US20110103391A1 - System and method for high-performance, low-power data center interconnect fabric - Google Patents
System and method for high-performance, low-power data center interconnect fabric Download PDFInfo
- Publication number
- US20110103391A1 US20110103391A1 US12/794,996 US79499610A US2011103391A1 US 20110103391 A1 US20110103391 A1 US 20110103391A1 US 79499610 A US79499610 A US 79499610A US 2011103391 A1 US2011103391 A1 US 2011103391A1
- Authority
- US
- United States
- Prior art keywords
- node
- switch
- nodes
- data
- mac
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/74—Address processing for routing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/32—Means for saving power
- G06F1/3203—Power management, i.e. event-based initiation of a power-saving mode
- G06F1/3234—Power saving characterised by the action undertaken
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F12/00—Accessing, addressing or allocating within memory systems or architectures
- G06F12/02—Addressing or allocation; Relocation
- G06F12/0223—User address space allocation, e.g. contiguous or non contiguous base addressing
- G06F12/0284—Multiple user address space allocation, e.g. using different base addresses
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
- G06F13/14—Handling requests for interconnection or transfer
- G06F13/20—Handling requests for interconnection or transfer for access to input/output bus
- G06F13/24—Handling requests for interconnection or transfer for access to input/output bus using interrupt
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F13/00—Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
- G06F13/38—Information transfer, e.g. on bus
- G06F13/40—Bus structure
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0602—Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
- G06F3/0604—Improving or facilitating administration, e.g. storage management
- G06F3/0605—Improving or facilitating administration, e.g. storage management by facilitating the interaction with a user or administrator
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0628—Interfaces specially adapted for storage systems making use of a particular technique
- G06F3/0629—Configuration or reconfiguration of storage systems
- G06F3/0631—Configuration or reconfiguration of storage systems by allocating resources to storage systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0668—Interfaces specially adapted for storage systems adopting a particular infrastructure
- G06F3/067—Distributed or networked storage systems, e.g. storage area networks [SAN], network attached storage [NAS]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5005—Allocation of resources, e.g. of the central processing unit [CPU] to service a request
- G06F9/5011—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resources being hardware resources other than CPUs, Servers and Terminals
- G06F9/5016—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resources being hardware resources other than CPUs, Servers and Terminals the resource being the memory
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/60—Router architectures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/74—Address processing for routing
- H04L45/745—Address table lookup; Address filtering
- H04L45/74591—Address table lookup; Address filtering using content-addressable memories [CAM]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/10—Packet switching elements characterised by the switching fabric construction
- H04L49/109—Integrated on microchip, e.g. switch-on-chip
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/15—Interconnection of switching modules
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/20—Support for services
- H04L49/201—Multicast operation; Broadcast operation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/25—Routing or path finding in a switch fabric
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/25—Routing or path finding in a switch fabric
- H04L49/253—Routing or path finding in a switch fabric using establishment or release of connections between ports
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/30—Peripheral units, e.g. input or output ports
- H04L49/3009—Header conversion, routing tables or routing tags
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/35—Switches specially adapted for specific applications
- H04L49/351—Switches specially adapted for specific applications for local area network [LAN], e.g. Ethernet switches
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
- H04L49/35—Switches specially adapted for specific applications
- H04L49/356—Switches specially adapted for specific applications for storage area networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/10—Flow control; Congestion control
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/30—Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D10/00—Energy efficient computing, e.g. low power processors, power management or thermal management
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
Definitions
- the disclosure relates generally to a switching fabric for a computer-based system.
- FIGS. 1A and 1B show a classic data center network aggregation as is currently well known.
- FIG. 1A shows a diagrammatical view of a typical network data center architecture 100 wherein top level switches 101 a - n are at the tops of racks 102 a - n filled with blade servers 107 a - n interspersed with local routers 103 a - f . Additional storage routers and core switches. 105 a - b and additional rack units 108 a - n contain additional servers 104 e - k and routers 106 a - g FIG.
- 1 b shows an exemplary physical view 110 of a system with peripheral servers 111 a - bn arranged around edge router systems 112 a - h , which are placed around centrally located core switching systems 113 .
- a - bn arranged around edge router systems 112 a - h , which are placed around centrally located core switching systems 113 .
- Typically such an aggregation 110 has 1-Gb Ethernet from the rack servers to their top of rack switches, and often 10 Gb Ethernet ports to the edge and core routers.
- FIGS. 1A and 1B illustrate a typical data center system
- FIG. 2 is an overview of a network aggregation system
- FIG. 3 illustrates an overview of an exemplary data center in a rack system
- FIG. 4 illustrates a high-level topology of a network aggregating system
- FIG. 5A illustrates a block diagram of an exemplary switch of the network aggregation system
- FIG. 5B illustrates the MAC address encoding
- FIG. 6 illustrates a first embodiment of a broadcast mechanism of the network aggregation system
- FIG. 7 illustrates an example of unicast routing of the network aggregation system
- FIG. 8 illustrates an example of fault-resistant unicast routing of the network aggregation system
- FIG. 9 illustrates a second embodiment of a broadcast mechanism of the network aggregation system.
- the disclosure is particularly applicable to a network aggregation system and method as illustrated and described below and it is in this context that the disclosure will be described. It will be appreciated, however, that the system and method has greater utility since the system and method can be implemented using other elements and architectures that are within the scope of the disclosure and the disclosure is not limited to the illustrative embodiments described below.
- the system and method also supports a routing using a tree-like or graph topology that supports multiple links per node, where each link is designated as an Up, Down, or Lateral link, or both, within the topology.
- each node in the system maybe be a combination computational/switch node, or just a switch node, and input/output (I/O) can reside on any node as described below in more detail.
- the system may also provide a system with a segmented Ethernet Media Access Control (MAC) architecture which may have a method of re-purposing MAC IP addresses for inside MACs and outside MACs, and leveraging what would normally be the physical signaling for the MAC to feed into the switch.
- MAC Seged Ethernet Media Access Control
- the system may also provide a method of non-spoofing communication, as well as a method of fault-resilient broadcasting, which may have a method of unicast misrouting for fault resilience.
- a spoofing attack is a situation in which one person or program successfully masquerades as another by falsifying data and thereby gaining an illegitimate advantage.
- the system may also provide a rigorous security between the management processors, such that management processors can “trust” one another.
- management processors can “trust” one another.
- FIG. 5A which is described below in more detail
- the software running on the management processor is trusted because a) the vendor (in this case Smooth-Stone) has developed and verified the code, b) non-vendor code is not allowed to run on the processor.
- Maintaining a Trust relationship between the management processors allow them to communicate commands (e.g. reboot another node) or request sensitive information from another node without worrying that a user could spoof the request and gain access to information or control of the system.
- the system may also provide a network proxy that has an integrated microcontroller in an always-on power domain within a system on a chip (SOC) that can take over network proxying for the larger onboard processor, and which may apply to a subtree.
- SOC system on a chip
- the system also provide a multi-domaining technique that can dramatically expand the size of a routable fat tree like structure with only trivial changes to the routing header and the routing table.
- FIG. 2 illustrates a network aggregation system 300 .
- the network aggregation supports one or more high speed links 301 (thick lines), such as a 10 -Gb/sec Ethernet communication, that connect an aggregation router 302 and one or more racks 303 , such as three racks 303 a - c as shown in FIG. 3 .
- the network aggregation system provides multiple high-speed 10 Gb paths, represented by thick lines, between one or more Smooth-Stone computing unit 306 a - d , such as server computers, on shelves within a rack. Further details of each Smooth-Stone computing unit are described in more detail in U.S. Provisional Patent Application Ser. No.
- An embedded switch 306 a - d in the Smooth-Stone computing units can replace a top-of-rack switch, thus saving a dramatic amount of power and cost, while still providing a 10 Gb Ethernet port to the aggregation router 302 .
- the network aggregation system switching fabric can integrate traditional Ethernet (1 Gb or 10 Gb) into the XAUI fabric, and the Smooth-Stone computing units can act as a top of rack switch for third-party Ethernet connected servers.
- a middle rack 303 b illustrates another configuration of a rack in the network aggregation system in which one or more Smooth-Stone computing units 306 e, f can integrate into existing data center racks that already contain a top-of-rack switch 308 a .
- the IT group can continue to have their other computing units connected via 1 Gb Ethernet up to the existing top-of-rack switch and the internal Smooth-Stone computing units can be connected via 10 Gb XAUI fabric and they can integrate up to the existing top-of-rack switch with either a 1 Gb or 10 Gb Ethernet interconnects as shown in FIG. 2 .
- a third rack 303 c illustrates a current way that data center racks are traditionally deployed.
- the thin red lines in the third rack 303 c represent 1 Gb Ethernet.
- the current deployments of data center racks is traditionally 1 Gb Ethernet up to the top-of-rack switch 308 b , and then 10 Gb (thick red line 301 ) out from the top of rack switch to the aggregation router.
- all servers are present in an unknown quantity, while they are pictured here in finite quantities for purposes of clarity and simplicity.
- no additional routers are needed, as they operate their own XAUI switching fabric, discussed below.
- FIG. 3 shows an overview of an exemplary “data center in a rack” 400 according to one embodiment of the system.
- the “data center in a rack” 400 may have 10-Gb Ethernet PHY 401 a - n and 1-Gb private Ethernet PHY 402 .
- Large computers (power servers) 403 a - n support search; data mining; indexing; Apache Hadoop, a Java software framework; MapReduce, a software framework introduced by Google to support distributed computing on large data sets on clusters of computers; cloud applications; etc.
- Computers (servers) 404 a - n with local flash and/or solid-state disk (SSD) support search, MySQL, CDN, software-as-a-service (SaaS), cloud applications, etc.
- Data center 400 has an array 406 of hard disks, e.g., in a Just a Bunch of Disks (JBOD) configuration, and, optionally, Smooth-Stone computing units in a disk form factor (for example, the green boxes in arrays 406 and 407 ), optionally acting as disk controllers.
- Hard disk servers or SS disk servers may be used for web servers, user applications, and cloud applications, etc.
- an array 407 of storage servers and historic servers 408 a, b (any size, any vendor) with standard Ethernet interfaces for legacy applications.
- the data center in a rack 400 uses a proprietary system interconnect approach that dramatically reduces power and wires and enables heterogeneous systems, integrating existing Ethernet-based servers and enabling legacy applications.
- a complete server or storage server is put in a disk or SSD form factor, with 8-16 SATA interfaces with 4 ServerNodesTM and 8 PCIe x4 interfaces with 4 ServerNodesTM. It supports disk and/or SSD+ServerNodeTM, using a proprietary board paired with a disk(s) and supporting Web server, user applications, cloud applications, disk caching, etc.
- the Smooth-Stone XAUI system interconnect reduces power, wires and the size of the rack. There is no need for high powered, expensive Ethernet switches and high-power Ethernet Phys on the individual servers. It dramatically reduces cables (cable complexity, costs, significant source of failures). It also enables a heterogeneous server mixture inside the rack, supporting any equipment that uses Ethernet or SATA or PCIe. It can be integrated into the system interconnect.
- the herein presented aspects of a server-on-a-chip (SOC) with packet switch functionality are focused on network aggregation.
- SOC server-on-a-chip
- the SOC is not a fully functionally equivalent to an industry-standard network switch, such as, for example, a Cisco switch or router. But for certain applications discussed throughout this document, it offers a better price/performance ratio as well as a power/performance ratio.
- It contains a layer 2 packet switch, with routing based on source/destination MAC addresses. It further supports virtual local area network (VLAN), with configurable VLAN filtering on domain incoming packets to minimize unnecessary traffic in a domain.
- VLAN virtual local area network
- the embedded MACs within the SOC do have complete VLAN support providing VLAN capability to the overall SOC without the embedded switch explicitly having VLAN support.
- management processor can also wake up the system by management processor notifying the management processor on link state transitions to reprogram routing configurations to route around faults.
- Such functionality does not require layer3 (or above) processing (i.e., it is not a router). It also does not offer complete VLAN support, support for QoS/CoS, address learning, filtering, spanning tree protocol (STP), etc.
- FIG. 4 shows a high-level topology 800 of the network system that illustrates XAUI connected SoC nodes connected by the switching fabric.
- the 10 Gb Ethernet ports Eth 0 801 a and Eth 1 801 b come from the top of the tree.
- Ovals 802 a - n are Smooth-Stone nodes that comprise both computational processors as well as the embedded switch.
- the nodes have five XAUI links connected to the internal switch.
- the switching layers use all five XAUI links for switching.
- the vast majority of trees and fat trees have active nodes only as leaf nodes, and the other nodes are pure switching nodes. This approach makes routing much more straightforward.
- Topology 800 has the flexibility to permit every node to be a combination computational and switch node, or just a switch node. Most tree-type implementations have I/O on the leaf nodes, but topology 800 let the I/O be on any node. In general, placing the Ethernet at the top of the tree minimizes the average number of hops to the Ethernet.
- FIG. 5A illustrates one example implementation of an individual node of the cluster.
- the A9 Cores ( 905 ) may be optionally enabled, or could be just left powered-off. So the upper level switching nodes (N 10 -N 21 ) in FIG. 6 can be used as pure switching elements (like traditional implementations), or we can power on the A9 Cores module and use them as complete nodes within the computing cluster.
- FIG. 5 a shows a block diagram of an exemplary switch 900 according to one aspect of the system and method disclosed herein. It has four areas of interest 910 a - d .
- Area 910 a corresponds to Ethernet packets between the CPUs and the inside MACs.
- Area 910 b corresponds to Ethernet frames at the Ethernet physical interface at the inside MACs, that contains the preamble, start of frame, and inter-frame gap fields.
- Area 910 c corresponds to Ethernet frames at the Ethernet physical interface at the outside MAC, that contains the preamble, start of frame, and inter-frame gap fields.
- Area 910 d corresponds to Ethernet packets between the processor of routing header 901 and outside MAC 904 .
- This segmented MAC architecture is asymmetric.
- the inside MACs have the Ethernet physical signaling interface into the routing header processor, and the outside MAC has an Ethernet packet interface into the routing header processor.
- the MAC IP is re-purposed for inside MACs and outside MACs, and what would normally be the physical signaling for the MAC to feed into the switch is leveraged.
- MAC configuration is such that the operating system device drivers of A9 cores 905 manage and control inside Eth 0 MAC 902 and inside ETH 1 MAC 903 .
- the device driver of management processor 906 manages and controls Inside Eth 2 MAC 907 .
- Outside Eth MAC 904 is not controlled by a device driver.
- MAC 904 is configured in Promiscuous mode to pass all frames without any filtering for network monitoring. Initialization of this MAC is coordinated between the hardware instantiation of the MAC and any other necessary management processor initialization.
- Outside Eth MAC 904 registers are visible to both A9 905 and management processor 906 address maps. Interrupts for Outside Eth MAC 904 are routable to either the A9 or management processor.
- the XGMAC supports several interruptible events that the CPUs may want to monitor, including any change in XGMII link fault status, hot-plugging or removal of PHY, alive status or link status change, and any RMON counter reaching a value equal to the threshold register.
- the routing frame header processor may standardize these fields.
- the XAUI interface may need some or all of these fields.
- the routing header processor at area 910 d needs to add these going into the switch, and to remove them leaving the switch.
- these three fields may be removed (if the XAUI interface allows it).
- the routing header processor at area 910 b will need to strip these going into the switch, and add them back leaving the switch.
- the routing frame header processor receives an Ethernet frame from a MAC, sending a routing frame to the switch. It also standardizes the preamble, start of frame, and inter-frame gap fields, prepends a routing header, and receives a routing frame from the switch, sending the Ethernet frame into a MAC. This processor then strips the routing header and standardizes the preamble, start of frame, and inter-frame gap fields. Note that all frames that are flowing within the fabric are routing frames, not Ethernet frames. The Ethernet frame/routing frame conversion is done only as the packet is entering or leaving the fabric via a MAC. Note also that the routing logic within the switch may change fields within the routing frame. The Ethernet frame is never modified (except the adding/removing of the preamble, start of frame, and inter-frame gap fields).
- the routing frame is composed of the routing frame header plus the core part of the Ethernet frame, and is structured as shown in Table 1, below:
- bit sizing is 4096 nodes ⁇ 12 bit node IDs. These fields may be resized during implementation as needed.
- the routing frame header consists of the fields shown in Table 2, below:
- a switch If a switch receives a packet that fails the checksum, the packet is dropped, a statistic counter is incremented, and the management processor is notified.
- the routing frame processor differentiates between several destination MAC address encodings.
- MAC addresses are formatted as shown in FIG. 5 b .
- the following table describes the usage of the 3 byte OUI and 3 byte NIC specific field within the MAC address.
- One of the novel aspects of the system and method disclosed herein is the use of additional address bits to encode an internal to external MAC mapping, as shown also in the Table 3, below, in the second entry under “Fabric Internal Node local address Hits MAC Lookup CAM”.
- Neighbor Multicast bit 12 bits: Packet sent Multicast set SS_NEIGHBOR_MCAST_MAGIC through all Locally 12 bits: Reserved XAUI links to administered neighboring OUI Switch nodes and not OUI rebroadcast to other nodes
- SS_MAC_NODE_ENCODED_MAGIC and SS_MAC_LINK_ENCODED_MAGIC are constant identifiers used for uniquely identifying these MAC address types.
- the term “magic number” is a standard industry term for a constant numerical or text value used to identify a file format or protocol. These magic numbers are configured in two registers (magicNodeEncodedMAC and magicLinkEncodedMAC that default to standard values during hardware initialization, but allow the management processor software to change them if necessary.
- the header processor contains a MAC Lookup CAM (Content Addressable Memory), macAddrLookup, that maps from 6 byte MAC addresses to 12-bit Node IDs, as shown in Table 4, below.
- MAC Lookup CAM Content Addressable Memory
- macAddrLookup maps from 6 byte MAC addresses to 12-bit Node IDs, as shown in Table 4, below.
- the number of rows in this CAM is implementation dependent, but would be expected to be on the order of 256-1024 rows.
- the management processor initializes the CAM with Node ID mappings for all the nodes within the SS fabric. There are two types of rows, depending upon the setting of the Node Local bit for the row.
- the Node Local field allows a 4:1 compression of MAC addresses in the CAM for default MAC addresses, mapping all four MACs into a single row in the CAM table, which is Table 5, below.
- a Node Encoded Address refers to a Smooth Stone Taken from Local assigned MAC address for a node. It encodes the port # low 2 bits of (MAC0, MAC1, management processor, Rsvd) into a 2- MAC Address bit Port ID in the lowest two bits of the NIC address Input field. Ignores low 2 bits during match. Arbitrary 0 Matches against all 6 bytes Taken from CAM Output field
- the arbitrary rows in the CAM allow mapping of the MAC address aliases to the nodes.
- Linux and the MACs
- the MAC addresses to be reassigned on a network interface (e.g., with ifconfig eth 0 hw ether 00:80:48:BA:d1:30). This is sometime used by virtualization/cloud computing to avoid needing to re-ARP after starting a session.
- the switch architecture provides for a secondary MAC Lookup CAM that only stores the 3 bytes of the NIC Specific part of the MAC address for those addresses that match the Switch OUI.
- the availability of this local OUI CAM is determined by the implementation. See Table 6, below.
- the maximum number of nodes limitation for three types of MAC address encodings may be evaluated as follows:
- Default MAC Addressees management processor sets Node Local mappings for each of the nodes in the fabric. There is one entry in the CAM for each node. Max # of nodes is controlled by maximum # of rows in the MAC Address Lookup CAM.
- Node Encoded Addresses All the MACs are reprogrammed to use Node Encoded Addresses. In this way the Node IDs are directly encoded into the MAC addresses. No entries in the MAC Lookup CAM are used. Max # of nodes is controlled by maximum # of rows in the Unicast lookup table (easier to make big compared to the Lookup CAM). Note that this also gives us some risk mitigation in case the MAC Lookup CAM logic is busted. Provides use case for the node encoded addresses idea.
- Arbitrary MAC Address Aliases Takes a row in the CAM. As an example, a 512-row CAM could hold 256 nodes (Node local addresses)+1 MAC address alias per node.
- the management processor Since the Lookup CAM is only accessed during Routing Header creation, the management processor actually only needs to populate a row if the MAC address within the fabric is being used as a source or destination MAC address within a packet. In other words, if two nodes never will talk to each other, a mapping row does not need to be created. But usually the management processor won't have that knowledge, so it's expected that mappings for all nodes are created in all nodes. Also note that even if an entry is not created in the Lookup CAM, the routing will actually still succeed by routing the packet out the Ethernet gateway, through an external router, back into the Fabric, to the destination node.
- Table 7 defines how to set fields within the Routing Header for all the fields except for destination node and port.
- Table 8 defines how to set destination node and port for addresses within the fabric:
- Table 9 defines how to set destination node and port for addresses outside the fabric:
- management processor software architecture of the system and method disclosed here currently depends on the ability of management processor nodes to “trust” each other. This more rigorous security on management processor to management processor communication is desirable, as well a better security on private management LANs across the fabric.
- This fabric issue may be mitigated by simply defining, for environments that require multiple “hard” security domains, that customers simply don't mix security domains within a fabric. In such cases, it may be possible to connect 14-node boards to the top of rack switch, allowing customers to have VLAN granularity control of each 14-node board.
- the multi-domain fabric architecture addresses the lack of VLAN support by creating secure “tunnels” and domains across the fabric, and it can interoperate with VLAN protected router ports on a 1:1 basis.
- the approach to domain management in the system and method disclosed here is as follows: Support multiple domain IDs within the fabric. Allow each of the MACs within a node (management processor, MAC0, MAC1, Gateway) to be assigned to a domain ID individually (and tagged with domain 0 if not set). Allow each of the MACs within a node to have a bit indicating access to the management domain.
- the domain IDs associated with a MAC could only be assigned by the management processor, and could not be altered by the A9.
- the routing frame processor would tag the routing frame with the domain ID and management domain state associated with that MAC.
- Domains would provide the effect of tunnels or VLANs, in that they keep packets (both unicast and multicast) within that domain, allowing MACs outside that domain to be able to neither sniff or spoof those packets. Additionally, this approach would employ a five-bit domain ID. It would add options to control domain processing, such as, for example, a switch with a boolean per MAC that defines whether packets are delivered with non-defined (i.e., zero) domain ID, or a switch that has a boolean per MAC that defines whether packets are delivered with defined (non-zero) but non-matching domain IDs. A further option in the switch could turn off node encoded MAC addresses per MAC (eliminating another style of potential attack vector).
- the management domain bit on all management processor MACs could be marked.
- the management processor should route on domain 1 (by convention).
- domain 1 by convention.
- Such a technique allows all the management processor's to tunnel packets on the management domain so that they cannot be inspected or spoofed by any other devices (inside or outside the fabric), on other VLANs or domains.
- a gateway MAC that has the management domain bit set could be assigned, keeping management packets private to the management processor domain.
- the switch fabric could support “multi-tenant” within itself, by associating each gateway MAC with a separate domain.
- each gateway MAC could connect to an individual port on an outside router, allowing that port to be optionally associated with a VLAN. As the packets come into the gateway, they are tagged with the domain ID, keeping that traffic private to the MACs associated with that domain across the fabric.
- the switch supports a number of registers (aka CSRs, aka MMRs) to allow software or firmware to control the switch.
- CSRs aka MMRs
- MMRs magnetic resonance registers
- the actual layout of these registers will be defined by the implementation.
- the fields listed in Table 10 are software read/write. All these registers need to have a mechanism to secure them from writing from the A9 (could be secure mode or on a management processor private bus).
- the use case here is where the management processor wants to see the gratuitous ARPs that are locally initiated so that it can communicate across the management processor fabric and add corresponding entries into the local unicast routing tables.
- macAddrLookup Lookup CAM which is MAC address lookup CAM to convert MAC described elsewhere in addresses to Node IDs.
- macAcceptOtherDomain[MAC] 1 bit[MAC] Defines that the MAC accepts packets that are tagged with a non-zero, non-matching domain ID.
- macAcceptZeroDomain[MAC] 1 bit[MAC] Defines that the MAC accepts packets that are not tagged with a domain (i.e. 0 domain)
- macDomainID[MAC] 5 bits[MAC] Defines the Domain ID for each of the 4 MACs. A value of 0 indicates that the domain ID for that MAC is not set.
- macMgmtDomain[MAC] 1 bit[MAC] Defines that the MAC may access the management domain.
- magicNodeEncodedMAC 10 bits Magic number for Node Encoded MAC addresses
- magicLinkEncodedMAC 12 bits Magic number for Link Encoded MAC addresses maxTTL 6 bits Maximum TTL count allowed in a routing header. Exceeding this number of hops causes the switch to drop the packet, update a statistic counter, and inform the management processor.
- myNodeID 12 bits Need not be contiguous. Subtree's should ideally be numbered within a range to facilitate subtree network proxying.
- portRemap[INT_PORTS]; Array [INT_PORTS] x Allows remapping of incoming destination 2 bits port IDs to the internal port where it'll be delivered. This register defaults to an equivalence remapping. An example of where this will get remapped is during Network Proxy where the management processor will remap MAC0 packets to be sent to the management processor.
- INT_PORTS 4. Array elements are the Ports enumeration (management processor, MAC0, MAC1, OUT). 2 bits contents is the Ports enumeration.
- primaryEthGatewayNode[INT_PORTS] Array [INT_PORTS] Specifies Node ID of primary Ethernet of 12-bit gateway for this node.
- promiscuousPortVec 4 bits Can be configured for Promiscuous Mode allowing traffic on one or more links to be snooped by the management processor or A9s in order to collect trace data or to implement an Intruder Detection System (IDS). This causes all traffic passing through the switch to be copied to the internal ports defined by this port vector.
- IDMS Intruder Detection System
- routeForeignMACsOut 1 bit When enabled, a MAC address that does not contain a myOUI address, will not check the MAC lookup CAM, and will get treated as a MAC lookup CAM miss, thus getting routed to the gateway port.
- secondaryEthGatewayNode[INT_PORTS] Array [INT_PORTS] Specifies Node ID of secondary Ethernet of 12-bit gateway. Incoming (from OUT) packets routing through the fabric will be sent here.
- unicastPortsFromOtherExt 1 bit An incoming unicast from an external Gateways gateway will get the gateway node put into the source node field of the routing header. Upon reaching the destination node, this bit will be checked. When the bit is clear, the external gateway node must match the destination gateway node for it to be delivered to internal ports.
- the registers shown in Table 11 are contained within the Switch implementation, but need not be software accessible.
- FIG. 6 shows an exemplary broadcast mechanism 1000 according to one aspect of the system and method disclosed herein.
- the link between nodes N 101001 and N 21 1002 is down, as indicated by the dashed line 1003 .
- the source node puts an incremented broadcast ID for that source node in the routing frame (rframe.bcastID).
- N 04 1004 initiates a broadcast to all neighbors, i.e., N 11 1105 .
- N 11 has not seen the packet, so it broadcasts to all non-incoming neighbors, which, in this example, are N 21 1002 , N 20 1006 , N 03 1007 , and N 05 1008 , and accepts the packet internally.
- Nodes N 03 and N 05 haven't seen the packet, so they accept the broadcast internally and are done.
- N 21 hasn't seen the packet, so it broadcasts the packet to all active, non-incoming links (e.g., N 10 , N 12 1009 ), and accepts the packet internally.
- N 20 broadcasts the packet to all active, non-incoming links (i.e., N 12 ), and accepts the packet internally.
- N 10 broadcasts down to N 00 1010 , N 01 1011 , and N 02 1012 .
- N 12 rebroadcasts to N 06 1013 , N 07 1014 , N 08 1015 and to one of N 21 and N 20 (the one it didn't get the broadcast packet from). Note that one of N 20 and N 21 , and N 12 , see the packet twice. They take action only on their first instance, the secondary times it hits the broadcast CAM as a duplicate, and the packet is ignored.
- Unicast routing (as shown in FIG. 7 ) is responsible for routing non-multicast (i.e. unicast) packets to the next node. This is done by utilizing a software computed unicastRoute[ ] next node routing table that provides a vector of available links to get to the destination node.
- the packet will be routed upward until a common parent of (source, destination) is reached. This upward routing can be deterministic, oblivious, or adaptive. The packet is then routed downward to the destination using deterministic routing.
- FIG. 7 illustrates a packet routing from node N 00 1010 to N 08 1015 .
- the packet is routed in the upward phase to the common ancestor (N 21 ) through node N 10 1001 , and then a descent phase to the destination.
- the first candidate link could be chosen deterministically, or an adaptive algorithm could dynamically select either of the links. But, once the node reaches the common ancestor and turns downward, there are no redundant paths (in general) for the node to reach the destination.
- link weights should represent:
- register enableMisrouting that allows software to control whether the switch will initiate the misrouting algorithm.
- Multi-Domaining whose goal is to increase the addressability of nodes to a large number of nodes (e.g., 64K nodes), without having to increase the size of the unicast routing table to 64K nodes.
- the unicast routing table is a single-dimension array indexed by node number (i.e. 0 to MAX_NODES ⁇ 1), where a typical implementation will be between 256 and 4K nodes.
- network proxy is the ability of the main processors ( FIG. 5A , 905 ) to maintain network presence while in a low-power sleep/hibernation state, and intelligently wake when further processing is required.
- the computer to be woken is shut down (sleeping, hibernating, or soft off; i.e., ACPI state G1 or G2), with power reserved for the network card, but not disconnected from its power source.
- the network card listens for a specific packet containing its MAC address, called the magic packet, broadcast on the broadcast address for that particular subnet (or an entire LAN, though this requires special hardware or configuration).
- the magic packet is sent on the data link or layer 2 in the OSI model and broadcast to all NICs within the network of the broadcast address; the IP-address (layer 3 in the OSI model) is not used.
- the network card checks the packet for the correct information. If the magic packet is valid, the network card takes the computer out of hibernation or standby, or starts it up.
- the magic packet is a broadcast frame containing anywhere within its payload: 6 bytes of ones (resulting in hexadecimal FF FF FF FF FF FF FF), followed by sixteen repetitions of the target computer's MAC address. Since the magic packet is only scanned for the string above, and not actually parsed by a full protocol stack, it may be sent as a broadcast packet of any network- and transport-layer protocol. It is typically sent as a UDP datagram to port 0, 7 or 9, or, in former times, as an IPX packet.
- the management processor can support these Wake-On-LAN packets. It will get these broadcast packets, will know the MAC addresses for the other MACs on the node, and be able to wake up the main processor as appropriate. No further functionality is needed in the switch to support these Wake-on-LAN packets.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Theoretical Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Software Systems (AREA)
- Computer Hardware Design (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
- Small-Scale Networks (AREA)
- Multi Processors (AREA)
Priority Applications (38)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/794,996 US20110103391A1 (en) | 2009-10-30 | 2010-06-07 | System and method for high-performance, low-power data center interconnect fabric |
JP2012536877A JP2013509808A (ja) | 2009-10-30 | 2010-10-19 | 高性能、低電力データセンター相互接続構造のためのシステム及び方法 |
CN201510217826.8A CN104836755B (zh) | 2009-10-30 | 2010-10-19 | 用于高性能、低功率数据中心互连结构的系统和方法 |
EP16163413.4A EP3070894B1 (en) | 2009-10-30 | 2010-10-19 | Multiprocessor system with hibernation state |
KR1020127013870A KR101516216B1 (ko) | 2009-10-30 | 2010-10-19 | 고성능, 저전력 데이터 센터 상호접속 패브릭에 대한 시스템 및 방법 |
CN201080060153.5A CN102668473B (zh) | 2009-10-30 | 2010-10-19 | 用于高性能、低功率数据中心互连结构的系统和方法 |
EP10827330.1A EP2494748B1 (en) | 2009-10-30 | 2010-10-19 | System and method for high-performance, low-power data center interconnect fabric |
CN201510827453.6A CN105357152B (zh) | 2009-10-30 | 2010-10-19 | 用于高性能、低功率数据中心互连结构的系统和方法 |
PCT/US2010/053227 WO2011053488A1 (en) | 2009-10-30 | 2010-10-19 | System and method for high-performance, low-power data center interconnect fabric |
US13/234,054 US9876735B2 (en) | 2009-10-30 | 2011-09-15 | Performance and power optimized computer system architectures and methods leveraging power optimized tree fabric interconnect |
US13/453,086 US8599863B2 (en) | 2009-10-30 | 2012-04-23 | System and method for using a multi-protocol fabric module across a distributed server interconnect fabric |
US13/475,713 US9054990B2 (en) | 2009-10-30 | 2012-05-18 | System and method for data center security enhancements leveraging server SOCs or server fabrics |
US13/475,722 US9077654B2 (en) | 2009-10-30 | 2012-05-18 | System and method for data center security enhancements leveraging managed server SOCs |
US13/624,725 US9405584B2 (en) | 2009-10-30 | 2012-09-21 | System and method for high-performance, low-power data center interconnect fabric with addressing and unicast routing |
US13/624,731 US9075655B2 (en) | 2009-10-30 | 2012-09-21 | System and method for high-performance, low-power data center interconnect fabric with broadcast or multicast addressing |
US13/662,759 US9465771B2 (en) | 2009-09-24 | 2012-10-29 | Server on a chip and node cards comprising one or more of same |
US13/692,741 US9311269B2 (en) | 2009-10-30 | 2012-12-03 | Network proxy for high-performance, low-power data center interconnect fabric |
US13/705,386 US8745302B2 (en) | 2009-10-30 | 2012-12-05 | System and method for high-performance, low-power data center interconnect fabric |
US13/705,340 US9008079B2 (en) | 2009-10-30 | 2012-12-05 | System and method for high-performance, low-power data center interconnect fabric |
US13/705,414 US8737410B2 (en) | 2009-10-30 | 2012-12-05 | System and method for high-performance, low-power data center interconnect fabric |
US13/705,428 US20130097351A1 (en) | 2009-10-30 | 2012-12-05 | System and Method for High-Performance, Low-Power Data Center Interconnect Fabric |
US13/728,308 US9262225B2 (en) | 2009-10-30 | 2012-12-27 | Remote memory access functionality in a cluster of data processing nodes |
US14/052,723 US9680770B2 (en) | 2009-10-30 | 2013-10-12 | System and method for using a multi-protocol fabric module across a distributed server interconnect fabric |
US14/334,178 US9479463B2 (en) | 2009-10-30 | 2014-07-17 | System and method for data center security enhancements leveraging managed server SOCs |
US14/334,931 US9454403B2 (en) | 2009-10-30 | 2014-07-18 | System and method for high-performance, low-power data center interconnect fabric |
US14/725,543 US9509552B2 (en) | 2009-10-30 | 2015-05-29 | System and method for data center security enhancements leveraging server SOCs or server fabrics |
US15/042,489 US10135731B2 (en) | 2009-10-30 | 2016-02-12 | Remote memory access functionality in a cluster of data processing nodes |
US15/078,115 US9977763B2 (en) | 2009-10-30 | 2016-03-23 | Network proxy for high-performance, low-power data center interconnect fabric |
US15/254,111 US9866477B2 (en) | 2009-10-30 | 2016-09-01 | System and method for high-performance, low-power data center interconnect fabric |
US15/270,418 US9929976B2 (en) | 2009-10-30 | 2016-09-20 | System and method for data center security enhancements leveraging managed server SOCs |
US15/281,462 US20170115712A1 (en) | 2009-09-24 | 2016-09-30 | Server on a Chip and Node Cards Comprising One or More of Same |
US15/357,332 US10140245B2 (en) | 2009-10-30 | 2016-11-21 | Memcached server functionality in a cluster of data processing nodes |
US15/360,668 US9749326B2 (en) | 2009-10-30 | 2016-11-23 | System and method for data center security enhancements leveraging server SOCs or server fabrics |
US15/672,418 US10050970B2 (en) | 2009-10-30 | 2017-08-09 | System and method for data center security enhancements leveraging server SOCs or server fabrics |
US16/198,619 US10877695B2 (en) | 2009-10-30 | 2018-11-21 | Memcached server functionality in a cluster of data processing nodes |
US17/089,207 US11526304B2 (en) | 2009-10-30 | 2020-11-04 | Memcached server functionality in a cluster of data processing nodes |
US17/985,241 US11720290B2 (en) | 2009-10-30 | 2022-11-11 | Memcached server functionality in a cluster of data processing nodes |
US18/209,801 US20240012581A1 (en) | 2009-10-30 | 2023-06-14 | Memcached Server Functionality in a Cluster of Data Processing Nodes |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US25672309P | 2009-10-30 | 2009-10-30 | |
US12/794,996 US20110103391A1 (en) | 2009-10-30 | 2010-06-07 | System and method for high-performance, low-power data center interconnect fabric |
Related Parent Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US25672309P Continuation | 2009-09-24 | 2009-10-30 | |
US12/889,721 Continuation-In-Part US20140359323A1 (en) | 2009-09-24 | 2010-09-24 | System and method for closed loop physical resource control in large, multiple-processor installations |
US13/284,855 Continuation-In-Part US20130107444A1 (en) | 2009-09-24 | 2011-10-28 | System and method for flexible storage and networking provisioning in large scalable processor installations |
US13/475,713 Continuation-In-Part US9054990B2 (en) | 2009-09-24 | 2012-05-18 | System and method for data center security enhancements leveraging server SOCs or server fabrics |
US13/527,498 Continuation-In-Part US9069929B2 (en) | 2009-09-24 | 2012-06-19 | Arbitrating usage of serial port in node card of scalable and modular servers |
US13/622,759 Continuation-In-Part US9634522B2 (en) | 2012-09-19 | 2012-09-19 | Power grid data monitoring and control |
Related Child Applications (15)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US23405411A Continuation-In-Part | 2009-09-24 | 2011-09-15 | |
US13/234,054 Continuation-In-Part US9876735B2 (en) | 2009-09-24 | 2011-09-15 | Performance and power optimized computer system architectures and methods leveraging power optimized tree fabric interconnect |
US13/453,086 Continuation-In-Part US8599863B2 (en) | 2009-09-24 | 2012-04-23 | System and method for using a multi-protocol fabric module across a distributed server interconnect fabric |
US13/475,713 Continuation-In-Part US9054990B2 (en) | 2009-09-24 | 2012-05-18 | System and method for data center security enhancements leveraging server SOCs or server fabrics |
US13/475,722 Continuation-In-Part US9077654B2 (en) | 2009-09-24 | 2012-05-18 | System and method for data center security enhancements leveraging managed server SOCs |
US13/624,731 Division US9075655B2 (en) | 2009-10-30 | 2012-09-21 | System and method for high-performance, low-power data center interconnect fabric with broadcast or multicast addressing |
US13/624,725 Division US9405584B2 (en) | 2009-10-30 | 2012-09-21 | System and method for high-performance, low-power data center interconnect fabric with addressing and unicast routing |
US13/662,759 Continuation-In-Part US9465771B2 (en) | 2009-09-24 | 2012-10-29 | Server on a chip and node cards comprising one or more of same |
US13/692,741 Continuation-In-Part US9311269B2 (en) | 2009-10-30 | 2012-12-03 | Network proxy for high-performance, low-power data center interconnect fabric |
US13/705,414 Continuation US8737410B2 (en) | 2009-10-30 | 2012-12-05 | System and method for high-performance, low-power data center interconnect fabric |
US13/705,386 Continuation US8745302B2 (en) | 2009-10-30 | 2012-12-05 | System and method for high-performance, low-power data center interconnect fabric |
US13/705,428 Continuation US20130097351A1 (en) | 2009-10-30 | 2012-12-05 | System and Method for High-Performance, Low-Power Data Center Interconnect Fabric |
US13/705,340 Continuation US9008079B2 (en) | 2009-10-30 | 2012-12-05 | System and method for high-performance, low-power data center interconnect fabric |
US13/728,308 Continuation US9262225B2 (en) | 2009-10-30 | 2012-12-27 | Remote memory access functionality in a cluster of data processing nodes |
US14/334,931 Continuation US9454403B2 (en) | 2009-10-30 | 2014-07-18 | System and method for high-performance, low-power data center interconnect fabric |
Publications (1)
Publication Number | Publication Date |
---|---|
US20110103391A1 true US20110103391A1 (en) | 2011-05-05 |
Family
ID=43922457
Family Applications (11)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/794,996 Abandoned US20110103391A1 (en) | 2009-09-24 | 2010-06-07 | System and method for high-performance, low-power data center interconnect fabric |
US13/624,725 Active US9405584B2 (en) | 2009-10-30 | 2012-09-21 | System and method for high-performance, low-power data center interconnect fabric with addressing and unicast routing |
US13/624,731 Active US9075655B2 (en) | 2009-10-30 | 2012-09-21 | System and method for high-performance, low-power data center interconnect fabric with broadcast or multicast addressing |
US13/705,386 Active US8745302B2 (en) | 2009-10-30 | 2012-12-05 | System and method for high-performance, low-power data center interconnect fabric |
US13/705,340 Active US9008079B2 (en) | 2009-10-30 | 2012-12-05 | System and method for high-performance, low-power data center interconnect fabric |
US13/705,428 Abandoned US20130097351A1 (en) | 2009-10-30 | 2012-12-05 | System and Method for High-Performance, Low-Power Data Center Interconnect Fabric |
US13/705,414 Active US8737410B2 (en) | 2009-10-30 | 2012-12-05 | System and method for high-performance, low-power data center interconnect fabric |
US13/728,308 Active 2031-09-06 US9262225B2 (en) | 2009-10-30 | 2012-12-27 | Remote memory access functionality in a cluster of data processing nodes |
US14/334,931 Active US9454403B2 (en) | 2009-10-30 | 2014-07-18 | System and method for high-performance, low-power data center interconnect fabric |
US15/042,489 Active 2030-07-23 US10135731B2 (en) | 2009-10-30 | 2016-02-12 | Remote memory access functionality in a cluster of data processing nodes |
US15/254,111 Active US9866477B2 (en) | 2009-10-30 | 2016-09-01 | System and method for high-performance, low-power data center interconnect fabric |
Family Applications After (10)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/624,725 Active US9405584B2 (en) | 2009-10-30 | 2012-09-21 | System and method for high-performance, low-power data center interconnect fabric with addressing and unicast routing |
US13/624,731 Active US9075655B2 (en) | 2009-10-30 | 2012-09-21 | System and method for high-performance, low-power data center interconnect fabric with broadcast or multicast addressing |
US13/705,386 Active US8745302B2 (en) | 2009-10-30 | 2012-12-05 | System and method for high-performance, low-power data center interconnect fabric |
US13/705,340 Active US9008079B2 (en) | 2009-10-30 | 2012-12-05 | System and method for high-performance, low-power data center interconnect fabric |
US13/705,428 Abandoned US20130097351A1 (en) | 2009-10-30 | 2012-12-05 | System and Method for High-Performance, Low-Power Data Center Interconnect Fabric |
US13/705,414 Active US8737410B2 (en) | 2009-10-30 | 2012-12-05 | System and method for high-performance, low-power data center interconnect fabric |
US13/728,308 Active 2031-09-06 US9262225B2 (en) | 2009-10-30 | 2012-12-27 | Remote memory access functionality in a cluster of data processing nodes |
US14/334,931 Active US9454403B2 (en) | 2009-10-30 | 2014-07-18 | System and method for high-performance, low-power data center interconnect fabric |
US15/042,489 Active 2030-07-23 US10135731B2 (en) | 2009-10-30 | 2016-02-12 | Remote memory access functionality in a cluster of data processing nodes |
US15/254,111 Active US9866477B2 (en) | 2009-10-30 | 2016-09-01 | System and method for high-performance, low-power data center interconnect fabric |
Country Status (6)
Country | Link |
---|---|
US (11) | US20110103391A1 (ko) |
EP (2) | EP2494748B1 (ko) |
JP (1) | JP2013509808A (ko) |
KR (1) | KR101516216B1 (ko) |
CN (2) | CN102668473B (ko) |
WO (1) | WO2011053488A1 (ko) |
Cited By (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110258641A1 (en) * | 2010-04-20 | 2011-10-20 | International Business Machines Corporation | Remote Adapter Configuration |
US20120254400A1 (en) * | 2011-03-31 | 2012-10-04 | International Business Machines Corporation | System to improve operation of a data center with heterogeneous computing clouds |
WO2012162314A1 (en) * | 2011-05-24 | 2012-11-29 | Calxeda, Inc. | System and method for data center security enhancements leveraging managed server socs |
WO2012162313A2 (en) * | 2011-05-24 | 2012-11-29 | Calxeda, Inc. | System and method for data center security enhancements leveraging server socs or server fabrics |
US20130089104A1 (en) * | 2009-10-30 | 2013-04-11 | Calxeda, Inc. | System and Method for High-Performance, Low-Power Data Center Interconnect Fabric |
US20130250802A1 (en) * | 2012-03-26 | 2013-09-26 | Praveen Yalagandula | Reducing cabling costs in a datacenter network |
US8594100B2 (en) | 2010-03-31 | 2013-11-26 | International Business Machines Corporation | Data frame forwarding using a distributed virtual bridge |
US8619796B2 (en) | 2010-04-22 | 2013-12-31 | International Business Machines Corporation | Forwarding data frames with a distributed fiber channel forwarder |
WO2014015664A1 (zh) * | 2012-07-26 | 2014-01-30 | 华为技术有限公司 | 一种通信方法和系统 |
WO2014039922A3 (en) * | 2012-09-06 | 2014-05-15 | Pi-Coral, Inc. | Large-scale data storage and delivery system |
US20140181573A1 (en) * | 2012-12-26 | 2014-06-26 | Calxeda, Inc. | Fabric discovery for a cluster of nodes |
US8856419B2 (en) | 2010-07-19 | 2014-10-07 | International Business Machines Corporation | Register access in distributed virtual bridge environment |
US8861400B2 (en) | 2012-01-18 | 2014-10-14 | International Business Machines Corporation | Requesting multicast membership information in a distributed switch in response to a miss event |
US8891535B2 (en) | 2012-01-18 | 2014-11-18 | International Business Machines Corporation | Managing a global forwarding table in a distributed switch |
US20150181317A1 (en) * | 2013-12-24 | 2015-06-25 | Nec Laboratories America, Inc. | Scalable hybrid packet/circuit switching network architecture |
US9069929B2 (en) | 2011-10-31 | 2015-06-30 | Iii Holdings 2, Llc | Arbitrating usage of serial port in node card of scalable and modular servers |
US20150333926A1 (en) * | 2014-05-14 | 2015-11-19 | International Business Machines Corporation | Autonomous multi-node network configuration and self-awareness through establishment of a switch port group |
CN105359468A (zh) * | 2013-12-06 | 2016-02-24 | 英特尔公司 | 使用与链路结构分组异步的微片捆包的链路传送、位错误检测以及链路重试 |
US9311269B2 (en) | 2009-10-30 | 2016-04-12 | Iii Holdings 2, Llc | Network proxy for high-performance, low-power data center interconnect fabric |
US9465771B2 (en) | 2009-09-24 | 2016-10-11 | Iii Holdings 2, Llc | Server on a chip and node cards comprising one or more of same |
US20160352775A1 (en) * | 2014-04-09 | 2016-12-01 | Hewlett Packard Enterprise Development Lp | Identifying suspicious activity in a load test |
US9585281B2 (en) | 2011-10-28 | 2017-02-28 | Iii Holdings 2, Llc | System and method for flexible storage and networking provisioning in large scalable processor installations |
US20170068639A1 (en) * | 2009-10-30 | 2017-03-09 | Iii Holdings 2, Llc | Memcached server functionality in a cluster of data processing nodes |
US9648102B1 (en) * | 2012-12-27 | 2017-05-09 | Iii Holdings 2, Llc | Memcached server functionality in a cluster of data processing nodes |
US9680770B2 (en) | 2009-10-30 | 2017-06-13 | Iii Holdings 2, Llc | System and method for using a multi-protocol fabric module across a distributed server interconnect fabric |
WO2017100292A1 (en) * | 2015-12-08 | 2017-06-15 | Ultrata, Llc. | Object memory interfaces across shared links |
US9876735B2 (en) | 2009-10-30 | 2018-01-23 | Iii Holdings 2, Llc | Performance and power optimized computer system architectures and methods leveraging power optimized tree fabric interconnect |
US9886210B2 (en) | 2015-06-09 | 2018-02-06 | Ultrata, Llc | Infinite memory fabric hardware implementation with router |
US9965185B2 (en) | 2015-01-20 | 2018-05-08 | Ultrata, Llc | Utilization of a distributed index to provide object memory fabric coherency |
US9971542B2 (en) | 2015-06-09 | 2018-05-15 | Ultrata, Llc | Infinite memory fabric streams and APIs |
US20180167271A1 (en) * | 2016-12-09 | 2018-06-14 | Lenovo Enterprise Solutions (Singapore) Pte. Ltd. | Automatic management network provisioning |
US10033664B2 (en) | 2014-03-28 | 2018-07-24 | Airbus Operations Gmbh | Ethernet switch and method for establishing forwarding patterns in an Ethernet switch |
US10235063B2 (en) | 2015-12-08 | 2019-03-19 | Ultrata, Llc | Memory fabric operations and coherency using fault tolerant objects |
US10241676B2 (en) | 2015-12-08 | 2019-03-26 | Ultrata, Llc | Memory fabric software implementation |
CN110188948A (zh) * | 2019-05-30 | 2019-08-30 | 广西防城港核电有限公司 | 模拟机故障的处理导引方法 |
CN110598444A (zh) * | 2012-09-07 | 2019-12-20 | 威智伦公司 | 具有多个服务器节点的物理安全系统 |
CN110719193A (zh) * | 2019-09-12 | 2020-01-21 | 无锡江南计算技术研究所 | 一种面向高性能计算的高可靠泛树网络拓扑方法及结构 |
US10698628B2 (en) | 2015-06-09 | 2020-06-30 | Ultrata, Llc | Infinite memory fabric hardware implementation with memory |
US10757040B2 (en) * | 2017-07-11 | 2020-08-25 | Cisco Technology, Inc. | Efficient distribution of peer zone database in Fibre Channel fabric |
US10877695B2 (en) | 2009-10-30 | 2020-12-29 | Iii Holdings 2, Llc | Memcached server functionality in a cluster of data processing nodes |
US11086521B2 (en) | 2015-01-20 | 2021-08-10 | Ultrata, Llc | Object memory data flow instruction execution |
US11256435B2 (en) * | 2019-03-27 | 2022-02-22 | Silicon Motion, Inc. | Method and apparatus for performing data-accessing management in a storage server |
US11269514B2 (en) | 2015-12-08 | 2022-03-08 | Ultrata, Llc | Memory fabric software implementation |
US11467883B2 (en) | 2004-03-13 | 2022-10-11 | Iii Holdings 12, Llc | Co-allocating a reservation spanning different compute resources types |
US11496415B2 (en) | 2005-04-07 | 2022-11-08 | Iii Holdings 12, Llc | On-demand access to compute resources |
US11494235B2 (en) | 2004-11-08 | 2022-11-08 | Iii Holdings 12, Llc | System and method of providing system jobs within a compute environment |
US11509564B2 (en) | 2010-07-06 | 2022-11-22 | Nicira, Inc. | Method and apparatus for replicating network information base in a distributed network control system with multiple controller instances |
US11522952B2 (en) | 2007-09-24 | 2022-12-06 | The Research Foundation For The State University Of New York | Automatic clustering for self-organizing grids |
US11630704B2 (en) | 2004-08-20 | 2023-04-18 | Iii Holdings 12, Llc | System and method for a workload management and scheduling module to manage access to a compute environment according to local and non-local user identity information |
US11652706B2 (en) | 2004-06-18 | 2023-05-16 | Iii Holdings 12, Llc | System and method for providing dynamic provisioning within a compute environment |
US11650857B2 (en) | 2006-03-16 | 2023-05-16 | Iii Holdings 12, Llc | System and method for managing a hybrid computer environment |
US11658916B2 (en) | 2005-03-16 | 2023-05-23 | Iii Holdings 12, Llc | Simple integration of an on-demand compute environment |
US11677588B2 (en) | 2010-07-06 | 2023-06-13 | Nicira, Inc. | Network control apparatus and method for creating and modifying logical switching elements |
US11720290B2 (en) | 2009-10-30 | 2023-08-08 | Iii Holdings 2, Llc | Memcached server functionality in a cluster of data processing nodes |
CN117807016A (zh) * | 2024-03-01 | 2024-04-02 | 上海励驰半导体有限公司 | 多核异构系统与外部设备的通信方法、设备、存储介质 |
US11960937B2 (en) | 2004-03-13 | 2024-04-16 | Iii Holdings 12, Llc | System and method for an optimizing reservation in time of compute resources based on prioritization function and reservation policy parameter |
US11979280B2 (en) | 2010-07-06 | 2024-05-07 | Nicira, Inc. | Network control apparatus and method for populating logical datapath sets |
US12120040B2 (en) | 2005-03-16 | 2024-10-15 | Iii Holdings 12, Llc | On-demand compute environment |
US12124878B2 (en) | 2022-03-17 | 2024-10-22 | Iii Holdings 12, Llc | System and method for scheduling resources within a compute environment using a scheduler process with reservation mask function |
Families Citing this family (177)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9552299B2 (en) * | 2010-06-11 | 2017-01-24 | California Institute Of Technology | Systems and methods for rapid processing and storage of data |
US8924752B1 (en) | 2011-04-20 | 2014-12-30 | Apple Inc. | Power management for a graphics processing unit or other circuit |
US9066160B2 (en) * | 2011-07-07 | 2015-06-23 | Alcatel Lucent | Apparatus and method for protection in a data center |
US8612583B2 (en) * | 2011-07-29 | 2013-12-17 | Cisco Technology, Inc. | Network management system scheduling for low power and lossy networks |
CN102742251A (zh) * | 2011-08-11 | 2012-10-17 | 华为技术有限公司 | 一种实现对称多处理系统的节点聚合系统 |
US9128949B2 (en) * | 2012-01-18 | 2015-09-08 | Cloudera, Inc. | Memory allocation buffer for reduction of heap fragmentation |
US9390461B1 (en) | 2012-05-08 | 2016-07-12 | Apple Inc. | Graphics hardware mode controls |
US20130346655A1 (en) * | 2012-06-22 | 2013-12-26 | Advanced Micro Devices, Inc. | Bus agent capable of supporting extended atomic operations and method therefor |
US9699263B1 (en) | 2012-08-17 | 2017-07-04 | Sandisk Technologies Llc. | Automatic read and write acceleration of data accessed by virtual machines |
US9507406B2 (en) | 2012-09-21 | 2016-11-29 | Atmel Corporation | Configuring power domains of a microcontroller system |
US9618991B1 (en) | 2012-09-27 | 2017-04-11 | Google Inc. | Large-scale power back-up for data centers |
US9537793B2 (en) * | 2012-10-10 | 2017-01-03 | Cisco Technology, Inc. | Ensuring any-to-any reachability with opportunistic layer 3 forwarding in massive scale data center environments |
US10311014B2 (en) | 2012-12-28 | 2019-06-04 | Iii Holdings 2, Llc | System, method and computer readable medium for offloaded computation of distributed application protocols within a cluster of data processing nodes |
US9356884B2 (en) * | 2013-01-17 | 2016-05-31 | Cisco Technology, Inc. | MSDC scaling through on-demand path update |
US9372825B1 (en) * | 2013-02-27 | 2016-06-21 | Netapp, Inc. | Global non-volatile solid-state cache in a network storage system |
US9389940B2 (en) * | 2013-02-28 | 2016-07-12 | Silicon Graphics International Corp. | System and method for error logging |
KR102044023B1 (ko) * | 2013-03-14 | 2019-12-02 | 삼성전자주식회사 | 키 값 기반 데이터 스토리지 시스템 및 이의 운용 방법 |
US9870830B1 (en) | 2013-03-14 | 2018-01-16 | Sandisk Technologies Llc | Optimal multilevel sensing for reading data from a storage medium |
US20140344431A1 (en) * | 2013-05-16 | 2014-11-20 | Aspeed Technology Inc. | Baseboard management system architecture |
CN104166628B (zh) * | 2013-05-17 | 2018-05-18 | 华为技术有限公司 | 管理内存的方法、装置和系统 |
CN103297560B (zh) * | 2013-05-21 | 2018-09-07 | 江苏中科羿链通信技术有限公司 | 一种数据流分类的方法及服务器 |
US9330055B2 (en) * | 2013-06-04 | 2016-05-03 | International Business Machines Corporation | Modular architecture for extreme-scale distributed processing applications |
US9304577B2 (en) | 2013-06-05 | 2016-04-05 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Reducing power consumption and wakeup latency in SSD controllers by not resetting flash devices |
US9477276B2 (en) * | 2013-06-13 | 2016-10-25 | Dell Products L.P. | System and method for switch management |
US9619389B1 (en) * | 2013-07-11 | 2017-04-11 | Unigen Corporation | System for a backward and forward application environment compatible distributed shared coherent storage |
US9146814B1 (en) * | 2013-08-26 | 2015-09-29 | Amazon Technologies, Inc. | Mitigating an impact of a datacenter thermal event |
US9639463B1 (en) | 2013-08-26 | 2017-05-02 | Sandisk Technologies Llc | Heuristic aware garbage collection scheme in storage systems |
US9383807B2 (en) | 2013-10-01 | 2016-07-05 | Atmel Corporation | Configuring power domains of a microcontroller system |
KR102147629B1 (ko) | 2013-11-18 | 2020-08-27 | 삼성전자 주식회사 | 플렉시블 서버 시스템 |
US9703816B2 (en) | 2013-11-19 | 2017-07-11 | Sandisk Technologies Llc | Method and system for forward reference logging in a persistent datastore |
US9582058B2 (en) | 2013-11-29 | 2017-02-28 | Sandisk Technologies Llc | Power inrush management of storage devices |
KR200476881Y1 (ko) * | 2013-12-09 | 2015-04-10 | 네이버비즈니스플랫폼 주식회사 | 냉기공급용 부스장치 |
US9497283B2 (en) * | 2013-12-13 | 2016-11-15 | Oracle International Corporation | System and method for providing data interoperability in a distributed data grid |
WO2015100558A1 (zh) * | 2013-12-30 | 2015-07-09 | 华为技术有限公司 | 管理网络设备的物理位置的方法和装置 |
US10313438B1 (en) * | 2013-12-30 | 2019-06-04 | Emc Corporation | Partitioned key-value store with one-sided communications for secondary global key lookup by range-knowledgeable clients |
US9438435B2 (en) | 2014-01-31 | 2016-09-06 | Intenational Business Machines Corporation | Secure, multi-tenancy aware and bandwidth-efficient data center multicast |
US9734063B2 (en) | 2014-02-27 | 2017-08-15 | École Polytechnique Fédérale De Lausanne (Epfl) | Scale-out non-uniform memory access |
US9703636B2 (en) * | 2014-03-01 | 2017-07-11 | Sandisk Technologies Llc | Firmware reversion trigger and control |
US9547553B1 (en) | 2014-03-10 | 2017-01-17 | Parallel Machines Ltd. | Data resiliency in a shared memory pool |
US9626399B2 (en) | 2014-03-31 | 2017-04-18 | Sandisk Technologies Llc | Conditional updates for reducing frequency of data modification operations |
US9626400B2 (en) | 2014-03-31 | 2017-04-18 | Sandisk Technologies Llc | Compaction of information in tiered data structure |
US9697267B2 (en) | 2014-04-03 | 2017-07-04 | Sandisk Technologies Llc | Methods and systems for performing efficient snapshots in tiered data structures |
US9781027B1 (en) | 2014-04-06 | 2017-10-03 | Parallel Machines Ltd. | Systems and methods to communicate with external destinations via a memory network |
US9846658B2 (en) * | 2014-04-21 | 2017-12-19 | Cisco Technology, Inc. | Dynamic temporary use of packet memory as resource memory |
US9690713B1 (en) | 2014-04-22 | 2017-06-27 | Parallel Machines Ltd. | Systems and methods for effectively interacting with a flash memory |
US9529622B1 (en) | 2014-12-09 | 2016-12-27 | Parallel Machines Ltd. | Systems and methods for automatic generation of task-splitting code |
US9594688B1 (en) | 2014-12-09 | 2017-03-14 | Parallel Machines Ltd. | Systems and methods for executing actions using cached data |
US10050901B2 (en) * | 2014-04-22 | 2018-08-14 | Cisco Technology, Inc. | Efficient management and configuration of in-band resources |
WO2015167500A1 (en) * | 2014-04-30 | 2015-11-05 | Hewlett Packard Development Company, L.P. | Flood disable on network switch |
US9703491B2 (en) | 2014-05-30 | 2017-07-11 | Sandisk Technologies Llc | Using history of unaligned writes to cache data and avoid read-modify-writes in a non-volatile storage device |
US10656840B2 (en) | 2014-05-30 | 2020-05-19 | Sandisk Technologies Llc | Real-time I/O pattern recognition to enhance performance and endurance of a storage device |
US10162748B2 (en) | 2014-05-30 | 2018-12-25 | Sandisk Technologies Llc | Prioritizing garbage collection and block allocation based on I/O history for logical address regions |
US10146448B2 (en) | 2014-05-30 | 2018-12-04 | Sandisk Technologies Llc | Using history of I/O sequences to trigger cached read ahead in a non-volatile storage device |
US10114557B2 (en) | 2014-05-30 | 2018-10-30 | Sandisk Technologies Llc | Identification of hot regions to enhance performance and endurance of a non-volatile storage device |
US10372613B2 (en) | 2014-05-30 | 2019-08-06 | Sandisk Technologies Llc | Using sub-region I/O history to cache repeatedly accessed sub-regions in a non-volatile storage device |
US10656842B2 (en) | 2014-05-30 | 2020-05-19 | Sandisk Technologies Llc | Using history of I/O sizes and I/O sequences to trigger coalesced writes in a non-volatile storage device |
US9652381B2 (en) | 2014-06-19 | 2017-05-16 | Sandisk Technologies Llc | Sub-block garbage collection |
US9397939B2 (en) * | 2014-06-24 | 2016-07-19 | International Business Machines Corporation | Hybrid approach for performance enhancing proxies |
US9684367B2 (en) * | 2014-06-26 | 2017-06-20 | Atmel Corporation | Power trace port for tracing states of power domains |
US9852138B2 (en) | 2014-06-30 | 2017-12-26 | EMC IP Holding Company LLC | Content fabric for a distributed file system |
US10382279B2 (en) * | 2014-06-30 | 2019-08-13 | Emc Corporation | Dynamically composed compute nodes comprising disaggregated components |
US9720868B2 (en) * | 2014-07-07 | 2017-08-01 | Xilinx, Inc. | Bridging inter-bus communications |
US10133611B2 (en) * | 2014-10-07 | 2018-11-20 | Synopsys, Inc. | Side channel communication hardware driver |
US9588863B2 (en) * | 2014-10-21 | 2017-03-07 | International Business Machines Corporation | Generation and application of stressmarks in a computer system |
JP6525555B2 (ja) * | 2014-11-04 | 2019-06-05 | キヤノン株式会社 | 情報処理装置、その制御方法及びプログラム |
CN104378237A (zh) * | 2014-11-24 | 2015-02-25 | 英业达科技有限公司 | 判定服务节点状态的方法 |
US9632936B1 (en) | 2014-12-09 | 2017-04-25 | Parallel Machines Ltd. | Two-tier distributed memory |
US9753873B1 (en) | 2014-12-09 | 2017-09-05 | Parallel Machines Ltd. | Systems and methods for key-value transactions |
US9781225B1 (en) | 2014-12-09 | 2017-10-03 | Parallel Machines Ltd. | Systems and methods for cache streams |
US9639473B1 (en) | 2014-12-09 | 2017-05-02 | Parallel Machines Ltd. | Utilizing a cache mechanism by copying a data set from a cache-disabled memory location to a cache-enabled memory location |
US10298709B1 (en) * | 2014-12-31 | 2019-05-21 | EMC IP Holding Company LLC | Performance of Hadoop distributed file system operations in a non-native operating system |
US9684689B2 (en) * | 2015-02-03 | 2017-06-20 | Ca, Inc. | Distributed parallel processing system having jobs processed by nodes based on authentication using unique identification of data |
US10169467B2 (en) * | 2015-03-18 | 2019-01-01 | Microsoft Technology Licensing, Llc | Query formulation via task continuum |
US9792248B2 (en) | 2015-06-02 | 2017-10-17 | Microsoft Technology Licensing, Llc | Fast read/write between networked computers via RDMA-based RPC requests |
WO2016206012A1 (en) * | 2015-06-24 | 2016-12-29 | Intel Corporation | Systems and methods for isolating input/output computing resources |
US20160378344A1 (en) * | 2015-06-24 | 2016-12-29 | Intel Corporation | Processor and platform assisted nvdimm solution using standard dram and consolidated storage |
US10148592B1 (en) * | 2015-06-29 | 2018-12-04 | Amazon Technologies, Inc. | Prioritization-based scaling of computing resources |
US10021008B1 (en) | 2015-06-29 | 2018-07-10 | Amazon Technologies, Inc. | Policy-based scaling of computing resource groups |
US10034070B1 (en) * | 2015-09-06 | 2018-07-24 | Netronome Systems, Inc. | Low cost multi-server array architecture |
US10725963B2 (en) | 2015-09-12 | 2020-07-28 | Microsoft Technology Licensing, Llc | Distributed lock-free RDMA-based memory allocation and de-allocation |
US9658671B2 (en) * | 2015-09-28 | 2017-05-23 | Qualcomm Incorporated | Power-aware CPU power grid design |
US10713210B2 (en) | 2015-10-13 | 2020-07-14 | Microsoft Technology Licensing, Llc | Distributed self-directed lock-free RDMA-based B-tree key-value manager |
US9906370B2 (en) | 2015-11-16 | 2018-02-27 | International Business Machines Corporation | Trust relationship management amongst racks in a data center |
US10375167B2 (en) | 2015-11-20 | 2019-08-06 | Microsoft Technology Licensing, Llc | Low latency RDMA-based distributed storage |
US9985954B2 (en) | 2015-11-25 | 2018-05-29 | International Business Machines Corporation | Sponsored trust relationship management between multiple racks |
US10523796B2 (en) | 2015-12-22 | 2019-12-31 | Intel Corporation | Techniques for embedding fabric address information into locally-administered Ethernet media access control addresses (MACs) and a multi-node fabric system implementing the same |
CN105550157B (zh) | 2015-12-24 | 2017-06-27 | 中国科学院计算技术研究所 | 一种分形树结构通信结构、方法、控制装置及智能芯片 |
US10355992B2 (en) | 2016-01-27 | 2019-07-16 | Oracle International Corporation | System and method for supporting router SMA abstractions for SMP connectivity checks across virtual router ports in a high performance computing environment |
US10374926B2 (en) | 2016-01-28 | 2019-08-06 | Oracle International Corporation | System and method for monitoring logical network traffic flows using a ternary content addressable memory in a high performance computing environment |
US10536334B2 (en) | 2016-01-28 | 2020-01-14 | Oracle International Corporation | System and method for supporting subnet number aliasing in a high performance computing environment |
US10616118B2 (en) | 2016-01-28 | 2020-04-07 | Oracle International Corporation | System and method for supporting aggressive credit waiting in a high performance computing environment |
US10630816B2 (en) | 2016-01-28 | 2020-04-21 | Oracle International Corporation | System and method for supporting shared multicast local identifiers (MILD) ranges in a high performance computing environment |
US10659340B2 (en) | 2016-01-28 | 2020-05-19 | Oracle International Corporation | System and method for supporting VM migration between subnets in a high performance computing environment |
US10171353B2 (en) | 2016-03-04 | 2019-01-01 | Oracle International Corporation | System and method for supporting dual-port virtual router in a high performance computing environment |
US9921997B2 (en) * | 2016-04-01 | 2018-03-20 | Intel Corporation | Mechanism for PCIE cable topology discovery in a rack scale architecture environment |
US10114790B2 (en) * | 2016-05-17 | 2018-10-30 | Microsemi Solutions (U.S.), Inc. | Port mirroring for peripheral component interconnect express devices |
US10713202B2 (en) * | 2016-05-25 | 2020-07-14 | Samsung Electronics Co., Ltd. | Quality of service (QOS)-aware input/output (IO) management for peripheral component interconnect express (PCIE) storage system with reconfigurable multi-ports |
US10762030B2 (en) * | 2016-05-25 | 2020-09-01 | Samsung Electronics Co., Ltd. | Storage system, method, and apparatus for fast IO on PCIE devices |
US10547412B2 (en) | 2016-06-30 | 2020-01-28 | Cisco Technology, Inc. | System and method to measure and score application health via correctable errors |
US10034407B2 (en) | 2016-07-22 | 2018-07-24 | Intel Corporation | Storage sled for a data center |
US11042496B1 (en) * | 2016-08-17 | 2021-06-22 | Amazon Technologies, Inc. | Peer-to-peer PCI topology |
US10606339B2 (en) * | 2016-09-08 | 2020-03-31 | Qualcomm Incorporated | Coherent interconnect power reduction using hardware controlled split snoop directories |
US10891253B2 (en) | 2016-09-08 | 2021-01-12 | Microsoft Technology Licensing, Llc | Multicast apparatuses and methods for distributing data to multiple receivers in high-performance computing and cloud-based networks |
US10277677B2 (en) * | 2016-09-12 | 2019-04-30 | Intel Corporation | Mechanism for disaggregated storage class memory over fabric |
US11138146B2 (en) | 2016-10-05 | 2021-10-05 | Bamboo Systems Group Limited | Hyperscale architecture |
US20180150256A1 (en) | 2016-11-29 | 2018-05-31 | Intel Corporation | Technologies for data deduplication in disaggregated architectures |
CN109891908A (zh) | 2016-11-29 | 2019-06-14 | 英特尔公司 | 用于毫米波机架互连的技术 |
US10911261B2 (en) * | 2016-12-19 | 2021-02-02 | Intel Corporation | Method, apparatus and system for hierarchical network on chip routing |
US11153164B2 (en) | 2017-01-04 | 2021-10-19 | International Business Machines Corporation | Live, in-line hardware component upgrades in disaggregated systems |
US10534598B2 (en) | 2017-01-04 | 2020-01-14 | International Business Machines Corporation | Rolling upgrades in disaggregated systems |
US10394475B2 (en) | 2017-03-01 | 2019-08-27 | International Business Machines Corporation | Method and system for memory allocation in a disaggregated memory architecture |
US10228884B2 (en) | 2017-03-08 | 2019-03-12 | Hewlett Packard Enterprise Development Lp | Issuing write requests to a fabric |
CN110710139A (zh) | 2017-03-29 | 2020-01-17 | 芬基波尔有限责任公司 | 具有光置换器的无阻塞全网状数据中心网络 |
CN110710172A (zh) | 2017-03-29 | 2020-01-17 | 芬基波尔有限责任公司 | 在接入节点组内多路复用分组喷射的无阻塞的任意到任意数据中心网络 |
CN110731070A (zh) | 2017-03-29 | 2020-01-24 | 芬基波尔有限责任公司 | 通过多个交替数据路径进行分组喷射的无阻塞的任意到任意数据中心网络 |
US10565112B2 (en) | 2017-04-10 | 2020-02-18 | Fungible, Inc. | Relay consistent memory management in a multiple processor system |
US11216306B2 (en) * | 2017-06-29 | 2022-01-04 | Intel Corporation | Technologies for dynamically sharing remote resources across remote computing nodes |
US10659254B2 (en) * | 2017-07-10 | 2020-05-19 | Fungible, Inc. | Access node integrated circuit for data centers which includes a networking unit, a plurality of host units, processing clusters, a data network fabric, and a control network fabric |
CN117348976A (zh) | 2017-07-10 | 2024-01-05 | 微软技术许可有限责任公司 | 用于流处理的数据处理单元 |
US10649829B2 (en) * | 2017-07-10 | 2020-05-12 | Hewlett Packard Enterprise Development Lp | Tracking errors associated with memory access operations |
US10565126B2 (en) | 2017-07-14 | 2020-02-18 | Arm Limited | Method and apparatus for two-layer copy-on-write |
US10592424B2 (en) | 2017-07-14 | 2020-03-17 | Arm Limited | Range-based memory system |
US10353826B2 (en) | 2017-07-14 | 2019-07-16 | Arm Limited | Method and apparatus for fast context cloning in a data processing system |
US10534719B2 (en) | 2017-07-14 | 2020-01-14 | Arm Limited | Memory system for a data processing network |
US10489304B2 (en) | 2017-07-14 | 2019-11-26 | Arm Limited | Memory address translation |
US10467159B2 (en) | 2017-07-14 | 2019-11-05 | Arm Limited | Memory node controller |
US10613989B2 (en) | 2017-07-14 | 2020-04-07 | Arm Limited | Fast address translation for virtual machines |
US10911405B1 (en) * | 2017-07-31 | 2021-02-02 | Amazon Technologies, Inc. | Secure environment on a server |
US10904367B2 (en) | 2017-09-29 | 2021-01-26 | Fungible, Inc. | Network access node virtual fabrics configured dynamically over an underlay network |
WO2019068017A1 (en) | 2017-09-29 | 2019-04-04 | Fungible, Inc. | RESILIENT NETWORK COMMUNICATION USING SELECTIVE PULVER FLOW SPRAY BY MULTIPATH PATH |
US10841245B2 (en) | 2017-11-21 | 2020-11-17 | Fungible, Inc. | Work unit stack data structures in multiple core processor system for stream data processing |
KR102524290B1 (ko) | 2017-12-26 | 2023-04-21 | 현대자동차주식회사 | 이더넷 스위치, 차량 내 네트워크 구성 방법 및 차량 |
US11321136B2 (en) * | 2017-12-28 | 2022-05-03 | Intel Corporation | Techniques for collective operations in distributed systems |
US10540288B2 (en) | 2018-02-02 | 2020-01-21 | Fungible, Inc. | Efficient work unit processing in a multicore system |
US10489331B2 (en) | 2018-03-16 | 2019-11-26 | Apple Inc. | Remote service discovery and inter-process communication |
US11016823B2 (en) | 2018-03-16 | 2021-05-25 | Apple Inc. | Remote service discovery and inter-process communication |
US10986043B1 (en) * | 2018-03-30 | 2021-04-20 | Facebook, Inc. | Distributed network switches of data centers |
US10608921B2 (en) | 2018-04-19 | 2020-03-31 | Cisco Technology, Inc. | Routing in fat tree networks using negative disaggregation advertisements |
US11330042B2 (en) | 2018-05-17 | 2022-05-10 | International Business Machines Corporation | Optimizing dynamic resource allocations for storage-dependent workloads in disaggregated data centers |
US10601903B2 (en) | 2018-05-17 | 2020-03-24 | International Business Machines Corporation | Optimizing dynamical resource allocations based on locality of resources in disaggregated data centers |
US10977085B2 (en) | 2018-05-17 | 2021-04-13 | International Business Machines Corporation | Optimizing dynamical resource allocations in disaggregated data centers |
US10893096B2 (en) | 2018-05-17 | 2021-01-12 | International Business Machines Corporation | Optimizing dynamical resource allocations using a data heat map in disaggregated data centers |
US10841367B2 (en) | 2018-05-17 | 2020-11-17 | International Business Machines Corporation | Optimizing dynamical resource allocations for cache-dependent workloads in disaggregated data centers |
US10936374B2 (en) | 2018-05-17 | 2021-03-02 | International Business Machines Corporation | Optimizing dynamic resource allocations for memory-dependent workloads in disaggregated data centers |
US11221886B2 (en) | 2018-05-17 | 2022-01-11 | International Business Machines Corporation | Optimizing dynamical resource allocations for cache-friendly workloads in disaggregated data centers |
US10983881B2 (en) | 2018-05-31 | 2021-04-20 | International Business Machines Corporation | Disaster recovery and replication in disaggregated datacenters |
US11036599B2 (en) | 2018-05-31 | 2021-06-15 | International Business Machines Corporation | Disaster recovery and replication according to workload priorities in disaggregated datacenters |
US10719418B2 (en) | 2018-05-31 | 2020-07-21 | International Business Machines Corporation | Replicating workload data according to a degree of resiliency for disaster recovery in disaggregated datacenters |
US11243846B2 (en) | 2018-05-31 | 2022-02-08 | International Business Machines Corporation | Replicating workload and state data for disaster recovery in disaggregated datacenters |
US10891206B2 (en) * | 2018-05-31 | 2021-01-12 | International Business Machines Corporation | Disaster recovery orchestration and capacity planning in disaggregated datacenters |
US10929035B2 (en) * | 2018-07-18 | 2021-02-23 | Sap Se | Memory management via dynamic tiering pools |
US10884850B2 (en) | 2018-07-24 | 2021-01-05 | Arm Limited | Fault tolerant memory system |
US10942861B2 (en) * | 2018-07-30 | 2021-03-09 | Micron Technology, Inc. | Configurable logic block networks and managing coherent memory in the same |
US10824215B2 (en) | 2018-07-31 | 2020-11-03 | Nutanix, Inc. | Managing power budget of multiple computing node clusters in a computing rack system |
US10977198B2 (en) * | 2018-09-12 | 2021-04-13 | Micron Technology, Inc. | Hybrid memory system interface |
FR3087979B1 (fr) * | 2018-10-31 | 2021-08-06 | Silkan Rt | Systeme de transmission de donnees |
US10929175B2 (en) | 2018-11-21 | 2021-02-23 | Fungible, Inc. | Service chaining hardware accelerators within a data stream processing integrated circuit |
US10915370B2 (en) | 2018-11-29 | 2021-02-09 | International Business Machines Corporation | Inter-host communication without data copy in disaggregated systems |
US11038749B2 (en) * | 2018-12-24 | 2021-06-15 | Intel Corporation | Memory resource allocation in an end-point device |
US11416428B2 (en) * | 2019-02-04 | 2022-08-16 | American Megatrends International, Llc | Enablement of software defined storage solution for NVME over ethernet fabric management on storage controller |
US20200371692A1 (en) * | 2019-05-22 | 2020-11-26 | Microsoft Technology Licensing, Llc | Memory disaggregation for compute nodes |
WO2020236272A1 (en) * | 2019-05-23 | 2020-11-26 | Cray Inc. | System and method for facilitating fine-grain flow control in a network interface controller (nic) |
CN110149235B (zh) * | 2019-05-28 | 2020-11-24 | 中山大学 | 一种支持多用户和多网络协议、可动态扩展的树状网络代理系统 |
CN110399753A (zh) * | 2019-06-27 | 2019-11-01 | 苏州浪潮智能科技有限公司 | 一种服务器机箱锁的控制方法、系统、存储介质及服务器 |
CN112532501B (zh) * | 2019-09-18 | 2023-04-18 | 中国电信股份有限公司 | 主机物理地址处理方法和装置、计算机可读存储介质 |
US11184245B2 (en) | 2020-03-06 | 2021-11-23 | International Business Machines Corporation | Configuring computing nodes in a three-dimensional mesh topology |
EP4127866A1 (en) * | 2020-04-03 | 2023-02-08 | Hewlett-Packard Development Company, L.P. | Operating master processors in power saving mode |
JP6944617B1 (ja) * | 2020-04-24 | 2021-10-06 | 株式会社東陽テクニカ | パケットキャプチャ装置及び方法 |
US11620254B2 (en) * | 2020-06-03 | 2023-04-04 | International Business Machines Corporation | Remote direct memory access for container-enabled networks |
US11853798B2 (en) | 2020-09-03 | 2023-12-26 | Microsoft Technology Licensing, Llc | Disaggregated memory pool assignment |
US11481116B2 (en) * | 2020-09-09 | 2022-10-25 | Microsoft Technology Licensing, Llc | Computing device with independently coherent nodes |
US12111775B2 (en) | 2020-12-26 | 2024-10-08 | Intel Corporation | Memory hub providing cache coherency protocol system method for multiple processor sockets comprising multiple XPUs |
CN113824632B (zh) * | 2021-09-03 | 2023-04-18 | 比威网络技术有限公司 | 安全分级多径路由中的途径点压缩方法和装置 |
CN114124814B (zh) * | 2021-11-19 | 2023-08-29 | 海光信息技术股份有限公司 | 片上网络、控制及配置方法、装置、路由单元及设备 |
WO2023128357A1 (ko) * | 2021-12-29 | 2023-07-06 | 한국과학기술원 | 소프트웨어 기반의 개별분리 아키텍처 시스템 시뮬레이터 및 그의 방법 |
US20240220320A1 (en) * | 2022-12-30 | 2024-07-04 | Advanced Micro Devices, Inc. | Systems and methods for sharing memory across clusters of directly connected nodes |
US20240314089A1 (en) * | 2023-03-14 | 2024-09-19 | Samsung Electronics Co., Ltd. | Multi-node computing system |
Citations (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6252878B1 (en) * | 1997-10-30 | 2001-06-26 | Cisco Technology, Inc. | Switched architecture access server |
US20020097732A1 (en) * | 2001-01-19 | 2002-07-25 | Tom Worster | Virtual private network protocol |
US20030007493A1 (en) * | 2001-06-28 | 2003-01-09 | Hitoshi Oi | Routing mechanism for static load balancing in a partitioned computer system with a fully connected network |
US6574238B1 (en) * | 1998-08-26 | 2003-06-03 | Intel Corporation | Inter-switch link header modification |
US20030110262A1 (en) * | 2001-07-06 | 2003-06-12 | Taqi Hasan | Integrated rule network management system |
US20030202520A1 (en) * | 2002-04-26 | 2003-10-30 | Maxxan Systems, Inc. | Scalable switch fabric system and apparatus for computer networks |
US20030231624A1 (en) * | 2002-06-12 | 2003-12-18 | Alappat Kuriappan P. | Backplane for switch fabric |
US20040210693A1 (en) * | 2003-04-15 | 2004-10-21 | Newisys, Inc. | Managing I/O accesses in multiprocessor systems |
US6842430B1 (en) * | 1996-10-16 | 2005-01-11 | Koninklijke Philips Electronics N.V. | Method for configuring and routing data within a wireless multihop network and a wireless network for implementing the same |
US20050240688A1 (en) * | 2004-04-27 | 2005-10-27 | Filip Moerman | Efficient data transfer from an ASIC to a host using DMA |
US6990063B1 (en) * | 2000-03-07 | 2006-01-24 | Cisco Technology, Inc. | Distributing fault indications and maintaining and using a data structure indicating faults to route traffic in a packet switching system |
US20060029053A1 (en) * | 2000-05-03 | 2006-02-09 | At&T Laboratories-Cambridge Ltd. | Data transfer, synchronising applications, and low latency networks |
US20070226795A1 (en) * | 2006-02-09 | 2007-09-27 | Texas Instruments Incorporated | Virtual cores and hardware-supported hypervisor integrated circuits, systems, methods and processes of manufacture |
US20070280230A1 (en) * | 2006-05-31 | 2007-12-06 | Motorola, Inc | Method and system for service discovery across a wide area network |
US20080013453A1 (en) * | 2006-07-13 | 2008-01-17 | Sbc Knowledge Ventures, L.P. | Method and apparatus for configuring a network topology with alternative communication paths |
US20080075089A1 (en) * | 2006-09-26 | 2008-03-27 | Cisco Technology, Inc. | Snooping of on-path ip reservation protocols for layer 2 nodes |
US20080140771A1 (en) * | 2006-12-08 | 2008-06-12 | Sony Computer Entertainment Inc. | Simulated environment computing framework |
US20080183882A1 (en) * | 2006-12-06 | 2008-07-31 | David Flynn | Apparatus, system, and method for a device shared between multiple independent hosts |
US7447197B2 (en) * | 2001-10-18 | 2008-11-04 | Qlogic, Corporation | System and method of providing network node services |
US20080301794A1 (en) * | 2007-05-31 | 2008-12-04 | Jaushin Lee | Method and system for providing remote access to resources in a secure data center over a network |
US7466712B2 (en) * | 2004-07-30 | 2008-12-16 | Brocade Communications Systems, Inc. | System and method for providing proxy and translation domains in a fibre channel router |
US20080320161A1 (en) * | 2007-06-25 | 2008-12-25 | Stmicroelectronics Sa | Method for transferring data from a source target to a destination target, and corresponding network interface |
US20090080428A1 (en) * | 2007-09-25 | 2009-03-26 | Maxxan Systems, Inc. | System and method for scalable switch fabric for computer network |
US20090135835A1 (en) * | 2004-05-05 | 2009-05-28 | Gigamon Systems Llc | Asymmetric packet switch and a method of use |
US7586841B2 (en) * | 2005-05-31 | 2009-09-08 | Cisco Technology, Inc. | System and method for protecting against failure of a TE-LSP tail-end node |
US20090225751A1 (en) * | 2007-05-22 | 2009-09-10 | Koenck Steven E | Mobile nodal based communication system, method and apparatus |
US7599360B2 (en) * | 2001-12-26 | 2009-10-06 | Cisco Technology, Inc. | Methods and apparatus for encapsulating a frame for transmission in a storage area network |
US7606225B2 (en) * | 2006-02-06 | 2009-10-20 | Fortinet, Inc. | Integrated security switch |
US20090279518A1 (en) * | 2006-08-24 | 2009-11-12 | Rainer Falk | Method and arrangement for providing a wireless mesh network |
US7620057B1 (en) * | 2004-10-19 | 2009-11-17 | Broadcom Corporation | Cache line replacement with zero latency |
US7710936B2 (en) * | 2004-06-02 | 2010-05-04 | Jose Morales Barroso | Universal ethernet telecommunications service |
US7760720B2 (en) * | 2004-11-09 | 2010-07-20 | Cisco Technology, Inc. | Translating native medium access control (MAC) addresses to hierarchical MAC addresses and their use |
US7831839B2 (en) * | 2005-02-07 | 2010-11-09 | Sony Computer Entertainment Inc. | Methods and apparatus for providing a secure booting sequence in a processor |
US7840703B2 (en) * | 2007-08-27 | 2010-11-23 | International Business Machines Corporation | System and method for dynamically supporting indirect routing within a multi-tiered full-graph interconnect architecture |
US20100318812A1 (en) * | 2009-06-12 | 2010-12-16 | Microsoft Corporation | Secure and private backup storage and processing for trusted computing and data services |
US8019832B2 (en) * | 2007-05-16 | 2011-09-13 | Coreworks, S.A. | Network core access architecture |
US20120020207A1 (en) * | 2008-05-12 | 2012-01-26 | Telfonaktiebolaget L M Ericsson (Publ) | Re-routing traffice in a communications network |
US8199636B1 (en) * | 2002-10-18 | 2012-06-12 | Alcatel Lucent | Bridged network system with traffic resiliency upon link failure |
Family Cites Families (328)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5594908A (en) | 1989-12-27 | 1997-01-14 | Hyatt; Gilbert P. | Computer system having a serial keyboard, a serial display, and a dynamic memory with memory refresh |
US5396635A (en) | 1990-06-01 | 1995-03-07 | Vadem Corporation | Power conservation apparatus having multiple power reduction levels dependent upon the activity of the computer system |
US5451936A (en) | 1991-06-20 | 1995-09-19 | The Johns Hopkins University | Non-blocking broadcast network |
US5781187A (en) | 1994-05-31 | 1998-07-14 | Advanced Micro Devices, Inc. | Interrupt transmission via specialized bus cycle within a symmetrical multiprocessing system |
JPH08123763A (ja) | 1994-10-26 | 1996-05-17 | Nec Corp | 分散処理システムにおけるメモリ割り当て方式 |
US6055618A (en) * | 1995-10-31 | 2000-04-25 | Cray Research, Inc. | Virtual maintenance network in multiprocessing system having a non-flow controlled virtual maintenance channel |
JP3541335B2 (ja) * | 1996-06-28 | 2004-07-07 | 富士通株式会社 | 情報処理装置及び分散処理制御方法 |
JP3662378B2 (ja) * | 1996-12-17 | 2005-06-22 | 川崎マイクロエレクトロニクス株式会社 | ネットワーク中継器 |
US5908468A (en) | 1997-10-24 | 1999-06-01 | Advanced Micro Devices, Inc. | Data transfer network on a chip utilizing a multiple traffic circle topology |
US5968176A (en) | 1997-05-29 | 1999-10-19 | 3Com Corporation | Multilayer firewall system |
US5971804A (en) | 1997-06-30 | 1999-10-26 | Emc Corporation | Backplane having strip transmission line ethernet bus |
US6507586B1 (en) * | 1997-09-18 | 2003-01-14 | International Business Machines Corporation | Multicast data transmission over a one-way broadband channel |
KR100286375B1 (ko) | 1997-10-02 | 2001-04-16 | 윤종용 | 전자 시스템의 방열장치 및 방열장치가 사용된 컴퓨터 시스템 |
US5901048A (en) | 1997-12-11 | 1999-05-04 | International Business Machines Corporation | Printed circuit board with chip collar |
KR100250437B1 (ko) * | 1997-12-26 | 2000-04-01 | 정선종 | 라운드로빈 중재 및 적응 경로 제어를 수행하는경로제어 장치 |
US6192414B1 (en) | 1998-01-27 | 2001-02-20 | Moore Products Co. | Network communications system manager |
US6373841B1 (en) | 1998-06-22 | 2002-04-16 | Agilent Technologies, Inc. | Integrated LAN controller and web server chip |
US8108508B1 (en) | 1998-06-22 | 2012-01-31 | Hewlett-Packard Development Company, L.P. | Web server chip for network manageability |
US6181699B1 (en) | 1998-07-01 | 2001-01-30 | National Semiconductor Corporation | Apparatus and method of assigning VLAN tags |
US6314501B1 (en) | 1998-07-23 | 2001-11-06 | Unisys Corporation | Computer system and method for operating multiple operating systems in different partitions of the computer system and for allowing the different partitions to communicate with one another through shared memory |
AU755189B2 (en) * | 1999-03-31 | 2002-12-05 | British Telecommunications Public Limited Company | Progressive routing in a communications network |
US6711691B1 (en) | 1999-05-13 | 2004-03-23 | Apple Computer, Inc. | Power management for computer systems |
US7970929B1 (en) * | 2002-03-19 | 2011-06-28 | Dunti Llc | Apparatus, system, and method for routing data to and from a host that is moved from one location on a communication system to another location on the communication system |
US6442137B1 (en) | 1999-05-24 | 2002-08-27 | Advanced Micro Devices, Inc. | Apparatus and method in a network switch for swapping memory access slots between gigabit port and expansion port |
US7020695B1 (en) | 1999-05-28 | 2006-03-28 | Oracle International Corporation | Using a cluster-wide shared repository to provide the latest consistent definition of the cluster (avoiding the partition-in time problem) |
US6446192B1 (en) | 1999-06-04 | 2002-09-03 | Embrace Networks, Inc. | Remote monitoring and control of equipment over computer networks using a single web interfacing chip |
US6697359B1 (en) | 1999-07-02 | 2004-02-24 | Ancor Communications, Inc. | High performance switch fabric element and switch systems |
US7801132B2 (en) | 1999-11-09 | 2010-09-21 | Synchrodyne Networks, Inc. | Interface system and methodology having scheduled connection responsive to common time reference |
US6857026B1 (en) | 1999-12-14 | 2005-02-15 | Nortel Networks Limited | Using alternate routes for fail-over in a communication network |
US8171204B2 (en) | 2000-01-06 | 2012-05-01 | Super Talent Electronics, Inc. | Intelligent solid-state non-volatile memory device (NVMD) system with multi-level caching of multiple channels |
US6608564B2 (en) | 2000-01-25 | 2003-08-19 | Hewlett-Packard Development Company, L.P. | Removable memory cartridge system for use with a server or other processor-based device |
US20020107903A1 (en) | 2000-11-07 | 2002-08-08 | Richter Roger K. | Methods and systems for the order serialization of information in a network processing environment |
US6556952B1 (en) | 2000-05-04 | 2003-04-29 | Advanced Micro Devices, Inc. | Performance monitoring and optimizing of controller parameters |
US7080078B1 (en) | 2000-05-09 | 2006-07-18 | Sun Microsystems, Inc. | Mechanism and apparatus for URI-addressable repositories of service advertisements and other content in a distributed computing environment |
US7143153B1 (en) | 2000-11-09 | 2006-11-28 | Ciena Corporation | Internal network device dynamic health monitoring |
JP2001333091A (ja) * | 2000-05-23 | 2001-11-30 | Fujitsu Ltd | 通信装置 |
US6816750B1 (en) | 2000-06-09 | 2004-11-09 | Cirrus Logic, Inc. | System-on-a-chip |
US6668308B2 (en) | 2000-06-10 | 2003-12-23 | Hewlett-Packard Development Company, L.P. | Scalable architecture based on single-chip multiprocessing |
US6452809B1 (en) | 2000-11-10 | 2002-09-17 | Galactic Computing Corporation | Scalable internet engine |
US7032119B2 (en) | 2000-09-27 | 2006-04-18 | Amphus, Inc. | Dynamic power and workload management for multi-server system |
US6760861B2 (en) * | 2000-09-29 | 2004-07-06 | Zeronines Technology, Inc. | System, method and apparatus for data processing and storage to provide continuous operations independent of device failure or disaster |
US7274705B2 (en) | 2000-10-03 | 2007-09-25 | Broadcom Corporation | Method and apparatus for reducing clock speed and power consumption |
US20020040425A1 (en) | 2000-10-04 | 2002-04-04 | David Chaiken | Multi-dimensional integrated circuit connection network using LDT |
US7165120B1 (en) | 2000-10-11 | 2007-01-16 | Sun Microsystems, Inc. | Server node with interated networking capabilities |
US6954463B1 (en) | 2000-12-11 | 2005-10-11 | Cisco Technology, Inc. | Distributed packet processing architecture for network access servers |
US7616646B1 (en) | 2000-12-12 | 2009-11-10 | Cisco Technology, Inc. | Intraserver tag-switched distributed packet processing for network access servers |
JP3532153B2 (ja) | 2000-12-22 | 2004-05-31 | 沖電気工業株式会社 | レベルシフタ制御回路 |
AU2001297630A1 (en) | 2000-12-29 | 2002-09-12 | Ming Qiu | Server array hardware architecture and system |
US6977939B2 (en) | 2001-01-26 | 2005-12-20 | Microsoft Corporation | Method and apparatus for emulating ethernet functionality over a serial bus |
US7339786B2 (en) | 2001-03-05 | 2008-03-04 | Intel Corporation | Modular server architecture with Ethernet routed across a backplane utilizing an integrated Ethernet switch module |
US7093280B2 (en) | 2001-03-30 | 2006-08-15 | Juniper Networks, Inc. | Internet security system |
US20030196126A1 (en) | 2002-04-11 | 2003-10-16 | Fung Henry T. | System, method, and architecture for dynamic server power management and dynamic workload management for multi-server environment |
US7068667B2 (en) | 2001-04-27 | 2006-06-27 | The Boeing Company | Method and system for path building in a communications network |
US20020161917A1 (en) * | 2001-04-30 | 2002-10-31 | Shapiro Aaron M. | Methods and systems for dynamic routing of data in a network |
US8009569B2 (en) | 2001-05-07 | 2011-08-30 | Vitesse Semiconductor Corporation | System and a method for maintaining quality of service through a congested network |
US7161901B2 (en) | 2001-05-07 | 2007-01-09 | Vitesse Semiconductor Corporation | Automatic load balancing in switch fabrics |
US6766389B2 (en) | 2001-05-18 | 2004-07-20 | Broadcom Corporation | System on a chip for networking |
DE10127198A1 (de) | 2001-06-05 | 2002-12-19 | Infineon Technologies Ag | Vorrichtung und Verfahren zum Ermitteln einer physikalischen Adresse aus einer virtuellen Adresse unter Verwendung einer hierarchischen Abbildungsvorschrift mit komprimierten Knoten |
US6950895B2 (en) | 2001-06-13 | 2005-09-27 | Intel Corporation | Modular server architecture |
US6501660B1 (en) | 2001-06-22 | 2002-12-31 | Sun Microsystems, Inc. | Reliable card detection in a CPCI system |
US6813676B1 (en) | 2001-07-27 | 2004-11-02 | Lsi Logic Corporation | Host interface bypass on a fabric based array controller |
US6944786B2 (en) * | 2001-07-27 | 2005-09-13 | International Business Machines Corporation | Network node failover using multicast address or port |
US6724635B2 (en) | 2001-08-07 | 2004-04-20 | Hewlett-Packard Development Company, L.P. | LCD panel for a server system |
US6968470B2 (en) | 2001-08-07 | 2005-11-22 | Hewlett-Packard Development Company, L.P. | System and method for power management in a server system |
US7337333B2 (en) | 2001-09-19 | 2008-02-26 | Dell Products L.P. | System and method for strategic power supply sequencing in a computer system with multiple processing resources and multiple power supplies |
US7325050B2 (en) | 2001-09-19 | 2008-01-29 | Dell Products L.P. | System and method for strategic power reduction in a computer system |
US6779086B2 (en) | 2001-10-16 | 2004-08-17 | International Business Machines Corporation | Symmetric multiprocessor systems with an independent super-coherent cache directory |
US8325716B2 (en) | 2001-10-22 | 2012-12-04 | Broadcom Corporation | Data path optimization algorithm |
US6963948B1 (en) | 2001-11-01 | 2005-11-08 | Advanced Micro Devices, Inc. | Microcomputer bridge architecture with an embedded microcontroller |
US7310319B2 (en) | 2001-11-02 | 2007-12-18 | Intel Corporation | Multiple-domain processing system using hierarchically orthogonal switching fabric |
US7464016B2 (en) | 2001-11-09 | 2008-12-09 | Sun Microsystems, Inc. | Hot plug and hot pull system simulation |
US7209657B1 (en) | 2001-12-03 | 2007-04-24 | Cheetah Omni, Llc | Optical routing using a star switching fabric |
US20030140190A1 (en) | 2002-01-23 | 2003-07-24 | Sun Microsystems, Inc. | Auto-SCSI termination enable in a CPCI hot swap system |
US7340777B1 (en) | 2003-03-31 | 2008-03-04 | Symantec Corporation | In memory heuristic system and method for detecting viruses |
US7284067B2 (en) | 2002-02-20 | 2007-10-16 | Hewlett-Packard Development Company, L.P. | Method for integrated load balancing among peer servers |
US20030172191A1 (en) | 2002-02-22 | 2003-09-11 | Williams Joel R. | Coupling of CPU and disk drive to form a server and aggregating a plurality of servers into server farms |
US7096377B2 (en) | 2002-03-27 | 2006-08-22 | Intel Corporation | Method and apparatus for setting timing parameters |
US7095738B1 (en) * | 2002-05-07 | 2006-08-22 | Cisco Technology, Inc. | System and method for deriving IPv6 scope identifiers and for mapping the identifiers into IPv6 addresses |
US7353530B1 (en) | 2002-05-10 | 2008-04-01 | At&T Corp. | Method and apparatus for assigning communication nodes to CMTS cards |
US7161904B2 (en) | 2002-06-04 | 2007-01-09 | Fortinet, Inc. | System and method for hierarchical metering in a virtual router based network switch |
US7376125B1 (en) | 2002-06-04 | 2008-05-20 | Fortinet, Inc. | Service processing switch |
US7415723B2 (en) | 2002-06-11 | 2008-08-19 | Pandya Ashish A | Distributed network security system and a hardware processor therefor |
US7525904B1 (en) * | 2002-06-20 | 2009-04-28 | Cisco Technology, Inc. | Redundant packet routing and switching device and method |
US7180866B1 (en) * | 2002-07-11 | 2007-02-20 | Nortel Networks Limited | Rerouting in connection-oriented communication networks and communication systems |
US7039018B2 (en) * | 2002-07-17 | 2006-05-02 | Intel Corporation | Technique to improve network routing using best-match and exact-match techniques |
US7286544B2 (en) | 2002-07-25 | 2007-10-23 | Brocade Communications Systems, Inc. | Virtualized multiport switch |
US7286527B2 (en) | 2002-07-26 | 2007-10-23 | Brocade Communications Systems, Inc. | Method and apparatus for round trip delay measurement in a bi-directional, point-to-point, serial data channel |
US8295288B2 (en) | 2002-07-30 | 2012-10-23 | Brocade Communications System, Inc. | Registered state change notification for a fibre channel network |
US7055044B2 (en) | 2002-08-12 | 2006-05-30 | Hewlett-Packard Development Company, L.P. | System and method for voltage management of a processor to optimize performance and power dissipation |
EP1394985A1 (de) | 2002-08-28 | 2004-03-03 | Siemens Aktiengesellschaft | Testverfahren für Nachrichtenpfade in Kommunikationsnetzen sowie Netzelement |
US20110090633A1 (en) | 2002-09-23 | 2011-04-21 | Josef Rabinovitz | Modular sata data storage device assembly |
US7080283B1 (en) | 2002-10-15 | 2006-07-18 | Tensilica, Inc. | Simultaneous real-time trace and debug for multiple processing core systems on a chip |
US7792113B1 (en) * | 2002-10-21 | 2010-09-07 | Cisco Technology, Inc. | Method and system for policy-based forwarding |
US6661671B1 (en) | 2002-11-27 | 2003-12-09 | International Business Machines Corporation | Apparatus, method and article of manufacture for determining power permission for a blade spanning power back planes |
US7512788B2 (en) * | 2002-12-10 | 2009-03-31 | International Business Machines Corporation | Method and apparatus for anonymous group messaging in a distributed messaging system |
US7917658B2 (en) | 2003-01-21 | 2011-03-29 | Emulex Design And Manufacturing Corporation | Switching apparatus and method for link initialization in a shared I/O environment |
US8024548B2 (en) | 2003-02-18 | 2011-09-20 | Christopher Joseph Daffron | Integrated circuit microprocessor that constructs, at run time, integrated reconfigurable logic into persistent finite state machines from pre-compiled machine code instruction sequences |
US7447147B2 (en) | 2003-02-28 | 2008-11-04 | Cisco Technology, Inc. | Ethernet switch with configurable alarms |
US7039771B1 (en) | 2003-03-10 | 2006-05-02 | Marvell International Ltd. | Method and system for supporting multiple external serial port devices using a serial port controller in embedded disk controllers |
US7216123B2 (en) | 2003-03-28 | 2007-05-08 | Board Of Trustees Of The Leland Stanford Junior University | Methods for ranking nodes in large directed graphs |
US20040215650A1 (en) | 2003-04-09 | 2004-10-28 | Ullattil Shaji | Interfaces and methods for group policy management |
US7330999B2 (en) | 2003-04-23 | 2008-02-12 | Dot Hill Systems Corporation | Network storage appliance with integrated redundant servers and storage controllers |
US20040215991A1 (en) | 2003-04-23 | 2004-10-28 | Dell Products L.P. | Power-up of multiple processors when a voltage regulator module has failed |
US20040215864A1 (en) | 2003-04-28 | 2004-10-28 | International Business Machines Corporation | Non-disruptive, dynamic hot-add and hot-remove of non-symmetric data processing system resources |
US7685254B2 (en) | 2003-06-10 | 2010-03-23 | Pandya Ashish A | Runtime adaptable search processor |
US7400996B2 (en) | 2003-06-26 | 2008-07-15 | Benjamin Thomas Percer | Use of I2C-based potentiometers to enable voltage rail variation under BMC control |
US7894348B2 (en) | 2003-07-21 | 2011-02-22 | Qlogic, Corporation | Method and system for congestion control in a fibre channel switch |
US7646767B2 (en) | 2003-07-21 | 2010-01-12 | Qlogic, Corporation | Method and system for programmable data dependant network routing |
US7512067B2 (en) | 2003-07-21 | 2009-03-31 | Qlogic, Corporation | Method and system for congestion control based on optimum bandwidth allocation in a fibre channel switch |
US7477655B2 (en) | 2003-07-21 | 2009-01-13 | Qlogic, Corporation | Method and system for power control of fibre channel switches |
JP2005041127A (ja) | 2003-07-23 | 2005-02-17 | Brother Ind Ltd | ステータス情報通知システム及びネットワーク端末装置及び通信処理装置 |
US7412588B2 (en) | 2003-07-25 | 2008-08-12 | International Business Machines Corporation | Network processor system on chip with bridge coupling protocol converting multiprocessor macro core local bus to peripheral interfaces coupled system bus |
US7353362B2 (en) | 2003-07-25 | 2008-04-01 | International Business Machines Corporation | Multiprocessor subsystem in SoC with bridge between processor clusters interconnetion and SoC system bus |
US7170315B2 (en) | 2003-07-31 | 2007-01-30 | Actel Corporation | Programmable system on a chip |
US7028125B2 (en) | 2003-08-04 | 2006-04-11 | Inventec Corporation | Hot-pluggable peripheral input device coupling system |
US7620736B2 (en) * | 2003-08-08 | 2009-11-17 | Cray Canada Corporation | Network topology having nodes interconnected by extended diagonal links |
US7386888B2 (en) | 2003-08-29 | 2008-06-10 | Trend Micro, Inc. | Network isolation techniques suitable for virus protection |
US7934005B2 (en) | 2003-09-08 | 2011-04-26 | Koolspan, Inc. | Subnet box |
US7174470B2 (en) | 2003-10-14 | 2007-02-06 | Hewlett-Packard Development Company, L.P. | Computer data bus interface control |
WO2005038599A2 (en) | 2003-10-14 | 2005-04-28 | Raptor Networks Technology, Inc. | Switching system with distributed switching fabric |
US7415543B2 (en) | 2003-11-12 | 2008-08-19 | Lsi Corporation | Serial port initialization in storage system controllers |
US7916638B2 (en) | 2003-12-24 | 2011-03-29 | Alcatel Lucent | Time-independent deficit round robin method and system |
US7380039B2 (en) * | 2003-12-30 | 2008-05-27 | 3Tera, Inc. | Apparatus, method and system for aggregrating computing resources |
US7109760B1 (en) | 2004-01-05 | 2006-09-19 | Integrated Device Technology, Inc. | Delay-locked loop (DLL) integrated circuits that support efficient phase locking of clock signals having non-unity duty cycles |
CN1906573B (zh) * | 2004-01-20 | 2011-01-05 | 美国博通公司 | 支持多个用户的系统和方法 |
JP4248420B2 (ja) | 2004-02-06 | 2009-04-02 | 日本電信電話株式会社 | 移動体通信用ネットワークのハンドオーバ制御方法 |
US7664110B1 (en) | 2004-02-07 | 2010-02-16 | Habanero Holdings, Inc. | Input/output controller for coupling the processor-memory complex to the fabric in fabric-backplane interprise servers |
US7873693B1 (en) * | 2004-02-13 | 2011-01-18 | Habanero Holdings, Inc. | Multi-chassis fabric-backplane enterprise servers |
US7583661B2 (en) | 2004-03-05 | 2009-09-01 | Sid Chaudhuri | Method and apparatus for improved IP networks and high-quality services |
US7865582B2 (en) | 2004-03-24 | 2011-01-04 | Hewlett-Packard Development Company, L.P. | System and method for assigning an application component to a computing resource |
ITMI20040600A1 (it) | 2004-03-26 | 2004-06-26 | Atmel Corp | Sistema dsp su chip a doppio processore a virgola mobile nel dominio complesso |
US7203063B2 (en) | 2004-05-21 | 2007-04-10 | Hewlett-Packard Development Company, L.P. | Small form factor liquid loop cooling system |
US7467358B2 (en) | 2004-06-03 | 2008-12-16 | Gwangju Institute Of Science And Technology | Asynchronous switch based on butterfly fat-tree for network on chip application |
JP4073943B2 (ja) | 2004-06-15 | 2008-04-09 | 富士通コンポーネント株式会社 | トランシーバモジュール |
JP4334419B2 (ja) | 2004-06-30 | 2009-09-30 | 富士通株式会社 | 伝送装置 |
US7586904B2 (en) | 2004-07-15 | 2009-09-08 | Broadcom Corp. | Method and system for a gigabit Ethernet IP telephone chip with no DSP core, which uses a RISC core with instruction extensions to support voice processing |
US9264384B1 (en) | 2004-07-22 | 2016-02-16 | Oracle International Corporation | Resource virtualization mechanism including virtual host bus adapters |
JP4455206B2 (ja) | 2004-07-29 | 2010-04-21 | キヤノン株式会社 | 画像形成装置およびその制御方法 |
US7657756B2 (en) | 2004-10-08 | 2010-02-02 | International Business Machines Corporaiton | Secure memory caching structures for data, integrity and version values |
US7257655B1 (en) | 2004-10-13 | 2007-08-14 | Altera Corporation | Embedded PCI-Express implementation |
CN101057223B (zh) | 2004-10-15 | 2011-09-14 | 索尼计算机娱乐公司 | 支持多处理器系统中的多个配置的方法和设备 |
US20060090025A1 (en) | 2004-10-25 | 2006-04-27 | Tufford Robert C | 9U payload module configurations |
US7644215B2 (en) | 2004-11-10 | 2010-01-05 | Tekelec | Methods and systems for providing management in a telecommunications equipment shelf assembly using a shared serial bus |
US7278582B1 (en) | 2004-12-03 | 2007-10-09 | Sun Microsystems, Inc. | Hardware security module (HSM) chip card |
US7673164B1 (en) | 2004-12-13 | 2010-03-02 | Massachusetts Institute Of Technology | Managing power in a parallel processing environment |
TWM270514U (en) | 2004-12-27 | 2005-07-11 | Quanta Comp Inc | Blade server system |
US8533777B2 (en) | 2004-12-29 | 2013-09-10 | Intel Corporation | Mechanism to determine trust of out-of-band management agents |
US7676841B2 (en) | 2005-02-01 | 2010-03-09 | Fmr Llc | Network intrusion mitigation |
US8140770B2 (en) | 2005-02-10 | 2012-03-20 | International Business Machines Corporation | Data processing system and method for predictively selecting a scope of broadcast of an operation |
US7467306B2 (en) | 2005-03-08 | 2008-12-16 | Hewlett-Packard Development Company, L.P. | Methods and systems for allocating power to an electronic device |
US7881332B2 (en) | 2005-04-01 | 2011-02-01 | International Business Machines Corporation | Configurable ports for a host ethernet adapter |
JP4591185B2 (ja) | 2005-04-28 | 2010-12-01 | 株式会社日立製作所 | サーバ装置 |
US7363463B2 (en) | 2005-05-13 | 2008-04-22 | Microsoft Corporation | Method and system for caching address translations from multiple address spaces in virtual machines |
US7596144B2 (en) | 2005-06-07 | 2009-09-29 | Broadcom Corp. | System-on-a-chip (SoC) device with integrated support for ethernet, TCP, iSCSI, RDMA, and network application acceleration |
WO2006136193A1 (en) | 2005-06-23 | 2006-12-28 | Telefonaktiebolaget L M Ericsson (Publ) | Arrangement and method relating to load distribution |
JP2007012000A (ja) | 2005-07-04 | 2007-01-18 | Hitachi Ltd | 記憶制御装置及びストレージシステム |
US7461274B2 (en) | 2005-08-23 | 2008-12-02 | International Business Machines Corporation | Method for maximizing server utilization in a resource constrained environment |
US7307837B2 (en) | 2005-08-23 | 2007-12-11 | International Business Machines Corporation | Method and apparatus for enforcing of power control in a blade center chassis |
US7315456B2 (en) | 2005-08-29 | 2008-01-01 | Hewlett-Packard Development Company, L.P. | Configurable IO subsystem |
US8982778B2 (en) * | 2005-09-19 | 2015-03-17 | Qualcomm Incorporated | Packet routing in a wireless communications environment |
US7382154B2 (en) | 2005-10-03 | 2008-06-03 | Honeywell International Inc. | Reconfigurable network on a chip |
US8516165B2 (en) | 2005-10-19 | 2013-08-20 | Nvidia Corporation | System and method for encoding packet header to enable higher bandwidth efficiency across bus links |
US7574590B2 (en) | 2005-10-26 | 2009-08-11 | Sigmatel, Inc. | Method for booting a system on a chip integrated circuit |
CN100417118C (zh) * | 2005-10-28 | 2008-09-03 | 华为技术有限公司 | 一种无线网状网中网络移动节点的位置更新系统和方法 |
CN2852260Y (zh) | 2005-12-01 | 2006-12-27 | 华为技术有限公司 | 一种服务器 |
EP1808994A1 (fr) | 2006-01-12 | 2007-07-18 | Alcatel Lucent | Dispositif de commutation à transport universel de trames de paquets de données |
EP1977635A2 (en) | 2006-01-13 | 2008-10-08 | Sun Microsystems, Inc. | Modular blade server |
EP1977311A2 (en) | 2006-01-13 | 2008-10-08 | Sun Microsystems, Inc. | Compact rackmount storage server |
US20070174390A1 (en) * | 2006-01-20 | 2007-07-26 | Avise Partners | Customer service management |
US7991817B2 (en) | 2006-01-23 | 2011-08-02 | California Institute Of Technology | Method and a circuit using an associative calculator for calculating a sequence of non-associative operations |
US20070180310A1 (en) | 2006-02-02 | 2007-08-02 | Texas Instruments, Inc. | Multi-core architecture with hardware messaging |
US9177176B2 (en) | 2006-02-27 | 2015-11-03 | Broadcom Corporation | Method and system for secure system-on-a-chip architecture for multimedia data processing |
US20090133129A1 (en) | 2006-03-06 | 2009-05-21 | Lg Electronics Inc. | Data transferring method |
FR2898753B1 (fr) | 2006-03-16 | 2008-04-18 | Commissariat Energie Atomique | Systeme sur puce a controle semi-distribue |
US7555666B2 (en) | 2006-05-04 | 2009-06-30 | Dell Products L.P. | Power profiling application for managing power allocation in an information handling system |
JP2007304687A (ja) | 2006-05-09 | 2007-11-22 | Hitachi Ltd | クラスタ構成とその制御手段 |
US7660922B2 (en) | 2006-05-12 | 2010-02-09 | Intel Corporation | Mechanism to flexibly support multiple device numbers on point-to-point interconnect upstream ports |
US7522468B2 (en) | 2006-06-08 | 2009-04-21 | Unity Semiconductor Corporation | Serial memory interface |
CN101094125A (zh) * | 2006-06-23 | 2007-12-26 | 华为技术有限公司 | 在atca/atca300扩展交换带宽的交换结构 |
US20080040463A1 (en) | 2006-08-08 | 2008-02-14 | International Business Machines Corporation | Communication System for Multiple Chassis Computer Systems |
CN101127696B (zh) | 2006-08-15 | 2012-06-27 | 华为技术有限公司 | 二层网络中的数据转发方法和网络及节点设备 |
US20080052437A1 (en) | 2006-08-28 | 2008-02-28 | Dell Products L.P. | Hot Plug Power Policy for Modular Chassis |
US7802082B2 (en) | 2006-08-31 | 2010-09-21 | Intel Corporation | Methods and systems to dynamically configure computing apparatuses |
US7853754B1 (en) | 2006-09-29 | 2010-12-14 | Tilera Corporation | Caching in multicore and multiprocessor architectures |
US8684802B1 (en) | 2006-10-27 | 2014-04-01 | Oracle America, Inc. | Method and apparatus for balancing thermal variations across a set of computer systems |
US8447872B2 (en) | 2006-11-01 | 2013-05-21 | Intel Corporation | Load balancing in a storage system |
US7992151B2 (en) | 2006-11-30 | 2011-08-02 | Intel Corporation | Methods and apparatuses for core allocations |
US20080140930A1 (en) | 2006-12-08 | 2008-06-12 | Emulex Design & Manufacturing Corporation | Virtual drive mapping |
US8271604B2 (en) * | 2006-12-19 | 2012-09-18 | International Business Machines Corporation | Initializing shared memories for sharing endpoints across a plurality of root complexes |
CN101212345A (zh) | 2006-12-31 | 2008-07-02 | 联想(北京)有限公司 | 一种刀片服务器管理系统 |
US8407428B2 (en) | 2010-05-20 | 2013-03-26 | Hicamp Systems, Inc. | Structured memory coprocessor |
US8504791B2 (en) | 2007-01-26 | 2013-08-06 | Hicamp Systems, Inc. | Hierarchical immutable content-addressable memory coprocessor |
JP5106020B2 (ja) | 2007-02-08 | 2012-12-26 | パナソニック株式会社 | パターン形成方法 |
US7865614B2 (en) | 2007-02-12 | 2011-01-04 | International Business Machines Corporation | Method and apparatus for load balancing with server state change awareness |
FI120088B (fi) | 2007-03-01 | 2009-06-30 | Kone Corp | Järjestely ja menetelmä turvapiirin valvomiseksi |
US7870907B2 (en) | 2007-03-08 | 2011-01-18 | Weatherford/Lamb, Inc. | Debris protection for sliding sleeve |
JP4370336B2 (ja) | 2007-03-09 | 2009-11-25 | 株式会社日立製作所 | 低消費電力ジョブ管理方法及び計算機システム |
US20080239649A1 (en) | 2007-03-29 | 2008-10-02 | Bradicich Thomas M | Design structure for an interposer for expanded capability of a blade server chassis system |
US7783910B2 (en) | 2007-03-30 | 2010-08-24 | International Business Machines Corporation | Method and system for associating power consumption of a server with a network address assigned to the server |
US20090097200A1 (en) | 2007-04-11 | 2009-04-16 | Viswa Sharma | Modular blade for providing scalable mechanical, electrical and environmental functionality in the enterprise using advancedtca boards |
JP4815385B2 (ja) | 2007-04-13 | 2011-11-16 | 株式会社日立製作所 | ストレージ装置 |
US7715400B1 (en) | 2007-04-26 | 2010-05-11 | 3 Leaf Networks | Node identification for distributed shared memory system |
US7515412B2 (en) | 2007-04-26 | 2009-04-07 | Enermax Technology Corporation | Cooling structure for power supply |
US7925795B2 (en) | 2007-04-30 | 2011-04-12 | Broadcom Corporation | Method and system for configuring a plurality of network interfaces that share a physical interface |
DE102007020296A1 (de) | 2007-04-30 | 2008-11-13 | Philip Behrens | Gerät und Verfahren zur drahtlosen Herstellung eines Kontakts |
US7552241B2 (en) | 2007-05-18 | 2009-06-23 | Tilera Corporation | Method and system for managing a plurality of I/O interfaces with an array of multicore processor resources in a semiconductor chip |
US8170040B2 (en) | 2007-05-25 | 2012-05-01 | Konda Technologies Inc. | Fully connected generalized butterfly fat tree networks |
US20080294851A1 (en) * | 2007-05-25 | 2008-11-27 | Nokia Corporation | Method, apparatus, computer program product, and system for management of shared memory |
US8060775B1 (en) | 2007-06-14 | 2011-11-15 | Symantec Corporation | Method and apparatus for providing dynamic multi-pathing (DMP) for an asymmetric logical unit access (ALUA) based storage system |
US7783813B2 (en) | 2007-06-14 | 2010-08-24 | International Business Machines Corporation | Multi-node configuration of processor cards connected via processor fabrics |
JP4962152B2 (ja) | 2007-06-15 | 2012-06-27 | 日立電線株式会社 | 光電気複合伝送アセンブリ |
US8140719B2 (en) | 2007-06-21 | 2012-03-20 | Sea Micro, Inc. | Dis-aggregated and distributed data-center architecture using a direct interconnect fabric |
US7761687B2 (en) | 2007-06-26 | 2010-07-20 | International Business Machines Corporation | Ultrascalable petaflop parallel supercomputer |
US8060760B2 (en) | 2007-07-13 | 2011-11-15 | Dell Products L.P. | System and method for dynamic information handling system prioritization |
US7688578B2 (en) | 2007-07-19 | 2010-03-30 | Hewlett-Packard Development Company, L.P. | Modular high-density computer system |
US8150019B2 (en) | 2007-08-10 | 2012-04-03 | Smith Robert B | Path redundant hardware efficient communications interconnect system |
CN101369958A (zh) * | 2007-08-15 | 2009-02-18 | 华为技术有限公司 | 一种快速重路由方法及标签交换路由器 |
US8295306B2 (en) | 2007-08-28 | 2012-10-23 | Cisco Technologies, Inc. | Layer-4 transparent secure transport protocol for end-to-end application protection |
US7898941B2 (en) * | 2007-09-11 | 2011-03-01 | Polycom, Inc. | Method and system for assigning a plurality of MACs to a plurality of processors |
US20090251867A1 (en) | 2007-10-09 | 2009-10-08 | Sharma Viswa N | Reconfigurable, modularized fpga-based amc module |
US7739475B2 (en) | 2007-10-24 | 2010-06-15 | Inventec Corporation | System and method for updating dirty data of designated raw device |
US7822841B2 (en) | 2007-10-30 | 2010-10-26 | Modern Grids, Inc. | Method and system for hosting multiple, customized computing clusters |
EP2061191A1 (en) | 2007-11-13 | 2009-05-20 | STMicroelectronics (Grenoble) SAS | Buffering architecture for packet injection and extraction in on-chip networks. |
US8068433B2 (en) | 2007-11-26 | 2011-11-29 | Microsoft Corporation | Low power operation of networked devices |
US7877622B2 (en) | 2007-12-13 | 2011-01-25 | International Business Machines Corporation | Selecting between high availability redundant power supply modes for powering a computer system |
US7962771B2 (en) | 2007-12-31 | 2011-06-14 | Intel Corporation | Method, system, and apparatus for rerouting interrupts in a multi-core processor |
US20090166065A1 (en) | 2008-01-02 | 2009-07-02 | Clayton James E | Thin multi-chip flex module |
US7779148B2 (en) | 2008-02-01 | 2010-08-17 | International Business Machines Corporation | Dynamic routing based on information of not responded active source requests quantity received in broadcast heartbeat signal and stored in local data structure for other processor chips |
US8015379B2 (en) * | 2008-02-01 | 2011-09-06 | International Business Machines Corporation | Wake-and-go mechanism with exclusive system bus response |
US20090204837A1 (en) | 2008-02-11 | 2009-08-13 | Udaykumar Raval | Power control system and method |
US20090204834A1 (en) | 2008-02-11 | 2009-08-13 | Nvidia Corporation | System and method for using inputs as wake signals |
US8854831B2 (en) | 2012-04-10 | 2014-10-07 | Arnouse Digital Devices Corporation | Low power, high density server and portable device for use with same |
US8082400B1 (en) | 2008-02-26 | 2011-12-20 | Hewlett-Packard Development Company, L.P. | Partitioning a memory pool among plural computing nodes |
US8156362B2 (en) | 2008-03-11 | 2012-04-10 | Globalfoundries Inc. | Hardware monitoring and decision making for transitioning in and out of low-power state |
TWI354213B (en) | 2008-04-01 | 2011-12-11 | Inventec Corp | Server |
US20090259864A1 (en) | 2008-04-10 | 2009-10-15 | Nvidia Corporation | System and method for input/output control during power down mode |
US8762759B2 (en) | 2008-04-10 | 2014-06-24 | Nvidia Corporation | Responding to interrupts while in a reduced power state |
AU2009237405B2 (en) * | 2008-04-16 | 2013-09-26 | Telefonaktiebolaget L M Ericsson (Publ) | Connectivity fault management traffic indication extension |
US7742844B2 (en) | 2008-04-21 | 2010-06-22 | Dell Products, Lp | Information handling system including cooling devices and methods of use thereof |
JP5075727B2 (ja) | 2008-04-25 | 2012-11-21 | 株式会社日立製作所 | ストリーム配信システム及び障害検知方法 |
US7725603B1 (en) | 2008-04-30 | 2010-05-25 | Network Appliance, Inc. | Automatic network cluster path management |
US7861110B2 (en) | 2008-04-30 | 2010-12-28 | Egenera, Inc. | System, method, and adapter for creating fault-tolerant communication busses from standard components |
US20090282419A1 (en) | 2008-05-09 | 2009-11-12 | International Business Machines Corporation | Ordered And Unordered Network-Addressed Message Control With Embedded DMA Commands For A Network On Chip |
US7921315B2 (en) | 2008-05-09 | 2011-04-05 | International Business Machines Corporation | Managing power consumption in a data center based on monitoring circuit breakers |
US20100008038A1 (en) | 2008-05-15 | 2010-01-14 | Giovanni Coglitore | Apparatus and Method for Reliable and Efficient Computing Based on Separating Computing Modules From Components With Moving Parts |
WO2009140631A2 (en) | 2008-05-15 | 2009-11-19 | Smooth-Stone, Inc. | Distributed computing system with universal address system and method |
US8775718B2 (en) | 2008-05-23 | 2014-07-08 | Netapp, Inc. | Use of RDMA to access non-volatile solid-state memory in a network storage system |
US7519843B1 (en) | 2008-05-30 | 2009-04-14 | International Business Machines Corporation | Method and system for dynamic processor speed control to always maximize processor performance based on processing load and available power |
US7904345B2 (en) | 2008-06-10 | 2011-03-08 | The Go Daddy Group, Inc. | Providing website hosting overage protection by transference to an overflow server |
US8244918B2 (en) | 2008-06-11 | 2012-08-14 | International Business Machines Corporation | Resource sharing expansion card |
IL192140A0 (en) * | 2008-06-12 | 2009-02-11 | Ethos Networks Ltd | Method and system for transparent lan services in a packet network |
US8886985B2 (en) | 2008-07-07 | 2014-11-11 | Raritan Americas, Inc. | Automatic discovery of physical connectivity between power outlets and IT equipment |
US8898493B2 (en) | 2008-07-14 | 2014-11-25 | The Regents Of The University Of California | Architecture to enable energy savings in networked computers |
US20100026408A1 (en) | 2008-07-30 | 2010-02-04 | Jeng-Jye Shau | Signal transfer for ultra-high capacity circuits |
US8031703B2 (en) | 2008-08-14 | 2011-10-04 | Dell Products, Lp | System and method for dynamic maintenance of fabric subsets in a network |
US8132034B2 (en) | 2008-08-28 | 2012-03-06 | Dell Products L.P. | System and method for managing information handling system power supply capacity utilization based on load sharing power loss |
US8804710B2 (en) | 2008-12-29 | 2014-08-12 | Juniper Networks, Inc. | System architecture for a scalable and distributed multi-stage switch fabric |
JP5428267B2 (ja) | 2008-09-26 | 2014-02-26 | 富士通株式会社 | 電源制御システム、および電源制御方法 |
US8484493B2 (en) | 2008-10-29 | 2013-07-09 | Dell Products, Lp | Method for pre-chassis power multi-slot blade identification and inventory |
US8068482B2 (en) | 2008-11-13 | 2011-11-29 | Qlogic, Corporation | Method and system for network switch element |
US10255463B2 (en) | 2008-11-17 | 2019-04-09 | International Business Machines Corporation | Secure computer architecture |
JP5151924B2 (ja) | 2008-11-19 | 2013-02-27 | 富士通株式会社 | 電源管理プロキシ装置、サーバ装置、プロキシ装置を用いたサーバ電源管理方法、プロキシ装置電源管理プログラム、サーバ装置電源管理プログラム |
US20100161909A1 (en) | 2008-12-18 | 2010-06-24 | Lsi Corporation | Systems and Methods for Quota Management in a Memory Appliance |
US20100158005A1 (en) * | 2008-12-23 | 2010-06-24 | Suvhasis Mukhopadhyay | System-On-a-Chip and Multi-Chip Systems Supporting Advanced Telecommunication Functions |
US20100169479A1 (en) | 2008-12-26 | 2010-07-01 | Electronics And Telecommunications Research Institute | Apparatus and method for extracting user information using client-based script |
US8122269B2 (en) | 2009-01-07 | 2012-02-21 | International Business Machines Corporation | Regulating power consumption in a multi-core processor by dynamically distributing power and processing requests by a managing core to a configuration of processing cores |
US8918488B2 (en) | 2009-02-04 | 2014-12-23 | Citrix Systems, Inc. | Methods and systems for automated management of virtual resources in a cloud computing environment |
US8510744B2 (en) | 2009-02-24 | 2013-08-13 | Siemens Product Lifecycle Management Software Inc. | Using resource defining attributes to enhance thread scheduling in processors |
GB2468137A (en) | 2009-02-25 | 2010-09-01 | Advanced Risc Mach Ltd | Blade server with on board battery power |
JP5816407B2 (ja) | 2009-02-27 | 2015-11-18 | ルネサスエレクトロニクス株式会社 | 半導体集積回路装置 |
US8725946B2 (en) | 2009-03-23 | 2014-05-13 | Ocz Storage Solutions, Inc. | Mass storage system and method of using hard disk, solid-state media, PCIe edge connector, and raid controller |
US8140871B2 (en) | 2009-03-27 | 2012-03-20 | International Business Machines Corporation | Wake on Lan for blade server |
TWI358016B (en) | 2009-04-17 | 2012-02-11 | Inventec Corp | Server |
US8127128B2 (en) | 2009-05-04 | 2012-02-28 | International Business Machines Corporation | Synchronization of swappable module in modular system |
TWM377621U (en) | 2009-05-25 | 2010-04-01 | Advantech Co Ltd | Interface card with hardware monitor and function extension, computer device and single board |
US8004922B2 (en) | 2009-06-05 | 2011-08-23 | Nxp B.V. | Power island with independent power characteristics for memory and logic |
US9001846B2 (en) | 2009-06-09 | 2015-04-07 | Broadcom Corporation | Physical layer device with dual medium access controller path |
EP2454676A4 (en) | 2009-07-17 | 2014-05-21 | Hewlett Packard Development Co | VIRTUAL HOT INSERT FUNCTIONS IN A SHARED INPUT / OUTPUT ENVIRONMENT |
CN101989212B (zh) | 2009-07-31 | 2015-01-07 | 国际商业机器公司 | 提供用于启动刀片服务器的虚拟机管理程序的方法和装置 |
US8340120B2 (en) | 2009-09-04 | 2012-12-25 | Brocade Communications Systems, Inc. | User selectable multiple protocol network interface device |
US9063825B1 (en) * | 2009-09-21 | 2015-06-23 | Tilera Corporation | Memory controller load balancing with configurable striping domains |
US9876735B2 (en) | 2009-10-30 | 2018-01-23 | Iii Holdings 2, Llc | Performance and power optimized computer system architectures and methods leveraging power optimized tree fabric interconnect |
US8599863B2 (en) | 2009-10-30 | 2013-12-03 | Calxeda, Inc. | System and method for using a multi-protocol fabric module across a distributed server interconnect fabric |
US20110103391A1 (en) | 2009-10-30 | 2011-05-05 | Smooth-Stone, Inc. C/O Barry Evans | System and method for high-performance, low-power data center interconnect fabric |
US9054990B2 (en) | 2009-10-30 | 2015-06-09 | Iii Holdings 2, Llc | System and method for data center security enhancements leveraging server SOCs or server fabrics |
US9465771B2 (en) | 2009-09-24 | 2016-10-11 | Iii Holdings 2, Llc | Server on a chip and node cards comprising one or more of same |
TW201112936A (en) | 2009-09-29 | 2011-04-01 | Inventec Corp | Electronic device |
US20110082936A1 (en) | 2009-10-05 | 2011-04-07 | Vss Monitoring, Inc. | Method, apparatus and system for transmission of captured network traffic through a stacked topology of network captured traffic distribution devices |
US8194659B2 (en) | 2009-10-06 | 2012-06-05 | Red Hat, Inc. | Mechanism for processing messages using logical addresses |
US8571031B2 (en) | 2009-10-07 | 2013-10-29 | Intel Corporation | Configurable frame processing pipeline in a packet switch |
US9680770B2 (en) | 2009-10-30 | 2017-06-13 | Iii Holdings 2, Llc | System and method for using a multi-protocol fabric module across a distributed server interconnect fabric |
US9311269B2 (en) | 2009-10-30 | 2016-04-12 | Iii Holdings 2, Llc | Network proxy for high-performance, low-power data center interconnect fabric |
US9767070B2 (en) | 2009-11-06 | 2017-09-19 | Hewlett Packard Enterprise Development Lp | Storage system with a memory blade that generates a computational result for a storage device |
US20110119344A1 (en) | 2009-11-17 | 2011-05-19 | Susan Eustis | Apparatus And Method For Using Distributed Servers As Mainframe Class Computers |
US20110191514A1 (en) | 2010-01-29 | 2011-08-04 | Inventec Corporation | Server system |
WO2011093288A1 (ja) | 2010-02-01 | 2011-08-04 | 日本電気株式会社 | ネットワークシステム、コントローラ、ネットワーク制御方法 |
TW201128395A (en) | 2010-02-08 | 2011-08-16 | Hon Hai Prec Ind Co Ltd | Computer motherboard |
US20110210975A1 (en) | 2010-02-26 | 2011-09-01 | Xgi Technology, Inc. | Multi-screen signal processing device and multi-screen system |
US8397092B2 (en) | 2010-03-24 | 2013-03-12 | Emulex Design & Manufacturing Corporation | Power management for input/output devices by creating a virtual port for redirecting traffic |
KR101641108B1 (ko) | 2010-04-30 | 2016-07-20 | 삼성전자주식회사 | 디버깅 기능을 지원하는 타겟 장치 및 그것을 포함하는 테스트 시스템 |
US8045328B1 (en) | 2010-05-04 | 2011-10-25 | Chenbro Micom Co., Ltd. | Server and cooler moduel arrangement |
US8839238B2 (en) | 2010-06-11 | 2014-09-16 | International Business Machines Corporation | Dynamic virtual machine shutdown without service interruptions |
US8743888B2 (en) | 2010-07-06 | 2014-06-03 | Nicira, Inc. | Network control apparatus and method |
US8812400B2 (en) | 2010-07-09 | 2014-08-19 | Hewlett-Packard Development Company, L.P. | Managing a memory segment using a memory virtual appliance |
JP5413517B2 (ja) | 2010-08-20 | 2014-02-12 | 日本電気株式会社 | 通信システム、制御装置、通信方法およびプログラム |
CN102385417B (zh) | 2010-08-25 | 2013-02-20 | 英业达股份有限公司 | 一种机架式服务器 |
US8601288B2 (en) | 2010-08-31 | 2013-12-03 | Sonics, Inc. | Intelligent power controller |
JP2012053504A (ja) | 2010-08-31 | 2012-03-15 | Hitachi Ltd | ブレード型サーバ装置 |
WO2012037494A1 (en) | 2010-09-16 | 2012-03-22 | Calxeda, Inc. | Performance and power optimized computer system architectures and methods leveraging power optimized tree fabric interconnect |
US8688899B2 (en) * | 2010-09-28 | 2014-04-01 | Fusion-Io, Inc. | Apparatus, system, and method for an interface between a memory controller and a non-volatile memory controller using a command protocol |
US20120081850A1 (en) | 2010-09-30 | 2012-04-05 | Dell Products L.P. | Rack Assembly for Housing and Providing Power to Information Handling Systems |
US8941981B2 (en) | 2010-10-22 | 2015-01-27 | Xplore Technologies Corp. | Computer with high intensity screen |
US8738860B1 (en) | 2010-10-25 | 2014-05-27 | Tilera Corporation | Computing in parallel processing environments |
DE102011056141A1 (de) | 2010-12-20 | 2012-06-21 | Samsung Electronics Co., Ltd. | Negativspannungsgenerator, Dekoder, nicht-flüchtige Speichervorrichtung und Speichersystem, das eine negative Spannung verwendet |
US20120198252A1 (en) | 2011-02-01 | 2012-08-02 | Kirschtein Phillip M | System and Method for Managing and Detecting Server Power Connections |
US8670450B2 (en) | 2011-05-13 | 2014-03-11 | International Business Machines Corporation | Efficient software-based private VLAN solution for distributed virtual switches |
US8806090B2 (en) * | 2011-05-31 | 2014-08-12 | Micron Technology, Inc. | Apparatus including buffer allocation management and related methods |
US8547825B2 (en) | 2011-07-07 | 2013-10-01 | International Business Machines Corporation | Switch fabric management |
US8683125B2 (en) | 2011-11-01 | 2014-03-25 | Hewlett-Packard Development Company, L.P. | Tier identification (TID) for tiered memory characteristics |
US9565132B2 (en) | 2011-12-27 | 2017-02-07 | Intel Corporation | Multi-protocol I/O interconnect including a switching fabric |
US9560117B2 (en) * | 2011-12-30 | 2017-01-31 | Intel Corporation | Low latency cluster computing |
US8782321B2 (en) | 2012-02-08 | 2014-07-15 | Intel Corporation | PCI express tunneling over a multi-protocol I/O interconnect |
US8954698B2 (en) * | 2012-04-13 | 2015-02-10 | International Business Machines Corporation | Switching optically connected memory |
US20130290643A1 (en) | 2012-04-30 | 2013-10-31 | Kevin T. Lim | Using a cache in a disaggregated memory architecture |
US20130290650A1 (en) | 2012-04-30 | 2013-10-31 | Jichuan Chang | Distributed active data storage system |
US20130318269A1 (en) | 2012-05-22 | 2013-11-28 | Xockets IP, LLC | Processing structured and unstructured data using offload processors |
US20140115278A1 (en) * | 2012-10-23 | 2014-04-24 | Analog Devices, Inc. | Memory architecture |
US9304896B2 (en) | 2013-08-05 | 2016-04-05 | Iii Holdings 2, Llc | Remote memory ring buffers in a cluster of data processing nodes |
-
2010
- 2010-06-07 US US12/794,996 patent/US20110103391A1/en not_active Abandoned
- 2010-10-19 EP EP10827330.1A patent/EP2494748B1/en active Active
- 2010-10-19 CN CN201080060153.5A patent/CN102668473B/zh not_active Expired - Fee Related
- 2010-10-19 CN CN201510217826.8A patent/CN104836755B/zh not_active Expired - Fee Related
- 2010-10-19 EP EP16163413.4A patent/EP3070894B1/en active Active
- 2010-10-19 JP JP2012536877A patent/JP2013509808A/ja active Pending
- 2010-10-19 KR KR1020127013870A patent/KR101516216B1/ko active IP Right Grant
- 2010-10-19 WO PCT/US2010/053227 patent/WO2011053488A1/en active Application Filing
-
2012
- 2012-09-21 US US13/624,725 patent/US9405584B2/en active Active
- 2012-09-21 US US13/624,731 patent/US9075655B2/en active Active
- 2012-12-05 US US13/705,386 patent/US8745302B2/en active Active
- 2012-12-05 US US13/705,340 patent/US9008079B2/en active Active
- 2012-12-05 US US13/705,428 patent/US20130097351A1/en not_active Abandoned
- 2012-12-05 US US13/705,414 patent/US8737410B2/en active Active
- 2012-12-27 US US13/728,308 patent/US9262225B2/en active Active
-
2014
- 2014-07-18 US US14/334,931 patent/US9454403B2/en active Active
-
2016
- 2016-02-12 US US15/042,489 patent/US10135731B2/en active Active
- 2016-09-01 US US15/254,111 patent/US9866477B2/en active Active
Patent Citations (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6842430B1 (en) * | 1996-10-16 | 2005-01-11 | Koninklijke Philips Electronics N.V. | Method for configuring and routing data within a wireless multihop network and a wireless network for implementing the same |
US6252878B1 (en) * | 1997-10-30 | 2001-06-26 | Cisco Technology, Inc. | Switched architecture access server |
US6574238B1 (en) * | 1998-08-26 | 2003-06-03 | Intel Corporation | Inter-switch link header modification |
US6990063B1 (en) * | 2000-03-07 | 2006-01-24 | Cisco Technology, Inc. | Distributing fault indications and maintaining and using a data structure indicating faults to route traffic in a packet switching system |
US20060029053A1 (en) * | 2000-05-03 | 2006-02-09 | At&T Laboratories-Cambridge Ltd. | Data transfer, synchronising applications, and low latency networks |
US20020097732A1 (en) * | 2001-01-19 | 2002-07-25 | Tom Worster | Virtual private network protocol |
US20030007493A1 (en) * | 2001-06-28 | 2003-01-09 | Hitoshi Oi | Routing mechanism for static load balancing in a partitioned computer system with a fully connected network |
US20030110262A1 (en) * | 2001-07-06 | 2003-06-12 | Taqi Hasan | Integrated rule network management system |
US7447197B2 (en) * | 2001-10-18 | 2008-11-04 | Qlogic, Corporation | System and method of providing network node services |
US7599360B2 (en) * | 2001-12-26 | 2009-10-06 | Cisco Technology, Inc. | Methods and apparatus for encapsulating a frame for transmission in a storage area network |
US20030202520A1 (en) * | 2002-04-26 | 2003-10-30 | Maxxan Systems, Inc. | Scalable switch fabric system and apparatus for computer networks |
US20030231624A1 (en) * | 2002-06-12 | 2003-12-18 | Alappat Kuriappan P. | Backplane for switch fabric |
US8199636B1 (en) * | 2002-10-18 | 2012-06-12 | Alcatel Lucent | Bridged network system with traffic resiliency upon link failure |
US20040210693A1 (en) * | 2003-04-15 | 2004-10-21 | Newisys, Inc. | Managing I/O accesses in multiprocessor systems |
US20050240688A1 (en) * | 2004-04-27 | 2005-10-27 | Filip Moerman | Efficient data transfer from an ASIC to a host using DMA |
US20090135835A1 (en) * | 2004-05-05 | 2009-05-28 | Gigamon Systems Llc | Asymmetric packet switch and a method of use |
US7710936B2 (en) * | 2004-06-02 | 2010-05-04 | Jose Morales Barroso | Universal ethernet telecommunications service |
US7466712B2 (en) * | 2004-07-30 | 2008-12-16 | Brocade Communications Systems, Inc. | System and method for providing proxy and translation domains in a fibre channel router |
US7620057B1 (en) * | 2004-10-19 | 2009-11-17 | Broadcom Corporation | Cache line replacement with zero latency |
US7760720B2 (en) * | 2004-11-09 | 2010-07-20 | Cisco Technology, Inc. | Translating native medium access control (MAC) addresses to hierarchical MAC addresses and their use |
US7831839B2 (en) * | 2005-02-07 | 2010-11-09 | Sony Computer Entertainment Inc. | Methods and apparatus for providing a secure booting sequence in a processor |
US7586841B2 (en) * | 2005-05-31 | 2009-09-08 | Cisco Technology, Inc. | System and method for protecting against failure of a TE-LSP tail-end node |
US7606225B2 (en) * | 2006-02-06 | 2009-10-20 | Fortinet, Inc. | Integrated security switch |
US20070226795A1 (en) * | 2006-02-09 | 2007-09-27 | Texas Instruments Incorporated | Virtual cores and hardware-supported hypervisor integrated circuits, systems, methods and processes of manufacture |
US20070280230A1 (en) * | 2006-05-31 | 2007-12-06 | Motorola, Inc | Method and system for service discovery across a wide area network |
US20080013453A1 (en) * | 2006-07-13 | 2008-01-17 | Sbc Knowledge Ventures, L.P. | Method and apparatus for configuring a network topology with alternative communication paths |
US20090279518A1 (en) * | 2006-08-24 | 2009-11-12 | Rainer Falk | Method and arrangement for providing a wireless mesh network |
US20080075089A1 (en) * | 2006-09-26 | 2008-03-27 | Cisco Technology, Inc. | Snooping of on-path ip reservation protocols for layer 2 nodes |
US20080183882A1 (en) * | 2006-12-06 | 2008-07-31 | David Flynn | Apparatus, system, and method for a device shared between multiple independent hosts |
US20080140771A1 (en) * | 2006-12-08 | 2008-06-12 | Sony Computer Entertainment Inc. | Simulated environment computing framework |
US8019832B2 (en) * | 2007-05-16 | 2011-09-13 | Coreworks, S.A. | Network core access architecture |
US20090225751A1 (en) * | 2007-05-22 | 2009-09-10 | Koenck Steven E | Mobile nodal based communication system, method and apparatus |
US20080301794A1 (en) * | 2007-05-31 | 2008-12-04 | Jaushin Lee | Method and system for providing remote access to resources in a secure data center over a network |
US20080320161A1 (en) * | 2007-06-25 | 2008-12-25 | Stmicroelectronics Sa | Method for transferring data from a source target to a destination target, and corresponding network interface |
US7840703B2 (en) * | 2007-08-27 | 2010-11-23 | International Business Machines Corporation | System and method for dynamically supporting indirect routing within a multi-tiered full-graph interconnect architecture |
US20090080428A1 (en) * | 2007-09-25 | 2009-03-26 | Maxxan Systems, Inc. | System and method for scalable switch fabric for computer network |
US20120020207A1 (en) * | 2008-05-12 | 2012-01-26 | Telfonaktiebolaget L M Ericsson (Publ) | Re-routing traffice in a communications network |
US20100318812A1 (en) * | 2009-06-12 | 2010-12-16 | Microsoft Corporation | Secure and private backup storage and processing for trusted computing and data services |
Cited By (133)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11960937B2 (en) | 2004-03-13 | 2024-04-16 | Iii Holdings 12, Llc | System and method for an optimizing reservation in time of compute resources based on prioritization function and reservation policy parameter |
US11467883B2 (en) | 2004-03-13 | 2022-10-11 | Iii Holdings 12, Llc | Co-allocating a reservation spanning different compute resources types |
US12009996B2 (en) | 2004-06-18 | 2024-06-11 | Iii Holdings 12, Llc | System and method for providing dynamic provisioning within a compute environment |
US11652706B2 (en) | 2004-06-18 | 2023-05-16 | Iii Holdings 12, Llc | System and method for providing dynamic provisioning within a compute environment |
US11630704B2 (en) | 2004-08-20 | 2023-04-18 | Iii Holdings 12, Llc | System and method for a workload management and scheduling module to manage access to a compute environment according to local and non-local user identity information |
US11537434B2 (en) | 2004-11-08 | 2022-12-27 | Iii Holdings 12, Llc | System and method of providing system jobs within a compute environment |
US11886915B2 (en) | 2004-11-08 | 2024-01-30 | Iii Holdings 12, Llc | System and method of providing system jobs within a compute environment |
US11861404B2 (en) | 2004-11-08 | 2024-01-02 | Iii Holdings 12, Llc | System and method of providing system jobs within a compute environment |
US11537435B2 (en) | 2004-11-08 | 2022-12-27 | Iii Holdings 12, Llc | System and method of providing system jobs within a compute environment |
US12039370B2 (en) | 2004-11-08 | 2024-07-16 | Iii Holdings 12, Llc | System and method of providing system jobs within a compute environment |
US11762694B2 (en) | 2004-11-08 | 2023-09-19 | Iii Holdings 12, Llc | System and method of providing system jobs within a compute environment |
US11709709B2 (en) | 2004-11-08 | 2023-07-25 | Iii Holdings 12, Llc | System and method of providing system jobs within a compute environment |
US12008405B2 (en) | 2004-11-08 | 2024-06-11 | Iii Holdings 12, Llc | System and method of providing system jobs within a compute environment |
US11656907B2 (en) | 2004-11-08 | 2023-05-23 | Iii Holdings 12, Llc | System and method of providing system jobs within a compute environment |
US11494235B2 (en) | 2004-11-08 | 2022-11-08 | Iii Holdings 12, Llc | System and method of providing system jobs within a compute environment |
US11658916B2 (en) | 2005-03-16 | 2023-05-23 | Iii Holdings 12, Llc | Simple integration of an on-demand compute environment |
US12120040B2 (en) | 2005-03-16 | 2024-10-15 | Iii Holdings 12, Llc | On-demand compute environment |
US11765101B2 (en) | 2005-04-07 | 2023-09-19 | Iii Holdings 12, Llc | On-demand access to compute resources |
US11831564B2 (en) | 2005-04-07 | 2023-11-28 | Iii Holdings 12, Llc | On-demand access to compute resources |
US11533274B2 (en) | 2005-04-07 | 2022-12-20 | Iii Holdings 12, Llc | On-demand access to compute resources |
US11496415B2 (en) | 2005-04-07 | 2022-11-08 | Iii Holdings 12, Llc | On-demand access to compute resources |
US11522811B2 (en) | 2005-04-07 | 2022-12-06 | Iii Holdings 12, Llc | On-demand access to compute resources |
US11650857B2 (en) | 2006-03-16 | 2023-05-16 | Iii Holdings 12, Llc | System and method for managing a hybrid computer environment |
US11522952B2 (en) | 2007-09-24 | 2022-12-06 | The Research Foundation For The State University Of New York | Automatic clustering for self-organizing grids |
US9465771B2 (en) | 2009-09-24 | 2016-10-11 | Iii Holdings 2, Llc | Server on a chip and node cards comprising one or more of same |
US9405584B2 (en) | 2009-10-30 | 2016-08-02 | Iii Holdings 2, Llc | System and method for high-performance, low-power data center interconnect fabric with addressing and unicast routing |
US10877695B2 (en) | 2009-10-30 | 2020-12-29 | Iii Holdings 2, Llc | Memcached server functionality in a cluster of data processing nodes |
US10050970B2 (en) | 2009-10-30 | 2018-08-14 | Iii Holdings 2, Llc | System and method for data center security enhancements leveraging server SOCs or server fabrics |
US9075655B2 (en) | 2009-10-30 | 2015-07-07 | Iii Holdings 2, Llc | System and method for high-performance, low-power data center interconnect fabric with broadcast or multicast addressing |
US9262225B2 (en) | 2009-10-30 | 2016-02-16 | Iii Holdings 2, Llc | Remote memory access functionality in a cluster of data processing nodes |
US9077654B2 (en) | 2009-10-30 | 2015-07-07 | Iii Holdings 2, Llc | System and method for data center security enhancements leveraging managed server SOCs |
US9311269B2 (en) | 2009-10-30 | 2016-04-12 | Iii Holdings 2, Llc | Network proxy for high-performance, low-power data center interconnect fabric |
US10140245B2 (en) * | 2009-10-30 | 2018-11-27 | Iii Holdings 2, Llc | Memcached server functionality in a cluster of data processing nodes |
US9454403B2 (en) | 2009-10-30 | 2016-09-27 | Iii Holdings 2, Llc | System and method for high-performance, low-power data center interconnect fabric |
US9054990B2 (en) | 2009-10-30 | 2015-06-09 | Iii Holdings 2, Llc | System and method for data center security enhancements leveraging server SOCs or server fabrics |
US9479463B2 (en) | 2009-10-30 | 2016-10-25 | Iii Holdings 2, Llc | System and method for data center security enhancements leveraging managed server SOCs |
US11526304B2 (en) | 2009-10-30 | 2022-12-13 | Iii Holdings 2, Llc | Memcached server functionality in a cluster of data processing nodes |
US9509552B2 (en) | 2009-10-30 | 2016-11-29 | Iii Holdings 2, Llc | System and method for data center security enhancements leveraging server SOCs or server fabrics |
US9008079B2 (en) | 2009-10-30 | 2015-04-14 | Iii Holdings 2, Llc | System and method for high-performance, low-power data center interconnect fabric |
US9977763B2 (en) | 2009-10-30 | 2018-05-22 | Iii Holdings 2, Llc | Network proxy for high-performance, low-power data center interconnect fabric |
US20170068639A1 (en) * | 2009-10-30 | 2017-03-09 | Iii Holdings 2, Llc | Memcached server functionality in a cluster of data processing nodes |
US20130089104A1 (en) * | 2009-10-30 | 2013-04-11 | Calxeda, Inc. | System and Method for High-Performance, Low-Power Data Center Interconnect Fabric |
US8745302B2 (en) * | 2009-10-30 | 2014-06-03 | Calxeda, Inc. | System and method for high-performance, low-power data center interconnect fabric |
US9680770B2 (en) | 2009-10-30 | 2017-06-13 | Iii Holdings 2, Llc | System and method for using a multi-protocol fabric module across a distributed server interconnect fabric |
US10135731B2 (en) | 2009-10-30 | 2018-11-20 | Iii Holdings 2, Llc | Remote memory access functionality in a cluster of data processing nodes |
US8737410B2 (en) * | 2009-10-30 | 2014-05-27 | Calxeda, Inc. | System and method for high-performance, low-power data center interconnect fabric |
US9749326B2 (en) | 2009-10-30 | 2017-08-29 | Iii Holdings 2, Llc | System and method for data center security enhancements leveraging server SOCs or server fabrics |
US9929976B2 (en) | 2009-10-30 | 2018-03-27 | Iii Holdings 2, Llc | System and method for data center security enhancements leveraging managed server SOCs |
US9866477B2 (en) | 2009-10-30 | 2018-01-09 | Iii Holdings 2, Llc | System and method for high-performance, low-power data center interconnect fabric |
US11720290B2 (en) | 2009-10-30 | 2023-08-08 | Iii Holdings 2, Llc | Memcached server functionality in a cluster of data processing nodes |
US9876735B2 (en) | 2009-10-30 | 2018-01-23 | Iii Holdings 2, Llc | Performance and power optimized computer system architectures and methods leveraging power optimized tree fabric interconnect |
US8594100B2 (en) | 2010-03-31 | 2013-11-26 | International Business Machines Corporation | Data frame forwarding using a distributed virtual bridge |
US8358661B2 (en) * | 2010-04-20 | 2013-01-22 | International Business Machines Corporation | Remote adapter configuration |
US20110258641A1 (en) * | 2010-04-20 | 2011-10-20 | International Business Machines Corporation | Remote Adapter Configuration |
US8619796B2 (en) | 2010-04-22 | 2013-12-31 | International Business Machines Corporation | Forwarding data frames with a distributed fiber channel forwarder |
US11677588B2 (en) | 2010-07-06 | 2023-06-13 | Nicira, Inc. | Network control apparatus and method for creating and modifying logical switching elements |
US11876679B2 (en) | 2010-07-06 | 2024-01-16 | Nicira, Inc. | Method and apparatus for interacting with a network information base in a distributed network control system with multiple controller instances |
US12028215B2 (en) | 2010-07-06 | 2024-07-02 | Nicira, Inc. | Distributed network control system with one master controller per logical datapath set |
US11539591B2 (en) * | 2010-07-06 | 2022-12-27 | Nicira, Inc. | Distributed network control system with one master controller per logical datapath set |
US11979280B2 (en) | 2010-07-06 | 2024-05-07 | Nicira, Inc. | Network control apparatus and method for populating logical datapath sets |
US11509564B2 (en) | 2010-07-06 | 2022-11-22 | Nicira, Inc. | Method and apparatus for replicating network information base in a distributed network control system with multiple controller instances |
US8856419B2 (en) | 2010-07-19 | 2014-10-07 | International Business Machines Corporation | Register access in distributed virtual bridge environment |
US20120254400A1 (en) * | 2011-03-31 | 2012-10-04 | International Business Machines Corporation | System to improve operation of a data center with heterogeneous computing clouds |
US8856321B2 (en) * | 2011-03-31 | 2014-10-07 | International Business Machines Corporation | System to improve operation of a data center with heterogeneous computing clouds |
WO2012162314A1 (en) * | 2011-05-24 | 2012-11-29 | Calxeda, Inc. | System and method for data center security enhancements leveraging managed server socs |
WO2012162313A2 (en) * | 2011-05-24 | 2012-11-29 | Calxeda, Inc. | System and method for data center security enhancements leveraging server socs or server fabrics |
WO2012162313A3 (en) * | 2011-05-24 | 2013-05-02 | Calxeda, Inc. | System and method for data center security enhancements leveraging server socs or server fabrics |
US10021806B2 (en) | 2011-10-28 | 2018-07-10 | Iii Holdings 2, Llc | System and method for flexible storage and networking provisioning in large scalable processor installations |
US9585281B2 (en) | 2011-10-28 | 2017-02-28 | Iii Holdings 2, Llc | System and method for flexible storage and networking provisioning in large scalable processor installations |
US9069929B2 (en) | 2011-10-31 | 2015-06-30 | Iii Holdings 2, Llc | Arbitrating usage of serial port in node card of scalable and modular servers |
US9965442B2 (en) | 2011-10-31 | 2018-05-08 | Iii Holdings 2, Llc | Node card management in a modular and large scalable server system |
US9092594B2 (en) | 2011-10-31 | 2015-07-28 | Iii Holdings 2, Llc | Node card management in a modular and large scalable server system |
US9792249B2 (en) | 2011-10-31 | 2017-10-17 | Iii Holdings 2, Llc | Node card utilizing a same connector to communicate pluralities of signals |
US8861400B2 (en) | 2012-01-18 | 2014-10-14 | International Business Machines Corporation | Requesting multicast membership information in a distributed switch in response to a miss event |
US8891535B2 (en) | 2012-01-18 | 2014-11-18 | International Business Machines Corporation | Managing a global forwarding table in a distributed switch |
US20130250802A1 (en) * | 2012-03-26 | 2013-09-26 | Praveen Yalagandula | Reducing cabling costs in a datacenter network |
WO2014015664A1 (zh) * | 2012-07-26 | 2014-01-30 | 华为技术有限公司 | 一种通信方法和系统 |
WO2014039922A3 (en) * | 2012-09-06 | 2014-05-15 | Pi-Coral, Inc. | Large-scale data storage and delivery system |
CN104903874A (zh) * | 2012-09-06 | 2015-09-09 | 百科容(科技)公司 | 大规模数据储存和递送系统 |
CN110598444A (zh) * | 2012-09-07 | 2019-12-20 | 威智伦公司 | 具有多个服务器节点的物理安全系统 |
US9170971B2 (en) * | 2012-12-26 | 2015-10-27 | Iii Holdings 2, Llc | Fabric discovery for a cluster of nodes |
US9742662B2 (en) | 2012-12-26 | 2017-08-22 | Iii Holdings 2, Llc | Fabric discovery for a cluster of nodes |
US10205653B2 (en) | 2012-12-26 | 2019-02-12 | Iii Holdings 2, Llc | Fabric discovery for a cluster of nodes |
US20140181573A1 (en) * | 2012-12-26 | 2014-06-26 | Calxeda, Inc. | Fabric discovery for a cluster of nodes |
US9648102B1 (en) * | 2012-12-27 | 2017-05-09 | Iii Holdings 2, Llc | Memcached server functionality in a cluster of data processing nodes |
CN105359468A (zh) * | 2013-12-06 | 2016-02-24 | 英特尔公司 | 使用与链路结构分组异步的微片捆包的链路传送、位错误检测以及链路重试 |
US20150181317A1 (en) * | 2013-12-24 | 2015-06-25 | Nec Laboratories America, Inc. | Scalable hybrid packet/circuit switching network architecture |
US9654852B2 (en) * | 2013-12-24 | 2017-05-16 | Nec Corporation | Scalable hybrid packet/circuit switching network architecture |
US10033664B2 (en) | 2014-03-28 | 2018-07-24 | Airbus Operations Gmbh | Ethernet switch and method for establishing forwarding patterns in an Ethernet switch |
US20160352775A1 (en) * | 2014-04-09 | 2016-12-01 | Hewlett Packard Enterprise Development Lp | Identifying suspicious activity in a load test |
US9866587B2 (en) * | 2014-04-09 | 2018-01-09 | Entit Software Llc | Identifying suspicious activity in a load test |
US10452268B2 (en) | 2014-04-18 | 2019-10-22 | Ultrata, Llc | Utilization of a distributed index to provide object memory fabric coherency |
US9497140B2 (en) * | 2014-05-14 | 2016-11-15 | International Business Machines Corporation | Autonomous multi-node network configuration and self-awareness through establishment of a switch port group |
US20150333926A1 (en) * | 2014-05-14 | 2015-11-19 | International Business Machines Corporation | Autonomous multi-node network configuration and self-awareness through establishment of a switch port group |
US9965185B2 (en) | 2015-01-20 | 2018-05-08 | Ultrata, Llc | Utilization of a distributed index to provide object memory fabric coherency |
US11755201B2 (en) | 2015-01-20 | 2023-09-12 | Ultrata, Llc | Implementation of an object memory centric cloud |
US9971506B2 (en) | 2015-01-20 | 2018-05-15 | Ultrata, Llc | Distributed index for fault tolerant object memory fabric |
US11782601B2 (en) | 2015-01-20 | 2023-10-10 | Ultrata, Llc | Object memory instruction set |
US11775171B2 (en) | 2015-01-20 | 2023-10-03 | Ultrata, Llc | Utilization of a distributed index to provide object memory fabric coherency |
US11768602B2 (en) | 2015-01-20 | 2023-09-26 | Ultrata, Llc | Object memory data flow instruction execution |
US11755202B2 (en) | 2015-01-20 | 2023-09-12 | Ultrata, Llc | Managing meta-data in an object memory fabric |
US11573699B2 (en) | 2015-01-20 | 2023-02-07 | Ultrata, Llc | Distributed index for fault tolerant object memory fabric |
US11579774B2 (en) | 2015-01-20 | 2023-02-14 | Ultrata, Llc | Object memory data flow triggers |
US11126350B2 (en) | 2015-01-20 | 2021-09-21 | Ultrata, Llc | Utilization of a distributed index to provide object memory fabric coherency |
US11086521B2 (en) | 2015-01-20 | 2021-08-10 | Ultrata, Llc | Object memory data flow instruction execution |
US10768814B2 (en) | 2015-01-20 | 2020-09-08 | Ultrata, Llc | Distributed index for fault tolerant object memory fabric |
US11256438B2 (en) | 2015-06-09 | 2022-02-22 | Ultrata, Llc | Infinite memory fabric hardware implementation with memory |
US9886210B2 (en) | 2015-06-09 | 2018-02-06 | Ultrata, Llc | Infinite memory fabric hardware implementation with router |
US10922005B2 (en) | 2015-06-09 | 2021-02-16 | Ultrata, Llc | Infinite memory fabric streams and APIs |
US9971542B2 (en) | 2015-06-09 | 2018-05-15 | Ultrata, Llc | Infinite memory fabric streams and APIs |
US10698628B2 (en) | 2015-06-09 | 2020-06-30 | Ultrata, Llc | Infinite memory fabric hardware implementation with memory |
US11733904B2 (en) | 2015-06-09 | 2023-08-22 | Ultrata, Llc | Infinite memory fabric hardware implementation with router |
US11231865B2 (en) | 2015-06-09 | 2022-01-25 | Ultrata, Llc | Infinite memory fabric hardware implementation with router |
US10235084B2 (en) | 2015-06-09 | 2019-03-19 | Ultrata, Llc | Infinite memory fabric streams and APIS |
US10430109B2 (en) | 2015-06-09 | 2019-10-01 | Ultrata, Llc | Infinite memory fabric hardware implementation with router |
US11269514B2 (en) | 2015-12-08 | 2022-03-08 | Ultrata, Llc | Memory fabric software implementation |
US10241676B2 (en) | 2015-12-08 | 2019-03-26 | Ultrata, Llc | Memory fabric software implementation |
US11281382B2 (en) | 2015-12-08 | 2022-03-22 | Ultrata, Llc | Object memory interfaces across shared links |
US10895992B2 (en) | 2015-12-08 | 2021-01-19 | Ultrata Llc | Memory fabric operations and coherency using fault tolerant objects |
WO2017100292A1 (en) * | 2015-12-08 | 2017-06-15 | Ultrata, Llc. | Object memory interfaces across shared links |
US10235063B2 (en) | 2015-12-08 | 2019-03-19 | Ultrata, Llc | Memory fabric operations and coherency using fault tolerant objects |
US10248337B2 (en) * | 2015-12-08 | 2019-04-02 | Ultrata, Llc | Object memory interfaces across shared links |
US10809923B2 (en) | 2015-12-08 | 2020-10-20 | Ultrata, Llc | Object memory interfaces across shared links |
US11899931B2 (en) | 2015-12-08 | 2024-02-13 | Ultrata, Llc | Memory fabric software implementation |
US20180167271A1 (en) * | 2016-12-09 | 2018-06-14 | Lenovo Enterprise Solutions (Singapore) Pte. Ltd. | Automatic management network provisioning |
US10530643B2 (en) * | 2016-12-09 | 2020-01-07 | Lenovo Enterprise Solutions (Singapore) Pte. Ltd. | Automatic management network provisioning |
US10757040B2 (en) * | 2017-07-11 | 2020-08-25 | Cisco Technology, Inc. | Efficient distribution of peer zone database in Fibre Channel fabric |
US11381524B2 (en) | 2017-07-11 | 2022-07-05 | Cisco Technology, Inc. | Efficient distribution of peer zone database in fibre channel fabric |
US11256435B2 (en) * | 2019-03-27 | 2022-02-22 | Silicon Motion, Inc. | Method and apparatus for performing data-accessing management in a storage server |
CN110188948A (zh) * | 2019-05-30 | 2019-08-30 | 广西防城港核电有限公司 | 模拟机故障的处理导引方法 |
CN110719193A (zh) * | 2019-09-12 | 2020-01-21 | 无锡江南计算技术研究所 | 一种面向高性能计算的高可靠泛树网络拓扑方法及结构 |
US12124878B2 (en) | 2022-03-17 | 2024-10-22 | Iii Holdings 12, Llc | System and method for scheduling resources within a compute environment using a scheduler process with reservation mask function |
CN117807016A (zh) * | 2024-03-01 | 2024-04-02 | 上海励驰半导体有限公司 | 多核异构系统与外部设备的通信方法、设备、存储介质 |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9866477B2 (en) | System and method for high-performance, low-power data center interconnect fabric | |
US9977763B2 (en) | Network proxy for high-performance, low-power data center interconnect fabric | |
US9858104B2 (en) | Connecting fabrics via switch-to-switch tunneling transparent to network servers | |
US9590903B2 (en) | Systems and methods for optimizing layer three routing in an information handling system | |
US9007895B2 (en) | Method for routing data packets in a fat tree network | |
US20120042095A1 (en) | System and Method to Create Virtual Links for End-to-End Virtualization | |
US9008080B1 (en) | Systems and methods for controlling switches to monitor network traffic | |
US9825776B2 (en) | Data center networking | |
US20050021846A1 (en) | Method and apparatus for multi-chip address resolution lookup synchronization in a network environment | |
Stephens | Designing scalable networks for future large datacenters | |
JP2009081816A (ja) | パケット中継装置 | |
CN105357152B (zh) | 用于高性能、低功率数据中心互连结构的系统和方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SMOOTH STONE, INC., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DAVIS, MARK BRADLEY;BORLAND, DAVID JAMES;REEL/FRAME:024881/0386 Effective date: 20100709 |
|
AS | Assignment |
Owner name: CALXEDA, INC., TEXAS Free format text: CHANGE OF NAME;ASSIGNOR:SMOOTH-STONE, INC.;REEL/FRAME:025874/0437 Effective date: 20101115 |
|
AS | Assignment |
Owner name: SILICON VALLEY BANK, CALIFORNIA Free format text: SECURITY AGREEMENT;ASSIGNOR:CALXEDA, INC.;REEL/FRAME:030292/0207 Effective date: 20130422 |
|
AS | Assignment |
Owner name: SILICON VALLEY BANK, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CALXEDA, INC.;REEL/FRAME:033281/0855 Effective date: 20140701 Owner name: CALXEDA, INC., TEXAS Free format text: RELEASE OF SECURITY INTEREST;ASSIGNOR:SILICON VALLEY BANK;REEL/FRAME:033281/0887 Effective date: 20140703 |
|
AS | Assignment |
Owner name: III HOLDINGS 2, LLC, DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SILICON VALLEY BANK;REEL/FRAME:033551/0683 Effective date: 20140630 |
|
AS | Assignment |
Owner name: SILICON VALLEY BANK, CALIFORNIA Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE INCORRECT APPL. NO. 13/708,340 PREVIOUSLY RECORDED AT REEL: 030292 FRAME: 0207. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY AGREEMENT;ASSIGNOR:CALXEDA, INC.;REEL/FRAME:035121/0172 Effective date: 20130422 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |