US20110135934A1 - Process For The Production Of Polyurethane Composite Components - Google Patents

Process For The Production Of Polyurethane Composite Components Download PDF

Info

Publication number
US20110135934A1
US20110135934A1 US12/961,346 US96134610A US2011135934A1 US 20110135934 A1 US20110135934 A1 US 20110135934A1 US 96134610 A US96134610 A US 96134610A US 2011135934 A1 US2011135934 A1 US 2011135934A1
Authority
US
United States
Prior art keywords
component
polyurethane
support
sum
aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/961,346
Other languages
English (en)
Inventor
Andreas Seidel
Rainer Protte
Eckhard Wenz
Uli Franz
Philipp MÖLLER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Deutschland AG
Original Assignee
Bayer MaterialScience AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43447182&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20110135934(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE102009058180A external-priority patent/DE102009058180A1/de
Application filed by Bayer MaterialScience AG filed Critical Bayer MaterialScience AG
Assigned to BAYER MATERIALSCIENCE AG reassignment BAYER MATERIALSCIENCE AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MOELLER, PHILIPP, PROTTE, RAINER, WENZ, ECKHARD, FRANZ, ULI, SEIDEL, ANDREAS
Publication of US20110135934A1 publication Critical patent/US20110135934A1/en
Priority to US14/202,135 priority Critical patent/US9238320B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles
    • B29C45/1679Making multilayered or multicoloured articles applying surface layers onto injection-moulded substrates inside the mould cavity, e.g. in-mould coating [IMC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles
    • B29C45/1635Making multilayered or multicoloured articles using displaceable mould parts, e.g. retractable partition between adjacent mould cavities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/0025Applying surface layers, e.g. coatings, decorative layers, printed layers, to articles during shaping, e.g. in-mould printing
    • B29C37/0028In-mould coating, e.g. by introducing the coating material into the mould after forming the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles
    • B29C45/1615The materials being injected at different moulding stations
    • B29C45/162The materials being injected at different moulding stations using means, e.g. mould parts, for transferring an injected part between moulding stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles
    • B29C45/1676Making multilayered or multicoloured articles using a soft material and a rigid material, e.g. making articles with a sealing part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/78Measuring, controlling or regulating of temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/24Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 characterised by the choice of material
    • B29C67/246Moulding high reactive monomers or prepolymers, e.g. by reaction injection moulding [RIM], liquid injection moulding [LIM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/0025Applying surface layers, e.g. coatings, decorative layers, printed layers, to articles during shaping, e.g. in-mould printing
    • B29C37/0028In-mould coating, e.g. by introducing the coating material into the mould after forming the article
    • B29C2037/0035In-mould coating, e.g. by introducing the coating material into the mould after forming the article the coating being applied as liquid, gel, paste or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2069/00Use of PC, i.e. polycarbonates or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0278Polyurethane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/003Interior finishings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/18Aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31507Of polycarbonate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31565Next to polyester [polyethylene terephthalate, etc.]

