002-05-15 | Ineos Fluor Holdings Limited | Solvent extraction process |
AU2002237676A1 (en) | 2000-11-22 | 2002-06-03 | Cargill Dow Polymers, Llc | Methods and materials for the synthesis of organic products |
US6818146B2 (en) | 2001-01-16 | 2004-11-16 | Shell Oil Company | Chemical base for engine coolant/antifreeze with improved thermal stability properties |
US7452479B2 (en) | 2001-02-14 | 2008-11-18 | Shell Oil Company | Chemical base for fuel cell engine heat exchange coolant/antifreeze comprising 1,3-propanediol |
CZ20032571A3 (en) | 2001-03-23 | 2004-02-18 | Akzo Nobel N. V. | Stable water emulsions of organic peroxides |
DE10127004B4 (en) * | 2001-06-01 | 2005-08-18 | Clariant Gmbh | The use of electrochemically inhibited water / glycol mixtures as deicing and anti-icing agents |
US20050154411A1 (en) * | 2001-08-23 | 2005-07-14 | Breznock Eugene M. | Method and apparatus for trephinating body vessels and hollow organ walls |
JP2003171254A (en) * | 2001-09-25 | 2003-06-17 | Sakamoto Bio:Kk | Melanogenesis inhibitor composition |
CN1273023C (en) * | 2001-10-19 | 2006-09-06 | 张杰克 | Preparation process of broad-spectrum biological pesticide |
JP3735841B2 (en) * | 2001-11-19 | 2006-01-18 | 学校法人慶應義塾 | Coated polytrimethylene terephthalate products |
US20030228395A1 (en) | 2002-01-31 | 2003-12-11 | Archer-Daniels Midland Company | Isotropic transparent structured fluids |
US6596189B1 (en) | 2002-02-01 | 2003-07-22 | General Atomics International Services Corporation | Aircraft runway deicing composition |
US6742345B2 (en) | 2002-03-27 | 2004-06-01 | The Penray Companies, Inc. | Temperature control system using aqueous 1,3-propanediol solution |
US6635188B1 (en) | 2002-04-18 | 2003-10-21 | Board Of Trustees Of Michigan State University | Windshield washer and deicer |
US7663004B2 (en) | 2002-04-22 | 2010-02-16 | The Curators Of The University Of Missouri | Method of producing lower alcohols from glycerol |
US20050109979A1 (en) | 2002-05-02 | 2005-05-26 | Shishiai-Kabushikigaisha | Coolant composition for fuel cell |
FR2839516B1 (en) * | 2002-05-13 | 2006-08-04 | Pierre Bruno Grascha | WORKSHOP DETERGENT FORMULATION |
WO2004000242A1 (en) | 2002-06-25 | 2003-12-31 | Cosmeceutic Solutions Pty Ltd | Topical cosmetic compositions |
US20040024102A1 (en) | 2002-07-30 | 2004-02-05 | Hayes Richard Allen | Sulfonated aliphatic-aromatic polyetherester films, coatings, and laminates |
GB2391471B (en) | 2002-08-02 | 2005-05-04 | Satishchandra Punambhai Patel | Pharmaceutical compositions |
US7419655B2 (en) * | 2002-09-11 | 2008-09-02 | Kimberly-Clark Worldwide, Inc. | Skin care products |
US7625642B2 (en) * | 2002-09-26 | 2009-12-01 | Hitachi Chemical Co., Ltd | Borazine-based resin, and method for production thereof, borazine based resin composition, insulating coating and method for formation thereof, and electronic parts having the insulating coating |
JP2004131426A (en) * | 2002-10-10 | 2004-04-30 | Ito En Ltd | Antimicrobial agent using leaf of lagerstroemia speciosa l., method for producing the same and method for producing antimicrobial product |
US20040076684A1 (en) | 2002-10-18 | 2004-04-22 | Ching-Chi Lin | Nutritional compositions for alleviating fatigue |
US7169321B2 (en) | 2002-10-28 | 2007-01-30 | Battelle Memorial Institute | Biobased deicing/anti-icing fluids |
DE10258385A1 (en) | 2002-12-12 | 2004-06-24 | Basf Ag | Azole derivatives are used in anti-freeze concentrates for improving the active life of 1,3-propanediol-based coolants for fuel cells especially used in vehicles |
DE10302093A1 (en) | 2003-01-21 | 2004-07-29 | Basf Ag | Heat carrier liquid concentrate based on glycol or diluted with water, used in solar plant, e.g. in direct contact with glass, contains aliphatic amine, silicate, triazole or thiazole corrosion inhibitor, molybdate and hard water stabilizer |
DE10313280A1 (en) | 2003-03-25 | 2004-10-07 | Basf Ag | Antifreeze concentrates and coolant compositions based on polyglycols and amides for the protection of magnesium and its alloys |
EP2239334A1 (en) | 2003-05-06 | 2010-10-13 | E. I. du Pont de Nemours and Company | Purification of biologically-produced 1,3-propanediol |
CA2522774A1 (en) * | 2003-05-06 | 2004-11-25 | E. I. Du Pont De Nemours And Company | Hydrogenation of biochemically derived 1,3-propanediol |
US7323539B2 (en) | 2003-05-06 | 2008-01-29 | E. I. Du Pont De Nemours And Company | Polytrimethylene ether glycol and polytrimethylene ether ester with excellent quality |
CN1190400C (en) * | 2003-06-02 | 2005-02-23 | 大连理工大学 | Method for extracting and separating 1,3-propylene glycol from microbial fermented liquor |
JP2005015401A (en) * | 2003-06-26 | 2005-01-20 | Kao Corp | Preservative composition, composition for external use, and preserving method |
US7407600B2 (en) | 2003-07-07 | 2008-08-05 | Dupont Tale + Lyle Bio Products Company, Llc | Heat-transfer systems |
US7326677B2 (en) * | 2003-07-11 | 2008-02-05 | The Procter & Gamble Company | Liquid laundry detergent compositions comprising a silicone blend of non-functionalized and amino-functionalized silicone polymers |
US7179769B2 (en) | 2003-07-17 | 2007-02-20 | E. I. Du Pont De Nemours And Company | Poly (trimethylene-ethylene ether) glycol lube oils |
US7220405B2 (en) * | 2003-09-08 | 2007-05-22 | E. I. Du Pont De Nemours And Company | Peptide-based conditioners and colorants for hair, skin, and nails |
BRPI0416546A (en) * | 2003-12-04 | 2007-01-09 | Cargill Inc | 3-hydroxypropionic acid production using beta-alanine / pyruvate aminotransferase |
US7452617B2 (en) | 2003-12-16 | 2008-11-18 | General Motors Corporation | Fuel cell dielectric coolant and evaporative cooling process using same |
US20050154147A1 (en) * | 2003-12-22 | 2005-07-14 | Germroth Ted C. | Polyester compositions |
US7368503B2 (en) * | 2003-12-22 | 2008-05-06 | Eastman Chemical Company | Compatibilized blends of biodegradable polymers with improved rheology |
PT1564225E (en) | 2004-02-10 | 2015-02-06 | Arkema France | Non-gel hydroxyperoxyester emulsion |
CN100564330C (en) * | 2004-02-27 | 2009-12-02 | 陶氏环球技术公司 | From the aqueous stream that contains organic compound, reclaim the method for this organic compound |
WO2005091413A1 (en) | 2004-03-24 | 2005-09-29 | Shishiai-Kabushikigaisha | Cooling fluid composition for fuel cell |
US6887597B1 (en) | 2004-05-03 | 2005-05-03 | Prestone Products Corporation | Methods and composition for cleaning and passivating fuel cell systems |
EP1604647B1 (en) | 2004-05-12 | 2008-05-07 | Chisso Corporation | Cosmetic composition containing polyorganosiloxane-containing epsilon-polylysine polymer, and polyhydric alcohol, and production thereof |
US7494963B2 (en) * | 2004-08-11 | 2009-02-24 | Delaval Holding Ab | Non-chlorinated concentrated all-in-one acid detergent and method for using the same |
US7435359B2 (en) | 2004-12-21 | 2008-10-14 | Hercules Chemical Company Incorporated | Corrosion inhibiting heat transfer materials |
