RU2344187C2 - Алюминиевый сплав - Google Patents

Алюминиевый сплав Download PDF

Info

Publication number
RU2344187C2
RU2344187C2 RU2006146758/02A RU2006146758A RU2344187C2 RU 2344187 C2 RU2344187 C2 RU 2344187C2 RU 2006146758/02 A RU2006146758/02 A RU 2006146758/02A RU 2006146758 A RU2006146758 A RU 2006146758A RU 2344187 C2 RU2344187 C2 RU 2344187C2
Authority
RU
Russia
Prior art keywords
alloy
hydrogen
nitrogen
aluminum
oxygen
Prior art date
Application number
RU2006146758/02A
Other languages
English (en)
Other versions
RU2006146758A (ru
Inventor
нов Николай Степанович Купри (RU)
Николай Степанович Куприянов
Николай Дмитриевич Шанин (RU)
Николай Дмитриевич Шанин
Валерий Николаевич Федоров (RU)
Валерий Николаевич Федоров
Original Assignee
Николай Степанович Куприянов
Николай Дмитриевич Шанин
Валерий Николаевич Федоров
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Николай Степанович Куприянов, Николай Дмитриевич Шанин, Валерий Николаевич Федоров filed Critical Николай Степанович Куприянов
Priority to RU2006146758/02A priority Critical patent/RU2344187C2/ru
Publication of RU2006146758A publication Critical patent/RU2006146758A/ru
Application granted granted Critical
Publication of RU2344187C2 publication Critical patent/RU2344187C2/ru

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Catalysts (AREA)
  • Conductive Materials (AREA)

Abstract

Изобретение относится к области металлургии, в частности к алюминиевым сплавам, предназначенным для применения в качестве конструкционного материала в машиностроении, самолетостроении, ракетостроении, судостроении, автомобилестроении, а также в медицинской технике, строительстве, электротехнике и в бытовом оборудовании. Алюминиевый сплав содержит следующие компоненты, мас.%: по меньшей мере один редкоземельный металл 5,0-10,0, кислород 0,002-1,5, азот 0,002-1,2, водород 0,0002-0,5, алюминий - остальное. В частном случае выполнения изобретения алюминиевый сплав дополнительно содержит по меньшей мере один элемент, выбранный из группы: кремний, медь, магний, хром, цирконий, бор, марганец, цинк, никель, иттрий, скандий, титан, ванадий, молибден, ниобий, тантал, железо в количестве 0,005-2,2 мас.%. Получают сплав, обладающий повышенными электропроводностью, свариваемостью и стабильными механическими свойствами при температурах до 350°С. 1 з.п. ф-лы.

Description

Изобретение относится к области металлургии, в частности к алюминиевым сплавам, предназначенным для применения в качестве конструкционного материала в машиностроении, в самолетостроении, ракетостроении, судостроении, автомобилестроении, а также в медицинской технике, строительстве, электротехнике и в бытовом оборудовании.
В настоящее время известны алюминиевые сплавы с очень высоким уровнем механических свойств, применяемые в деталях конструкций, несущих низкие и средние нагрузки. Однако уровень механических свойств данных алюминиевых сплавов недостаточен для того, чтобы использовать эти материалы для изготовления из них конструкций и деталей, работающих в условиях значительного механического нагружения и, в особенности, высоких температур. Кроме того, конструкции и изделия из известных алюминиевых сплавов характеризуются невысокой прочностью сварных соединений и недостаточной электропроводностью.
В настоящее время известны алюминиевые сплавы, применяемые в качестве электропроводников. В проводниковых алюминиевых сплавах применяются преимущественно технический алюминий и низколегированные сплавы системы алюминий-магний-кремний-медь. Однако температурный уровень эксплуатации известных проводниковых алюминиевых сплавов обычно не превышает 100°C, что является недостаточным для использования этих материалов в изделиях, длительно работающих в условиях высоких температур.
В некоторых случаях в состав алюминиевых сплавов вводят железо, никель, кобальт, повышающие жаропрочность, и в то же время лишь умеренно понижающие электропроводность. Эти сплавы имеют высокие механические свойства. Однако во многих случаях требуется эксплуатация проводниковых алюминиевых сплавов при температурах свыше 250°С, что не позволяет использовать эти сплавы. Помимо этого упомянутые алюминиевые сплавы характеризуются высоким электрическим сопротивлением 450-700 МОм.см и низкой прочностью сварных соединений. Коэффициент прочности сварных соединений - отношение пределов прочности металла шва и основного металла - составляет для упомянутых сплавов 0,65-0,7.
Наиболее близким аналогом к заявленному изобретению является сплав на основе алюминия, содержащий, в мас.%: по крайней мере один редкоземельный металл 5-20, оксид алюминия 0,1-1,0, оксид редкоземельного металла 0,01-0,5, алюминий - остальное (RU 2044096 С1, 20.09.1995). Данный сплав используют в основном в изделиях, несущих умеренные механические нагрузки при небольшой длительной прочности при температурах, не превышающих 300°С, а также в изделиях, в которых к сварным соединениям требования высокой прочности и высокой электропроводности не предъявляются.
Технической задачей данного изобретения является создание универсального жаропрочного алюминиевого сплава, обладающего одновременно стабильными механическими свойствами при температурах до 350°С при его хорошей свариваемости и электропроводности, а также простотой и экономичностью его получения.
Эта задача была решена созданием алюминиевого сплава, содержащего по меньшей мере один редкоземельный металл, согласно изобретению, сплав дополнительно содержит кислород, азот и водород при следующем соотношении компонентов, в мас.%: по меньшей мере один редкоземельный металл 5,0-10,0, кислород 0,002-1,5, азот 0,002-1,2, водород 0,0002-0,5, алюминий - остальное.
В частном случае выполнения изобретения алюминиевый сплав дополнительно содержит по меньшей мере один элемент, выбранный из группы: кремний, медь, магний, хром, цирконий, бор, марганец, цинк, никель, иттрий, скандий, титан, ванадий, молибден, ниобий, тантал, железо в количестве 0,005-2,2 мас.%.
Все редкоземельные металлы, например церий, празеодим, неодим, лантан, самарий, гадолиний и др., повышают механические свойства сплава и уровень электропроводности. Выбранные содержания этих элементов оптимальны для обеспечения оптимального комплекса требуемых показателей. Упомянутые элементы в комбинациях со взятыми количествами водорода, азота и кислорода обеспечивают высокий уровень механических свойств (прочности, пластичности), хорошую свариваемость и коррозионную стойкость, повышение электропроводности.
Общее присутствие комплекса таких элементов, как азот, водород и кислород, обеспечивает существенное повышение пределов прочности и текучести и относительного удлинения, улучшение свариваемости, увеличение электропроводности и улучшение коррозионной стойкости. Сказанное объясняется тем, что азот, водород и кислород, находящиеся в атомарном состоянии, вступают в физико-химическое взаимодействие с жидким сплавом, в результате чего возникают смешанные кристаллы замещения и вложения, а также химические соединения. Наряду с обычными химическими соединениями, являющимися главным образом интерметаллидами, такими, например, как Al4Ce, Al4La и т.д., получены новые химические соединения, например комплексные гидроксигидронитридные соединения, гидридные, нитридные и оксидные соединения, открывающие появление новых материалов. Эти новые соединения, представляющие собой дополнительные центры кристаллизации, способствуют равномерному распределению газов в твердом растворе сплава, что обеспечивает существенное улучшение свойств и эксплуатационных характеристик сплавов и изделий из них.
Кроме того, присутствие водорода в сплаве позволяет снизить количество примесей и тем самым их отрицательное влияние на механические свойства, на коррозионную стойкость и свариваемость. Содержание водорода в сплаве более 0,5 мас.% ведет к ухудшению свойств последнего, в частности снижает пластичность материала, к охрупчиванию сплава, так как водород присутствует в виде гидридов. При содержании водорода менее 0,0002 мас.% отмечается понижение прочностных показателей сплава и его физических свойств.
При содержании в алюминиевом сплаве азота менее 0,002 мас.% количество нитридных фаз и центров кристаллизации недостаточно, что обуславливает невысокую прочность материала. Рост содержания азота более 1,2 мас.% приводит к образованию чрезмерного количества нитридов, вызывая тем самым снижение пластичности, повышение электросопротивления и ослабление коррозионной стойкости.
Присутствие кислорода более 0,002 мас.% также снижает пластические свойства сплава, а при содержании более 1,5 мас.% вызывает ухудшение механических свойств и свариваемости из-за появления большого количества оксидных соединений.
Оптимальное содержание азота, кислорода и водорода в сплаве составляет 0,05-1,0 мас.%.
В частных случаях для еще большего улучшения эксплуатационных характеристик алюминиевого сплава рекомендуется дополнительно вводить в его состав по меньшей мере один элемент, выбранный из группы: кремний, медь, магний, хром, цирконий, бор, марганец, цинк, никель, иттрий, скандий, титан, ванадий, молибден, ниобий, тантал, железо. Присутствие вышеперечисленных элементов в сплаве обусловливает измельчение зерен; кроме того, они повышают коррозионную стойкость и механические показатели и снижают электросопротивление.
Количественное содержание этих элементов в сплаве следует ограничивать в пределах 0,005-2,2 мас.%. Снижение их количеств меньше нижней границы не дает ни повышения прочности сплава, ни улучшения коррозионной стойкости, а при повышении их содержания сверх 2,2 мас.% вызывает падение пластичности и свариваемости. Кроме того, перечисленные элементы в комбинации с редкоземельными металлами также способны еще более повысить механические свойства и свариваемость и снизить электрическое сопротивление.
При производстве заявленного сплава не требуются ни труднодоступное сырье, ни применение сложных технологий, что делает получение сплава простым и экономически целесообразным.
Примеры наилучшей реализации изобретения.
Способ изготовления сплава включает в себя следующие фазы:
1) получение расплава.
Подготовка расплава осуществляется индукционным способом из исходных материалов (первичного алюминия в чушках и редкоземельных металлов). Плавление производится в кварцевом или графитовом тигле (или в печи с шамотовой футеровкой) в атмосфере гелия или аргона с добавкой водорода.
2) распыление.
Распыление полученного расплава производят в замкнутой камере. В камеру подводят одновременно с жидким металлом дозированное количество азота, кислорода и водорода. Иногда выполняют указанное распыление в среде аргона или других сред. Контроль за количеством газов осуществляют посредством газоанализаторов.
3) обжатие.
Полученный гранулят подвергают обжатию при температуре от 200 до 400°C.
Пример 1.
Изготовляется алюминиевый сплав, содержащий, в мас.%: церий 5, кислород 1,5, азот 1,2, водород 0,5, алюминий - остальное.
Сырьем служат 81,4 кг алюминия чистотой 99,9% в чушках, 12 кг церия. Расплав получают индукционным способом в кварцевом тигле в гелии или аргоне с содержанием водорода (10% об.). Полученный расплав распыляют в замкнутой камере. В камеру одновременно с жидким металлом вводят дозированные количества азота (85% об.) и кислорода (15% об.). Контроль за количеством подведенных газов обеспечивается газоанализаторами.
Полученный гранулят вводят в пресс-форму и подвергают обжатию на прессе при 400°C. Данный материал обладает следующими свойствами: предел прочности 260-340 МПа и относительное удлинение 4-7% при 20°C, предел прочности 140-190 МПа при 350°C, коэффициент прочности сварного соединения 0,8-0,9, удельная электропроводность составляет 53-59 электропроводности меди.
Пример 2.
Изготовляют алюминиевый сплав, содержащий, в мас.%: церий 5, лантан 3, празеодим 0,5, неодим 0,1, кислород 0,1, азот 0,005, водород 0,001, алюминий - остальное.
Сырьем служат 91,3 кг алюминия чистотой 99,9% в чушках, церий 22 кг, лантан 1,2 кг, празеодим 0,3 кг, неодим 0,4 кг. Расплав получают индукционным способом в графитовом тигле в аргоне, содержащем водород (6% об.). Расплав распыляют в замкнутой камере. В камеру одновременно с жидким металлом вводят дозированные количества азота (80% об.) и кислорода (20% об.).
Контроль за количеством подведенных газов осуществляется посредством газоанализаторов.
Полученный гранулят вводят в пресс-форму и подвергают обжатию в камере сжатия с газом в качестве средства создания давления и затем в прессе при температуре 350°C.
Образцы, изготовленные из полученного материала, обладают следующими характеристиками: предел прочности при растяжении 260-350 МПа и относительное удлинение 4-8% (при 20°C), предел прочности 160-230 МПа при температуре 350°C, коэффициент прочности сварного соединения 0,8-0,9, удельная электропроводность составляет 52-55% электропроводности меди.
Пример 3
Изготовляют алюминиевый сплав, содержащий в мас.%: церий 3, лантан 2, диспрозий 0,5, кислород 0,04, азот 0,01, водород 0,0005, алюминий - остальное. Расплавление ведется шифонным способом в кварцевом тигле в атмосфере гелия. Расплав распыляют в замкнутой камере в атмосфере гелия.
Полученный гранулят вводят в пресс-форму и подвергают обжатию в прессе при температуре 300°C.
Образцы, изготовленные из полученного материала, обладают следующими характеристиками: предел прочности при растяжении 250-310 МПа, относительное удлинение 5-9%, предел прочности при температуре 350°C составляет 160-200 МПа, коэффициент прочности сварного соединения 0,82-0,9, удельная электропроводность составляет 52-58% электропроводности меди.
Пример 4
Изготовляется алюминиевый сплав, содержащий, в мас.%: церий 10, кислород 0,04, водород 0,01, алюминий - остальное.
Расплав получают индукционным способом в кварцевом тигле в гелии или аргоне с содержанием водорода (10% об.). Полученный расплав распыляют в замкнутой камере. В камеру одновременно с жидким металлом вводят дозированные количества азота (85% об.) и кислорода (15% об.). Контроль за количеством подведенных газов обеспечивается газоанализаторами.
Полученный гранулят вводят в пресс-форму и подвергают обжатию на прессе при 250°C.
Образцы, изготовленные из полученного материала, обладают следующими характеристиками: предел прочности при растяжении 280-350 МПа, относительное удлинение 5-8% (при 20°C), предел прочности при температуре 350°C составляет 190-250 МПа, коэффициент прочности сварного соединения 0,81-0,9, удельная электропроводность составляет 52-59% электропроводности меди.
Пример 5
Изготовляют алюминиевый сплав, содержащий, в мас.%: церий 5, празеодим 2, неодим 1, кислород 0,8, азот 0,05, водород 0,02, алюминий - остальное.
Расплав получают индукционным способом в графитовом тигле в аргоне, содержащем водород (6% об.). Расплав распыляют в замкнутой камере. В камеру одновременно с жидким металлом вводят дозированные количества азота (80% об.) и кислорода (20% об.).
Контроль за количеством подведенных газов осуществляется посредством газоанализаторов.
Полученный гранулят вводят в пресс-форму и подвергают обжатию в камере сжатия с газом в качестве средства создания давления и затем в прессе при температуре 250°C.
Образцы, изготовленные из полученного материала, обладают следующими характеристиками: предел прочности при растяжении 250-330 МПа, относительное удлинение 4-8%, предел прочности при температуре 350°C составляет 155-245 МПа, коэффициент прочности сварного соединения 0,82-0,9, удельная электропроводность составляет 52-56% электропроводности меди.
Пример 6
Изготовляют алюминиевый сплав, содержащий, в мас.%: церий 6, диспрозий 2, кислород 0,2, азот 0,7, водород 0,005, алюминий - остальное.
Расплав получают индукционным способом в графитовом тигле в аргоне, содержащем водород (6% об.). Расплав распыляют в замкнутой камере. В камеру одновременно с жидким металлом вводят дозированные количества азота (80% об.) и кислорода (20% об.).
Контроль за количеством подведенных газов осуществляется посредством газоанализаторов.
Полученный гранулят вводят в пресс-форму и подвергают обжатию в камере сжатия с газом в качестве средства создания давления и затем в прессе при температуре 200°C.
Образцы, изготовленные из полученного материала, обладают следующими характеристиками: предел прочности при растяжении 262-345 МПа, относительное удлинение 6-9%, прочность при температуре 350°C составляет 160-247 МПа, коэффициент прочности сварного соединения 0,83-0,9, удельная электропроводность составляет 52-58% электропроводности меди.
Как видно из примеров, заявленный сплав обладает повышенной электропроводностью, что в комбинации с повышенными механическими свойствами делает его универсальным и позволяет изготавливать из него изделия, работающие при повышенных температурах. Указанная комбинация свойств сплава делает возможным его применение в качестве электропроводника практически неограниченным. Сплав можно применять в качестве материала для изготовления проволоки и шин в электронной технике, в радио- и электротехнической промышленности, при изготовлении бортпроводов вертолетов и самолетов.

Claims (2)

1. Алюминиевый сплав, содержащий по меньшей мере один редкоземельный металл, отличающийся тем, что он дополнительно содержит кислород, азот и водород при следующем соотношении компонентов, мас.%:
по меньшей мере один редкоземельный металл 5,0-10,0 кислород 0,002-1,5 азот 0,002-1,2 водород 0,0002-0,5 алюминий остальное.
2. Алюминиевый сплав по п.1, отличающийся тем, что он дополнительно содержит по меньшей мере один элемент, выбранный из группы: кремний, медь, магний, хром, цирконий, бор, марганец, цинк, никель, иттрий, скандий, титан, ванадий, молибден, ниобий, тантал, железо в количестве 0,005-2,2 мас.%.
RU2006146758/02A 2006-12-28 2006-12-28 Алюминиевый сплав RU2344187C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2006146758/02A RU2344187C2 (ru) 2006-12-28 2006-12-28 Алюминиевый сплав

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2006146758/02A RU2344187C2 (ru) 2006-12-28 2006-12-28 Алюминиевый сплав

Publications (2)

Publication Number Publication Date
RU2006146758A RU2006146758A (ru) 2008-07-10
RU2344187C2 true RU2344187C2 (ru) 2009-01-20

Family

ID=40376210

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006146758/02A RU2344187C2 (ru) 2006-12-28 2006-12-28 Алюминиевый сплав

Country Status (1)

Country Link
RU (1) RU2344187C2 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2458170C1 (ru) * 2011-01-31 2012-08-10 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Алюминиевый сплав
RU2458151C1 (ru) * 2010-12-09 2012-08-10 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Алюминиевый сплав
RU2480852C2 (ru) * 2011-01-17 2013-04-27 Закрытое акционерное общество "Москабельмет" Катанка из алюминиевого сплава
RU2550063C2 (ru) * 2009-04-24 2015-05-10 Аньхуй Джойсенсис Кэйбл Ко., Лтд. Материал для кабеля на основе алюминиевого сплава с высокой степенью удлинения и способ его получения

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106148768A (zh) * 2015-04-13 2016-11-23 特变电工股份有限公司 一种铝合金杆及其制备方法、铝合金导体电缆线芯

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2550063C2 (ru) * 2009-04-24 2015-05-10 Аньхуй Джойсенсис Кэйбл Ко., Лтд. Материал для кабеля на основе алюминиевого сплава с высокой степенью удлинения и способ его получения
RU2458151C1 (ru) * 2010-12-09 2012-08-10 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Алюминиевый сплав
RU2480852C2 (ru) * 2011-01-17 2013-04-27 Закрытое акционерное общество "Москабельмет" Катанка из алюминиевого сплава
RU2458170C1 (ru) * 2011-01-31 2012-08-10 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Алюминиевый сплав

Also Published As

Publication number Publication date
RU2006146758A (ru) 2008-07-10

Similar Documents

Publication Publication Date Title
US20120211130A1 (en) High-elongation rate aluminum alloy material for cable and preparation method thereof
CN101886189B (zh) 一种β钛合金及其制备方法
CN101130841B (zh) 钛稀土镁合金
CN101705395B (zh) 含钒的铝及铝合金及其制备方法
RU2344187C2 (ru) Алюминиевый сплав
CN102534437A (zh) 一种非晶合金及其制备方法
CN109706363B (zh) 一种共晶高熵合金及其制备的方法
Yang et al. In situ Al2O3 particle-reinforced Al and Cu matrix composites synthesized by displacement reactions
CN103060642A (zh) 碳氮化物复合处理的高强度铝合金及其制备方法
Dunnett et al. Development of Al–Ni–Mg–(Cu) aluminum P/M alloys
US9937554B2 (en) Grain refiner for magnesium and magnesium alloys and method for producing the same
Nagase et al. Alloy design and fabrication of ingots of Al–Mg–Li–Ca light-weight medium entropy alloys
Anish et al. Techniques for processing metal matrix composite; A survey
CN105026077B (zh) 制造钽合金的方法
CN107815571A (zh) 一种具有良好耐腐蚀性能的稀土铝合金材料的制备工艺
Yildirim et al. Microstructural evolution and room-temperature mechanical properties of as-cast and heat-treated Fe50Al50− nNbn alloys (n= 1, 3, 5, 7, and 9 at%)
CN104073702A (zh) 一种稀土镁合金及其制备方法
CN101195874A (zh) 一种改善非晶合金形成能力的方法
CN102816942A (zh) 一种生产高氮海绵钛的工艺及其装置
CN105200282A (zh) 一种新型Mg-Al-TiB2-稀土元素中间合金及其制备方法
CN102534310A (zh) 掺杂Mo2C及MgH2的高强度铝合金及其制备方法
CN113584368B (zh) 一种低密度双相硅化物增强难熔高熵合金及其制备方法
Zhang et al. Microstructural characterization and mechanical properties of Nb–Ti–C–B in-situ composites with W addition
Zhao et al. Fabrication, Microstructure and Mechanical Properties of in situ GNPs Reinforced Magnesium Matrix Composites
CN1325679C (zh) Sn-Zn-Bi-Cr合金无铅焊料的制备方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20091229