Definitions

  • the present invention relates to a process for the production of composite components with a stable adhesive bond, these comprising a structure-imparting support of a thermoplastic and at least one polyurethane layer in direct contact with this support.
  • the present invention moreover relates to the use of specific polycarbonate compositions of high melt flowability and toughness in a 2-component injection moulding or 2-component reactive injection moulding process [2C-(R)IM] for the production of a two- or multicomponent part which is distinguished by good adhesive bonding of the PU coating(s) to the support material.
  • the present invention also provides composite components with a high toughness and stable adhesive bond, these comprising a structure-imparting support of a thermoplastic and at least one polyurethane layer in direct contact with this support, and the use thereof.
  • DE 196 50 854 C 1 discloses a process for the production of a multilayered part of plastic in which an injection moulded part of plastic is coated with at least one layer of a 2-component thermoset, preferably polyurethane. In this process, the part of plastic and the layer of 2-component thermoset are injection moulded successively in a synchronous cycle in the same mould. No indications are given in DE 196 50 854 C 1 of the influence of the nature of the support material and of the process parameters on the adhesion between the carrier material and the layer of the composite component joined to this.
  • U.S. Pat. No. 6,558,599 B1 describes a process for the production of a lacquered part from a formed thermoplastic material. The process comprises the steps
  • thermoplastic material in a first cavity of a mould for forming the part
  • Lacquers which are mentioned as possible in this application are also those based on polyurethane.
  • WO 2006/072366 A1 describes a process for forming and coating a substrate in a mould with at least two cavities. The process comprises the steps:
  • Polyurethane lacquers and PC+ABS substrates are mentioned by way of example and are preferred. This application says nothing about the influence of the composition of the support and polyurethane material and of possible temperature influences during forming on the adhesive bond.
  • DE 10 2006 048 252 B3 discloses a process for the production of a composite component, in particular comprising an injection moulded part and a polyurethane element, with the steps
  • a process as in the present invention in combination with specific compositions for the production of the composite components which have an increased adhesion is not disclosed in DE 10 2006 048 252 B3.
  • DE 10 2006 033 059 A1 discloses a process for the production of interior parts of plastic.
  • the support is formed in a first mould in a first step, the first mould then being replaced at least in part by a second mould, and the top layer then being formed on the support in a second step.
  • a hard component e.g. PA+ABS blends (polyamide+acrylonitrile/butadiene/styrene) or PC+ABS blends (polycarbonate+acrylonitrile/butadiene/styrene)
  • a soft component preferably polyurethane foam
  • a technical object of the present invention was thus to provide a process for the production of composite components with a stable adhesive bond comprising (a) a structure-imparting support of a thermoplastic and (b) at least one polyurethane layer in direct contact with this support.
  • a further technical object was to provide polycarbonate compositions of high melt flowability and toughness which, in a coating operation with a polyurethane system in a 2-component injection moulding process or 2-component (reactive) injection moulding process, achieve a good adhesion of the coating to the support material.
  • An object of the present invention was moreover also to provide composite components with a high toughness and stable adhesive bond, these comprising a structure-imparting support of a thermoplastic and at least one polyurethane layer in direct contact with this support and being produced in 2-component injection moulding process or 2-component (reactive) injection moulding process.
  • the polyurethane layer can serve, for example, to improve the surface properties, the haptic properties, the visual properties and the noise and heat insulation of the composite components.
  • At least one polyurethane additive and/or process auxiliary substance is introduced with high pressure or low pressure machines into the gap resulting in this way between the thermoplastic component and the mould surface of the enlarged cavity, the polyurethane raw material mixture polymerizing completely in contact with the surface of the thermoplastic support to give a compact polyurethane layer or to give a polyurethane foam layer,
  • FIG. 1 shows an example process for the production of a composite component according to the disclosure.
  • the direct sequence of the process steps prevents the temperature of the workpiece from cooling to room temperature during the process. A reduction in production times and a higher energy efficiency of the overall process are achieved by this means.
  • Process steps (ii) and (iii) can be repeated at least once with variation in the polyurethane system, one or more polyurethane layers being applied to only one or both sides of the support, so that a composite component of thermoplastic support and at least two identical or different PU components with optionally also more than a two-layered structure results.
  • the workpiece Before the removal of the workpiece from the moulds in steps (ii) and (iv), the workpiece is cooled until dimensionally stable.
  • either the injection mould can be opened and one half of the injection mould cavity can subsequently be replaced by a new half with larger mould dimensions, or the component is transferred from the first mould cavity into a second cavity, which is larger with respect to its mould dimensions, of the same or of a second mould, or the first cavity is opened by a gap.
  • the transfer of the substrate in process step (ii) can be carried out by known processes, such as are used, for example, in multicoloured injection moulding. Typical processes are on the one hand transfer with a rotary table, turning plate, sliding cavity or index plate, or comparable processes in which the substrate remains on a core. If the substrate remains on the core for the transfer, this has the advantage that the position is also defined with an exact fit after the transfer. On the other hand, processes for transfer of a substrate in which the substrate is removed from one cavity, e.g. with the aid of a handling system, and laid in another cavity are known from the prior art. Transfer with removal of the substrate offers more latitude in the design of the coating, e.g. in the generation of a fold or masked regions.
  • the polyurethane layer can be, for example, a PU lacquer, a PU foam or a compact PU skin.
  • the polyurethane layers produced with this process can have, for example, thicknesses of from 1 ⁇ m up to 20 cm.
  • the polyurethane layer is a lacquer with a layer thickness of 1-1,000 mm-10 mm.
  • the polyurethane layer is a compact skin with a layer thickness of 1 mm-10 mm.
  • the polyurethane layer is a foam with a layer thickness of 1 cm-20 cm.
  • thermoplastic compositions of the support a) comprise:
  • Component C is preferably employed in a content of from 0.1 to 15.0 parts by wt., in particular 0.2 to 5.0 parts by wt., based on the sum of components A to C.
  • a mixture of at least one aromatic polycarbonate and/or polyester carbonate and at least one aromatic polyester is employed as component A.
  • the reactive polyurethane raw material mixture preferably has a characteristic number of from >90 to ⁇ 125, preferably >100 to ⁇ 120, and particularly preferably from 105 to 115.
  • thermoplastic polyurethane can also be used instead of the reactive polyurethane raw material mixture.
  • the surface of the injection mould in contact with the thermoplastic polymer composition is temperature-controlled in process step (iii) at a temperature in the range of 50 to 95° C., preferably 60 to 85° C. and particularly preferably 60 to 80° C.
  • the surface of the injection mould in contact with the reactive polyurethane mixture is temperature-controlled in process step (iii) at a temperature in the range of 50 to 160° C., preferably 70 to 120° C., more preferably 80 to 110 ° C. and particularly preferably 90 to 100° C.
  • the surface of the injection mould in contact with the thermoplastic polymer composition is temperature-controlled in process step (iii) at a temperature in the range of 50 to 95° C., preferably 60 to 85° C. and particularly preferably 60 to 80° C. and the surface of the injection mould in contact with the reactive polyurethane mixture is temperature-controlled at a temperature in the range of 50 to 160° C., preferably 70 to 120° C., more preferably 80 to 110° C. and particularly preferably 90 to 100° C.
  • the temperature of the mould cavity on the polyurethane side is at least 10° C., preferably at least 15° C., particularly preferably at least 20° C. higher than the temperature of the mould cavity on the support side (thermoplastic side).
  • At least one polyurethane additive and/or process auxiliary substance is injected into the gap resulting in this way between the thermoplastic component and the mould surface of the enlarged cavity, the polyurethane raw material mixture polymerizing completely in contact with the surface of the thermoplastic support to give a compact polyurethane layer or to give a polyurethane foam layer,
  • thermoplastic polymer composition which shows, at room temperature and particularly preferably also at ⁇ 30° C., tough fracture properties in the notched impact test according to ISO 180-1A, characterized by a notched impact strength value of greater than 25 kJ/m 2 , and/or a tough (non-splintering) fracture pattern in the impact penetration test according to ISO 6603, is used in the first process step.
  • compositions comprising
  • Component A here is preferably a mixture of at least one aromatic polycarbonate and/or polyester carbonate and at least one aromatic polyester.