WO2006066572A2 (en) * | 2004-12-22 | 2006-06-29 | Gumlink A/S | Biodegradable chewing gum comprising biodegradable polymer with high glass transition temperature |
US20060202156A1 (en) | 2005-02-02 | 2006-09-14 | Richard Sapienza | Environmentally benign anti-icing or deicing fluids employing industrial streams comprising hydroxycarboxylic acid salts and/or other effective deicing/anti-icing agents |
US7413677B2 (en) | 2005-02-25 | 2008-08-19 | E. I. Du Pont De Nemours And Company | Process for heat transfer utilizing a polytrimethylene homo- or copolyether glycol based heat transfer fluid |
CN1329518C (en) * | 2005-04-07 | 2007-08-01 | 东南大学 | Method for producing 1,3-propylene glycol through ferment in high cell density by using bacteria in intestinal tract |
JP2008546910A (en) | 2005-06-24 | 2008-12-25 | ハネウェル・インターナショナル・インコーポレーテッド | Method for inhibiting corrosion on brazed metal surfaces, and coolants and additives for use therein |
CN101227857B (en) | 2005-06-29 | 2011-10-19 | 电脑医师有限公司 | Sensor assembly with conductive bridge |
US8372912B2 (en) * | 2005-08-12 | 2013-02-12 | Eastman Chemical Company | Polyvinyl chloride compositions |
US20080312121A1 (en) | 2005-09-08 | 2008-12-18 | Kirk Herbert Raney | Liquid Surface Active Compositions |
EP1800545A1 (en) | 2005-12-23 | 2007-06-27 | Nestec S.A. | Pet food and processes of producing the same |
US20070275139A1 (en) * | 2006-02-10 | 2007-11-29 | Melissa Joerger | Food compositions comprising renewably-based, biodegradable1,3-propanediol |
JP2009532506A (en) * | 2006-02-10 | 2009-09-10 | デユポン・テイト・アンド・ライル・バイオ・プロダクツ・カンパニー・エルエルシー | Biologically based compositions comprising mono- and diesters of 1,3-propanediol |
WO2007095255A2 (en) * | 2006-02-10 | 2007-08-23 | Dupont Tate & Lyle Bio Products Company, Llc | Biodegradable compositions comprising renewably-based, biodegradable 1.3-propanediol |
US20070207113A1 (en) * | 2006-02-10 | 2007-09-06 | Melissa Joerger | Personal care and cosmetic compositions comprising renewably-based, biodegradable 1,3-propanediol |
CN100485021C (en) | 2006-08-08 | 2009-05-06 | 陈玉山 | Natural animal essence muskrat fragrant active component, preparation technology and its use |
WO2008061187A1 (en) * | 2006-11-15 | 2008-05-22 | Dupont Tate & Lyle Bio Products Company, Llc | Preservative compositions comprising renewably-based, biodegradable 1,3-propanediol |
KR101794428B1 (en) | 2012-12-25 | 2017-11-06 | 비와이디 컴퍼니 리미티드 | Battery |
-
2007
- 2007-02-12 US US11/705,346 patent/US20070207113A1/en not_active Abandoned
- 2007-02-12 EP EP07750672A patent/EP1991515A4/en not_active Withdrawn
- 2007-02-12 ES ES16166619T patent/ES2797782T3/en active Active
- 2007-02-12 JP JP2008554434A patent/JP5622359B2/en active Active
- 2007-02-12 US US11/705,276 patent/US20070207940A1/en not_active Abandoned
- 2007-02-12 US US11/705,245 patent/US7960575B2/en active Active
- 2007-02-12 US US11/705,262 patent/US20070202062A1/en not_active Abandoned
- 2007-02-12 US US11/705,198 patent/US7759393B2/en active Active
- 2007-02-12 US US11/705,212 patent/US7988883B2/en active Active
- 2007-02-12 US US11/705,312 patent/US20070213247A1/en not_active Abandoned
- 2007-02-12 US US11/705,257 patent/US20070207939A1/en not_active Abandoned
- 2007-02-12 US US11/705,342 patent/US20070203323A1/en not_active Abandoned
- 2007-02-12 EP EP07873397A patent/EP2007210A4/en not_active Withdrawn
- 2007-02-12 US US11/705,227 patent/US20070202073A1/en not_active Abandoned
- 2007-02-12 US US11/705,275 patent/US20070200087A1/en not_active Abandoned
- 2007-02-12 US US11/705,254 patent/US20070241306A1/en not_active Abandoned
- 2007-02-12 WO PCT/US2007/003839 patent/WO2008123845A2/en active Application Filing
- 2007-02-12 WO PCT/US2007/003850 patent/WO2007095262A2/en active Application Filing
- 2007-02-12 CN CN201510639438.9A patent/CN105175257A/en active Pending
- 2007-02-12 US US11/705,327 patent/US20070203276A1/en not_active Abandoned
- 2007-02-12 CN CN201510400748.5A patent/CN105078773A/en active Pending
- 2007-02-12 EP EP16166619.3A patent/EP3085683B1/en active Active
-
2009
- 2009-04-21 US US12/427,232 patent/US7972530B2/en active Active
- 2009-09-04 US US12/554,056 patent/US20090325853A1/en not_active Abandoned
- 2009-10-15 US US12/579,538 patent/US8309116B2/en active Active
-
2010
- 2010-05-25 US US12/786,506 patent/US8048920B2/en active Active
-
2011
- 2011-09-21 US US13/238,776 patent/US8436046B2/en active Active
-
2012
- 2012-03-07 US US13/413,844 patent/US20130071535A1/en not_active Abandoned
-
2013
- 2013-03-15 US US13/834,000 patent/US8598231B2/en active Active
- 2013-03-15 US US13/833,539 patent/US8802729B2/en active Active
- 2013-08-15 JP JP2013168759A patent/JP2014027937A/en active Pending
-
2014
- 2014-01-15 JP JP2014004699A patent/JP5916773B2/en active Active
- 2014-07-14 US US14/330,624 patent/US9668951B2/en active Active
- 2014-07-14 US US14/330,640 patent/US9375390B2/en active Active
-
2015
- 2015-01-05 US US14/589,193 patent/US20150125403A1/en not_active Abandoned
- 2015-02-06 JP JP2015022228A patent/JP6006817B2/en active Active
-
2016
- 2016-12-12 JP JP2016239955A patent/JP6243999B2/en active Active
-
2017
- 2017-04-21 US US15/494,183 patent/US20170216171A1/en not_active Abandoned
-
2018
- 2018-06-20 US US16/013,180 patent/US20180303732A1/en not_active Abandoned
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220387272A1 (en) * | 2021-05-27 | 2022-12-08 | Hani Hajomar | Clay mask for treating skin |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9668951B2 (en) | Pharmaceutical compositions comprising renewably-based biodegradable 1,3-propanediol | |
JP4817182B2 (en) | Hair cosmetics | |
JP2009525760A (en) | Biodegradable composition comprising a regeneration-based biodegradable 1,3-propanediol | |
JP2010053063A (en) | Composition | |
JP4632673B2 (en) | Composition and antioxidant | |
JP2010043041A (en) | Cosmetic composition | |
US20230056021A1 (en) | Ultrafine bubble generator and ultrafine bubble generation method | |
JP2003119151A (en) | Cosmetic composition, or food and drink | |
JP2011026278A (en) | Hair cosmetic using biosurfactant | |
JP2010043042A (en) | Cosmetic composition | |
JP2010018582A (en) | COSMETIC COMPOSITION CONTAINING POLY-gamma-L-GLUTAMIC ACID AND/OR ITS SALT | |
JP2011026277A (en) | Hair cosmetic using biosurfactant | |
KR20220088317A (en) | Anti-aging composition comprising fermented propolis | |
JP2011026279A (en) | Hair wash using biosurfactant | |
JP2010043043A (en) | Cosmetic composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: DUPONT TATE & LYLE BIO PRODUCTS COMPANY, LLC, DELA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FENYVESI, GYORGYI;JOERGER, MELISSA;MILLER, ROBERT;AND OTHERS;SIGNING DATES FROM 20130711 TO 20130806;REEL/FRAME:031361/0812 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
AS | Assignment |
Owner name: PRIMIENT COVATION LLC, TENNESSEE Free format text: CHANGE OF NAME;ASSIGNOR:DUPONT TATE & LYLE BIO PRODUCTS COMPANY, LLC;REEL/FRAME:060979/0818 Effective date: 20220712 |