US20120211130A1 - High-elongation rate aluminum alloy material for cable and preparation method thereof - Google Patents
High-elongation rate aluminum alloy material for cable and preparation method thereof Download PDFInfo
- Publication number
- US20120211130A1 US20120211130A1 US13/395,423 US201013395423A US2012211130A1 US 20120211130 A1 US20120211130 A1 US 20120211130A1 US 201013395423 A US201013395423 A US 201013395423A US 2012211130 A1 US2012211130 A1 US 2012211130A1
- Authority
- US
- United States
- Prior art keywords
- aluminum alloy
- alloy
- rare earth
- content
- alloy material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 176
- 239000000956 alloy Substances 0.000 title claims abstract description 73
- 238000002360 preparation method Methods 0.000 title abstract description 3
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 31
- 238000005266 casting Methods 0.000 claims abstract description 28
- 239000012535 impurity Substances 0.000 claims abstract description 28
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 26
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 15
- 229910052742 iron Inorganic materials 0.000 claims abstract description 14
- 238000000137 annealing Methods 0.000 claims abstract description 13
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 11
- 229910052746 lanthanum Inorganic materials 0.000 claims abstract description 11
- 230000004927 fusion Effects 0.000 claims abstract description 7
- 239000007788 liquid Substances 0.000 claims description 50
- 238000000034 method Methods 0.000 claims description 32
- 238000005096 rolling process Methods 0.000 claims description 22
- 238000007670 refining Methods 0.000 claims description 21
- 229910045601 alloy Inorganic materials 0.000 claims description 20
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 18
- 239000003795 chemical substances by application Substances 0.000 claims description 15
- 229910018084 Al-Fe Inorganic materials 0.000 claims description 13
- 229910018192 Al—Fe Inorganic materials 0.000 claims description 13
- 239000011780 sodium chloride Substances 0.000 claims description 9
- 239000000843 powder Substances 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract description 16
- 239000000463 material Substances 0.000 abstract description 14
- 239000004020 conductor Substances 0.000 abstract description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract 2
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 abstract 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 abstract 1
- 239000010703 silicon Substances 0.000 abstract 1
- 239000002893 slag Substances 0.000 description 16
- 238000012360 testing method Methods 0.000 description 16
- 229910052802 copper Inorganic materials 0.000 description 13
- 239000010949 copper Substances 0.000 description 13
- 238000005452 bending Methods 0.000 description 10
- 229910052804 chromium Inorganic materials 0.000 description 10
- 229910052748 manganese Inorganic materials 0.000 description 10
- 229910052719 titanium Inorganic materials 0.000 description 10
- 229910052720 vanadium Inorganic materials 0.000 description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 9
- 239000000498 cooling water Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 238000004321 preservation Methods 0.000 description 8
- 150000002910 rare earth metals Chemical class 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 5
- 230000002349 favourable effect Effects 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000013019 agitation Methods 0.000 description 4
- 238000005271 boronizing Methods 0.000 description 4
- 238000009749 continuous casting Methods 0.000 description 4
- 229910001873 dinitrogen Inorganic materials 0.000 description 4
- 238000007667 floating Methods 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 4
- 238000011056 performance test Methods 0.000 description 4
- 238000010998 test method Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D21/00—Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
- B22D21/002—Castings of light metals
- B22D21/007—Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/06—Making non-ferrous alloys with the use of special agents for refining or deoxidising
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
Definitions
- the present invention pertains to the field of nonferrous metal materials, in particular to an aluminum alloy material with high elongation for cables and a preparation method for the same.
- the object of the present invention is to provide an aluminum alloy material with high elongation for cables.
- the wires and cables have high elongation, and can be used safely and stably.
- an aluminum alloy material with high elongation for cables comprising the following components: Fe: 0.30 ⁇ 1.20 wt %, Si: 0.03 ⁇ 0.10 wt %, rare earth elements (i.e. Ce and La): 0.01 ⁇ 0.30 wt %, and the rest are Al and inevitable impurities.
- Another object of the present invention is to provide a method for preparing the aluminum alloy material with high elongation, comprising the following steps:
- said rare earth-Al alloy is the alloy of Al and rare earth elements (Ce and La); next, adding a refining agent in 0.04 ⁇ 0.06 pbw and refining for 8 ⁇ 20 minutes; then, holding at the temperature for 20 ⁇ 40 minutes, and then casting;
- Said aluminum alloy material further comprises inevitable impurity elements, the total content of which in the aluminum alloy material is lower than 0.3 wt %.
- the content of Ca in the impurities is lower than 0.02 wt %, and the content of any other impurity element is lower than 0.01%, so as to reduce the influence of the impurity elements on the conductivity of the aluminum alloy material.
- the aluminum alloy material with high elongation for cables provided in the present invention is a new type Al—Fe alloy material with the following advantages:
- the content of Fe according to the present invention is controlled within the range of 0.30 ⁇ 1.20%; thus the strength of the aluminum alloy can be increased, and the creep resistance and thermal stability of the aluminum alloy can also be improved.
- the creep resistance is improved by 300% when compared to the conventional EC-aluminum material; furthermore, Fe can improve the toughness of the aluminum alloy, and the compression factor of the aluminum alloy material in the compression and twisting process can be as high as 0.93 or above, which can not be achieved by the conventional EC-aluminum material.
- the compacted conductor made of the aluminum alloy in the same outside diameter has larger sectional area, higher electrical conductivity and higher stability, and is lower in production cost.
- the content of Si according to the present invention is controlled within the range of 0.03 ⁇ 0.10%, which ensures the enhancement effect of Si to the strength of the aluminum alloy.
- the rare earth elements according to the present invention can reduce the content of Si, and thereby reduce the influence of Fe, in particular Si on the conductivity of aluminum alloy to a very low level; moreover, the addition of rare earth elements improves the crystal structure of the aluminum alloy material and thereby improves the processing properties of the aluminum alloy material, and is favorable for processing of the aluminum alloy material.
- the rare earth elements according to the present invention are mainly Ce and La, which can well attain the performance described in 3).
- the element B according to the present invention can react with impurity elements such as Ti, V, Mn, Cr, etc., and form chemical compounds, which deposit and then can be removed; therefore, the influence of impurity elements (e.g., Ti, V, Mn, Cr, etc.) on the conductivity of aluminum alloy can be reduced; thus, the conductivity of aluminum alloy can be improved.
- impurity elements such as Ti, V, Mn, Cr, etc.
- the alloy material is conducted by semi-annealing treatment when the aluminum alloy is prepared in the present invention; therefore, the adverse effect of stress to the structure of the conductor during the drawing and twisting process can be reduced, so that the conductivity can be up to or even higher than 61% IACS (the criterion for conductivity of conductors made of conventional EC-aluminum is 61% IACS); in addition, the annealing treatment can greatly improve the elongation and flexibility of the aluminum alloy material. Cables made of the aluminum alloy material provided in the present invention can have the elongation as high as 30%, and the flexibility 25% higher than that of the copper cables, and a bending radius as small as 7 times of the outside diameter, while the bending radius of copper cable is 15 times of the outside diameter.
- the furnace temperature is increased to 720 ⁇ 760° C., and not higher than 760° C.
- increasing the temperature is favorable for melting of the rare earth-Al alloy and B ⁇ Al alloy, and thereby the treatment effect of rare earth elements and element B can be improved.
- Adding rare earth-Al alloy and B—Al alloy in different time periods is to allow the rare earth elements and element B to play a full part, so as to improve the effect.
- the aluminum alloy liquid including which is located at the corner positions in the furnace should be agitated for 5 minutes.
- the volume of water inside the casting wheels to that outside the casting wheels 3: 2; the volume of secondary cooling water should be adjusted according to the temperature of the cast strips.
- the aluminum alloy material obtained in that way contains the following components measured by weight percentage: Fe: 0.3%, Si: 0.03%, Ce: 0.008%, La: 0.002%, B: 0.005%, Ca: 0.015%, Cu: 0.002%, Mg: 0.005%, Zn: 0.002%, Ti: 0.002%, V: 0.005%, Mn: 0.002%, Cr: 0.001%, Al: the remaining part.
- element B reacts with impurity elements such as Ti, V, Mn, Cr, etc., and forms chemical compounds, which deposit and can be removed, the content of element B in the resulting aluminum alloy material is lower than the amount added actually. It is seen that the total impurity content in the aluminum alloy material is lower than 0.3%, wherein, the content of any other impurity element is lower than 0.01%, except for the content of Ca, which is lower than 0.02%.
- Tensile strength and elongation are tested according to the method described in ASTM B577; conductivity is tested according to the method described in ASTM B193, flexibility is tested according to the method of “Partial Discharge Test after Bending Test” described in GB 12706.1, and creep property is tested according to the creep test method described in the manual “Wires and Cables”.
- the performance data of the aluminum alloy material with high elongation in this embodiment is: tensile strength: 106 MPa; elongation: 28%; conductivity: 63.0% IACS; partial discharge test after 6 ⁇ bending radius test: passed; creep resistance: higher than EC-aluminum by 310%.
- the furnace temperature is increased to 720 ⁇ 760° C., and not higher than 760° C. .
- increasing the temperature is favorable for melting of the rare earth-Al alloy and B—Al alloy, and thereby the treatment effect of rare earth elements and element B can be improved.
- Adding rare earth-Al alloy and B—Al alloy in different time periods is to allow to the rare earth elements and element B to play a full part, so as to improve the effect.
- the aluminum alloy liquid including which is located at the corner positions in the furnace should be agitated for 5 minutes.
- the volume of water inside the casting wheels to that outside the casting wheels 3: 2; the volume of secondary cooling water should be adjusted according to the temperature of the cast strips.
- the aluminum alloy material obtained in that way contains the following components measured by weight percentage: Fe: 1.2%, Si: 0.08%, Ce: 0.019%, La: 0.10%, B: 0.004%, Ca: 0.01%, Cu: 0.002%, Mg: 0.004%, Zn: 0.003%, Ti: 0.002%, V: 0.002%, Mn: 0.005%, Cr: 0.002%, Al: the remaining part.
- element B reacts with impurity elements such as Ti, V, Mn, Cr, etc., and forms chemical compounds, which deposit and can be removed, the content of element B in the resulting aluminum alloy material is lower than the amount added actually.
- the total impurity content in the aluminum alloy material is lower than 0.3%, wherein, the content of any other impurity element is lower than 0.01%, except for the content of Ca, which is lower than 0.02%.
- Tensile strength and elongation are tested according to the method described in ASTM B577; conductivity is tested according to the method described in ASTM B193, flexibility is tested according to the method of “Partial Discharge Test after Bending Test” described in GB 12706.1, and creep property is tested according to the creep test method described in the manual “Wires and Cables”.
- the performance data of the aluminum alloy material with high conductivity, high elongation, high flexibility, and high creep resistance in this embodiment is: tensile strength: 92 MPa; elongation: 36%; conductivity: 61.0% IACS; partial discharge test after 7 ⁇ bending radius test: passed; creep resistance: higher than EC-aluminum by 330%.
- the furnace temperature is increased to 720 ⁇ 760° C., and not higher than 760° C. .
- increasing the temperature is favorable for melting of the rare earth-Al alloy and B—Al alloy, and the treatment effect of rare earth elements and element B can be improved.
- the aluminum alloy liquid including which is located at the corner positions in the furnace should be agitated for 5 minutes.
- the volume of water inside the casting wheels to that outside the casting wheels 3: 2; the volume of secondary cooling water should be adjusted according to the temperature of the cast strips.
- the aluminum alloy material obtained in that way contains the following components measured by weight percentage: Fe: 0.55%, Si: 0.10%, Ce: 0.15%, La: 0.06%, B: 0.007%, Ca: 0.013%, Cu: 0.003%, Mg: 0.004%, Zn: 0.004%, Ti: 0.002%, V: 0.004%, Mn: 0.003%, Cr: 0.002%, Al: the remaining part.
- element B reacts with impurity elements such as Ti, V, Mn, Cr, etc., and forms chemical compounds, which deposit and can be removed, the content of element B in the resulting aluminum alloy material is lower than the amount added actually.
- the total impurity content in the aluminum alloy material is lower than 0.3%, wherein, the content of any other impurity element is lower than 0.01%, except for the content of Ca, which is lower than 0.02%.
- Tensile strength and elongation are tested according to the method described in ASTM B577; conductivity is tested according to the method described in ASTM B193, flexibility is tested according to the method of “Partial Discharge Test after Bending Test” described in GB 12706.1, and creep property is tested according to the creep test method described in the manual “Wires and Cables”.
- the performance data of the aluminum alloy material with high elongation in this embodiment is: tensile strength: 106 MPa, elongation: 30.2%; conductivity: 62.6% IACS; partial discharge test after 6 ⁇ bending radius test: passed; creep resistance: higher than EC-aluminum by 330%.
- the furnace temperature is increased to 720 ⁇ 760° C., and not higher than 760° C.
- increasing the temperature is favorable for melting of the rare earth-Al alloy and B—Al alloy, and the treatment effect of rare earth elements and element B can be improved.
- the aluminum alloy liquid including which is located at the corner positions in the furnace should be agitated for 5 minutes.
- the volume of water inside the casting wheels to that outside the casting wheels 3: 2; the volume of secondary cooling water should be adjusted according to the temperature of the cast strips.
- the aluminum alloy material obtained in that way contains the following components measured by weight percentage: Fe: 0.80%, Si: 0.04%, Ce: 0.10%, La: 0.06%, B: 0.008%, Ca: 0.011%, Cu: 0.005%, Mg: 0.004%, Zn: 0.006%, Ti: 0.003%, V: 0.003%, Mn: 0.005%, Cr: 0.002%, Al: the remaining part.
- element B reacts with impurity elements such as Ti, V, Mn, Cr, etc., and forms chemical compounds, which deposit and can be removed, the content of element B in the resulting aluminum alloy material is lower than the amount added actually.
- the total impurity content in the aluminum alloy material is lower than 0.3%, wherein, the content of any other impurity element is lower than 0.01%, except for the content of Ca, which is lower than 0.02%.
- Tensile strength and elongation are tested according to the method described in ASTM B577; conductivity is tested according to the method described in ASTM B193, flexibility is tested according to the method of “Partial Discharge Test after Bending Test” described in GB 12706.1, and creep property is tested according to the creep test method described in the manual “Wires and Cables”.
- the performance data of the aluminum alloy material with high elongation in this embodiment is: tensile strength: 97 MPa; elongation: 35.2%; conductivity: 62.0% IACS; partial discharge test after 6 ⁇ bending radius test: passed; creep resistance: higher than EC-aluminum by 330%.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Conductive Materials (AREA)
- Continuous Casting (AREA)
- Manufacture And Refinement Of Metals (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2009101166357A CN101525709B (zh) | 2009-04-24 | 2009-04-24 | 电缆用高延伸率铝合金材料及其制备方法 |
| CN200910116635.7 | 2009-04-24 | ||
| PCT/CN2010/071654 WO2010121517A1 (zh) | 2009-04-24 | 2010-04-09 | 电缆用高延伸率铝合金材料及其制备方法 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20120211130A1 true US20120211130A1 (en) | 2012-08-23 |
Family
ID=41093778
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/395,423 Abandoned US20120211130A1 (en) | 2009-04-24 | 2010-04-09 | High-elongation rate aluminum alloy material for cable and preparation method thereof |
Country Status (8)
| Country | Link |
|---|---|
| US (1) | US20120211130A1 (enExample) |
| EP (1) | EP2468907A4 (enExample) |
| JP (1) | JP2012524837A (enExample) |
| CN (1) | CN101525709B (enExample) |
| AU (1) | AU2010239014B2 (enExample) |
| CA (1) | CA2773050A1 (enExample) |
| RU (1) | RU2550063C2 (enExample) |
| WO (1) | WO2010121517A1 (enExample) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20140319956A1 (en) * | 2013-04-26 | 2014-10-30 | GM Global Technology Operations LLC | Aluminum alloy rotor for an electromagnetic device |
| CN104532067A (zh) * | 2014-12-12 | 2015-04-22 | 华北电力大学 | 一种非热处理型中强度铝合金导体材料及其制备方法 |
| CN113151716A (zh) * | 2021-03-08 | 2021-07-23 | 上海工程技术大学 | 一种电缆屏蔽用Al-Fe-Mg-Cu系铝合金及其制备方法 |
| WO2021206444A1 (ko) * | 2020-04-08 | 2021-10-14 | 주식회사 큐프럼 머티리얼즈 | 배선막 제조 방법, 배선막 및 이를 포함하는 표시 장치 |
| CN113689970A (zh) * | 2021-08-23 | 2021-11-23 | 安徽中青欣意铝合金电缆有限公司 | 电动汽车充电用抗曲挠铝合金电缆及其制备方法 |
| CN115595459A (zh) * | 2022-09-19 | 2023-01-13 | 江苏中天科技股份有限公司(Cn) | 高强高导铝合金单丝的制备方法及铝合金单丝 |
| CN116435003A (zh) * | 2023-05-24 | 2023-07-14 | 中天科技海缆股份有限公司 | 改性铝合金导体及其生产工艺、改性铝合金导体电缆 |
| CN120183778A (zh) * | 2025-05-22 | 2025-06-20 | 广西电网有限责任公司电力科学研究院 | 一种稀土微合金化Al-Fe-Si基多用途铝合金导线及其制备方法 |
Families Citing this family (30)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101525709B (zh) * | 2009-04-24 | 2010-08-11 | 安徽欣意电缆有限公司 | 电缆用高延伸率铝合金材料及其制备方法 |
| CN101880799A (zh) * | 2010-07-13 | 2010-11-10 | 安徽欣意电缆有限公司 | 铝铁锌镁稀土合金电线及其制造方法 |
| CN101937733B (zh) * | 2010-07-13 | 2012-04-18 | 安徽欣意电缆有限公司 | 民用铝合金布线的制备方法 |
| CN101886198A (zh) * | 2010-07-13 | 2010-11-17 | 安徽欣意电缆有限公司 | 电缆用高导电率铝合金材料及其制备方法 |
| CN101914708B (zh) * | 2010-08-20 | 2012-12-19 | 安徽省惠尔电气有限公司 | 一种Al-Fe-Cu合金材料及其制备方法 |
| CN101948971B (zh) * | 2010-09-16 | 2013-02-13 | 安徽亚南电缆厂 | 电缆用耐热型铝合金导体材料及其制备方法 |
| CN101974709B (zh) * | 2010-09-21 | 2011-12-14 | 安徽欣意电缆有限公司 | 特软铝合金导体及其制备方法 |
| CN102021442B (zh) * | 2010-09-21 | 2012-08-29 | 安徽亚南电缆厂 | 一种特细铝合金线及其制备方法 |
| CN102002614A (zh) * | 2010-10-08 | 2011-04-06 | 黄洋铜业有限公司 | 低阻铝导线及其生产方法 |
| CN101962723A (zh) * | 2010-10-27 | 2011-02-02 | 江西南缆集团有限公司 | 一种细小截面线材用铝合金材料及其制造方法 |
| CN102134693A (zh) * | 2011-03-15 | 2011-07-27 | 安徽欣意电缆有限公司 | 电缆用稀土铁铝合金导体材料的退火方法 |
| CN102682872B (zh) * | 2011-03-18 | 2014-03-26 | 上海电缆研究所 | 一种半硬铝线和架空导线及其制备方法 |
| CN102146539A (zh) * | 2011-03-18 | 2011-08-10 | 常州鸿泽澜线缆有限公司 | 一种用于高压电缆的铝合金导体及其制备方法 |
| CN102206776B (zh) * | 2011-05-25 | 2012-09-12 | 登封市银河铝箔有限公司 | 一种蜂窝铝箔材料 |
| CN102354541B (zh) * | 2011-06-24 | 2012-06-20 | 河北科力特电缆有限公司 | 高强度耐氧化铝合金导电线芯及其制造方法 |
| CN102262913B (zh) * | 2011-07-07 | 2013-05-08 | 安徽欣意电缆有限公司 | 稀土高铁铝合金导体材料 |
| CN102347092B (zh) * | 2011-10-10 | 2013-02-20 | 安徽欣意电缆有限公司 | 一种稀土铝合金材料 |
| CN103060647B (zh) * | 2011-10-24 | 2014-12-31 | 贵州华科铝材料工程技术研究有限公司 | 一种钌羰基配合物变质的高性能铝合金材料及其制备方法 |
| CN103131903A (zh) * | 2013-03-12 | 2013-06-05 | 江苏广庆电子材料有限公司 | 一种含稀土元素的高强高导铝合金材料及其加工方法 |
| CN104046862A (zh) * | 2014-05-20 | 2014-09-17 | 南京南车浦镇城轨车辆有限责任公司 | 含有稀土元素的a7n01铝合金及其板材的制备方法 |
| CN104004946B (zh) * | 2014-06-06 | 2016-03-30 | 江苏大学 | 690-730MPa超高强度80-100mm淬透性铝合金及其制备方法 |
| CN104004947B (zh) * | 2014-06-06 | 2016-05-04 | 江苏大学 | 600-650MPa强度高抗晶间腐蚀铝合金及其制备方法 |
| CN104805338A (zh) * | 2015-05-21 | 2015-07-29 | 广西友合铝材有限公司 | 一种稀土铝铁铜合金线材及其制备方法 |
| CN105296816B (zh) * | 2015-12-08 | 2016-09-14 | 江苏东强股份有限公司 | 高导电铝合金材料及其铝合金电缆导体的制备方法 |
| CN105838942A (zh) * | 2016-05-20 | 2016-08-10 | 淮安和通汽车零部件有限公司 | 一种6042铝合金及其制备方法 |
| CN105861894A (zh) * | 2016-05-20 | 2016-08-17 | 淮安和通汽车零部件有限公司 | 一种6401a铝合金及其制备方法 |
| CN111224108A (zh) * | 2020-01-19 | 2020-06-02 | 上海华峰铝业股份有限公司 | 一种低电阻率的锂离子电池正极集流体 |
| CN114227060A (zh) * | 2021-12-27 | 2022-03-25 | 广东凤铝铝业有限公司 | 一种提高新能源汽车用铝型材焊接性能的方法 |
| CN115449730B (zh) * | 2022-09-06 | 2023-07-07 | 合肥通用机械研究院有限公司 | 一种有效降低低硅铸造铝合金腐蚀速率的方法 |
| CN115896653B (zh) * | 2022-12-21 | 2024-04-02 | 广东领胜新材料科技有限公司 | 一种高强度铝合金圆杆的连铸连轧装置及方法 |
Family Cites Families (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3615371A (en) * | 1967-04-08 | 1971-10-26 | Furukawa Electric Co Ltd | Aluminum alloy for electric conductor |
| CH524225A (fr) * | 1968-05-21 | 1972-06-15 | Southwire Co | Fil ou barre en alliage d'aluminium |
| EG10355A (en) * | 1970-07-13 | 1976-05-31 | Southwire Co | Aluminum alloy used for electrical conductors and other articles and method of making same |
| ZA741430B (en) * | 1974-03-05 | 1975-02-26 | Southwire Co | Aluminium alloy wire producs and method of preparation thereof |
| JPS585254B2 (ja) * | 1975-02-14 | 1983-01-29 | 三菱電線工業株式会社 | 導電用軟質強力アルミニウム合金 |
| JPS5272315A (en) * | 1975-12-15 | 1977-06-16 | Sumitomo Electric Ind Ltd | Aluminum alloy for conductor |
| JPS5625950A (en) * | 1979-08-08 | 1981-03-12 | Furukawa Electric Co Ltd:The | Heat resistant aluminum alloy having high electrical conductivity |
| JPS5684440A (en) * | 1979-12-10 | 1981-07-09 | Dainichi Nippon Cables Ltd | Conductive high-strength aluminum alloy |
| JPS5831071A (ja) * | 1981-08-18 | 1983-02-23 | Furukawa Electric Co Ltd:The | 耐熱アルミニウム合金導体の製造方法 |
| US4397696A (en) * | 1981-12-28 | 1983-08-09 | Aluminum Company Of America | Method for producing improved aluminum conductor from direct chill cast ingot |
| DE3914020A1 (de) * | 1989-04-28 | 1990-10-31 | Vaw Ver Aluminium Werke Ag | Aluminiumwalzprodukt und verfahren zu seiner herstellung |
| JPH0372048A (ja) * | 1989-08-11 | 1991-03-27 | Sumitomo Light Metal Ind Ltd | 安定したグレー色の陽極酸化皮膜を生成するアルミニウム合金 |
| RU2141389C1 (ru) * | 1998-06-10 | 1999-11-20 | Локшин Михаил Зеликович | Способ изготовления электротехнической проволоки из алюминиевых сплавов |
| JP3604595B2 (ja) * | 1999-08-27 | 2004-12-22 | 三菱アルミニウム株式会社 | Ps版用アルミニウム合金支持体及びその製造方法 |
| EP1138792B1 (en) * | 2000-02-07 | 2004-04-07 | Kodak Polychrome Graphics Company Ltd. | Aluminium alloy support body for lithographic printing and method for producing the same |
| JP3677213B2 (ja) * | 2000-02-07 | 2005-07-27 | コダックポリクロームグラフィックス株式会社 | Ps版用アルミニウム合金支持体及びその製造方法 |
| CN100561345C (zh) * | 2005-05-20 | 2009-11-18 | 东北轻合金有限责任公司 | 印刷用ps版基用铝板的制造方法 |
| ITMI20060297A1 (it) * | 2006-02-17 | 2007-08-18 | Angeli Prodotti S R L | Cavo conduttore per linee elettriche |
| CN1941222A (zh) * | 2006-09-07 | 2007-04-04 | 上海电缆研究所 | 一种制造高强度耐热铝合金线的方法 |
| JP2008111142A (ja) * | 2006-10-27 | 2008-05-15 | Fujifilm Corp | 平版印刷版用アルミニウム合金板および平版印刷版用支持体 |
| RU2344187C2 (ru) * | 2006-12-28 | 2009-01-20 | Николай Степанович Куприянов | Алюминиевый сплав |
| CN101525709B (zh) * | 2009-04-24 | 2010-08-11 | 安徽欣意电缆有限公司 | 电缆用高延伸率铝合金材料及其制备方法 |
-
2009
- 2009-04-24 CN CN2009101166357A patent/CN101525709B/zh active Active
-
2010
- 2010-04-09 AU AU2010239014A patent/AU2010239014B2/en active Active
- 2010-04-09 WO PCT/CN2010/071654 patent/WO2010121517A1/zh not_active Ceased
- 2010-04-09 JP JP2012506317A patent/JP2012524837A/ja active Pending
- 2010-04-09 RU RU2011147346/02A patent/RU2550063C2/ru active
- 2010-04-09 EP EP10766607.5A patent/EP2468907A4/en not_active Withdrawn
- 2010-04-09 US US13/395,423 patent/US20120211130A1/en not_active Abandoned
- 2010-04-09 CA CA2773050A patent/CA2773050A1/en not_active Abandoned
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20140319956A1 (en) * | 2013-04-26 | 2014-10-30 | GM Global Technology Operations LLC | Aluminum alloy rotor for an electromagnetic device |
| US9601978B2 (en) * | 2013-04-26 | 2017-03-21 | GM Global Technology Operations LLC | Aluminum alloy rotor for an electromagnetic device |
| CN104532067A (zh) * | 2014-12-12 | 2015-04-22 | 华北电力大学 | 一种非热处理型中强度铝合金导体材料及其制备方法 |
| WO2021206444A1 (ko) * | 2020-04-08 | 2021-10-14 | 주식회사 큐프럼 머티리얼즈 | 배선막 제조 방법, 배선막 및 이를 포함하는 표시 장치 |
| CN113151716A (zh) * | 2021-03-08 | 2021-07-23 | 上海工程技术大学 | 一种电缆屏蔽用Al-Fe-Mg-Cu系铝合金及其制备方法 |
| CN113689970A (zh) * | 2021-08-23 | 2021-11-23 | 安徽中青欣意铝合金电缆有限公司 | 电动汽车充电用抗曲挠铝合金电缆及其制备方法 |
| CN115595459A (zh) * | 2022-09-19 | 2023-01-13 | 江苏中天科技股份有限公司(Cn) | 高强高导铝合金单丝的制备方法及铝合金单丝 |
| CN116435003A (zh) * | 2023-05-24 | 2023-07-14 | 中天科技海缆股份有限公司 | 改性铝合金导体及其生产工艺、改性铝合金导体电缆 |
| CN120183778A (zh) * | 2025-05-22 | 2025-06-20 | 广西电网有限责任公司电力科学研究院 | 一种稀土微合金化Al-Fe-Si基多用途铝合金导线及其制备方法 |
Also Published As
| Publication number | Publication date |
|---|---|
| CN101525709B (zh) | 2010-08-11 |
| JP2012524837A (ja) | 2012-10-18 |
| WO2010121517A1 (zh) | 2010-10-28 |
| CN101525709A (zh) | 2009-09-09 |
| RU2550063C2 (ru) | 2015-05-10 |
| EP2468907A4 (en) | 2013-11-20 |
| EP2468907A1 (en) | 2012-06-27 |
| RU2011147346A (ru) | 2013-05-27 |
| AU2010239014B2 (en) | 2014-06-26 |
| CA2773050A1 (en) | 2010-10-28 |
| AU2010239014A1 (en) | 2011-08-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20120211130A1 (en) | High-elongation rate aluminum alloy material for cable and preparation method thereof | |
| CN101914708B (zh) | 一种Al-Fe-Cu合金材料及其制备方法 | |
| JP2012524837A5 (enExample) | ||
| CN102903415B (zh) | 一种异型耐氧化高导电率铝合金碳纤维导线及制造方法 | |
| CN104946936B (zh) | 一种架空导线用高导电率稀土硬铝单丝材料 | |
| CN103343302B (zh) | 一种碳纤维复合铝导线及其制备方法 | |
| CN109652685B (zh) | 一种高导热高耐蚀铸造铝合金及其制备方法 | |
| CN102127666B (zh) | 一种稀土铝合金导体的制备方法 | |
| CN105088033A (zh) | 一种铝合金及其制备方法 | |
| CN101880799A (zh) | 铝铁锌镁稀土合金电线及其制造方法 | |
| CN102864344A (zh) | 一种电缆用稀土铝合金导体及其制造方法 | |
| CN108118197B (zh) | 一种高导热压铸铝合金材料的制备方法 | |
| CN105734372B (zh) | Al‑Cu系铸造铝合金材料及其制备方法 | |
| CN103205615A (zh) | 一种6061变形铝合金及其生产工艺 | |
| CN104831127A (zh) | 一种高导电耐热铝合金线及其制备方法 | |
| CN102796921A (zh) | 一种电缆用铝合金导线及其制备方法 | |
| CN101492783B (zh) | 一种Al-Cu合金圆铝杆的配制方法 | |
| CN106834824A (zh) | 一种含钪、钇的高强高导电率铝基材料及其制备方法 | |
| CN104328304B (zh) | 一种高强高导导线用铜合金及其制备方法 | |
| CN106399744B (zh) | 一种紫杂铜精炼用多元中间合金及其制备和应用 | |
| CN105369077A (zh) | 一种铝合金导体材料及其制备方法 | |
| CN101923909B (zh) | 电缆用铝铁钴稀土合金导体材料及其制造方法 | |
| CN106167867A (zh) | 一种含稀土铝镁合金电磁屏蔽丝用圆线 | |
| CN103060623A (zh) | 一种电缆用高钪含量铝合金导电线芯及其制备方法 | |
| CN105200294B (zh) | 一种电池极板用钙铝铅合金及其制备方法 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: ANHUI JOYSENSES CABLE CO., LTD., CHINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIN, ZEMIN;YU, LEHUA;WAN, YOUMEI;REEL/FRAME:027905/0437 Effective date: 20120309 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |