WO2010121517A1 - 电缆用高延伸率铝合金材料及其制备方法 - Google Patents

电缆用高延伸率铝合金材料及其制备方法 Download PDF

Info

Publication number
WO2010121517A1
WO2010121517A1 PCT/CN2010/071654 CN2010071654W WO2010121517A1 WO 2010121517 A1 WO2010121517 A1 WO 2010121517A1 CN 2010071654 W CN2010071654 W CN 2010071654W WO 2010121517 A1 WO2010121517 A1 WO 2010121517A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
content
aluminum
rare earth
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/CN2010/071654
Other languages
English (en)
French (fr)
Chinese (zh)
Inventor
林泽民
余乐华
万有梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Joy Sense Cable Co Ltd
Original Assignee
Anhui Joy Sense Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41093778&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010121517(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Anhui Joy Sense Cable Co Ltd filed Critical Anhui Joy Sense Cable Co Ltd
Priority to EP10766607.5A priority Critical patent/EP2468907A4/en
Priority to CA2773050A priority patent/CA2773050A1/en
Priority to RU2011147346/02A priority patent/RU2550063C2/ru
Priority to AU2010239014A priority patent/AU2010239014B2/en
Priority to JP2012506317A priority patent/JP2012524837A/ja
Priority to US13/395,423 priority patent/US20120211130A1/en
Publication of WO2010121517A1 publication Critical patent/WO2010121517A1/zh
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/06Making non-ferrous alloys with the use of special agents for refining or deoxidising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon

Definitions

  • the invention belongs to the field of non-ferrous metal materials, and particularly relates to a high elongation aluminum alloy material for cables and a preparation method thereof.
  • the wire and cable have a high elongation and high safety and stability in use.
  • a high elongation aluminum alloy material for cable which comprises the following components in a percentage by weight: 0.30 to 1.20% iron, 0.03 to 0.10% silicon, 0.01 ⁇ 0.30% of rare earth elements, the rare earth elements are lanthanum and cerium, and the balance is aluminum and unavoidable impurities.
  • Another object of the present invention is to provide a method of preparing a high elongation aluminum alloy material comprising the steps of:
  • the aluminum alloy body obtained by the semi-annealing treatment is kept at 280-380 ° C for 4 to 10 hours, and then taken out and naturally cooled to ambient temperature.
  • the aluminum alloy material further includes unavoidable impurity elements, and the total content of impurities in the aluminum alloy is ⁇ 0.3% by weight.
  • the content of calcium in the impurities is ⁇ 0.02%, and the content of other single impurity elements is ⁇ 0.01% to reduce the influence of the impurity element on the electrical conductivity of the aluminum alloy.
  • the high elongation aluminum alloy for cable used in the present invention is a novel Al-Fe alloy material, and has the following advantages:
  • the content of iron in the invention is controlled between 0.30 and 1.20%, which can improve the strength of the aluminum alloy, and also improve the creep resistance and thermal stability of the aluminum alloy, and the creep resistance is improved by 300 compared with the ordinary electrician. %; and iron can also enhance the toughness of the aluminum alloy, ensuring that the compaction coefficient of the aluminum alloy in the process of tightening and twisting reaches 0.93 or more, which is not achievable by ordinary electrician aluminum, and is made of the aluminum alloy.
  • the compacted core can increase the conductor cross section, improve the electrical conductivity of the conductor and increase the stability of the conductor, and can save processing costs.
  • the content of silicon in the present invention is controlled between 0.03% and 0.10%, which ensures a certain amount of silicon to enhance the strength of the aluminum alloy.
  • the rare earth element in the present invention can reduce the content of silicon, thereby reducing the influence of iron, especially silicon, on the electrical conductivity of the aluminum alloy to a very low level, and the addition of the rare earth element also improves the crystal in the aluminum alloy material.
  • the structure of the structure improves the process performance of the aluminum alloy and is beneficial to the processing of the aluminum alloy.
  • the rare earth element in the present invention is mainly composed of lanthanum and cerium, and the performance in 3) can be satisfactorily achieved.
  • the boron element in the present invention can react with impurity elements such as Ti, V, Mn, Cr, etc., and is precipitated after being formed, thereby reducing the influence of impurity elements such as Ti, V, Mn, Cr on the electrical conductivity of the aluminum alloy. Conducive to improve the electrical conductivity of aluminum alloy.
  • the alloy material is semi-annealed to improve the adverse effect of the stress on the conductor structure during the drawing and stranding process, so that the conductivity reaches or exceeds 61% IACS (for ordinary electricians)
  • the conductivity standard of the aluminum conductor is 61% IACS
  • the annealing treatment can greatly improve the elongation and flexibility of the aluminum alloy.
  • the elongation of the cable made of the aluminum alloy of the invention reaches 30%, and the flexibility is better than that of the copper cable.
  • the height is 25%, the bending radius is only 7 times the outer diameter, and the bending radius of the copper cable is 15 times the outer diameter.
  • the aluminum-iron alloy is added with the aluminum ingots evenly and batchwise from the cupola to ensure the composition is as uniform as possible.
  • the temperature is controlled at 710-750 °C; when adding rare earth aluminum alloy and boron aluminum alloy to the above aluminum alloy liquid, the temperature should be raised to 720-760 °C, and the temperature should not exceed 760 °C. Increasing the temperature at this time is beneficial to the melting of the rare earth aluminum alloy and the boron aluminum alloy, thereby improving the treatment effect of the rare earth and boron.
  • the aluminum alloy rod rolled from the aluminum alloy material is kept at 280 ° C to 300 ° C for 10 hours in an annealing furnace, and then taken out and naturally cooled to ambient temperature.
  • the aluminum alloy material thus obtained contains, according to the weight percentage, the following components: Fe 0.3%, Si 0.03%, Ce 0.008%, La 0.002%, B0.005%, Ca 0.015%, Cu 0.002%, Mg 0.005%, Zn 0.002%, Ti 0.002%, V0.005%, Mn 0.002%, Cr 0.001%, and the balance is Al.
  • the boron (B) element reacts with an impurity element such as Ti, V, Mn, Cr, etc., the compound is formed and precipitated, and thus the content of boron element in the finally obtained aluminum alloy material is lower than the actually added amount.
  • the content of impurities in the aluminum alloy material is ⁇ 0.3% in total, and the content of other single impurity elements is ⁇ 0.01% except for Ca ⁇ 0.02%.
  • Tensile strength and elongation are tested according to the test method described in ASTM B577. Conductivity is measured according to ASTM.
  • the test method described in B193 the flexibility is in accordance with the test method of "partial discharge test after bending test” described in GB 12706.1, and the creep is tested according to the creep test of the "Wire and Cable” manual.
  • the temperature is controlled at 710-750 °C; when adding rare earth aluminum alloy and boron aluminum alloy to the above aluminum alloy liquid, the temperature should be raised to 720-760 °C, and the temperature should not exceed 760 °C. Increasing the temperature at this time is beneficial to the melting of the rare earth aluminum alloy and the boron aluminum alloy, thereby improving the treatment effect of the rare earth and boron.
  • Rare earth treatment and boronization treatment 4.1 Adding 1/3 rare earth aluminum alloy to the holding furnace aluminum alloy liquid 30 minutes before filling. 4.2 The remaining 2/3 rare earth aluminum alloy and boron aluminum alloy were added to the holding furnace aluminum alloy liquid 5 minutes before filling. The rare earth aluminum alloy and the boron aluminum alloy are added in different time periods in order to make the rare earth and boron elements fully function and improve the effect. 4.3 The position of the rare earth aluminum alloy and the boron aluminum alloy is uniformly distributed in the holding furnace.
  • refining de-slag, degassing, stirring, slag
  • the aluminum alloy liquid should be stirred and stirred to the corner of the furnace for 5 minutes.
  • 2.3 kg of powder refining agent (23% Na 3 Al•F6+47%KCl+30% NaCl) is blown into the bottom of the aluminum alloy liquid through a high-purity nitrogen gas through the pipeline.
  • the bottom of the aluminum alloy liquid moves, so that the gas and the slag are uniformly floated along the surface of the aluminum alloy liquid for 3 to 5 minutes.
  • the floating alumina slag should be completely removed from the furnace to minimize the introduction of new impurities introduced by the refining agent.
  • the aluminum alloy rod rolled from the aluminum alloy material is kept in an annealing furnace at 360 ° C to 380 ° C for 4 hours, and then taken out and naturally cooled to ambient temperature.
  • the boron (B) element reacts with an impurity element such as Ti, V, Mn, Cr, etc., the compound is formed and precipitated, and thus the content of boron element in the finally obtained aluminum alloy material is lower than the actually added amount.
  • the content of impurities in the aluminum alloy material is ⁇ 0.3% in total, and the content of other single impurity elements is ⁇ 0.01% except for Ca ⁇ 0.02%.
  • the performance test data of the high elongation aluminum alloy material in this example is as follows:
  • Tensile strength and elongation are tested according to the test method described in ASTM B577. Conductivity is measured according to ASTM.
  • the test method described in B193 the flexibility is in accordance with the test method of "partial discharge test after bending test” described in GB12706.1, and the creep is in accordance with the method of creep test of the "Wire and Cable” manual.
  • the performance of the aluminum alloy material with high conductivity, high elongation, high flexibility and high creep resistance in this example is: partial discharge test after tensile strength 92 MPa, elongation 36%, electrical conductivity 61.0% IACS, 7 times bending radius Qualified and creep resistant is increased by 330% compared to electrical aluminum.
  • the aluminum-iron alloy is added with the aluminum ingots evenly and batchwise from the cupola to ensure the composition is as uniform as possible.
  • the temperature is controlled at 710-750 °C.
  • the temperature should be raised to 720-760 °C, and the temperature should not exceed 760 °C. Increasing the temperature at this time is beneficial to the melting of the rare earth aluminum alloy and the boron aluminum alloy, thereby improving the treatment effect of the rare earth and boron.
  • Rare earth treatment and boronization treatment 4.1 Adding 1/3 rare earth aluminum alloy to the holding furnace aluminum alloy liquid 30 minutes before filling. 4.2 The remaining 2/3 rare earth aluminum alloy and boron aluminum alloy were added to the holding furnace aluminum alloy liquid 5 minutes before filling. 4.3 The location of the rare earth aluminum alloy and boron aluminum alloy should be evenly distributed in the holding furnace.
  • refining de-slag, degassing, stirring, slag
  • the aluminum alloy liquid should be stirred and stirred to the corner of the furnace for 5 minutes.
  • 2.8 kg of powder refining agent (23% Na 3 Al•F 6+47% KCl+30% NaCl) is blown into the bottom of the aluminum alloy liquid through high-purity nitrogen through a pipe, and the inlet should be blown.
  • the gas and the slag are uniformly floated along the surface of the aluminum alloy liquid for 3 to 5 minutes.
  • the floating alumina slag should be completely removed from the furnace to minimize the introduction of new impurities introduced by the refining agent.
  • the aluminum alloy rod rolled from the aluminum alloy material is kept in an annealing furnace at 300 ° C to 320 ° C for 8 hours, and then taken out and naturally cooled to ambient temperature.
  • the aluminum alloy material thus obtained contains the following components in terms of weight percentage: Fe 0.55%, Si 0.10%, Ce 0.15%, La 0.06%, B0.007%, Ca 0.013%, Cu 0.003%, Mg 0.004%, Zn 0.004%, Ti 0.002%, V 0.004%, Mn 0.003%, Cr 0.002%, and the balance is Al.
  • the boron (B) element reacts with an impurity element such as Ti, V, Mn, Cr, etc., the compound is formed and precipitated, and thus the content of boron element in the finally obtained aluminum alloy material is lower than the actually added amount.
  • the content of impurities in the aluminum alloy material is ⁇ 0.3% in total, and the content of other single impurity elements is ⁇ 0.01% except for Ca ⁇ 0.02%.
  • Tensile strength and elongation are tested according to the test method described in ASTM B577. Conductivity is measured according to ASTM.
  • the test method described in B193 the flexibility according to the test method of "partial discharge test after bending test” described in GB 12706.1, creep according to the "wire and cable” manual creep test method.
  • the properties of the high elongation aluminum alloy material in this example are: tensile strength 110 MPa, elongation 30.2%, electrical conductivity 62.6% IACS, 6 times bending radius after partial discharge test pass, creep resistance is increased by 330% compared with electrical aluminum.
  • the aluminum-iron alloy is added with the aluminum ingots evenly and batchwise from the cupola to ensure the composition is as uniform as possible.
  • the temperature is controlled at 710-750 °C.
  • the temperature should be raised to 720-760 °C, and the temperature should not exceed 760 °C. Increasing the temperature at this time is beneficial to the melting of the rare earth aluminum alloy and the boron aluminum alloy, thereby improving the treatment effect of the rare earth and boron.
  • Rare earth treatment and boronization treatment 4.1 Adding 1/3 rare earth aluminum alloy to the holding furnace aluminum alloy liquid 30 minutes before filling. 4.2 The remaining 2/3 rare earth aluminum alloy and boron aluminum alloy were added to the holding furnace aluminum alloy liquid 5 minutes before filling. 4.3 The location of the rare earth aluminum alloy and boron aluminum alloy should be evenly distributed in the holding furnace.
  • refining de-slag, degassing, stirring, slag
  • the aluminum alloy liquid should be stirred and stirred to the corner of the furnace for 5 minutes.
  • 2.0kg of powder refining agent (23% Na 3 Al•F6+47%KCl+30% NaCl) is blown into the bottom of the aluminum alloy liquid through high-purity nitrogen gas through the pipeline.
  • the bottom of the aluminum alloy liquid moves, so that the gas and the slag are uniformly floated along the surface of the aluminum alloy liquid for 3 to 5 minutes.
  • the floating alumina slag should be completely removed from the furnace to minimize the introduction of new impurities introduced by the refining agent.
  • the aluminum alloy rod rolled from the aluminum alloy material is incubated at 340 ° C to 360 ° C for 6 hours in an annealing furnace, and then taken out and naturally cooled to ambient temperature.
  • the aluminum alloy material thus obtained contains the following components in terms of weight percent: Fe 0.80%, Si 0.04%, Ce 0.10%, La 0.06%, B0.008%, Ca 0.011%, Cu 0.005%, Mg 0.004%, Zn0.006% Ti 0.003%, V0.003%, Mn 0.005%, Cr 0.002%, and the balance is Al.
  • the boron (B) element reacts with an impurity element such as Ti, V, Mn, Cr, etc., the compound is formed and precipitated, and thus the content of boron element in the finally obtained aluminum alloy material is lower than the actually added amount.
  • the content of impurities in the aluminum alloy material is ⁇ 0.3% in total, and the content of other single impurity elements is ⁇ 0.01% except for Ca ⁇ 0.02%.
  • the performance test data of the high elongation aluminum alloy material in this example is as follows:
  • Tensile strength and elongation are tested according to the test method described in ASTM B577. Conductivity is measured according to ASTM.
  • the test method described in B193 the flexibility according to the test method of "partial discharge test after bending test” described in GB 12706.1, creep according to the "wire and cable” manual creep test method.
  • the properties of the high elongation aluminum alloy material in this example are: tensile strength 97 MPa, elongation 35.2%, electrical conductivity After 62.0% IACS, 6 times bending radius, the partial discharge test was qualified, and the creep resistance was increased by 330% compared with the electrical aluminum.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)
  • Continuous Casting (AREA)
  • Manufacture And Refinement Of Metals (AREA)
PCT/CN2010/071654 2009-04-24 2010-04-09 电缆用高延伸率铝合金材料及其制备方法 Ceased WO2010121517A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP10766607.5A EP2468907A4 (en) 2009-04-24 2010-04-09 ALUMINUM ALLOY MATERIAL WITH HIGH RATE OF ELONGATION FOR CABLES AND METHOD FOR PREPARING THE SAME
CA2773050A CA2773050A1 (en) 2009-04-24 2010-04-09 High-elongation rate aluminum alloy material for cable and preparation method thereof
RU2011147346/02A RU2550063C2 (ru) 2009-04-24 2010-04-09 Материал для кабеля на основе алюминиевого сплава с высокой степенью удлинения и способ его получения
AU2010239014A AU2010239014B2 (en) 2009-04-24 2010-04-09 High-elongation rate aluminum alloy material for cable and preparation method thereof
JP2012506317A JP2012524837A (ja) 2009-04-24 2010-04-09 ケーブル用の高い延伸性を有するアルミニウム合金材料及びその製造方法
US13/395,423 US20120211130A1 (en) 2009-04-24 2010-04-09 High-elongation rate aluminum alloy material for cable and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910116635.7 2009-04-24
CN2009101166357A CN101525709B (zh) 2009-04-24 2009-04-24 电缆用高延伸率铝合金材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2010121517A1 true WO2010121517A1 (zh) 2010-10-28

Family

ID=41093778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/071654 Ceased WO2010121517A1 (zh) 2009-04-24 2010-04-09 电缆用高延伸率铝合金材料及其制备方法

Country Status (8)

Country Link
US (1) US20120211130A1 (enExample)
EP (1) EP2468907A4 (enExample)
JP (1) JP2012524837A (enExample)
CN (1) CN101525709B (enExample)
AU (1) AU2010239014B2 (enExample)
CA (1) CA2773050A1 (enExample)
RU (1) RU2550063C2 (enExample)
WO (1) WO2010121517A1 (enExample)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103060647A (zh) * 2011-10-24 2013-04-24 贵州华科铝材料工程技术研究有限公司 一种钌羰基配合物变质的高性能铝合金材料及其制备方法
CN115449730A (zh) * 2022-09-06 2022-12-09 合肥通用机械研究院有限公司 一种有效降低低硅铸造铝合金腐蚀速率的方法
CN115896653A (zh) * 2022-12-21 2023-04-04 广东领胜新材料科技有限公司 一种高强度铝合金圆杆的连铸连轧装置及方法

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101525709B (zh) * 2009-04-24 2010-08-11 安徽欣意电缆有限公司 电缆用高延伸率铝合金材料及其制备方法
CN101886198A (zh) * 2010-07-13 2010-11-17 安徽欣意电缆有限公司 电缆用高导电率铝合金材料及其制备方法
CN101937733B (zh) * 2010-07-13 2012-04-18 安徽欣意电缆有限公司 民用铝合金布线的制备方法
CN101880799A (zh) * 2010-07-13 2010-11-10 安徽欣意电缆有限公司 铝铁锌镁稀土合金电线及其制造方法
CN101914708B (zh) * 2010-08-20 2012-12-19 安徽省惠尔电气有限公司 一种Al-Fe-Cu合金材料及其制备方法
CN101948971B (zh) * 2010-09-16 2013-02-13 安徽亚南电缆厂 电缆用耐热型铝合金导体材料及其制备方法
CN101974709B (zh) * 2010-09-21 2011-12-14 安徽欣意电缆有限公司 特软铝合金导体及其制备方法
CN102021442B (zh) * 2010-09-21 2012-08-29 安徽亚南电缆厂 一种特细铝合金线及其制备方法
CN102002614A (zh) * 2010-10-08 2011-04-06 黄洋铜业有限公司 低阻铝导线及其生产方法
CN101962723A (zh) * 2010-10-27 2011-02-02 江西南缆集团有限公司 一种细小截面线材用铝合金材料及其制造方法
CN102134693A (zh) * 2011-03-15 2011-07-27 安徽欣意电缆有限公司 电缆用稀土铁铝合金导体材料的退火方法
CN102682872B (zh) * 2011-03-18 2014-03-26 上海电缆研究所 一种半硬铝线和架空导线及其制备方法
CN102146539A (zh) * 2011-03-18 2011-08-10 常州鸿泽澜线缆有限公司 一种用于高压电缆的铝合金导体及其制备方法
CN102206776B (zh) * 2011-05-25 2012-09-12 登封市银河铝箔有限公司 一种蜂窝铝箔材料
CN102354541B (zh) * 2011-06-24 2012-06-20 河北科力特电缆有限公司 高强度耐氧化铝合金导电线芯及其制造方法
CN102262913B (zh) * 2011-07-07 2013-05-08 安徽欣意电缆有限公司 稀土高铁铝合金导体材料
CN102347092B (zh) * 2011-10-10 2013-02-20 安徽欣意电缆有限公司 一种稀土铝合金材料
CN103131903A (zh) * 2013-03-12 2013-06-05 江苏广庆电子材料有限公司 一种含稀土元素的高强高导铝合金材料及其加工方法
US9601978B2 (en) * 2013-04-26 2017-03-21 GM Global Technology Operations LLC Aluminum alloy rotor for an electromagnetic device
CN104046862A (zh) * 2014-05-20 2014-09-17 南京南车浦镇城轨车辆有限责任公司 含有稀土元素的a7n01铝合金及其板材的制备方法
CN104004946B (zh) * 2014-06-06 2016-03-30 江苏大学 690-730MPa超高强度80-100mm淬透性铝合金及其制备方法
CN104004947B (zh) * 2014-06-06 2016-05-04 江苏大学 600-650MPa强度高抗晶间腐蚀铝合金及其制备方法
CN104532067A (zh) * 2014-12-12 2015-04-22 华北电力大学 一种非热处理型中强度铝合金导体材料及其制备方法
CN104805338A (zh) * 2015-05-21 2015-07-29 广西友合铝材有限公司 一种稀土铝铁铜合金线材及其制备方法
CN105296816B (zh) * 2015-12-08 2016-09-14 江苏东强股份有限公司 高导电铝合金材料及其铝合金电缆导体的制备方法
CN105861894A (zh) * 2016-05-20 2016-08-17 淮安和通汽车零部件有限公司 一种6401a铝合金及其制备方法
CN105838942A (zh) * 2016-05-20 2016-08-10 淮安和通汽车零部件有限公司 一种6042铝合金及其制备方法
CN111224108A (zh) * 2020-01-19 2020-06-02 上海华峰铝业股份有限公司 一种低电阻率的锂离子电池正极集流体
KR102474944B1 (ko) * 2020-04-08 2022-12-06 주식회사 큐프럼 머티리얼즈 배선막 제조 방법, 배선막 및 이를 포함하는 표시 장치
CN113151716B (zh) * 2021-03-08 2022-04-12 上海工程技术大学 一种电缆屏蔽用Al-Fe-Mg-Cu系铝合金及其制备方法
CN113689970B (zh) * 2021-08-23 2023-06-06 安徽中青欣意铝合金电缆有限公司 电动汽车充电用抗曲挠铝合金电缆及其制备方法
CN114227060A (zh) * 2021-12-27 2022-03-25 广东凤铝铝业有限公司 一种提高新能源汽车用铝型材焊接性能的方法
CN115595459B (zh) * 2022-09-19 2023-09-12 江苏中天科技股份有限公司 高强高导铝合金单丝的制备方法及铝合金单丝
CN116435003A (zh) * 2023-05-24 2023-07-14 中天科技海缆股份有限公司 改性铝合金导体及其生产工艺、改性铝合金导体电缆
CN120183778A (zh) * 2025-05-22 2025-06-20 广西电网有限责任公司电力科学研究院 一种稀土微合金化Al-Fe-Si基多用途铝合金导线及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1457697A (en) * 1974-03-05 1976-12-08 Southwire Co Aluminium alloy wire
US5080728A (en) * 1989-04-28 1992-01-14 Vereinigte Aluminium-Werke Aktiengellschaft Rolled aluminum product and method for its production
JP2001063232A (ja) * 1999-08-27 2001-03-13 Mitsubishi Alum Co Ltd Ps版用アルミニウム合金支持体及びその製造方法
CN1693992A (zh) * 2005-05-20 2005-11-09 东北轻合金有限责任公司 印刷用ps版基用铝板的制造方法
CN101525709A (zh) * 2009-04-24 2009-09-09 安徽欣意电缆有限公司 高延伸率铝合金材料及其制备方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3615371A (en) * 1967-04-08 1971-10-26 Furukawa Electric Co Ltd Aluminum alloy for electric conductor
CH524225A (fr) * 1968-05-21 1972-06-15 Southwire Co Fil ou barre en alliage d'aluminium
EG10355A (en) * 1970-07-13 1976-05-31 Southwire Co Aluminum alloy used for electrical conductors and other articles and method of making same
JPS585254B2 (ja) * 1975-02-14 1983-01-29 三菱電線工業株式会社 導電用軟質強力アルミニウム合金
JPS5272315A (en) * 1975-12-15 1977-06-16 Sumitomo Electric Ind Ltd Aluminum alloy for conductor
JPS5625950A (en) * 1979-08-08 1981-03-12 Furukawa Electric Co Ltd:The Heat resistant aluminum alloy having high electrical conductivity
JPS5684440A (en) * 1979-12-10 1981-07-09 Dainichi Nippon Cables Ltd Conductive high-strength aluminum alloy
JPS5831071A (ja) * 1981-08-18 1983-02-23 Furukawa Electric Co Ltd:The 耐熱アルミニウム合金導体の製造方法
US4397696A (en) * 1981-12-28 1983-08-09 Aluminum Company Of America Method for producing improved aluminum conductor from direct chill cast ingot
JPH0372048A (ja) * 1989-08-11 1991-03-27 Sumitomo Light Metal Ind Ltd 安定したグレー色の陽極酸化皮膜を生成するアルミニウム合金
RU2141389C1 (ru) * 1998-06-10 1999-11-20 Локшин Михаил Зеликович Способ изготовления электротехнической проволоки из алюминиевых сплавов
JP3677213B2 (ja) * 2000-02-07 2005-07-27 コダックポリクロームグラフィックス株式会社 Ps版用アルミニウム合金支持体及びその製造方法
DE60102614T2 (de) * 2000-02-07 2005-03-31 Kodak Polychrome Graphics Co. Ltd., Norwalk Lithographische Druckplatte aus Aluminiumlegierung und Verfahren zu ihrer Herstellung
ITMI20060297A1 (it) * 2006-02-17 2007-08-18 Angeli Prodotti S R L Cavo conduttore per linee elettriche
CN1941222A (zh) * 2006-09-07 2007-04-04 上海电缆研究所 一种制造高强度耐热铝合金线的方法
JP2008111142A (ja) * 2006-10-27 2008-05-15 Fujifilm Corp 平版印刷版用アルミニウム合金板および平版印刷版用支持体
RU2344187C2 (ru) * 2006-12-28 2009-01-20 Николай Степанович Куприянов Алюминиевый сплав

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1457697A (en) * 1974-03-05 1976-12-08 Southwire Co Aluminium alloy wire
US5080728A (en) * 1989-04-28 1992-01-14 Vereinigte Aluminium-Werke Aktiengellschaft Rolled aluminum product and method for its production
JP2001063232A (ja) * 1999-08-27 2001-03-13 Mitsubishi Alum Co Ltd Ps版用アルミニウム合金支持体及びその製造方法
CN1693992A (zh) * 2005-05-20 2005-11-09 东北轻合金有限责任公司 印刷用ps版基用铝板的制造方法
CN101525709A (zh) * 2009-04-24 2009-09-09 安徽欣意电缆有限公司 高延伸率铝合金材料及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103060647A (zh) * 2011-10-24 2013-04-24 贵州华科铝材料工程技术研究有限公司 一种钌羰基配合物变质的高性能铝合金材料及其制备方法
CN115449730A (zh) * 2022-09-06 2022-12-09 合肥通用机械研究院有限公司 一种有效降低低硅铸造铝合金腐蚀速率的方法
CN115896653A (zh) * 2022-12-21 2023-04-04 广东领胜新材料科技有限公司 一种高强度铝合金圆杆的连铸连轧装置及方法
CN115896653B (zh) * 2022-12-21 2024-04-02 广东领胜新材料科技有限公司 一种高强度铝合金圆杆的连铸连轧装置及方法

Also Published As

Publication number Publication date
AU2010239014B2 (en) 2014-06-26
CA2773050A1 (en) 2010-10-28
CN101525709B (zh) 2010-08-11
RU2011147346A (ru) 2013-05-27
EP2468907A1 (en) 2012-06-27
JP2012524837A (ja) 2012-10-18
US20120211130A1 (en) 2012-08-23
CN101525709A (zh) 2009-09-09
RU2550063C2 (ru) 2015-05-10
AU2010239014A1 (en) 2011-08-11
EP2468907A4 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
WO2010121517A1 (zh) 电缆用高延伸率铝合金材料及其制备方法
WO2021218273A1 (zh) 一种用再生铝生产的高导热压铸铝合金材料及其制备方法
CN104946936B (zh) 一种架空导线用高导电率稀土硬铝单丝材料
CN104862509B (zh) 架空输电导线用高导电率铝杆的制备工艺
CN105063433B (zh) 一种高导耐热铝合金单丝及其制备方法
CN108531754B (zh) 一种高电导率铸造铝合金
JP2012524837A5 (enExample)
CN101974709A (zh) 特软铝合金导体及其制备方法
WO2017162198A1 (zh) 一种加铁的轻质高导耐热铝导线及其制备工艺
CN104894438B (zh) 一种高导电率耐热铝合金单丝材料及其制备方法
CN102903415B (zh) 一种异型耐氧化高导电率铝合金碳纤维导线及制造方法
CN104805320A (zh) 屏蔽用铝合金杆的制造工艺
CN107201465B (zh) 高硬度铝合金导线
CN108559874A (zh) 一种高强高导的耐热铝合金导线及其制备方法
CN105671372B (zh) 一种63%iacs的硬铝导体材料及其制备方法
CN109022960A (zh) 一种导热铝合金及其制备方法和应用
CN110218918B (zh) 高导电率、耐热铝合金及其制备方法
CN111793758A (zh) 架空导线用高导电率耐热铝合金单丝及其制备方法
CN113674890B (zh) 一种高导电率耐热铝合金单丝及制备方法
CN110819853A (zh) 一种高导电率软铝单丝及其制备方法
CN102965550B (zh) 一种高强高导耐热铝导体材料及其制备方法
CN117701951A (zh) 一种高导电率超耐热铝合金单丝材料及其制备方法
WO2024008003A1 (zh) 一种耐热铝合金导线及其制备方法
CN113957301A (zh) 一种铝合金单丝及其制备方法
CN118926345A (zh) 一种铝合金导线及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10766607

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010239014

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2010239014

Country of ref document: AU

Date of ref document: 20100409

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012506317

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011147346

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2773050

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13395423

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2010766607

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010766607

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1007276

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1007276

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110728