  • the present invention moreover relates to composite components comprising
  • Component A here is preferably a mixture of at least one aromatic polycarbonate and/or polyester carbonate and at least one aromatic polyester.
  • the composite components are preferably produced by a 2-component reactive injection moulding process with a reactive polyurethane raw material mixture comprising
  • the reactive polyurethane raw material mixture has a characteristic number of from >90 to ⁇ 125, preferably >100 to ⁇ 120, and particularly preferably from 105 to 115.
  • the composite component shows, at ⁇ 30° C., tough (non-splintering) fracture properties under multiaxial impact stress, measured on the fracture pattern in the impact penetration test according to ISO 6603.
  • the adhesive bond between the support of polycarbonate composition and the polyurethane coating in the composite components according to the invention is at least 1 N/mm, measured in a roller peel test according to DIN 53357 A at a test speed of 100 mm/min on strip samples with a width of 20 mm taken from the component.
  • the composite components produced according to the invention are preferably suitable for use as an interior or exterior component of a track, air travel or motor vehicle.
  • the polymer compositions employed in the process according to the invention comprise:
  • Aromatic polycarbonates and polyester carbonates according to component A which are suitable according to the invention are known from the literature or can be prepared by processes known from the literature (for the preparation of aromatic polycarbonates see, for example, Schnell, “Chemistry and Physics of Polycarbonates”, Interscience Publishers, 1964 and DE-AS 1 495 626, DE-A 2 232 877, DE-A 2 703 376, DE-A 2 714 544, DE-A 3 000 610, DE-A 3 832 396; for the preparation of aromatic polyester carbonates e.g. DE-A 3 077 934).
  • Aromatic polycarbonates and polyester carbonates are prepared e.g. by reaction of diphenols with carbonic acid halides, preferably phosgene, and/or with aromatic dicarboxylic acid dihalides, preferably benzenedicarboxylic acid dihalides, by the interfacial process, optionally using chain terminators, for example monophenols, and optionally using branching agents which are trifunctional or more than trifunctional, for example triphenols or tetraphenols.
  • a preparation via a melt polymerization process by reaction of diphenols with, for example, diphenyl carbonate is likewise possible.
  • Diphenols for the preparation of the aromatic polycarbonates and/or aromatic polyester carbonates are preferably those of the formula (I)
  • A is a single bond, C 1 to C 5 -alkylene, C 2 to C 5 -alkylidene, C 5 to C 6 -cycloalkylidene, —O—, —SO—, —CO—, —S—, —SO 2 —, C 6 to C 12 -arylene, on to which further aromatic rings optionally containing hetero atoms can be fused,
  • B is in each case C 1 to C 12 -alkyl, preferably methyl, halogen, preferably chlorine and/or bromine,
  • x is in each case independently of each other 0, 1 or 2
  • p 1 or 0
  • R 5 and R 6 can be chosen individually for each X 1 and independently of each other denote hydrogen or C 1 to C 6 -alkyl, preferably hydrogen, methyl or ethyl,
  • X 1 denotes carbon
  • n denotes an integer from 4 to 7, preferably 4 or 5, with the proviso that on at least one atom X 1 R 5 and R 6 are simultaneously alkyl.
  • Preferred diphenols are hydroquinone, resorcinol, dihydroxydiphenols, bis-(hydroxyphenyl)-C 1 -C 5 -alkanes, bis-(hydroxyphenyl)-C 5 -C 6 -cycloalkanes, bis-(hydroxyphenyl) ethers, bis-(hydroxyphenyl) sulfoxides, bis-(hydroxyphenyl) ketones, bis-(hydroxyphenyl) sulfones and ⁇ , ⁇ -bis-(hydroxyphenyl)-diisopropyl-benzenes and derivatives thereof brominated on the nucleus and/or chlorinated on the nucleus.
  • diphenols are 4,4′-dihydroxydiphenyl, bisphenol-A, 2,4-bis(4-hydroxyphenyl)-2-methylbutane, 1,1-bis-(4-hydroxyphenyl)-cyclohexane, 1,1-bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane, 4,4′-dihydroxydiphenyl sulfide, 4,4′-dihydroxydiphenyl sulfone and di- and tetrabrominated or chlorinated derivatives thereof, such as, for example, 2,2-bis(3-chloro-4-hydroxy-phenyl)-propane, 2,2-bis-(3,5-dichloro-4-hydroxyphenyl)-propane or 2,2-bis-(3,5-dibromo-4-hydroxy-phenyl)-propane. 2,2-Bis-(4-hydroxyphenyl)-propane (bisphenol A) is particularly preferred.
  • the diphenols can be employed individually or as any desired mixtures.
  • the diphenols are known from the literature or obtainable by processes known from the literature.
  • Chain terminators which are suitable for the preparation of the thermoplastic aromatic polycarbonates are, for example, phenol, p-chlorophenol, p-tert-butylphenol or 2,4,6-tribromophenol, but also long-chain alkylphenols, such as 4-[2-(2,4,4-trimethylpentyl)]-phenol, 4-(1,3-tetramethylbutyl)-phenol according to DE-A 2 842 005 or monoalkylphenols or dialkylphenols having a total of 8 to 20 carbon atoms in the alkyl substituents, such as 3,5-di-tert-butylphenol, p-iso-octylphenol, p-tert-octylphenol, p-dodecylphenol and 2-(3,5-dimethylheptyl)-phenol and 4-(3,5-dimethylheptyl)-phenol.
  • the amount of chain terminators to be employed is in general between 0.5 mol % and 10
  • thermoplastic aromatic polycarbonates can be branched in a known manner, and in particular preferably by incorporation of from 0.05 to 2.0 mol %, based on the sum of the diphenols employed, of compounds which are trifunctional or more than trifunctional, for example those having three and more phenolic groups.
  • Both homopolycarbonates and copolycarbonates are suitable.
  • 1 to 25 wt. %, preferably 2.5 to 25 wt. %, based on the total amount of diphenols to be employed, of polydiorganosiloxanes having hydroxyaryloxy end groups can also be employed for the preparation of the copolycarbonates according to the invention according to component A.
  • These are known (U.S. Pat. No. 3,419,634) and can be prepared by processes known from the literature.
  • the preparation of copolycarbonates containing polydiorganosiloxane is described in DE-A 3 334 782.
  • Preferred polycarbonates are, in addition to bisphenol A homopolycarbonates, copolycarbonates of bisphenol A with up to 15 mol %, based on the sum of the moles of diphenols, of other diphenols mentioned as preferred or particularly preferred, in particular 2,2-bis(3,5-dibromo-4-hydroxyphenyl)-propane.
  • Aromatic dicarboxylic acid dihalides for the preparation of aromatic polyester carbonates are preferably the diacid dichlorides of isophthalic acid, terephthalic acid, diphenyl ether 4,4′-dicarboxylic acid and of naphthalene-2,6-dicarboxylic acid.
  • Mixtures of the diacid dichlorides of isophthalic acid and of terephthalic acid in a ratio of between 1:20 and 20:1 are particularly preferred.
  • a carbonic acid halide preferably phosgene, is additionally co-used as a bifunctional acid derivative in the preparation of polyester carbonates.
  • Possible chain terminators for the preparation of the aromatic polyester carbonates are, in addition to the monophenols already mentioned, also chlorocarbonic acid esters thereof and the acid chlorides of aromatic monocarboxylic acids, which can optionally be substituted by C 1 to C 22 -alkyl groups or by halogen atoms, and aliphatic C 2 to C 22 -monocarboxylic acid chlorides.
  • the amount of chain terminators is in each case 0.1 to 10 mol %, based on the moles of diphenol in the case of the phenolic chain terminators and on the moles of dicarboxylic acid dichloride in the case of monocarboxylic acid chloride chain terminators.
  • the aromatic polyesters carbonates can also contain incorporated aromatic hydroxycarboxylic acids.
  • the aromatic polyester carbonates can be either linear or branched in a known manner (in this context see DE-A 2 940 024 and DE-A 3 007 934).
  • Branching agents which can be used are, for example, carboxylic acid chlorides which are trifunctional or more than trifunctional, such as trimesic acid trichloride, cyanuric acid trichloride, 3,3′,4,4′-benzophenone-tetracarboxylic acid tetrachloride, 1,4,5,8-naphthalenetetracarboxylic acid tetrachloride or pyromellitic acid tetrachloride, in amounts of from 0.01 to 1.0 mol-% (based on the dicarboxylic acid dichlorides employed), or phenols which are trifunctional or more than trifunctional, such as phloroglucinol, 4,6-dimethyl-2,4,6-tri-(4-hydroxyphenyl)-hept-2-ene, 4,6-dimethyl-2,4,6-tri-(4-hydroxyphenyl)-heptane, 1,3,5-tri-(4-hydroxyphenyl)-benzene, 1,1,1-tri
  • the content of carbonate structural units in the thermoplastic aromatic polyester carbonates can vary as desired.
  • the content of carbonate groups is up to 100 mol %, in particular up to 80 mol %, particularly preferably up to 50 mol %, based on the sum of ester groups and carbonate groups.
  • Both the ester and the carbonate content of the aromatic polyester carbonates can be present in the polycondensate in the form of blocks or in random distribution.
  • the relative solution viscosity ( ⁇ rel ) of the aromatic polycarbonates and polyester carbonates is preferably in the range of 1.18 to 1.4, particularly preferably in the range of 1.20 to 1.32 (measured on solutions of 0.5 g of polycarbonate or polyester carbonate in 100 ml of methylene chloride solution at 25° C.).
  • the weight-average molecular weight Mw of the aromatic polycarbonates and polyester carbonates is preferably in the range of from 15,000 to 35,000, more preferably in the range of from 20,000 to 33,000, particularly preferably 23,000 to 30,000, determined by GPC (gel permeation chromatography in methylene chloride with polycarbonate as the standard).
  • the aromatic polyesters possible according to the invention as component A are polyalkylene terephthalates.
  • these are reaction products of aromatic dicarboxylic acids or their reactive derivatives, such as dimethyl esters or anhydrides, and aliphatic, cycloaliphatic or araliphatic diols, and mixtures of these reaction products.
  • Particularly preferred polyalkylene terephthalates contain at least 80 wt. %, preferably at least 90 wt. %, based on the dicarboxylic acid component, of terephthalic acid radicals and at least 80 wt. %, preferably at least 90 mol %, based on the diol component, of radicals of ethylene glycol and/or butane-1,4-diol.
  • the preferred polyalkylene terephthalates can contain, in addition to terephthalic acid radicals, up to 20 mol %, preferably up to 10 mol % of radicals of other aromatic or cycloaliphatic dicarboxylic acids having 8 to 14 C atoms or aliphatic dicarboxylic acids having 4 to 12 C atoms, such as e.g. radicals of phthalic acid, isophthalic acid, naphthalene-2,6-dicarboxylic acid, 4,4′-diphenyldicarboxylic acid, succinic acid, adipic acid, sebacic acid, azelaic acid and cyclohexanediacetic acid.
  • radicals of phthalic acid isophthalic acid, naphthalene-2,6-dicarboxylic acid, 4,4′-diphenyldicarboxylic acid, succinic acid, adipic acid, sebacic acid, azelaic acid and cyclohexanedia
  • the preferred polyalkylene terephthalates can contain, in addition to radicals of ethylene glycol or butane-1,4-diol, up to 20 mol %, preferably up to 10 mol % of other aliphatic diols having 3 to 12 C atoms or cycloaliphatic diols having 6 to 21 C atoms, e.g.
  • the polyalkylene terephthalates can be branched by incorporation of relatively small amounts of 3- or 4-hydric alcohols or 3- or 4-basic carboxylic acids, e.g. in accordance with DE-A 1 900 270 and U.S. Pat. No. 3,692,744.
  • preferred branching agents are trimesic acid, trimellitic acid, trimethylolethane and propane and pentaerythritol.
  • Polyalkylene terephthalates which have been prepared solely from terephthalic acid and reactive derivatives thereof (e.g. dialkyl esters thereof) and ethylene glycol and/or butane-1,4-diol, and mixtures of these polyalkylene terephthalates are particularly preferred.
  • Mixtures of polyalkylene terephthalates contain 1 to 50 wt. %, preferably 1 to 30 wt. % of polyethylene terephthalate and 50 to 99 wt. %, preferably 70 to 99 wt. % of polybutylene terephthalate.
  • the polyalkylene terephthalates preferably used in general have a limiting viscosity of from 0.4 to 1.5 dl/g, preferably 0.5 to 1.2 dl/g, measured in phenol/o-dichlorobenzene (1:1 parts by weight) at 25 ° C. in an Ubbelohde viscometer.
  • the polyalkylene terephthalates can be prepared by known methods (see e.g. Kunststoff-Handbuch, volume VIII, p. 695 et seq., Carl-Hanser-Verlag, Kunststoff 1973).
  • Component B comprises rubber-based graft polymers or rubber-free vinyl (co)polymers or a mixture of several such polymers.
  • Rubber-based graft polymers B.1 employed as component B comprise
  • B.1.2 95 to 5, preferably 85 to 8, in particular 75 to 40 wt. %, based on component B.1, of one or more graft bases having glass transition temperatures of ⁇ 10° C., preferably ⁇ 0° C., particularly preferably ⁇ 20° C.
  • the glass transition temperature was determined by means of dynamic differential calorimetry (DSC) in accordance with the standard DIN EN 61006 at a heating rate of 10 K/min with definition of the T s as the midpoint temperature (tangent method)
  • the graft base B.1.2 in general has an average particle size (d 50 value) of from 0.05 to 10 ⁇ m, preferably 0.1 to 5 ⁇ m, particularly preferably 0.2 to 1 ⁇ m.
  • the average particle size d 50 is the diameter above and below which in each case 50 wt. % of the particles lie. It can be determined by means of ultracentrifuge measurement (W. Scholtan, H. Lange, Kolloid, Z. and Z. Polymere 250 (1972), 782-1796).
  • Monomers B.1.1 are preferably mixtures of
  • Preferred monomers B.1.1.1 are chosen from at least one of the monomers styrene, ⁇ -methylstyrene and methyl methacrylate
  • preferred monomers B.1.1.2 are chosen from at least one of the monomers acrylonitrile, maleic anhydride and methyl methacrylate.
  • Particularly preferred monomers are B.1.1.1 styrene and B.1.1.2 acrylonitrile.
  • Graft bases B.1.2 which are suitable for the graft polymers B.1 are, for example, diene rubbers, EP(D)M rubbers, that is to say those based on ethylene/propylene and optionally diene, and acrylate, polyurethane, silicone, chloroprene and ethylene/vinyl acetate rubbers and silicone/acrylate composite rubbers.
  • Preferred graft bases B.1.2 are diene rubbers, for example based on butadiene and isoprene, or mixtures of diene rubbers or copolymers of diene rubbers or mixtures thereof with further copolymerizable monomers (e.g. according to B.1.1.1 and B.1.1.2), with the proviso that the glass transition temperature of component B.1.2 is below ⁇ 10° C., preferably ⁇ 0° C., particularly preferably ⁇ 20° C.
  • Pure polybutadiene rubber is particularly preferred as the graft base B.1.2.
  • the graft copolymers B.1 are prepared by free radical polymerization, e.g. by emulsion, suspension, solution or bulk polymerization, preferably by emulsion or bulk polymerization, in particular by emulsion polymerization.
  • the content of graft base B.1.2 is preferably 20 to 95 wt. %, particularly preferably 40 to 85 wt. %, in particular 50 to 75 wt. %, in each case based on B.1.
  • the content of graft base B.1.2 is preferably 5 to 50 wt. %, particularly preferably 8 to 25 wt. %, in particular 10 to 20 wt. %, in each case based on B.1.
  • the gel content of the graft base B.1.2 is at least 30 wt. %, preferably at least 40 wt. %, in particular at least 60 wt. %, in each case based on B.1.2 and measured as the insoluble content in toluene.
  • Particularly suitable graft rubbers are also ABS polymers which are prepared by redox initiation with an initiator system of organic hydroperoxide and ascorbic acid in accordance with U.S. Pat. No. 4,937,285.
  • graft polymers B.1 are also understood as meaning those products which are produced by (co)polymerization of the grafting monomers in the presence of the graft base and are also obtained during the working up. These products can accordingly also contain free, i.e. not bonded chemically to the rubber, (co)polymer of the grafting monomers.
  • Suitable acrylate rubbers according to B.1.2 are preferably polymers of acrylic acid alkyl esters, optionally with up to 40 wt. %, based on B.1.2, of other polymerizable ethylenically unsaturated monomers.
  • the preferred polymerizable acrylic acid esters include C 1 to C 8 -alkyl esters, for example methyl, ethyl, butyl, n-octyl and 2-ethylhexyl esters; haloalkyl esters, preferably halo-C 1 -C 8 alkyl esters, such as chloroethyl acrylate, and mixtures of these monomers.
  • crosslinking monomers having more than one polymerizable double bond can be copolymerized.
  • Preferred examples of crosslinking monomers are esters of unsaturated monocarboxylic acids having 3 to 8 C atoms and unsaturated monohydric alcohols having 3 to 12 C atoms, or of saturated polyols having 2 to 4 OH groups and 2 to 20 C atoms, such as ethylene glycol dimethacrylate, allyl methacrylate; polyunsaturated heterocyclic compounds, such as trivinyl and triallyl cyanurate; polyfunctional vinyl compounds, such as di- and trivinylbenzenes; but also triallyl phosphate and diallyl phthalate.
  • Preferred crosslinking monomers are allyl methacrylate, ethylene glycol dimethacrylate, diallyl phthalate and heterocyclic compounds which contain at least three ethylenically unsaturated groups.
  • Particularly preferred crosslinking monomers are the cyclic monomers triallyl cyanurate, triallyl isocyanurate, triacryloylhexahydro-s-triazine, triallylbenzenes.
  • the amount of crosslinking monomers is preferably 0.02 to 5, in particular 0.05 to 2 wt. %, based on the graft base B.1.2. In the case of cyclic crosslinking monomers having at least three ethylenically unsaturated groups, it is advantageous to limit the amount to less than 1 wt. % of the graft base B.1.2.
  • Preferred “other” polymerizable ethylenically unsaturated monomers which can optionally serve for preparation of the graft base B.1.2 in addition to the acrylic acid esters are e.g. acrylonitrile, styrene, ⁇ -methylstyrene, acrylamides, vinyl C 1 -C 6 -alkyl ethers, methyl methacrylate, butadiene.
  • Preferred acrylate rubbers as the graft base B.1.2 are emulsion polymers which have a gel content of at least 60 wt. %.
  • graft bases according to B.1.2 are silicone rubbers having grafting-active sites, such as are described in DE-OS 3 704 657, DE-OS 3 704 655, DE-OS 3 631 540 and DE-OS 3 631 539.
  • the gel content of the graft base B.1.2 and of the graft polymers B.1 is determined at 25° C. in a suitable solvent as the content insoluble in these solvents (M. Hoffmann, H. Kromer, R. Kuhn, Polymeranalytik I and II, Georg Thieme-Verlag, Stuttgart 1977).
  • the rubber-free vinyl (co)polymers according to component B.2 are preferably rubber-free homo- and/or copolymers of at least one monomer from the group of vinylaromatics, vinyl cyanides (unsaturated nitriles), (meth)acrylic acid (C 1 to C 8 )-alkyl esters, unsaturated carboxylic acids and derivatives (such as anhydrides and imides) of unsaturated carboxylic acids.
  • These (co)polymers B.2 are resinous, thermoplastic and rubber-free.
  • the copolymer of B.2.1 styrene and B.2.2 acrylonitrile is particularly preferred.
  • Such (co)polymers B.2 are known and can be prepared by free radical polymerization, in particular by emulsion, suspension, solution or bulk polymerization.
  • the (co)polymers preferably have average molecular weights M w (weight-average, determined by GPC) of between 15,000 and 250,000 g/mol, preferably in the range of 80,000 to 150,000 g/mol.
  • the composition can comprise commercially available polymer additives as component C.
  • Possible commercially available polymer additives according to component C are additives such as, for example, flameproofing agents (for example phosphorus compounds, such as phosphoric or phosphonic acid esters, phosphonatamines and phosphazenes, or halogen compounds), flameproofing synergists (for example nanoscale metal oxides), smoke-suppressing additives (for example boric acid or borates), antidripping agents (for example compounds from the substance classes of fluorinated polyolefins, of silicones and aramid fibres), internal and external lubricants and mould release agents (for example pentaerythritol tetrastearate, stearyl stearate, montan wax or polyethylene wax), flowability auxiliary agents (for example low molecular weight vinyl (co)polymers), antistatics (for example block copolymers of ethylene oxide and propylene oxide, other polyethers or polyhydroxy ethers
  • a polyurethane foam or a compact polyurethane layer is preferably employed as the coating.
  • polyurethanes employed according to the invention are obtained by reaction of polyisocyanates with H-active polyfunctional compounds, preferably polyols.
  • polyurethane is understood in the context of this invention as also meaning polyurethane-ureas, in which those compounds with N—H functionality, optionally in a mixture with polyols, are employed as H-active polyfunctional compounds.
  • Suitable polyisocyanates are the aromatic, araliphatic, aliphatic or cycloaliphatic polyisocyanates known per se to the person skilled in the art having an NCO functionality of preferably ⁇ 2, which can also contain iminooxadiazinedione, isocyanurate, uretdione, urethane, allophanate, biuret, urea, oxadiazinetrione, oxazolidinone, acylurea and/or carbodiimide structures. These can be employed individually or in any desired mixtures with one another.
  • polyisocyanates are based on di- and triisocyanates which are known per se to the person skilled in the art and have aliphatically, cycloaliphatically, araliphatically and/or aromatically bonded isocyanate groups, it being irrelevant whether these have been prepared using phosgene or by phosgene-free processes.
  • di- and triisocyanates examples include 1,4-diisocyanatobutane, 1,5-diisocyanatopentane, 1,6-diisocyanatohexane (HDI), 2-methyl-1,5-diisocyanatopentane, 1,5-diisocyanato-2,2-dimethylpentane, 2,2,4- and 2,4,4-trimethyl-1,6-diisocyanatohexane, 1,10-diisocyanatodecane, 1,3- and 1,4-diisocyanatocyclohexane, 1,3- and 1,4-bis-(isocyanatomethyl)-cyclohexane, 1-isocyanato-3,3,5-trimethyl-5-isocyanatomethylcyclohexane (isophorone-diisocyanate, IPDI), 4,4′-diisocyanatodicyclohexylmethane (Desmodur® W, Bay
  • the polyisocyanates preferably have an average NCO functionality of from 2.0 to 5.0, preferably from 2.2 to 4.5, particularly preferably from 2.2 to 2.7, and a content of isocyanate groups of from 5.0 to 37.0 wt. %, preferably from 14.0 to 34.0 wt. %.
  • polyisocyanates or polyisocyanate mixtures of the abovementioned type with exclusively aliphatically and/or cycloaliphatically bonded isocyanate groups are employed.
  • the polyisocyanates of the abovementioned type are based on hexamethylene-diisocyanate, isophorone-diisocyanate, the isomeric bis-(4,4′-isocyanatocyclohexyl)methanes and mixtures thereof.
  • the prepolymers known from polyurethane chemistry having terminal isocyanate groups of the molecular weight range of 400 to 15,000, preferably 600 to 12,000 are of interest in particular.
  • These compounds are prepared in a manner known per se by reaction of excess amounts of simple polyisocyanates of the type mentioned by way of example with organic compounds having at least two groups which are reactive towards isocyanate groups, in particular organic polyhydroxy compounds.
  • Suitable such polyhydroxy compounds are both simple polyfunctional alcohols of the molecular weight range of 82 to 599, preferably 62 to 200, such as e.g.
  • NCO prepolymers which have been obtained, for example, from low molecular weight polyisocyanates of the type mentioned by way of example and less preferred compounds having groups which are reactive towards isocyanate groups, such as e.g.
  • polythioether polyols polyacetals containing hydroxyl groups, polyhydroxy-polycarbonates, polyester-amides containing hydroxyl groups or copolymers, containing hydroxyl groups, of olefinically unsaturated compounds, can of course also be employed.
  • NCO prepolymers Compounds which have groups which are reactive towards isocyanate groups, in particular hydroxyl, and are suitable for the preparation of the NCO prepolymers are, for example, the compounds disclosed in U.S. Pat. No. 4,218,543. In the preparation of the NCO prepolymers, these compounds having groups which are reactive towards isocyanate groups are reacted with simple polyisocyanates of the type mentioned above by way of example, while maintaining an NCO excess.
  • the NCO prepolymers in general have an NCO content of from 10 to 26, preferably 15 to 26 wt. %.
  • NCO prepolymers or “prepolymers having terminal isocyanate groups” are to be understood as meaning both the reaction products as such and the mixtures with excess amounts of unreacted starting polyisocyanates, which are often also called “semi-prepolymers”.
  • Possible aliphatic diols having an OH number of >500 mg of KOH/g are the chain lengtheners conventionally used in polyurethane chemistry, such as ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, butane-1,4-diol, propane-1,3-diol.
  • Diols, such as 2-butane-1,4-diol, butene-1,3-diol, butane-2,3-diol and/or 2-methylpropane-1,3-diol are preferred. It is of course also possible to employ the aliphatic diols in a mixture with one another.
  • Suitable H-active components are polyols having an average OH number of from 5 to 600 mg of KOH/g and an average functionality of from 2 to 6. Polyols having an average OH number of from 10 to 50 mg of KOH/g are preferred.
  • Polyols which are suitable according to the invention are, for example, polyhydroxy-polyethers, which are accessible by alkoxylation of suitable starter molecules, such as ethylene glycol, diethylene glycol, 1,4-dihydroxybutane, 1,6-dihydroxyhexane, dimethylolpropane, glycerol, pentaerythritol, sorbitol or sucrose.
  • Ammonia or amines such as ethylenediamine, hexamethylenediamine, 2,4-diaminotoluene, aniline or amino alcohols, or phenols, such as bisphenol A, can likewise functions as starters.
  • the alkoxylation is carried out using propylene oxide and/or ethylene oxide in any desired sequence or as a mixture.
  • amines and amino alcohols for example ethanolamine,
  • Polyester polyols such as are accessible in a manner known per se by reaction of low molecular weight alcohols with polyfunctional carboxylic acids, such as adipic acid, phthalic acid, hexahydrophthalic acid, tetrahydrophthalic acid or the anhydrides of these acids are furthermore suitable as long as the viscosity of the H-active component does not become too high.
  • a preferred polyol which contains ester groups is castor oil.
  • formulations with castor oil such as can be obtained by dissolving resins, e.g. aldehyde-ketone resins, and modifications of castor oil and polyols based on other natural oils are also suitable.
  • polyhydroxy-polyethers in which high molecular weight polyadducts or polycondensates or polymers are present in finely disperse, dissolved or grafted-on form are likewise suitable.
  • modified polyhydroxy compounds are obtained in a manner known per se, e.g. when polyaddition reactions (e.g. reactions between polyisocyanates and amino-functional compounds) or polycondensation reactions (e.g. between formaldehyde and phenols and/or amines) are allowed to proceed in situ in the compounds containing hydroxyl groups.
  • polyaddition reactions e.g. reactions between polyisocyanates and amino-functional compounds
  • polycondensation reactions e.g. between formaldehyde and phenols and/or amines
  • Polyhydroxy compounds modified by vinyl polymers such as are obtained e.g. by polymerization of styrene and acrylonitrile in the presence of polyethers or polycarbonate polyols, are also suitable for the preparation of polyurethanes. If polyether polyols which have been modified in accordance with DE-A 2 442 101, DE-A 2 844 922 and DE-A 2 646 141 by grafting polymerization with vinylphosphonic acid esters and optionally (meth)acrylonitrile, (meth)acrylamide or OH-functional (meth)acrylic acid esters are used, plastics of particular flame resistance are obtained.
  • H-active compounds Representatives of the compounds mentioned which are to be used as H-active compounds are described e.g. in High Polymers, vol. XVI, “Polyurethanes Chemistry and Technology”, Saunders-Frisch (ed.) Interscience Publishers, New York, London, vol. 1, p. 32-42, 44, 54 and vol. II, 1984, p. 5-6 and p. 198-199.
  • the polyurethane layer (b) can be foamed or solid, such as e.g. as a lacquer or coating.
  • auxiliary substances and additives known per se such as e.g. release agents, blowing agents, fillers, catalysts and flameproofing agents, can be employed for the production thereof.
  • auxiliary substances and additives which are optionally to be used are:
  • Possible organic blowing agents are e.g. acetone, ethyl acetate, halogen-substituted alkanes, such as methylene chloride, chloroform, ethylidene chloride, vinylidene chloride, monofluorotrichloromethane, chlorodifluoromethane, dichlorodifluoromethane, and furthermore butane, hexane, heptane or diethyl ether, and possible inorganic blowing agents are air, CO 2 or N 2 O.
  • a blowing action can also be achieved by addition of compounds which decompose at temperatures above room temperature with splitting off of gases, for example nitrogen, e.g. azo compounds, such as azodicarboxamide or azoisobutyric acid nitrile.
  • the catalysts are, for example,
  • tertiary amines such as triethylamine, tributylamine, N-methylmorpholine, N-ethylmorpholine, N,N,N′,N′-tetramethylethylenediamine, pentamethyldiethylenetriamine and higher homologues, 1,4-diazabicyclo-(2,2,2)octane, N-methyl-N′-dimethylaminoethylpiperazine, bis-(dimethylaminoalkyl)piperazines, N,N-dimethylbenzylamine, N,N-dimethylcyclohexylamine, N,N-diethylbenzylamine, bis-(N,N-diethylaminoethyl) adipate, N,N,N′,N′-tetramethyl-1,3-butanediamine, N,N-dimethyl- ⁇ -phenylethylamine, 1,2-dimethylimidazole, 2-methylimidazole),
  • Mannich bases of secondary amines such as dimethylamine
  • aldehydes preferably formaldehyde
  • ketones such as acetone, methyl ethyl ketone or cyclohexanone
  • phenols such as phenol, nonylphenol or bisphenol
  • tertiary amines containing hydrogen atoms which are active towards isocyanate groups e.g. triethanolamine, triisopropanolamine, N-methyldiethanolamine, N-ethyldiethanolamine, N,N-dimethylethanolamine
  • alkylene oxides such as propylene oxide and/or ethylene oxide
  • silaamines with carbon-silicon bonds (2,2,4-trimethyl-2-silamorpholine and 1,3-diethylaminomethyltetramethyldisiloxane),
  • nitrogen-containing bases such as tetraalkylammonium hydroxides
  • alkali metal hydroxides such as sodium hydroxide
  • alkali metal phenolates such as sodium phenolate
  • alkali metal alcoholates such as sodium methylate
  • hexahydrotriazines such as sodium hydroxide
  • Organometallic compounds in particular organotin and/or bismuth compounds, can also be used as catalysts.
  • Possible organotin compounds are, in addition to sulfur-containing compounds, such as di-n-octyl-tin mercaptide, preferably tin(II) salts of carboxylic acids, such as tin(II) acetate, tin(II) octoate, tin(II) ethylhexoate and tin(II) laurate, and the tin(IV) compounds, e.g.
  • the catalysts are as a rule employed in an amount of from about 0.001 to 10 wt. %, based on the total amount of compounds with at least two hydrogen atoms which are reactive towards isocyanates.
  • Possible emulsifiers are e.g. the sodium salts of castor oil sulfonates or salts of fatty acids with amines, such as diethylamine oleate or diethanolamine stearate.
  • Alkali metal or ammonium salts of sulfonic acids such as, for example, of dodecylbenzenesulfonic acid or dinaphthylmethanedisulfonic acid, or of fatty acids, such as ricinoleic acid, or of polymeric fatty acids can also be co-used as surface-active additives.
  • foam stabilizers are, above all, polyether-siloxanes, specifically water-soluble representatives. These compounds are in general built up such that a copolymer of ethylene oxide and propylene oxide is bonded to a polydimethylsiloxane radical. Polysiloxane/polyoxyalkylene copolymers branched several times via allophanate groups are of particular interest.
  • reaction retardants are e.g. acid-reacting substances (such as hydrochloric acid or organic acid halides).
  • Possible PU additives are, for example, cell regulators of the type known per se (such as paraffins or fatty alcohols) or dimethylpolysiloxanes and pigments or dyestuffs and flameproofing agents of the type known per se (e.g. trischloroethyl phosphate, tricresyl phosphate or ammonium phosphate and polyphosphate), and furthermore stabilizers against the influences of ageing and weathering, plasticizers and fungistatically and bacteriostatically acting substances as well as fillers (such as barium sulfate, kieselguhr, carbon black or prepared chalk).
  • cell regulators of the type known per se such as paraffins or fatty alcohols
  • dimethylpolysiloxanes and pigments or dyestuffs and flameproofing agents of the type known per se e.g. trischloroethyl phosphate, tricresyl phosphate or ammonium phosphate and polyphosphate
  • surface-active additives and foam stabilizers as well as cell regulators, reaction retardants, stabilizers, flame-retardant substances, plasticizers, dyestuffs and fillers and fungistatically and bacteriostatically active substances optionally to be co-used according to the invention are known to the person skilled in the art and described in the literature.
  • Polybutylene terephthalate having a melt volume flow rate (MVR) of 14 cm 3 /10 min at 260° C./2.16 kg measured in accordance with ISO 1133.
  • Precompound of an ABS graft polymer prepared in emulsion and an SAN polymer prepared in bulk polymerization has an acrylonitrile:butadiene:styrene weight ratio of 20:28:52 wt. %.
  • Precompound of an ABS graft polymer prepared in emulsion and an SAN polymer prepared in bulk polymerization has an acrylonitrile:butadiene:styrene weight ratio of 16:27:57 wt. %.
  • ABS graft polymer having a core-shell structure prepared in emulsion polymerization, comprising 42 wt. % of styrene/acrylonitrile copolymer with a ratio of styrene to acrylonitrile of 72 : 28 wt. % as the shell on 58 wt. % of a particulate graft base having an average particle size d 50 of 0.3 ⁇ m as the core, the graft base comprising pure polybutadiene rubber.
  • ABS polymer prepared by bulk polymerization of 88 wt. %, based on the ABS polymer, of a mixture of 24 wt. % of acrylonitrile and 76 wt. % of styrene in the presence of 12 wt. %, based on the ABS polymer, of a linear polybutadiene rubber.
  • Clearstrength® E920 methyl methacrylate/butadiene/styrene polymer (MBS) having a core-shell structure, prepared in emulsion polymerization, with a polybutadiene content of about 75 wt. % (Arkema, France).
  • SAN Styrene/acrylonitrile copolymer
  • Paraloid® EXL 2650 methyl methacrylate/butadiene polymer (MB) having a core-shell structure, prepared in emulsion polymerization, with a polybutadiene content of about 80 wt. % (Rohm & Haas, France).
  • PETS Pentaerythritol tetrastearate
  • Irganox® B900 mixture of 80 wt. % of Irgafos® 168 (tris-(2,4-di-tert-butyl)phenyl phosphite) and 20 wt. % of Irganox® 1076 (octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate) (BASF, Germany)
  • Irganox® 1076 (octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate) (BASF, Germany)
  • Bayflex® VP.PU 47IF01A is a polyol based on a long-chain polyether and containing ethanediol, diethanolamine, isophoronediamine, having a viscosity according to DIN 53019 of 1,600 mPa.s at 20° C., a density according to DIN 51757 of 1.04 g/cm 3 at 20° C. and a hydroxyl number of 166 mg of KOH/g.
  • Desmodur® VP.PU 48IF30 is an aliphatic isocyanate based on isophorone-diisocyanate (IPDI) and having an NCO content according to DIN EN ISO 11909 of 30.5 wt. %, a viscosity at 23° C. according to DIN EN ISO 3219/A.3 of 200 mPa ⁇ s and a density at 20° C. according to DIN EN ISO 2811 of 1.1 g/cm 3 .
  • IPDI isophorone-diisocyanate
  • the starting substances listed in Tables 1 to 3 are compounded on a twin-screw extruder (ZSK-25) (Werner and Pfleiderer) at a speed of rotation of 220 rpm and with a throughput of 20 kg/h at a melt temperature in the range of from 260 to 280° C. and, after cooling and solidification of the melt of the compound, the compound is granulated.
  • ZSK-25 twin-screw extruder
  • the granules resulting from the particular compounding are processed on an injection moulding machine (Arburg) at melt temperatures of 260° C. and a mould temperature of 80° C. to give test specimens of dimensions 80 mm ⁇ 10 mm ⁇ 4 mm.
  • the ductility of the moulding compositions is evaluated with the aid of the notched impact strength value a k measured on these test specimens in accordance with ISO 180-1A at 23° C. and ⁇ 30° C.
  • the heat distortion temperature is evaluated with the aid of the Vicat B120 or Vicat B50 value measured on these test specimens in accordance with ISO 306.
  • the melt flowability is evaluated with the aid of the melt viscosity measured at 260° C. and a shear rate of 1,000 s ⁇ 1 in accordance with ISO 11443.
  • the adhesive bond between the substrate of polycarbonate composition and the polyurethane skin is determined on strip samples with a width of 20 mm, sawn out of the partially PU-coated 2-component composite sheets produced in this way, by a roller peel test in accordance with DIN 53357 A at a test speed of 100 mm/min.
  • Mouldings partially coated on the surface with a projected area of 412 cm 2 were produced on an injection moulding machine in an injection mould with two cavities (a substrate-side cavity and a polyurethane-side coating cavity, which was coupled to an RIM unit).
  • the composite component is a sheet-like component of a thermoplastic (support), the surface of which was partially coated with a polyurethane skin.
  • the wall thickness of the support moulding was approx. 4 mm.
  • the polyurethane layer thickness was likewise 4 mm.
  • FIG. 1 The process according to the invention for the production of the composite components according to the invention described in the examples is shown in FIG. 1 for better illustration.
  • the support moulding was produced.
  • thermoplastic granules of the compositions as described in Tables 1 to 3 were melted in an injection moulding cylinder and the melt was injected at a temperature of 270° C. into the first mould cavity of the closed mould (steps 1 and 2 in FIG. 1 ).
  • This mould cavity was temperature-controlled at temperatures of 80 or 100° C.
  • the mould was opened in the second process step (step 3 in FIG. 1 ).
  • the support component produced was held here on the ejector side of the injection mould and passed from the support position (step 3 in FIG. 1 ) complete with the mould core via a slide into the coating position (step 4 in FIG. 1 ).
  • the injection mould was closed again (step 5 in FIG. 1 ), a closing force for a pressure of at most 200 bar was built up, and in the third process step the solvent-free reactive polyurethane system (see above) was injected into the coating cavity under a pressure of approx. 30 bar (step 6 in FIG. 1 ).
  • the two reactive components of the polyurethane coating system were conveyed here by the RIM unit into a high pressure counter-flow mixing head and mixed there before the injection.
  • the cavity on the PU side was temperature-controlled here at temperatures of 80 or 100° C.
  • the injection nozzle of the polyurethane mixing head was sealed by means of a hydraulic cylinder under a pressure of initially 50 bar, in order to prevent the coating material from flowing back.
  • the mould was opened a further time (step 7 in FIG. 1 ) and the coated moulding was removed from the mould (step 8 in FIG. 1 ).
  • Table 1 shows the influence of the support compositions (polyurethane system in all cases: mixture of Bayflex VP.PU 47IF01A and Desmodur VP.PU 481F30 with a characteristic number of 95; temperature of the mould cavity on the substrate side in all cases: 80° C., temperature of the mould cavity on the PU side in all cases: 80° C.) on the adhesion between the layers of the composite component.
  • Table 3 shows influences of the polyurethane composition and the mould temperatures (composition of the substrate material in all cases of Example 9 in Table 1)
  • the adhesive bond between the support composition and polyurethane layer here proves to be largely independent of the nature of the graft polymer/vinyl (co)polymer (component B) contained in the support composition and of the molecular weight of the polycarbonate (component A) used (compare Example 4 with Examples 7-10).
  • Example 11 in Table 2 shows that a particularly good adhesive bond is achieved if instead of aromatic polycarbonate as component A, a mixture of aromatic polycarbonate and aromatic polyester is employed.

Landscapes

  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Polyurethanes Or Polyureas (AREA)
US12/961,346 2009-12-08 2010-12-06 Process For The Production Of Polyurethane Composite Components Abandoned US20110135934A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/202,135 US9238320B2 (en) 2009-12-08 2014-03-10 Process for the production of polyurethane composite components

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102009057136.1 2009-12-08
DE102009057136 2009-12-08
DE102009058180A DE102009058180A1 (de) 2009-12-15 2009-12-15 Verfahren zur Herstellung von Polyurethan-Verbundbauteilen
DE102009058180.4 2009-12-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/202,135 Division US9238320B2 (en) 2009-12-08 2014-03-10 Process for the production of polyurethane composite components

Publications (1)

Publication Number Publication Date
US20110135934A1 true US20110135934A1 (en) 2011-06-09

Family

ID=43447182

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/961,346 Abandoned US20110135934A1 (en) 2009-12-08 2010-12-06 Process For The Production Of Polyurethane Composite Components
US14/202,135 Active US9238320B2 (en) 2009-12-08 2014-03-10 Process for the production of polyurethane composite components

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/202,135 Active US9238320B2 (en) 2009-12-08 2014-03-10 Process for the production of polyurethane composite components

Country Status (13)

Country Link
US (2) US20110135934A1 (de)
EP (1) EP2509764B1 (de)
JP (1) JP5840618B2 (de)
KR (1) KR101823167B1 (de)
CN (2) CN107498784A (de)
BR (1) BR112012013919A2 (de)
CA (1) CA2783167A1 (de)
ES (1) ES2468834T3 (de)
IN (1) IN2012DN05073A (de)
MX (1) MX2012006521A (de)
PL (1) PL2509764T3 (de)
TW (1) TWI588207B (de)
WO (1) WO2011070043A1 (de)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110159292A1 (en) * 2009-12-08 2011-06-30 Bayer Materialscience Ag Composite components with improved adhesion of polycarbonate/polyester compositions and polyurethane
US20130196130A1 (en) * 2011-12-29 2013-08-01 Bayer Intellectual Property Gmbh Polymer compositions with improved adhesion
WO2014076227A2 (de) * 2012-11-15 2014-05-22 Johnson Controls Gmbh Sitzstruktur und ein verfahren zu deren herstellung
WO2016012210A1 (de) * 2014-07-21 2016-01-28 BSH Hausgeräte GmbH Verfahren zur herstellung einer hausgerätekomponente sowie eine solche hausgerätekomponente
FR3033191A1 (fr) * 2015-02-26 2016-09-02 Valeo Iluminacion Sa Dispositif lumineux de vehicule automobile
WO2018046698A1 (en) 2016-09-09 2018-03-15 Trinseo Europe Gmbh Multi-layer composite article including a cover layer and a pc/abs layer and methods thereof
US20180312690A1 (en) * 2013-10-18 2018-11-01 Covestro Deutschland Ag Polycarbonate compositions having improved adhesion to polyurethane layers
US10233315B2 (en) * 2014-10-09 2019-03-19 Versalis, S.P.A. Crosslinkable composition comprising polyethylene and use thereof for rotational molding
CN110480934A (zh) * 2019-07-04 2019-11-22 宁波信泰机械有限公司 一种适用acc的毫米波标牌制作方法
CN113453876A (zh) * 2019-02-21 2021-09-28 汉高股份有限及两合公司 使用单组分聚氨酯的注射成型方法
CN114102978A (zh) * 2021-11-29 2022-03-01 天健精密模具注塑(惠州)有限公司 炫彩壳体及其制备方法
CN115179498A (zh) * 2022-06-20 2022-10-14 李继荣 一种环保节能的塑料件注塑模具
US11559951B2 (en) * 2016-12-28 2023-01-24 Covestro Deutschland Ag Composite component

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012211951A1 (de) 2012-07-09 2014-01-09 Wiegand Gmbh Zierteil für Kraftfahrzeuge und Verfahren zu seiner Herstellung
EP3058016B1 (de) * 2013-10-18 2017-08-02 Covestro Deutschland AG Polycarbonatzusammensetzungen mit verbesserter haftung zu polyurethanschichten
EP3057755B1 (de) * 2013-10-18 2020-01-01 Covestro Deutschland AG Polycarbonatzusammensetzungen mit verbesserter haftung zu polyurethanschichten
DE102017112596B4 (de) * 2017-06-08 2020-06-18 Carcoustics Techconsult Gmbh Polyurethan-Formteil mit integrierter Montagehilfe, Verfahren zu dessen Herstellung sowie Verfahren zu dessen Montage
CN110229488A (zh) * 2018-03-05 2019-09-13 科思创德国股份有限公司 热塑性复合材料制件及其制备方法和用途
KR20210019426A (ko) * 2018-06-07 2021-02-22 코베스트로 인텔렉쳐 프로퍼티 게엠베하 운트 콤파니 카게 열가소성 복합 물품 및 그의 제조 방법
EP3650487A1 (de) * 2018-11-06 2020-05-13 Covestro Deutschland AG Thermoplastischer verbundartikel und herstellungsverfahren dafür
CN109836551B (zh) * 2019-01-28 2021-12-10 上海鸿得聚氨酯有限公司 一种聚氨酯运动防护泡沫衬垫组合物及其制备方法
CN109877946B (zh) * 2019-04-02 2020-06-26 广东金马领科智能科技有限公司 陶瓷高压注浆用的树脂层及高压注浆模具的制造方法
CN112553783B (zh) * 2020-11-27 2022-03-18 山东鲁阳节能材料股份有限公司 一种增韧型无机纤维毡及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5910538A (en) * 1998-04-24 1999-06-08 Bayer Corporation Compatibilized ABS polycarbonate molding
US20020160177A1 (en) * 2001-02-26 2002-10-31 Holger Warth Polycarbonate compositions with improved foam adhesion
US6558599B1 (en) * 1998-04-29 2003-05-06 L'oreal Method and apparatus for manufacturing painted or varnished parts out of molded plastics material
US20030197307A1 (en) * 2002-03-14 2003-10-23 Akihiro Kitamura Method for the injection molding and successive decoration molding for a molded product
US20080292864A1 (en) * 2007-05-24 2008-11-27 Basf Aktiengesellschaft Injection process for making a moulding completely recyclable, multilayered article
US7790089B2 (en) * 2004-12-24 2010-09-07 Bayer Materialscience Ag Process and mold for molding and coating a substrate

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1495626B1 (de) 1960-03-30 1971-06-09 Bayer Ag Verfahren zum herstellen von polyestern
US3130177A (en) 1961-03-24 1964-04-21 Borg Warner Blends of polycarbonates with polybutadiene, styrene, acrylonitrile graft copolymers
US3419634A (en) 1966-01-03 1968-12-31 Gen Electric Organopolysiloxane polycarbonate block copolymers
FR1580834A (de) 1968-01-04 1969-09-12
US3644574A (en) 1969-07-17 1972-02-22 Eastman Kodak Co Shaped articles of blends of polyesters and polyvinyls
US4013613A (en) 1971-10-01 1977-03-22 General Electric Company Reinforced intercrystalline thermoplastic polyester compositions
DE2232877B2 (de) 1972-07-05 1980-04-10 Werner & Pfleiderer, 7000 Stuttgart Verfahren zur Herstellung von Polyestern
JPS5039599B2 (de) 1973-03-30 1975-12-18
DE2407776A1 (de) 1974-02-19 1975-09-04 Licentia Gmbh Schaltung zur regelung der betriebsspannung fuer die transistor-zeilenendstufe eines fernsehempfaengers
DE2442101A1 (de) 1974-09-03 1976-03-11 Bayer Ag Phosphor- und gegebenenfalls stickstoff-enthaltende polymere
JPS5292295A (en) 1976-01-29 1977-08-03 Sumitomo Chem Co Ltd Preparation of aromatic polyester
IT1116721B (it) 1976-04-02 1986-02-10 Allied Chem Copolimero bisfenolo a tereftalato carbonato lavorabili in massa fusa
US4218543A (en) 1976-05-21 1980-08-19 Bayer Aktiengesellschaft Rim process for the production of elastic moldings
DE2646141A1 (de) 1976-10-13 1978-04-20 Bayer Ag Phosphor und gegebenenfalls stickstoff enthaltende polymere
DE2715932A1 (de) 1977-04-09 1978-10-19 Bayer Ag Schnellkristallisierende poly(aethylen/alkylen)-terephthalate
DE2842005A1 (de) 1978-09-27 1980-04-10 Bayer Ag Polycarbonate mit alkylphenyl-endgruppen, ihre herstellung und ihre verwendung
DE2844922A1 (de) 1978-10-14 1980-04-30 Kabel Metallwerke Ghh Verfahren zur herstellung eines waermetauschers
JPS5594930A (en) 1979-01-10 1980-07-18 Sumitomo Chem Co Ltd Preparation of aromatic polyester by improved bulk polymerization process
DE2906091C3 (de) 1979-02-17 1982-04-08 Fa. Carl Freudenberg, 6940 Weinheim Verwendung von Polyurethanen zur Heißversiegelung von textilen Flächengebilden
DE2940024A1 (de) 1979-10-03 1981-04-16 Bayer Ag, 5090 Leverkusen Aromatische polyester, verfahren zu ihrer herstellung und ihre verwendung zur herstellung von spritzgussartikeln, folien und ueberzuegen
DE3007934A1 (de) 1980-03-01 1981-09-17 Bayer Ag, 5090 Leverkusen Aromatische polyestercarbonate, verfahren zu ihrer herstellung und ihre verwendung zur herstellung von spritzgussartikeln, folien und ueberzuegen
DE3334782A1 (de) 1983-04-19 1984-10-25 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung von polydiorganosiloxanen mit hydroxyaryloxy-endgruppen
DE3601421A1 (de) * 1986-01-20 1987-07-23 Basf Ag Thermoplastische formmassen
DE3631540A1 (de) 1986-09-17 1988-03-24 Bayer Ag Thermoplastische formmassen mit hoher alterungsbestaendigkeit und guter tieftemperaturzaehigkeit
DE3631539A1 (de) 1986-09-17 1988-03-24 Bayer Ag Alterungsbestaendige thermoplastische formmassen mit guter zaehigkeit
DE3704657A1 (de) 1987-02-14 1988-08-25 Bayer Ag Teilchenfoermige mehrphasenpolymerisate
DE3704655A1 (de) 1987-02-14 1988-08-25 Bayer Ag Teilchenfoermige mehrphasenpolymerisate
DE3738143A1 (de) 1987-11-10 1989-05-18 Bayer Ag Verwendung von redoxpfropfpolymerisaten zur verbesserung der benzinbestaendigkeit von thermoplastischen, aromatischen polycarbonat- und/oder polyestercarbonat-formmassen
DE3832396A1 (de) 1988-08-12 1990-02-15 Bayer Ag Dihydroxydiphenylcycloalkane, ihre herstellung und ihre verwendung zur herstellung von hochmolekularen polycarbonaten
US5238737A (en) * 1990-03-22 1993-08-24 Miles Inc. Use of polymer blend films as supports for diagnostic test strips
JPH04270618A (ja) * 1991-02-27 1992-09-28 Sekisui Chem Co Ltd 型内被覆成形法
DE19650854C1 (de) 1996-11-27 1998-03-12 Petri Ag Verfahren und Vorrichtung zur Herstellung eines Mehrschicht-Kunststoffteils
DE19746265A1 (de) * 1997-10-20 1999-04-22 Bayer Ag Verbunde aus Polyurethan und einem thermoplastischen Material
JP2000141407A (ja) * 1998-08-31 2000-05-23 Dainippon Toryo Co Ltd 型内被覆方法
BR0311962A (pt) 2002-06-21 2005-03-22 Recticel Método para produzir um material de poliuretano estável à luz microcelular ou não celular, material de poliuretano estável à luz microcelular ou não celular e uso de um catalisador de organobismuto e/ou de um catalisador de organoestanho
EP1659140A1 (de) 2004-11-18 2006-05-24 HILTI Aktiengesellschaft Verwendung von hoch-verzweigten Polyolen für die Herstellung von Polyurethanschäumen und sie enthaltende Zweikomponenten-Schaumsysteme
US20060118999A1 (en) * 2004-12-06 2006-06-08 Bayer Materialscience Llc Method of preparing a coated molded article
DE102005004688A1 (de) 2005-02-02 2006-08-10 Bayer Aktiengesellschaft Polycarbonatformmassen mit verbesserter Hydrolysebeständigkeit
CN101253042A (zh) * 2005-06-09 2008-08-27 拜尔材料科学股份公司 阻燃涂覆的聚碳酸酯模塑件
DE102006033059A1 (de) 2006-07-14 2008-01-17 Huperz Automotive Systems Gmbh & Co.Kg Kunststoff-Innenraumteil für ein Kraftfahrzeug und eine Vorrichtung zum Herstellen von Kunststoff-Innenraumteilen
DE102006048252B3 (de) 2006-10-12 2007-12-27 Krauss Maffei Gmbh Verfahren und Vorrichtung zur Herstellung eines Verbundbauteils, insbesondere umfassend ein Spritzgussteil mit einer Polyurethan-Beschichtung
DE102007051482A1 (de) * 2007-10-25 2009-04-30 Evonik Röhm Gmbh Verfahren zur Herstellung von beschichteten Formkörpern
TWI507294B (zh) * 2009-12-08 2015-11-11 Bayer Materialscience Ag 具有增進之附著性之聚碳酸酯/聚酯組成物及聚胺基甲酸酯的複合構件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5910538A (en) * 1998-04-24 1999-06-08 Bayer Corporation Compatibilized ABS polycarbonate molding
US6558599B1 (en) * 1998-04-29 2003-05-06 L'oreal Method and apparatus for manufacturing painted or varnished parts out of molded plastics material
US20020160177A1 (en) * 2001-02-26 2002-10-31 Holger Warth Polycarbonate compositions with improved foam adhesion
US20030197307A1 (en) * 2002-03-14 2003-10-23 Akihiro Kitamura Method for the injection molding and successive decoration molding for a molded product
US7790089B2 (en) * 2004-12-24 2010-09-07 Bayer Materialscience Ag Process and mold for molding and coating a substrate
US20080292864A1 (en) * 2007-05-24 2008-11-27 Basf Aktiengesellschaft Injection process for making a moulding completely recyclable, multilayered article

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110159292A1 (en) * 2009-12-08 2011-06-30 Bayer Materialscience Ag Composite components with improved adhesion of polycarbonate/polyester compositions and polyurethane
US8852744B2 (en) * 2009-12-08 2014-10-07 Bayer Materialscience Ag Composite components with improved adhesion of polycarbonate/polyester compositions and polyurethane
US9290654B2 (en) * 2011-12-29 2016-03-22 Bayer Intellectual Property Gmbh Polymer compositions with improved adhesion
US20130196130A1 (en) * 2011-12-29 2013-08-01 Bayer Intellectual Property Gmbh Polymer compositions with improved adhesion
KR102011165B1 (ko) 2011-12-29 2019-08-14 코베스트로 도이칠란드 아게 개선된 접착력을 갖는 중합체 조성물
CN104066792A (zh) * 2011-12-29 2014-09-24 拜耳知识产权有限责任公司 具有改善的粘附性的聚合物组合物
KR20140117445A (ko) * 2011-12-29 2014-10-07 바이엘 인텔렉쳐 프로퍼티 게엠베하 개선된 접착력을 갖는 중합체 조성물
US9469058B2 (en) 2012-11-15 2016-10-18 Johnson Controls Technology Company Seat structure and method for the production thereof
WO2014076227A3 (de) * 2012-11-15 2014-07-10 Johnson Controls Gmbh Sitzstruktur und ein verfahren zu deren herstellung
WO2014076227A2 (de) * 2012-11-15 2014-05-22 Johnson Controls Gmbh Sitzstruktur und ein verfahren zu deren herstellung
US20180312690A1 (en) * 2013-10-18 2018-11-01 Covestro Deutschland Ag Polycarbonate compositions having improved adhesion to polyurethane layers
WO2016012210A1 (de) * 2014-07-21 2016-01-28 BSH Hausgeräte GmbH Verfahren zur herstellung einer hausgerätekomponente sowie eine solche hausgerätekomponente
US10233315B2 (en) * 2014-10-09 2019-03-19 Versalis, S.P.A. Crosslinkable composition comprising polyethylene and use thereof for rotational molding
FR3033191A1 (fr) * 2015-02-26 2016-09-02 Valeo Iluminacion Sa Dispositif lumineux de vehicule automobile
WO2018046698A1 (en) 2016-09-09 2018-03-15 Trinseo Europe Gmbh Multi-layer composite article including a cover layer and a pc/abs layer and methods thereof
US11559951B2 (en) * 2016-12-28 2023-01-24 Covestro Deutschland Ag Composite component
CN113453876A (zh) * 2019-02-21 2021-09-28 汉高股份有限及两合公司 使用单组分聚氨酯的注射成型方法
CN110480934A (zh) * 2019-07-04 2019-11-22 宁波信泰机械有限公司 一种适用acc的毫米波标牌制作方法
CN114102978A (zh) * 2021-11-29 2022-03-01 天健精密模具注塑(惠州)有限公司 炫彩壳体及其制备方法
CN115179498A (zh) * 2022-06-20 2022-10-14 李继荣 一种环保节能的塑料件注塑模具

Also Published As

Publication number Publication date
ES2468834T3 (es) 2014-06-17
TWI588207B (zh) 2017-06-21
WO2011070043A1 (de) 2011-06-16
JP2013512804A (ja) 2013-04-18
PL2509764T3 (pl) 2014-09-30
EP2509764A1 (de) 2012-10-17
CN102762354A (zh) 2012-10-31
CA2783167A1 (en) 2011-06-16
US9238320B2 (en) 2016-01-19
BR112012013919A2 (pt) 2016-04-26
CN107498784A (zh) 2017-12-22
JP5840618B2 (ja) 2016-01-06
KR20120123044A (ko) 2012-11-07
KR101823167B1 (ko) 2018-01-29
TW201137036A (en) 2011-11-01
EP2509764B1 (de) 2014-04-16
US20140239532A1 (en) 2014-08-28
MX2012006521A (es) 2012-09-28
IN2012DN05073A (de) 2015-10-09

Similar Documents

Publication Publication Date Title
US9238320B2 (en) Process for the production of polyurethane composite components
US8852744B2 (en) Composite components with improved adhesion of polycarbonate/polyester compositions and polyurethane
US9290654B2 (en) Polymer compositions with improved adhesion
ES2632744T3 (es) Adhesión mejorada entre termoplásticos y poliuretano
US20180312690A1 (en) Polycarbonate compositions having improved adhesion to polyurethane layers
US10934429B2 (en) Polycarbonate compositions having improved adhesion to polyurethane layers
US10138370B2 (en) Polycarbonate compositions having improved adhesion to polyurethane layers
US20020160177A1 (en) Polycarbonate compositions with improved foam adhesion
DE102009058180A1 (de) Verfahren zur Herstellung von Polyurethan-Verbundbauteilen
DE102009058182A1 (de) Verbundbauteile mit verbesserter Haftung aus Polycarbonat- / Polyesterzusammensetzungen und Polyurethan

Legal Events

Date Code Title Description
AS Assignment

Owner name: BAYER MATERIALSCIENCE AG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SEIDEL, ANDREAS;PROTTE, RAINER;WENZ, ECKHARD;AND OTHERS;SIGNING DATES FROM 20110112 TO 20110127;REEL/FRAME:025851/0339

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION